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Abstract

A major factor in the success of deep neural networks is the use of sophisticated architectures rather

than the classical multilayer perceptron (MLP). Residual networks (ResNets) stand out among these

powerful modern architectures. Previous works focused on the optimization advantages of deep

ResNets over deep MLPs. In this paper, we show another distinction between the two models,

namely, a tendency of ResNets to promote smoother interpolations than MLPs. We analyze this

phenomenon via the neural tangent kernel (NTK) approach. First, we compute the NTK for a

considered ResNet model and prove its stability during gradient descent training. Then, we show

by various evaluation methodologies that for ReLU activations the NTK of ResNet, and its kernel

regression results, are smoother than the ones of MLP. The better smoothness observed in our

analysis may explain the better generalization ability of ResNets and the practice of moderately

attenuating the residual blocks.

Keywords: Neural tangent kernel, residual networks, multilayer perceptron, kernel methods

1. Introduction

Deep neural networks have led to a major improvement in various fields. The advance in the network

performance is tightly related to the introduction of various novel architectures (Krizhevsky et al.,

2012; Simonyan and Zisserman, 2015; He et al., 2016; Huang et al., 2017; Tan and Le, 2019). A

prominent model among them, which has led to a major leap in performance, is the deep residual

network, known also as ResNet (He et al., 2016). It has introduced the usage of the skip connection,

i.e., an identity path in the network that adds to the output features of a given layer its input features.

This simple change enables effectively training much deeper networks, which eventually leads to

improved results.

Different efforts were dedicated to explaining the success of ResNets. These mainly focused on

the optimization aspect of ResNets, namely, e.g., claiming that it is “easier” to train a network with

skip-connections as it enjoys a better loss surface (Li et al., 2018) or that ResNets overcome the

problem of vanishing gradients (Veit et al., 2016). Yet, analyzing deep networks rather than shallow

ones has remained a major challenge.

Recently, Jacot et al. (2018) have shown that, under certain conditions (one of them is strong

over-parameterization), training a deep neural network with gradient descent can be characterized by

kernel regression with the neural tangent kernel (NTK). Essentially, this approach can be understood

as a linearization (first-order Taylor series expansion) of the network’s output with respect to its

parameters around the initialization. It should be noted that the NTK is not the nominal regime of
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the non-linear learning capabilities of deep neural networks (e.g., like classical kernels (Schölkopf

et al., 2002), its feature mapping does not adapt to the data and it has not been shown to reach the

performance of powerful deep networks (Chizat et al., 2019)). Yet, the NTK can be used to identify

or provide tractable analyses for phenomena that are also observed in other deep learning settings,

such as achieving zero training loss (Jacot et al., 2018; Chizat et al., 2019; Lee et al., 2019; Arora

et al., 2019b) and faster learning of lower frequencies (Basri et al., 2019).

As the NTK formulas depend on the network architecture, most of the NTK works consider the

classical multilayer perceptron (MLP), a plain feed-forward network with fully connected layers

(Jacot et al., 2018; Chizat et al., 2019; Lee et al., 2019; Arora et al., 2019a; Basri et al., 2019; Bietti

and Mairal, 2019; Williams et al., 2019; Geifman et al., 2020; Chen and Xu, 2020; Bietti and Bach,

2020). Yet, some recent papers compute NTK expressions for other architectures (Arora et al.,

2019b; Yang, 2019a, 2020; Huang et al., 2020; Alemohammad et al., 2020; Hron et al., 2020).

Contribution. In this paper, we develop the NTK for a ResNet model. After obtaining the

formulas for the infinite width limit at initialization, we prove the stability of empirical NTK during

training with gradient descent (and other common NTK assumptions), which implies that the trained

ResNet model is indeed characterized by its NTK. Note that proving stability during training is the

key result that allows NTK-based analysis of neural networks. Yet, it is missing in a recent paper

(Huang et al., 2020) that also considered a resembling ResNet model (more details are in Section 3).

By comparing the ResNet NTK and the MLP NTK for ReLU activations, we find that ResNet

promotes smoother interpolations than MLP (without using any explicit regularization), which adds

to other advantages of ResNet described in previous works. Our smoothness findings are based

on different evaluation methodologies, such as visualizing the kernel of each model (which is data-

independent), comparing uniform upper bounds on the norm of the models’ Jacobians after training,

and comparing kernel regression results (specifically, interpolations) for the different NTKs. In

the latter methodology, we use approximate L2-norm of the second derivative of a function as

a quantitative measure for its smoothness. Finally, we show that for ReLU-based networks the

smoothness advantage of ResNet is also observed outside the NTK regime.

Our analysis may be related to the better generalization ability of ResNets over MLP, as there

is prior work that connects fitting the training data with a smoother function to better generalization

error (under some smoothness assumption on the target function) (Lu et al., 2019; Giryes, 2020;

Xie et al., 2020). We also show that the smoothness distinction between the two models can be

increased by moderately attenuating the residual blocks when summing them with the skip connec-

tions. Indeed, this practice has been shown to improve the training and generalization robustness of

ResNets in a recent empirical classification study (Zhang et al., 2019) and its follow-up work (Yang

et al., 2020).

2. Background and Related Work

This section presents the NTK of a plain MLP with some of its results. Consider an MLP model

with L hidden layers, input x ∈ Rd, parameter vector θ := vec({W(ℓ)}), and output f(x;θ) ∈ Rk,
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given by

g(ℓ) =
σw√
nℓ−1

W(ℓ)x(ℓ−1), ℓ = 1, . . . , L (1)

x(ℓ) = φ(g(ℓ)), ℓ = 1, . . . , L

x(0) = x, f(x,θ) = g(L+1) =
σw√
nL

W(L+1)x(L),

where φ(·) is an element-wise activation function, σw is a positive hyperparameter that scales the

standard deviation of {W(ℓ)}, W(ℓ) ∈ Rnℓ×nℓ−1 , n0 = d, nL+1 = k, and all the weights are

initialized by the standard normal distribution W
(ℓ)
ij ∼ N (0, 1). It is assumed that the input is

bounded ‖x‖2 ≤ B.

At initialization, when n1, . . . , nL −→ ∞ each pre-activation g
(ℓ)
i (x), and thus also fi(x) =

g
(L+1)
i (x), is a stochastic Gaussian Process (GP) with zero mean (Neal, 2012; Lee et al., 2017).

Denote the GP kernel (covariance) of this process by K(L+1)(x, x̃) := Eθ

[

g
(L+1)
i (x)g

(L+1)
i (x̃)

]

(note its independence of the entry index i). We have that

fi(x)fi(x̃)
n1:L−→∞−−−−−−→ K(L+1)(x, x̃),

where the limit should be interpreted in the almost surely sense. Since Eθ

[

g
(L+1)
i (x)g

(L+1)
j (x̃)

]

=

0 for i 6= j, for multidimensional output, we simply have

f(x)f⊤(x̃)
n1:L−→∞−−−−−−→ K(L+1)(x, x̃)⊗ Ik,

where ⊗ is the Kronecker product. The GP kernel of the MLP above can be computed using the

following recursive expression (Jacot et al., 2018; Lee et al., 2017; Yang, 2019b)

K(L+1)(x, x̃) = σ2
wT

([
K(L)(x,x) K(L)(x, x̃)

K(L)(x, x̃) K(L)(x̃, x̃)

])

, (2)

K(1)(x, x̃) =
σ2
w

d
x⊤x̃,

where T (Σ) := E(u,v)∼N (0,Σ) [φ(u)φ(v)].

Recently, a new type of kernel has received much attention, namely, the NTK (Jacot et al., 2018),

which is defined as Θ(L+1)(x, x̃) := Eθ

〈
∂fi(x;θ)

∂θ , ∂fi(x̃;θ)∂θ

〉

where n1:L −→ ∞. Similarly to the GP

kernel, it can be shown that at initialization
〈
∂fi(x;θ)

∂θ , ∂fi(x̃;θ)∂θ

〉
n1:L−→∞−−−−−−→ Θ(L+1)(x, x̃) (Jacot

et al., 2018; Arora et al., 2019b; Yang, 2019a, 2020). (The extension to multidimensional output is

done again by Kronecker product with Ik). Note that the significant impact of NTK is mainly due

to the fact that it can be used to characterize DNN training with gradient flow or gradient descent

(with small enough learning rate) (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b).

Specifically, given the training data D = (X ,Y) (where (X ,Y) = ((x1,y1), . . . , (x|X |,y|X |))
are the training samples {xi} ∈ Rd and their associated labels {yi} ∈ Rk) and a loss function

ℓ(·, ·) : Rk×Rk → R, consider learning θ by minimizing the empirical loss L =
∑

(xi,yi)∈D ℓ(f(xi;θ),yi)
using gradient descent with learning rate η. This can be written in continuous time (for simplicity) as

3
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θ̇t = −η ∂f(X ;θt)
∂θ

⊤∇f(X ;θt)L, where f(X ;θt) = vec({f(xi;θt)}xi∈X ) ∈ Rk|X |×1. In the function

space, we have

ḟ(X ;θt) =
∂f(X ;θt)

∂θ
θ̇t (3)

= −η
∂f(X ;θt)

∂θ

∂f(X ;θt)

∂θ

⊤
∇f(X ;θt)L.

Under appropriate conditions, it can be shown that
∂f(X ;θt)

∂θ
∂f(X ;θt)

∂θ

⊤ n1:L−→∞−−−−−−→ Θ ⊗ Ik, where

Θ ∈ R|X |×|X | with Θij = Θ(L+1)(xi,xj). In other words, the dynamics of the output function in

(3) turns into a simple ODE with respect to f(X ;θt) based on the constant NTK. For squared ℓ2
loss this is even a linear ODE with a close-from solution. In this case, fitting scalar labels {yi} is

reduced to ℓ2 kernel regression, which has the following closed-form solution

f(x) = k(x)⊤Θ−1y, (4)

where ki(x) = Θ(L+1)(x,xi) and y = [y1, . . . , y|D|]⊤. A more general study on linear behaviour

of non-linear models, which takes into account under-parameterized models and the effect of the

scaling used in initialization, appears in (Chizat et al., 2019).

Finally, the NTK of the MLP model in (1) can be computed using the following recursive

expression (Jacot et al., 2018)

Θ(L+1)(x, x̃) = K(L+1)(x, x̃) + Θ(L)(x, x̃) · σ2
wṪ

([
K(L)(x,x) K(L)(x, x̃)

K(L)(x, x̃) K(L)(x̃, x̃)

])

, (5)

Θ(1)(x, x̃) = K(1)(x, x̃),

where Ṫ (Σ) := E(u,v)∼N (0,Σ) [φ
′(u)φ′(v)]. Note that T (Σ) and Ṫ (Σ) have closed-form expres-

sions for the ReLU and erf activation functions. For completeness, their expressions for ReLU,

which are due to (Cho and Saul, 2009), are provided in Appendix D.

3. NTK for ResNet

We turn now to develop the ResNet NTK. Consider a ResNet model with L non-linear hidden layers,

input x ∈ Rd, parameter vector θ := vec(w(L+1), {W(ℓ)}, {V(ℓ)},U), and output f(x;θ) ∈ R

given by

g(ℓ) =
σw√
n
W(ℓ)x(ℓ−1), ℓ = 1, . . . , L (6)

x(ℓ) = x(ℓ−1) + α
σv√
n
V(ℓ)φ(g(ℓ)), ℓ = 1, . . . , L

x(0) =
1√
d
Ux, f(x,θ) = g(L+1) =

σw√
n
w(L+1)⊤x(L),

where φ(·) is an element-wise activation function, σw and σv are positive hyperparameters that scale

the standard deviation of {W(ℓ)} and {V(ℓ)}, respectively, and α is a positive hyperparameter that

weighs the residual block. W(ℓ),V(ℓ) ∈ Rn×n, w(L+1) ∈ Rn, U ∈ Rn×d, and all the weights

4
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are initialized by the standard normal distribution w
(L+1)
i ,W

(ℓ)
ij , V

(ℓ)
ij , Uij ∼ N (0, 1). It is assumed

that the input is bounded ‖x‖2 ≤ B.

A few remarks are in place. First, we assume scalar output for simplification, and the extension

to multidimensional output is straightforward as shown in Section 2. Second, note that we lift

the input dimension from Rd to Rn using x(0) = 1√
d
Ux. This lifting is unavoidable as the NTK

analysis requires that the width of all intermediate layers approaches infinity. Third, the weights

{V(ℓ)} are necessary for the proof technique and for obtaining closed-form expressions for the

ResNet NTK. Specifically, V(ℓ) breaks the correlation between x(ℓ−1) and φ(g(ℓ)) which leads to

(relatively nice) formulas for the GP kernel and NTK with closed-form expressions in the case of

ReLU activations. Also, as explained in Appendix A, the multiplication of φ(g(ℓ)) by V(ℓ) allows

us to use general convergence results from (Yang, 2019b,a). In contrast, ResNet models that do not

multiply the nonlinear activations by {V(ℓ)} get complicated recursive equations for their kernel

with no closed-form analytical expressions even for ReLU activations (Du et al., 2019), or do not

provide kernel expressions at all (Zhang, 2019). Thus, they have no possibility to observe the shape

of this kernel and obtain its kernel regression results (contrary to our ResNet NTK).

Lastly, a similar ResNet model is considered by (Huang et al., 2020). Yet, they assume that

the weights of the first and last layers are fixed, and they do not include a proof that when training

this ResNet model with gradient descent/flow the limiting NTK stays the same as the one in the

initialization (i.e.,
∂f(X ;θt)

∂θ
∂f(X ;θt)

∂θ

⊤ n−→∞−−−−→ Θ). Note that this missing result (proven here in

Theorem 5, using Lemma 4) is perhaps the most important property of NTK-based analysis of

neural networks. Another difference between the works is that we use the derived NTK to compare

the ResNet with MLP in terms of smoothness for a similar fixed depth (i.e., fixed L), while Huang

et al. (2020) examine the NTKs expressions for L −→ ∞. In fact, note that the NTK regime for MLP

requires L to be finite (Hanin and Nica, 2019; Littwin et al., 2020).

Denote the empirical (random, finite-width) GP kernel and NTK at initialization by K̂
(L+1)
0 (x, x̃) :=

f(x;θ0)f(x̃;θ0) and Θ̂
(L+1)
0 (x, x̃) :=

〈
∂f(x;θ0)

∂θ , ∂f(x̃;θ0)
∂θ

〉

, respectively. Our first results state the

GP kernel and NTK at initialization when n −→ ∞. While these results are asymptotic, in Section 4

we present numerical experiments where the behavior of practical finite width networks correlates

with the asymptotic NTK analysis. Yet, non-asymptotic results may be obtained using concentra-

tion bounds, as done for other kernel approximation techniques (Sriperumbudur and Szabó, 2015;

Koppel et al., 2019).

Theorem 1 (GP kernel at initialization) Consider the ResNet model in (6). We have K̂
(L+1)
0 (x, x̃)

n−→∞−−−−→ K(L+1)(x, x̃) := Eθ [f(x;θ)f(x̃;θ)], where K(L+1)(x, x̃) can be computed recursively as

following:

K(L+1)(x, x̃) = K(L)(x, x̃) + α2σ2
vσ

2
wT

([
K(L)(x,x) K(L)(x, x̃)

K(L)(x, x̃) K(L)(x̃, x̃)

])

, (7)

K(1)(x, x̃) =
σ2
w

d
x⊤x̃.

Theorem 2 (NTK at initialization) Consider the ResNet model in (6) and let the element-wise

non-linearities be bounded uniformly by e(cx
2−ǫ) for some c, ǫ > 0. We have that Θ̂

(L+1)
0 (x, x̃)

n−→∞−−−−→

5



TIRER BRUNA GIRYES

Θ(L+1)(x, x̃) := Eθ

〈
∂f(x;θ)

∂θ , ∂f(x̃;θ)∂θ

〉

, where Θ(L+1)(x, x̃) is given by

Θ(L+1)(x, x̃) = K(L+1)(x, x̃) + Π(0)(x, x̃) ·K(1)(x, x̃)

+ α2
L∑

ℓ=1

Π(ℓ)(x, x̃) ·
(

Σ(ℓ+1)(x, x̃) +K(ℓ)(x, x̃) · Σ̇(ℓ+1)(x, x̃)
)

(8)

such that

Σ(ℓ+1)(x, x̃) := σ2
vσ

2
wT

([
K(ℓ)(x,x) K(ℓ)(x, x̃)

K(ℓ)(x, x̃) K(ℓ)(x̃, x̃)

])

,

Σ̇(ℓ+1)(x, x̃) := σ2
vσ

2
wṪ

([
K(ℓ)(x,x) K(ℓ)(x, x̃)

K(ℓ)(x, x̃) K(ℓ)(x̃, x̃)

])

, (9)

{K(ℓ)(x, x̃)} are given in (7), and {Π(ℓ)(x, x̃)} can be computed using the following recursive

expression

Π(ℓ)(x, x̃) = Π(ℓ+1)(x, x̃)
(

1 + α2Σ̇(ℓ+2)(x, x̃)
)

, (10)

Π(L)(x, x̃) = 1.

The proofs of the theorems can be found in Appendix A. Theorems 1 and 2 provide kernels that

are associated with the considered ResNet model. Both of these kernels can be used in applications

of kernel methods (Schölkopf et al., 2002). Yet, in what follows we show that the special property

of the NTK holds also for our ResNet. Namely, that under appropriate conditions, the limiting NTK

stays constant even during gradient descent training of the ResNet. Therefore, as discussed below

(3), the network function during and after training can be characterized by kernel regression with

the NTK.

Let θt denote the parameters at time step t. Given training data D = (X ,Y) (where (X ,Y) =
((x1, y1), . . . , (x|X |, y|X |)) are the training samples {xi} ∈ Rd and their associated labels {yi} ∈
R), we make the following shorthand notations

f(θt) = vec({f(xi;θt)}xi∈X ) ∈ R
|X |, (11)

e(θt) = f(θt)− Y ∈ R
|X |,

J(θt) =
∂f(θt)

∂θ
∈ R

|X |×|θ|.

The empirical |X | × |X | NTK Gram matrix is defined as

Θ̂t := Θ̂t(X ,X ) = J(θt)J(θt)
⊤. (12)

From Theorem 2 we have that Θ̂0
n−→∞−−−−→ Θ ∈ R|X |×|X | with Θij = Θ(L+1)(xi,xj).

In Theorem 5 below, we show that when training the ResNet using the loss function L(θ) =
1
2

∑

(xi,yi)∈D(f(xi;θ)− yi)
2 = 1

2‖e(θ)‖22 and gradient descent with small enough learning rate η,

we get sup
t
‖Θ̂t − Θ̂0‖F = O( 1√

n
), which implies Θ̂t

n−→∞−−−−→ Θ. To obtain the result sup
t
‖Θ̂t −

Θ̂0‖F = O( 1√
n
) we extend the strategy of (Lee et al., 2019) from MLP to the ResNet. The extension

is based on the following two lemmas.

6
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Lemma 3 Let W be an m × n random matrix whose entries are independent standard normal

variables. Then for every t ≥ 0, with probability at least 1− 2exp(−t2/2) we have

√
m−√

n− t ≤ λmin(W) ≤ λmax(W) ≤ √
m+

√
n+ t, (13)

where λmin(W) and λmax(W) denote the smallest and largest singular values of W, respectively.

Lemma 4 Consider the ResNet model in (6) initialized with θ0, and assume that the activation

function φ satisfies |φ(z)| ≤ Cφ|z|, |φ′(z)| ≤ Cφ and |φ(z) − φ(z̃)|, |φ′(z) − φ′(z̃)| ≤ Cφ|z − z̃|,
for some Cφ > 0. Then, there exists a K > 0 (that does not depend on n) such that for every

C > 0 and n ≫ C2, with high probability over the random initialization, the following holds for

all θ, θ̃ ∈ B(θ0, C) := {θ : ‖θ − θ0‖2 ≤ C}

‖J(θ)‖F ≤ K, (14)

‖J(θ)− J(θ̃)‖F ≤ K‖θ − θ̃‖2.

Lemma 3 is adopted from (Vershynin, 2010) (Corollary 5.35 there). It is used to prove Lemma 4

and will be used again later in this paper. Lemma 4 extends the “MLP version” that appears in (Lee

et al., 2019) to the considered ResNet model. Yet, due to the structure of the ResNet that is much

more complex than for MLP, the proof of Lemma 4 is more complex and is deferred to Appendix B.

Using Lemma 4, we have the following theorem.

Theorem 5 (Stability of the NTK during training) Consider the ResNet model in (6) with acti-

vation function that satisfies the conditions from Lemma 4. Assume that λmin(Θ) > 0, the training

set D = (X ,Y) is contained in some compact set and x 6= x̃ for all x, x̃ ∈ X . Then, for δ0 > 0
there exist R0 > 0, N and K > 1, such that for every n > N when applying gradient descent on

L(θ) = 1
2‖e(θ)‖22 with learning rate η0 < 2(λmin(Θ) + λmax(Θ))−1 the following holds with

probability at least 1− δ0 over the random initialization

‖e(θt)‖2 ≤
(

1− η0
3
λmin(Θ)

)t
R0, (15)

t∑

j=1

‖θj − θj−1‖2 ≤
3KR0

λmin(Θ)
,

sup
t

‖Θ̂t − Θ̂0‖F =
6K3R0

λmin(Θ)
n−0.5.

Proof The proof is based on induction and applying Lemma 4 with C = 3KR0
λmin(Θ) . Essentially, it

is an extension of Theorems G.1 and G.4 in (Lee et al., 2019) from MLP to the considered ResNet

model. Notice that while the proof of Lemma 4 (local boundness and Lipschitzness of the gradient)

is very different for different network architectures (e.g., ResNet), the other steps that are required

to prove these theorems do not depend on the network model.

Note that the first line in (15) implies convergence to zero training loss, the second line implies

stability of the weights during training (the bound on their amount of change does not depend on

the network width n), and the third line shows the stability of the NTK Gram matrix, which implies

Θ̂t
n−→∞−−−−→ Θ, as discussed above.

7
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4. Comparing the Smoothness of ResNet and MLP NTKs

In this section, we compare the smoothness of the results of ResNet and MLP in the NTK regime

(and beyond) using different evaluation methodologies. The smoothness property of a learned func-

tion (especially, of an interpolation) is of interest also because prior works have connected it with

better generalization (Lu et al., 2019; Giryes, 2020; Xie et al., 2020). We start with comparing uni-

form (i.e., for any input) upper bounds on the norm of the models’ Jacobians after training, which

is possible due to the NTK regime. This analysis formally shows that decreasing α in the ResNet

model limits the non-smoothness of the learned function and reduces its associated bound below

the bound obtained for MLP. Therefore, we examine different values of α also in other evalua-

tion methodologies, such as kernel visualization and measuring the smoothness of NTK regression

outputs by an approximated L2-norm of the outputs’ second derivatives.

Throughout this section, we focus on the distinction between MLPs and ResNets for ReLU

activations, which are extremely popular in practice, and for which T (K) and Ṫ (K) in the GP kernel

and the NTK have closed-form expressions (see Appendix D). The smoothness distinction may not

exist in other cases, such as when the activations are the identity function (then, the networks merely

learn linear maps), or when the activations are the smooth erf function (see Appendix E).

4.1. Comparing Bounds on Models’ Jacobians

In the NTK regime, i.e., when the conditions of Theorem 5 hold, we get from the second line in (15)

that for any t we have θt ∈ B(θ0,
3KR0

λmin(Θ)), which by Lemma 3 implies that for
√
n ≫ 3KR0

λmin(Θ)
the parameters in the NTK regime are tightly connected to their Gaussian initialization. Formally,

recall that θ0 = vec(w
(L+1)
0 , {W(ℓ)

0 }, {V(ℓ)
0 },U0), where all the elements in θ0 are i.i.d. standard

normal. Let θ ∈ B(θ0, C). Therefore, the spectral norm of W(ℓ) obeys

‖W(ℓ)‖ ≤ ‖W(ℓ)
0 ‖+ ‖W(ℓ) −W

(ℓ)
0 ‖ (16)

≤ 2
√
n+ t+ C ≤ 3

√
n,

where the first inequality uses the triangular inequality, the second inequality uses Lemma 3 and

‖W(ℓ) − W
(ℓ)
0 ‖ ≤ ‖W(ℓ) − W

(ℓ)
0 ‖F ≤ ‖θ − θ0‖2 ≤ C, and the last inequality holds with high

probability for
√
n ≫ C. Using the same arguments we have ‖V(ℓ)‖ ≤ 3

√
n, ‖U‖ ≤

√
d + 2

√
n

and ‖w(L+1)‖2 ≤ 2
√
n. This mean that, in the NTK regime (of both ResNet and MLP) the spectral

norm of the weights can be easily bounded. This is in contrast with the general case where there is

no convenient way to control the weights of DNNs after training.

Using these properties of the NTK regime for finite, yet large n (namely,
√
n ≫ 3KR0

λmin(Θ) ),

we show the benefit of using small values for the hyperparameter α in ResNets. The advantage of

this setting has been empirically demonstrated for classification by Zhang et al. (2019) (outside the

NTK regime). An indicator of the smoothness of a (trained) network f(x), which is also amenable

to analysis, can be the maximal norm of the network’s “input-output Jacobian” sup
x

∥
∥ ∂
∂xf(x)

∥
∥
2

(similarly to the way Lipschitz continuity of the gradient is used in the optimization literature).

Smaller upper bound on this quantity can be interpreted as higher smoothness.

8
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Considering the ResNet model in (6), we have

∂

∂x
fResNet(x) =

∂f

∂x(L)

∂x(L)

∂x(L−1)
. . .

∂x(1)

∂x(0)

∂x(0)

∂x
(17)

=
σw√
n
w(L+1)⊤

(
L∏

ℓ=1

(

In + α
σv√
n
V(ℓ)diag

{

φ′(g(ℓ))
} σw√

n
W(ℓ)

)
)

1√
d
U.

Let us bound sup
x

∥
∥ ∂
∂xfResNet(x)

∥
∥
2

sup
x

∥
∥
∥
∥

∂

∂x
fResNet(x)

∥
∥
∥
∥
2

≤ σw√
n
‖w(L+1)‖2

1√
d
‖U‖ ·

L∏

ℓ=1

(

1 + αCφ
σv√
n
‖V(ℓ)‖ σw√

n
‖W(ℓ)‖

)

(18)

≤ σw√
n
2
√
n

1√
d
(
√
d+ 2

√
n) ·

L∏

ℓ=1

(

1 + αCφ
σv√
n
3
√
n
σw√
n
3
√
n

)

≤ 2σw(1 + 2

√
n

d
) (1 + 9αCφσvσw)

L := BResNet.

It can be seen that a smaller value of α decreases the bound, which hints that it encourages fResNet(x)
to be smoother. Note also that

∥
∥ ∂
∂xfResNet(x)

∥
∥ = O(

√
n) (which we got due to the fact that, as

done in all NTK models, the weights U that are applied on the input are normalized by the input

dimension 1√
d

rather than by 1√
n

). This factor is not surprising, since we proved that under rather

mild conditions on X , the ResNet can fit any training data in the NTK regime, and thus the slope of

fResNet(x) is not bounded by a constant number. Therefore, to obtain a more formal result on the

advantage of small α, let us relate the above result to the one that is obtained for MLP, which also

has the same
√

n
d factor because of the normalization of the first layer.

Considering the MLP model in (1) with n1 = . . . = nL = n and scalar output, we get the

following input-output Jacobian

∂

∂x
fMLP (x) =

∂f

∂x(L)

∂x(L)

∂x(L−1)
. . .

∂x(1)

∂x(0)

∂x(0)

∂x
(19)

=
σw√
n
w(L+1)⊤

(
L∏

ℓ=2

diag
{

φ′(g(ℓ))
} σw√

n
W(ℓ)

)

diag
{

φ′(g(1))
} σw√

d
W(1).

Let us bound sup
x

∥
∥ ∂
∂xfMLP (x)

∥
∥
2

(recall that W(1) ∈ Rn×d in the MLP)

sup
x

∥
∥
∥
∥

∂

∂x
fMLP (x)

∥
∥
∥
∥
2

≤ σw√
n
‖w(L+1)‖2Cφ

σw√
d
‖W(1)‖

L∏

ℓ=2

Cφ
σw√
n
‖W(ℓ)‖ (20)

≤ σw√
n
2
√
nCφ

σw√
d
(
√
d+ 2

√
n)

L∏

ℓ=2

Cφ
σw√
n
3
√
n

≤ 2Cφσ
2
w(1 + 2

√
n

d
) (3Cφσw)

L−1 := BMLP.

9
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(a) Empirical and asymptotic NTK (b) Interpolation with 6 samples (c) Interpolation with 10 samples

Figure 1: Empirical (finite width of n = 2000 and 30 different Gaussian initializations) and asymp-

totic NTK for ResNet with L = 5 nonlinear layers, ReLU nonlinearities, α = 0.1, σv = σw = 1,

for inputs on the sphere (circle) in R2. (1(a)): The kernel shape. (1(b))-(1(c)): Interpolation using

the closed-form NTK solution and using gradient descent training of the finite-width ResNet (5K

iterations with lr 0.05 in (1(b)), and 10K iterations with lr 0.5 in (1(c))).

Comparing (18) and (20), we can compute the value of α for which BResNet ≤ BMLP. We

assume that the value of the constants σv, σw and Cφ is 1, as common in practice. Specifically,

Cφ bounds the expansiveness of the activation function φ(·) and its derivative (see Lemma 4), and

equals 1 for the widely used ReLU activation. The hyperparameters σv and σw scale the weight

matrices, and setting σv = σw = 1 coincides for square matrices with the popular Xavier’s Gaussian

initialization (where the standard deviation of the entries is 1/
√
n, as appears in our models). Thus,

we get

BResNet

BMLP
=

(1 + 9αCφσvσw)
L

3L−1(Cφσw)L
=

(1 + 9α)L

3L−1
(21)

≤ 1 ⇐⇒ α ≤ 31−1/L − 1

9

We can see that a moderate value of α, such as 0.1, implies BResNet ≤ BMLP for any L ≥ 3.

Interestingly, this is the fine-tuned value that has been used in the empirical classification paper by

Zhang et al. (2019). Note that for α −→ 0 the residual blocks cannot be trained. Thus, using too

small α is not recommended in practice. Even in the NTK regime we have observed no advantage

in extremely low α. Finally, (21) hints that if α is small (e.g., smaller than 0.1) then increasing

the number of nonlinear layers L will increase the smoothness advantage of the ResNet NTK. This

behavior is also demonstrated empirically in the sequel.

4.2. Comparing the Kernels and their Interpolations

In this section, we compare the smoothness of the ResNet NTK and the MLP NTK by visualizing

the kernel of each model (which is data-independent if the input norm is fixed), and by comparing

the interpolations obtained by kernel regression with the different NTKs. For a given interpolation f
with a scalar input x ∈ [−π, π] and a scalar output, we scale it to unit L2-norm, f̄ := f/‖f‖L2 , and

use an approximate L2-norm of the second derivative of f̄ as a quantitative measure of smoothness

(where a smaller value is interpreted as higher smoothness). We empirically find this measure to be

richer than first-derivative quantities, like supx|f ′(x)| that is more tractable for analysis (as we have

10
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(a) NTKs (normalized to unit peak) L = 5 (b) Interpolation with 6 samples L = 5 (c) Interpolation with 10 samples L = 5

(d) NTKs (normalized to unit peak) L =
15

(e) Interpolation with 6 samples L = 15 (f ) Interpolation with 10 samples L = 15

Figure 2: NTKs for MLP and ResNet (for different values of α) with L = 5 (top) and L = 15
(bottom) nonlinear layers, ReLU nonlinearities, σv = σw = 1, for inputs on the sphere (circle) in

R2. (2(a)),(2(d)): The kernels shape. (2(b))-(2(c)), (2(e))-(2(f )): Interpolations by the closed-form

solutions, measured by µ(·) defined in (22). Note that the legend in (2(a)),(2(d)) applies to all the

figures.

done above) but is affected by linear slopes of f and cannot sum the effects of multiple nonsmooth

points.

We numerically approximate ‖f̄ ′′‖L2 as follows. We densely sample f at N = 4096 “test sam-

ples” with equal spacing ∆x = 2π
N , i.e., at xq = q∆x with q = −N/2, ..., N/2−1. We compute its

normalized version f̄ = f/‖̂f‖L2 , where ‖̂f‖L2 = ( 1
2π

∑

q |f(xq)|2∆x)0.5. As the interpolations

in our experiments are periodic (f(−π) = f(π)), we utilize the Fourier series representation of f̄
to mitigate numerical computation issues of discrete derivatives. We approximate the kth Fourier

coefficient ck = 1
2π

∫ π
−π f̄(x)e

−jkxdx by 1
2π

∑N/2−1
q=−N/2 f̄(xq)e

−jkq2π/N∆x = 1
NFFT[{f̄(xq)}](k).

Thus, denoting FFT[{f̄(xq)}](k) by F (k), we approximate ‖f̄ ′′‖L2 by

µ(f) :=




1

N2

N/2−1
∑

k=−N/2

|k|4|F (k)|2




1
2

, (22)

where we used Parseval’s identity and the property that the kth Fourier coefficient of the rth deriva-

tive of f̄ , f̄ (r), is given by (jk)rck (where ck is the kth Fourier coefficient of f̄ ).

Note that scaling a kernel by a scalar factor does not change its kernel regression result f and

thus also µ(f). Therefore, we found the measure µ(f) to be more informative than, e.g., compar-

ing the FFTs of the ResNet and MLP NTKs (we observed that with large/small enough factor the

magnitude of the FFT of each of them can be placed on-top/below the other).

11



TIRER BRUNA GIRYES

(a) Interpolation with 6 samples (Adam) (b) Interpolation with 6 samples (SGD) (c) Interpolation with 10 samples (SGD)

Figure 3: Empirical interpolations of MLP and ResNet (for different values of α) with L = 5
nonlinear layers, ReLU nonlinearities, σv = σw = 1, for inputs on the sphere (circle) in R2. We

use practical models with width of n = 500, 30 different Xavier’s Gaussian initializations (instead

of normalizations by 1/
√
n) and 1K iterations of SGD/Adam optimizers.

Before comparing with the MLP, we visualize the theoretical NTK results for ResNet (similar

visualization of the NTK theory has been shown only for MLPs, e.g., in (Jacot et al., 2018; Lee

et al., 2019)). Figure 1(a) shows the concentration of the empirical NTK (for 30 different Gaussian

initializations) around the asymptotic expression given in (8), for the ResNet model with L = 5,

ReLU nonlinearities, α = 0.1, σv = 1, σw = 1, and width of n = 2000, for inputs on the

sphere (circle) in R2. Figures 1(b) and 1(c) show that the results of kernel regression (4) with

the asymptotic NTK are very similar to the interpolations learned by the ResNet (for 30 different

Gaussian initializations, when we use gradient descent with step-size 0.5 and 0.05 for 6 and 10

training samples, respectively).

We turn to compare the NTK results for MLP and ResNet, which are given in (5) and (8),

respectively. We use σv = σw = 1, ReLU nonlinearities, and inputs from the circle. We modify the

number of nonlinear layers, L, as well as the hyperparameter α in the ResNet. In the interpolation

results (where we use (4)) we also modify the amount of given samples and measure the smoothness

of each resulted f with µ(f) defined in (22). The results are presented in Figure 2.

It can be seen that decreasing α yields a smoother ResNet NTK with smoother interpolation

results. For α = 1 the ResNet NTK is more similar to the MLP NTK, but even then it appears

smoother and less “edgy” than the MLP. Moreover, for the MLP NTK, increasing L clearly reduces

the smoothness (as observed both visually and by the increase in µ). For the ResNet NTK this effect

is moderate for α = 1, and almost unseen for α = 0.1.

More results and details are presented in Appendix C, including showing that an extremely small

value of α does not significantly affect the kernel shape and smoothness compared to the moderate

α = 0.1. In Appendix C.2 we also present several visual results for a two-dimensional input and

accuracy results for binary classification of high-dimensional input (MNIST data).

4.3. Results Outside the NTK Regime

Finally, we demonstrate that the observations that are made for the NTK regime carry also to other

settings. We consider MLP and ResNet with L = 5 nonlinear layers and width of (only) n = 500
neurons. We replace the NTK initializations (including the normalizations by 1/

√
n) with Xavier’s

Gaussian initialization (this mainly affects the first and last layers), and instead of gradient descent

12
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(a) Interpolation by MLP (Adam) (b) Interpolation by ResNet α = 1 (Adam) (c) Interpolation by ResNet α = 0.1
(Adam)

Figure 4: Empirical interpolations of MLP and ResNet (for different values of α) with L = 5
nonlinear layers, ReLU nonlinearities, σv = σw = 1, for inputs on the sphere (circle) in R2. We

use practical models with width of n = 500, 5 different Xavier’s random Gaussian initializations

(instead of normalizations by 1/
√
n) and 1K iterations of Adam optimizer.

(a) Interpolation by MLP (Adam) (b) Interpolation by ResNet α = 1 (Adam) (c) Interpolation by ResNet α = 0.1
(Adam)

Figure 5: Empirical interpolations of MLP and ResNet (for different values of α) with L = 5 nonlin-

ear layers, ReLU nonlinearities, σv = σw = 1, for scalar (1D) inputs. We use practical models with

width of n = 500 and biases, 5 different PyTorch (default) random uniform initializations (instead

of Gaussian initializations and normalizations by 1/
√
n) and 1K iterations of Adam optimizer.

we perform either SGD (with lr 0.01) or Adam (with the default parameters stated in (Kingma and

Ba, 2014)) on “mini-batches” of size 1. We emphasize that we do not use any explicit regulariza-

tion (such as batch-normalization or weight decay). The results for 30 different realizations of the

initialization are presented in Figure 3.

Despite the discrepancy between these settings and the conditions that are required for the NTK

regime to hold, we see similarity in the results. Even in these settings, it is clear that moderately

decreasing α yields smoother interpolation results for the ResNet. For α = 0.1 the results of

ResNet are much smoother than those of MLP. For α = 1 the results of ResNet are more similar to

the results of MLP, as observed the NTK regime. Yet, with Adam optimizer the results of ResNet

are smoother also with α = 1. As mentioned above, a detailed empirical study on the use of small

values of α (outside the NTK Regime) for classification tasks has been done in (Zhang et al., 2019).

Our work can be regarded as an NTK-based support for this approach.

Next, we repeat the numerical experiments with 20 samples. In Figure 4 we present the interpo-

lation results for different Xavier’s Gaussian initializations, where the input to the networks is 2D

13
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points on the circle, as done in the previous experiments. The optimization method is 1K iterations

of Adam with lr 1e-4 and “mini-batches” of size 1, where we save the model with minimal training

loss.

In Figure 5 we take a step farther. We add bias to all the layers and feed the networks with

plain scalar input. We replace the NTK initializations (including the normalizations by 1/
√
n)

with PyTorch default uniform initialization (which is similar to Kaiming’s initialization). Again, we

optimize by the Adam method, as mentioned above (recall that the theory requires gradient descent).

Despite the discrepancy between these settings and the conditions for the NTK regime, we see

similarity in the results: The interpolations of the ResNets are smoother than those of the MLP.

5. Conclusion

In this paper we developed the NTK for a ResNet model and proved its stability during training

with gradient descent (under common NTK assumptions). As the smoothness of interpolators can

indicate better generalization (Lu et al., 2019; Giryes, 2020; Xie et al., 2020), we compared the

smoothness properties of ReLU-based ResNet and MLP in the regime where training them can be

characterized by kernel regression with their associated NTKs. Our smoothness examination, which

is based on different evaluation methodologies, shows that ResNet, especially with moderately at-

tenuated residual blocks, yields smoother interpolations than MLP in the NTK regime. We also

showed that this smoothness advantage of ResNet can be observed outside the NTK regime, i.e.,

when the settings differ from the NTK assumptions.

Our NTK analysis has captured the advantage of reducing the skip weighting factor α. One may

inquire whether it is possible to use the NTK regime for finding other new improvements to ResNet.
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Appendix A. Proofs for Theorem 1 and Theorem 2

Note that the structure of the ResNet model in (6) shares similarities with the plain MLP model

in (1). For example, due to the central limit theorem when n −→ ∞ each pre-activation g
(ℓ)
i (x) is

a stochastic Gaussian Process (GP) with zero mean and deterministic GP kernel (covariance), just

like in MLP. Indeed, extension of the “convergence at initialization” results of GP kernel and NTK

for models beyond MLP has been shown in several works.

Specifically, the convergence of the GP kernel and NTK of the ResNet model that is considered

in this paper follows from the general results of (Yang, 2019b,a). This can be done because our

ResNet model follows the NETSOR approach (Yang, 2019b,a): It is built from A-vars (iid Gaussian

weights distributed as N (0, σ
2
a

n ) for some σa), g-vars (Gussian vectors with iid entries given by

multiplication of A-var with h-var or by sum of other g-vars) and h-vars (element-wise nonlinearity,

bounded uniformly by e(cx
2−ǫ) for some c, ǫ > 0, applied on g-vars). For example, in our model

x(0) is g-var as the input can be considered as h-var, and then recursively x(ℓ) is g-var as it equals

g-var + A-var × h-var. Therefore, it remains to compute the limiting kernels.

A.1. Computing the GP kernel for ResNet

To simplify the notation, we add the tilde symbol above each term that depends on the input x̃

(rather than on x), e.g., x̃(ℓ) denotes x(ℓ)(x̃). We will repeatedly use “total expectation”, both for

eliminating the cross-terms in E
〈
x(ℓ), x̃(ℓ)

〉
, i.e., for E

〈
x(ℓ−1),V(ℓ)φ(g̃(ℓ)

〉
= 0, as well as for

exploiting E
[
V(ℓ)⊤V(ℓ)

]
= E

[
W(ℓ)⊤W(ℓ)

]
= nIn and E

[
w(L+1)w(L+1)⊤] = In.

First, note the identity

E

[

g
(ℓ)
i g̃

(ℓ)
i

]

= E

[
σw√
n
x(ℓ−1)⊤w(ℓ)

i

σw√
n
w

(ℓ)⊤
i x̃(ℓ−1)

]

=
σ2
w

n
E

〈

x(ℓ−1), x̃(ℓ−1)
〉

, (A.1)

where w
(ℓ)⊤
i denotes the ith row of W(ℓ). Therefore, we have

K(L+1)(x, x̃) = E

[

g(L+1)g̃(L+1)
]

=
σ2
w

n
E

〈

x(L), x̃(L)
〉

. (A.2)

Using x(ℓ) = x(ℓ−1) + α σv√
n
V(ℓ)φ(g(ℓ)) and E

〈
x(ℓ−1),V(ℓ)φ(g̃(ℓ)

〉
= 0, we get

K(L+1)(x, x̃) =
σ2
w

n
E

〈

x(L−1), x̃(L−1)
〉

+ α2σ
2
w

n

σ2
v

n
E

〈

V(L)φ(g(L)),V(L)φ(g̃(L))
〉

(A.3)

=
σ2
w

n
E

〈

x(L−1), x̃(L−1)
〉

+ α2σ
2
wσ

2
v

n
E

〈

φ(g(L)), φ(g̃(L))
〉

= E

[

g
(L)
i g̃

(L)
i

]

+ α2σ2
wσ

2
vE

[

φ(g
(L)
i )φ(g̃

(L)
i )

]

= K(L)(x, x̃) + α2σ2
vσ

2
wT

([
K(L)(x,x) K(L)(x, x̃)

K(L)(x, x̃) K(L)(x̃, x̃)

])

.

We also have

K(1)(x, x̃) =
σ2
w

n
E

〈

x(0), x̃(0)
〉

=
σ2
w

n

1

d
E

[

x⊤U⊤Ux̃
]

=
σ2
w

d
x⊤x̃. (A.4)
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A.2. Computing the NTK for ResNet

To simplify the notation, we add the tilde symbol above each term that depends on the input x̃ (rather

than on x), e.g., x̃(ℓ) denotes x(ℓ)(x̃). Recall the parameter vector θ = vec(w(L+1), {W(ℓ)}, {V(ℓ)},U).
Therefore, we have

Θ(L+1)(x, x̃) = E

〈
∂f(x;θ)

∂θ
,
∂f(x̃;θ)

∂θ

〉

(A.5)

= E

〈

∂f

∂w(L+1)
,

∂f̃

∂w(L+1)

〉

+ E

〈

∂f

∂U
,
∂f̃

∂U

〉

+
L∑

ℓ=1

E

〈

∂f

∂W(ℓ)
,

∂f̃

∂W(ℓ)

〉

+ E

〈

∂f

∂V(ℓ)
,

∂f̃

∂V(ℓ)

〉

.

Clearly, ∂f
∂w(L+1) = ∂g(L+1)

∂w(L+1) = σw√
n
x(L)⊤. To express the other derivatives let us define

δ(ℓ) := ∇x(ℓ)f =

(
∂f

∂x(ℓ)

)⊤
=

(

σw√
n
w(L+1)⊤ ∂x(L)

∂x(L−1)
. . .

∂x(ℓ+1)

∂x(ℓ)

)⊤

, (A.6)

and note that from x(ℓ) = x(ℓ−1) + α σv√
n
V(ℓ)φ(g(ℓ)) = x(ℓ−1) + α σv√

n
V(ℓ)φ( σw√

n
W(ℓ)x(ℓ−1)) we

have

∂x(ℓ)

∂x(ℓ−1)
= In + α

σv√
n
V(ℓ)diag

{

φ′(g(ℓ))
} σw√

n
W(ℓ). (A.7)

Other necessary derivatives are given by

∂x
(ℓ)
i

∂W(ℓ)
=

n∑

j=1

∂x
(ℓ)
i

∂φ(g
(ℓ)
j )

∂φ(g
(ℓ)
j )

∂W(ℓ)
= α

σv√
n

n∑

j=1

V
(ℓ)
ij φ′(g(ℓ)j )

σw√
n





0

x(ℓ−1)⊤ at row j
0



 (A.8)

= α
σv√
n

σw√
n






V
(ℓ)
i1 φ′(g(ℓ)1 )x(ℓ−1)⊤

...

V
(ℓ)
in φ′(g(ℓ)n )x(ℓ−1)⊤




 = α

σv√
n

σw√
n
diag

{

φ′(g(ℓ))
}

v
(ℓ)
i x(ℓ−1)⊤,

∂x
(ℓ)
i

∂V(ℓ)
= α

σv√
n





0

φ(g(ℓ))⊤ at row i
0



 ,

where v
(ℓ)⊤
i denotes the ith row of V(ℓ). This yields

∂f

∂W(ℓ)
=

n∑

i=1

∂f

∂x
(ℓ)
i

∂x
(ℓ)
i

∂W(ℓ)
= α

σv√
n

σw√
n
diag

{

φ′(g(ℓ))
}

V(ℓ)⊤δ(ℓ)x(ℓ−1)⊤, (A.9)

∂f

∂V(ℓ)
=

n∑

i=1

∂f

∂x
(ℓ)
i

∂x
(ℓ)
i

∂V(ℓ)
= α

σv√
n
δ(ℓ)φ(g(ℓ))⊤,

∂f

∂U
=

n∑

i=1

∂f

∂x
(0)
i

∂x
(0)
i

∂U
=

1√
d
δ(0)x⊤.
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Now we can compute the required expectations by repeatedly using “total expectation”, condition-

ing (mainly) on random variables after the ℓth layer, and noting that since we consider n −→ ∞ the

covariance of g
(ℓ)
i , g̃

(ℓ)
i (or

σ2
w

n x(ℓ−1)⊤x̃(ℓ−1)) converges to the deterministic K(ℓ)(x, x̃), so values

of T (·) and Ṫ (·) are deterministic and can be taken out of the expectations.

E

〈

∂f

∂w(L+1)
,

∂f̃

∂w(L+1)

〉

=
σ2
w

n
E

〈

x(L), x̃(L)
〉

= K(L+1)(x, x̃). (A.10)

E

〈

∂f

∂U
,
∂f̃

∂U

〉

= E

[

δ(0)⊤δ̃
(0)
]

· 1
d
x⊤x̃ =

1

σ2
w

E

[

δ(0)⊤δ̃
(0)
]

·K(1)(x, x̃) (A.11)

E

〈

∂f

∂V(ℓ)
,

∂f̃

∂V(ℓ)

〉

= α2
E

[

δ(ℓ)⊤δ̃
(ℓ) · σ

2
v

n
φ(g(ℓ))⊤φ(g̃(ℓ))

]

(A.12)

= α2
E

[

δ(ℓ)⊤δ̃
(ℓ) · σ

2
v

n

n∑

i=1

φ(g
(ℓ)
i )φ(g̃

(ℓ)
i )

]

= α2
E

[

δ(ℓ)⊤δ̃
(ℓ)
]

· σ2
vT

([
K(ℓ)(x,x) K(ℓ)(x, x̃)

K(ℓ)(x, x̃) K(ℓ)(x̃, x̃)

])

.

E

〈

∂f

∂W(ℓ)
,

∂f̃

∂W(ℓ)

〉

= α2
E

[
σ2
w

n
x(ℓ−1)⊤x̃(ℓ−1) · δ(ℓ)⊤V(ℓ)σ

2
v

n
diag

{

φ′(g(ℓ))
}

diag
{

φ′(g̃(ℓ))
}

V(ℓ)⊤δ̃
(ℓ)
]

= α2
E

[

σ2
w

n
x(ℓ−1)⊤x̃(ℓ−1) · δ(ℓ)⊤

(

σ2
v

n

n∑

i=1

φ′(g(ℓ)i )φ′(g̃(ℓ)i )v
(ℓ)
i v

(ℓ)⊤
i

)

δ̃
(ℓ)

]

= α2
E

[

σ2
w

n
x(ℓ−1)⊤x̃(ℓ−1) · δ(ℓ)⊤δ̃(ℓ) · σ

2
v

n

n∑

i=1

φ′(g(ℓ)i )φ′(g̃(ℓ)i )

]

= α2K(ℓ)(x, x̃) · E
[

δ(ℓ)⊤δ̃
(ℓ)
]

· σ2
v Ṫ

([
K(ℓ)(x,x) K(ℓ)(x, x̃)

K(ℓ)(x, x̃) K(ℓ)(x̃, x̃)

])

.

(A.13)

Let us now derive a recursive expression for Π(ℓ)(x, x̃) := 1
σ2
w

E

[

δ(ℓ)⊤δ̃
(ℓ)
]

, using the relation

δ(ℓ) =
(
∂x(ℓ+1)

∂x(ℓ)

)⊤
δ(ℓ+1) =

(

In + α σw√
n
W(ℓ+1)⊤diag

{
φ′(g(ℓ+1))

}
σv√
n
V(ℓ+1)⊤

)

δ(ℓ+1)
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Π(ℓ)(x, x̃) =
1

σ2
w

E

[

δ(ℓ)⊤δ̃
(ℓ)
]

(A.14)

=
1

σ2
w

E

[

δ(ℓ+1)⊤
(

In + α2σ
2
v

n
V(ℓ+1)diag

{

φ′(g(ℓ+1))
} σ2

w

n
W(ℓ+1)W(ℓ+1)⊤diag

{

φ′(g̃(ℓ+1))
}

V(ℓ+1)⊤
)

δ̃
(ℓ+1)

]

=
1

σ2
w

E

[

δ(ℓ+1)⊤
(

In + α2σ
2
vσ

2
w

n
V(ℓ+1)diag

{

φ′(g(ℓ+1))
}

diag
{

φ′(g̃(ℓ+1))
}

V(ℓ+1)⊤
)

δ̃
(ℓ+1)

]

=
1

σ2
w

E

[

δ(ℓ+1)⊤
(

In + α2

(

σ2
vσ

2
w

n

n∑

i=1

φ′(g(ℓ+1)
i )φ′(g̃(ℓ+1)

i )v
(ℓ+1)
i v

(ℓ+1)⊤
i

))

δ̃
(ℓ+1)

]

=
1

σ2
w

E

[

δ(ℓ+1)⊤δ̃
(ℓ+1) ·

(

1 + α2σ
2
vσ

2
w

n

n∑

i=1

φ′(g(ℓ+1)
i )φ′(g̃(ℓ+1)

i )

)]

= Π(ℓ+1)(x, x̃) ·
(

1 + α2σ2
vσ

2
wṪ

([
K(ℓ+1)(x,x) K(ℓ+1)(x, x̃)

K(ℓ+1)(x, x̃) K(ℓ+1)(x̃, x̃)

]))

.

Note that the reasoning for the third equality (where total expectation is used to handle W(ℓ+1)W(ℓ+1)⊤)

is delicate, since W(ℓ+1) appears also in g(ℓ+1). This obstacle, which occurs in all NTK works, is

handled by assuming that W(ℓ+1)⊤ used in backprop is independent from W(ℓ+1) in g(ℓ+1) that is

used in the forward pass. This assumption has been justified in the limit n −→ ∞, as long as the last

layer weight (w(L+1)) is sampled independently from other parameters and has zero mean (Arora

et al., 2019b; Yang, 2019a).

Finally, we compute the base case ℓ = L

Π(L)(x, x̃) =
1

σ2
w

E

[

δ(L)⊤δ̃
(L)
]

=
1

σ2
w

E

[
σw√
n
w(L+1)⊤ σw√

n
w(L+1)

]

= 1. (A.15)

Substituting equations A.10–A.13 in (A.5) and using the definitions of Π(ℓ)(x, x̃), Σ(ℓ+1)(x, x̃) and

Σ̇(ℓ+1)(x, x̃), we get the expression for the ResNet NTK that appears in (8).
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Appendix B. Proof for Lemma 4

Recall that θ0 := vec(w
(L+1)
0 , {W(ℓ)

0 }, {V(ℓ)
0 },U0), where all the elements in θ0 are i.i.d. standard

normal. Let θ ∈ B(θ0, C). Therefore, with high probability

‖W(ℓ)‖ ≤ ‖W(ℓ)
0 ‖+ ‖W(ℓ) −W

(ℓ)
0 ‖ ≤ 2

√
n+ t+ C ≤ 3

√
n, (B.1)

where the first inequality uses the triangular inequality, the second inequality uses Lemma 3 and

‖W(ℓ) − W
(ℓ)
0 ‖ ≤ ‖W(ℓ) − W

(ℓ)
0 ‖F ≤ C and the last inequality uses n ≫ C2 and holds with

high probability. Using the same arguments we have ‖V(ℓ)‖ ≤ 3
√
n, ‖U‖ ≤

√
d + 2

√
n and

‖w(L+1)‖2 ≤ 2
√
n.

Observe that

‖J(θ)‖2F =
∑

x∈X

(∥
∥
∥
∥

∂f(x; θ)

∂w(L+1)

∥
∥
∥
∥

2

2

+

∥
∥
∥
∥

∂f(x; θ)

∂U

∥
∥
∥
∥

2

F

+

L∑

ℓ=1

∥
∥
∥
∥

∂f(x; θ)

∂W(ℓ)

∥
∥
∥
∥

2

F

+

∥
∥
∥
∥

∂f(x; θ)

∂V(ℓ)

∥
∥
∥
∥

2

F

)

. (B.2)

Let us bound the terms in the sum. We will use the equality ‖ab⊤‖F = ‖a‖2‖b‖2 and the deriva-

tives that are obtained in Appendix A.2.

∥
∥
∥
∥

∂f(x; θ)

∂w(L+1)

∥
∥
∥
∥
2

=
σw√
n

∥
∥
∥x

(L)
∥
∥
∥
2
. (B.3)

∥
∥
∥
∥

∂f(x; θ)

∂U

∥
∥
∥
∥
F

=
1√
d

∥
∥
∥δ(0)x⊤

∥
∥
∥
F
=

1√
d

∥
∥
∥δ(0)

∥
∥
∥
2
‖x‖2 ≤

B√
d

∥
∥
∥δ(0)

∥
∥
∥
2
. (B.4)

∥
∥
∥
∥

∂f(x; θ)

∂W(ℓ)

∥
∥
∥
∥
F

=

∥
∥
∥
∥
α
σv√
n

σw√
n
diag

{

φ′(g(ℓ))
}

V(ℓ)⊤δ(ℓ)x(ℓ−1)⊤
∥
∥
∥
∥
F

(B.5)

≤ αCφσvσw
1√
n
‖V(ℓ)⊤δ(ℓ)‖2

1√
n
‖x(ℓ−1)‖2

≤ αCφσvσw
1√
n
‖V(ℓ)‖‖δ(ℓ)‖2

1√
n
‖x(ℓ−1)‖2

≤ 3αCφσvσw‖δ(ℓ)‖2
1√
n
‖x(ℓ−1)‖2.

∥
∥
∥
∥

∂f(x; θ)

∂V(ℓ)

∥
∥
∥
∥
F

=

∥
∥
∥
∥
α
σv√
n
δ(ℓ)φ(g(ℓ))⊤

∥
∥
∥
∥
F

=

∥
∥
∥
∥
α
σv√
n
δ(ℓ)φ(

σw√
n
W(ℓ)x(ℓ−1))⊤

∥
∥
∥
∥
F

(B.6)

≤ αCφσvσw‖δ(ℓ)‖2
1√
n
‖W(ℓ)‖ 1√

n
‖x(ℓ−1)‖2

≤ 3αCφσvσw‖δ(ℓ)‖2
1√
n
‖x(ℓ−1)‖2.

In Section B.1 we prove that 1√
n
‖x(ℓ)‖2 ≤ K1 and ‖δ(ℓ)‖2 ≤ K2. Therefore,

‖J(θ)‖F ≤
√

|X | ((c0K1)2 + (c1K2)2 + L(c2K1K2)2 + L(c3K1K2)2) = K̃. (B.7)
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We turn to show that ‖J(θ) − J(θ̃)‖F ≤ K‖θ − θ̃‖2 for θ, θ̃ ∈ B(θ0, C). To simplify the

notation, we add the tilde symbol above each term that depends on the θ̃ (rather than on θ), e.g.,

x̃(ℓ) denotes x(ℓ)(x; θ̃).

‖J(θ)− J(θ̃)‖2F =
∑

x∈X

(∥
∥
∥
∥
∥

∂f(x; θ)

∂w(L+1)
− ∂f(x; θ̃)

∂w̃(L+1)

∥
∥
∥
∥
∥

2

2

∥
∥
∥
∥
∥

∂f(x; θ)

∂U
− ∂f(x; θ̃)

∂Ũ

∥
∥
∥
∥
∥

2

F

(B.8)

+
L∑

ℓ=1

∥
∥
∥
∥
∥

∂f(x; θ)

∂W(ℓ)
− ∂f(x; θ̃)

∂W̃(ℓ)

∥
∥
∥
∥
∥

2

F

+

∥
∥
∥
∥
∥

∂f(x; θ)

∂V(ℓ)
− ∂f(x; θ̃)

∂Ṽ(ℓ)

∥
∥
∥
∥
∥

2

F

)

.

Let us bound the terms in the sum.

∥
∥
∥
∥
∥

∂f(x;θ)

∂w(L+1)
− ∂f(x; θ̃)

∂w̃(L+1)

∥
∥
∥
∥
∥
2

=
σw√
n

∥
∥
∥x

(L) − x̃(L)
∥
∥
∥
2
. (B.9)

∥
∥
∥
∥
∥

∂f(x; θ)

∂U
− ∂f(x; θ̃)

∂Ũ

∥
∥
∥
∥
∥
F

=
1√
d

∥
∥
∥δ(0)x⊤ − δ̃

(0)
x⊤
∥
∥
∥
F
≤ B√

d

∥
∥
∥δ(0) − δ̃

(0)
∥
∥
∥
2
. (B.10)

∥
∥
∥
∥
∥

∂f(x; θ)

∂W(ℓ)
− ∂f(x; θ̃)

∂W̃(ℓ)

∥
∥
∥
∥
∥
F

(B.11)

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

α
σvσw√

n
diag

{

φ′(g(ℓ))
}

V(ℓ)⊤δ(ℓ)

︸ ︷︷ ︸

:=γ(ℓ)

1√
n
x(ℓ−1)⊤ − α

σvσw√
n

diag
{

φ′(g̃(ℓ))
}

Ṽ(ℓ)⊤δ̃
(ℓ)

︸ ︷︷ ︸

:=γ̃(ℓ)

1√
n
x̃(ℓ−1)⊤

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
F

≤
∥
∥
∥
∥
(γ(ℓ) − γ̃(ℓ))

1√
n
x(ℓ−1)⊤

∥
∥
∥
∥
F

+

∥
∥
∥
∥
γ̃(ℓ) 1√

n
(x(ℓ−1)⊤ − x̃(ℓ−1)⊤)

∥
∥
∥
∥
F

≤ 1√
n

∥
∥
∥x

(ℓ−1)
∥
∥
∥
2

∥
∥
∥γ(ℓ) − γ̃(ℓ)

∥
∥
∥
2
+
∥
∥
∥γ̃(ℓ)

∥
∥
∥
2

1√
n

∥
∥
∥x

(ℓ−1) − x̃(ℓ−1)
∥
∥
∥
2

≤ K1

∥
∥
∥γ(ℓ) − γ̃(ℓ)

∥
∥
∥
2
+ 3αCφσvσwK2

1√
n

∥
∥
∥x

(ℓ−1) − x̃(ℓ−1)
∥
∥
∥
2
.
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∥
∥
∥
∥
∥

∂f(x; θ)

∂V(ℓ)
− ∂f(x; θ̃)

∂Ṽ(ℓ)

∥
∥
∥
∥
∥
F

(B.12)

=

∥
∥
∥
∥
∥
∥
∥
∥
∥

δ(ℓ)
1√
n
ασvφ(

σw√
n
W(ℓ)x(ℓ−1))⊤

︸ ︷︷ ︸

:=z(ℓ)⊤

−δ̃
(ℓ) 1√

n
ασvφ(

σw√
n
W̃(ℓ)x̃(ℓ−1))⊤

︸ ︷︷ ︸

:=z̃(ℓ)⊤

∥
∥
∥
∥
∥
∥
∥
∥
∥
F

≤
∥
∥
∥
∥
(δ(ℓ) − δ̃

(ℓ)
)
1√
n
z(ℓ)⊤

∥
∥
∥
∥
F

+

∥
∥
∥
∥
δ̃
(ℓ) 1√

n
(z(ℓ)⊤ − z̃(ℓ)⊤)

∥
∥
∥
∥
F

≤ 1√
n

∥
∥
∥z

(ℓ)
∥
∥
∥
2

∥
∥
∥δ(ℓ) − δ̃

(ℓ)
∥
∥
∥
2
+
∥
∥
∥δ̃

(ℓ)
∥
∥
∥
2

1√
n

∥
∥
∥z

(ℓ) − z̃(ℓ)
∥
∥
∥
2

≤ 3αCφσvσwK1

∥
∥
∥δ(ℓ) − δ̃

(ℓ)
∥
∥
∥
2
+K2

1√
n

∥
∥
∥z

(ℓ) − z̃(ℓ)
∥
∥
∥
2
.

Showing that

∥
∥
∥γ(ℓ) − γ̃(ℓ)

∥
∥
∥
2
, 1√

n

∥
∥x(ℓ) − x̃(ℓ)

∥
∥
2
,
∥
∥
∥δ(ℓ) − δ̃

(ℓ)
∥
∥
∥
2
, 1√

n

∥
∥z(ℓ) − z̃(ℓ)

∥
∥
2
≤ K‖θ−

θ̃‖2 allows to obtain the required local Lipschitzness result for J(θ). However, as shown in Sec-

tion B.2, proving

∥
∥
∥δ(ℓ) − δ̃

(ℓ)
∥
∥
∥
2
≤ K‖θ− θ̃‖2 requires that

∥
∥x(ℓ) − x̃(ℓ)

∥
∥
2
≤ K‖θ− θ̃‖2 (without

the 1√
n

factor).

In Section B.2 we show that all the distances

∥
∥
∥γ(ℓ) − γ̃(ℓ)

∥
∥
∥
2
,
∥
∥x(ℓ) − x̃(ℓ)

∥
∥
2
,

∥
∥
∥δ(ℓ) − δ̃

(ℓ)
∥
∥
∥
2
,

∥
∥z(ℓ) − z̃(ℓ)

∥
∥
2

are indeed upper bounded by K‖θ − θ̃‖2. Therefore,

‖J(θ)− J(θ̃)‖F ≤
√

|X |
(
(c0K)2 + (c1K)2 + L(c2K)2 + L(c3K)2

)
‖θ − θ̃‖2 = ˜̃K‖θ − θ̃‖2,

(B.13)

and the proof of Lemma 4 is finished with K = max(K̃, ˜̃K).

B.1. Auxiliary local boundness proofs

We prove by induction that 1√
n
‖x(ℓ)‖2 ≤ K1.

Base case: since ‖x‖2 ≤ B, we have with high probability over the random initialization of

U ∈ Rn×d that 1√
n
‖x(0)‖2 = 1√

n
‖ 1√

d
Ux‖2 ≤ 1√

d
1√
n
‖U‖B ≤ 3√

d
B.

Assuming that 1√
n
‖x(ℓ−1)‖2 ≤ K̃1, we get

1√
n
‖x(ℓ)‖2 =

1√
n
‖x(ℓ−1) + α

σv√
n
V(ℓ)φ(

σw√
n
W(ℓ)x(ℓ−1))‖2 (B.14)

≤
(

1 + αCφσvσw
1√
n
‖V(ℓ)‖ 1√

n
‖W(ℓ)‖

)
1√
n
‖x(ℓ−1)‖2

≤ (1 + 9αCφσvσw) K̃1.

Therefore, we have that for all ℓ ∈ [L] : 1√
n
‖x(ℓ)‖2 ≤ K1 = (1 + 9αCφσvσw)

L 3√
d
B.
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We prove by induction that ‖δ(ℓ)‖2 ≤ K2. Recall that δ(ℓ) =
(

σw√
n
w(L+1)⊤ ∂x(L)

∂x(L−1) . . .
∂x(ℓ+1)

∂x(ℓ)

)⊤
=

(
∂x(ℓ+1)

∂x(ℓ)

)⊤
δ(ℓ+1).

Base case: ‖δ(L)‖2 = σw√
n
‖w(L+1)‖2 ≤ σw√

n
2
√
n = 2σw.

Assuming that ‖δ(ℓ+1)‖2 ≤ K̃2, we get

‖δ(ℓ)‖2 =
∥
∥
∥
∥

(

In + α
σw√
n
W(ℓ+1)⊤diag

{

φ′(g(ℓ+1))
} σv√

n
V(ℓ+1)⊤

)

δ(ℓ+1)

∥
∥
∥
∥
2

(B.15)

≤
(

1 + αCφσvσw
1√
n
‖V(ℓ+1)‖ 1√

n
‖W(ℓ+1)‖

)

‖δ(ℓ+1)‖2

≤ (1 + 9αCφσvσw) K̃2.

Therefore, we have that for all ℓ ∈ [L] : ‖δ(ℓ)‖2 ≤ K2 = (1 + 9αCφσvσw)
L2σw.

B.2. Auxiliary local Lipschitzness proofs

Recall that θ = vec(w(L+1), {W(ℓ)}, {V(ℓ)},U). Therefore, we will repeatedly use ‖W(ℓ) −
W̃(ℓ)‖ ≤ ‖W(ℓ) − W̃(ℓ)‖F ≤ ‖θ − θ̃‖2, and similarly for the other parameters. Also, for simplifi-

cation we will use {ci} to denote constants that do not depend on θ, θ̃, n.

We prove by induction (together) that
∥
∥x(ℓ) − x̃(ℓ)

∥
∥
2
≤ K‖θ − θ̃‖2 and also

∥
∥g(ℓ) − g̃(ℓ)

∥
∥
2
≤

K‖θ − θ̃‖2.

Base case:

∥
∥
∥x

(0)(x, θ)− x(0)(x, θ̃)
∥
∥
∥
2
=

∥
∥
∥
∥

1√
d
Ux− 1√

d
Ũx

∥
∥
∥
∥
2

≤ 1√
d
‖U− Ũ‖‖x‖2 ≤

B√
d
‖θ − θ̃‖2,

and

∥
∥
∥g

(1)(x, θ)− g(1)(x, θ̃)
∥
∥
∥
2
=

∥
∥
∥
∥

σw√
n
W(0)x(0) − σw√

n
W̃(1)x̃(0)

∥
∥
∥
∥
2

(B.16)

≤
∥
∥
∥
∥
(W(0) − W̃(1))

σw√
n
x(0)

∥
∥
∥
∥
2

+

∥
∥
∥
∥

σw√
n
W̃(1)(x(0) − x̃(0))

∥
∥
∥
∥
2

≤ ‖W(0) − W̃(1)‖ σw√
n
‖x(0)‖2 +

σw√
n
‖W̃(1)‖‖x(0) − x̃(0)‖2

≤ σwK1‖θ − θ̃‖2 + 3σw
B√
d
‖θ − θ̃‖2.

Thus,

∥
∥
∥x(0)(x, θ)− x(0)(x, θ̃)

∥
∥
∥
2
,
∥
∥
∥g(1)(x, θ)− g(1)(x, θ̃)

∥
∥
∥
2
≤ c1‖θ − θ̃‖2.
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Assuming that ‖x(ℓ−1) − x̃(ℓ−1)‖2, ‖g(ℓ) − g̃(ℓ)‖2 ≤ K̃‖θ − θ̃‖2, we get

‖x(ℓ) − x̃(ℓ)‖2 =
∥
∥
∥
∥
x(ℓ−1) + α

σv√
n
V(ℓ)φ(g(ℓ))− x̃(ℓ−1) − α

σv√
n
Ṽ(ℓ)φ(g̃(ℓ))

∥
∥
∥
∥
2

(B.17)

≤ ‖x(ℓ−1) − x̃(ℓ−1)‖2 + α

∥
∥
∥
∥

σv√
n
V(ℓ)φ(g(ℓ))− σv√

n
Ṽ(ℓ)φ(g̃(ℓ))

∥
∥
∥
∥
2

≤ K̃‖θ − θ̃‖2 + α‖V(ℓ) − Ṽ(ℓ)‖ σv√
n
‖φ(g(ℓ))‖2 +

σv√
n
‖Ṽ(ℓ)‖‖φ(g(ℓ))− φ(g̃(ℓ))‖2

≤ K̃‖θ − θ̃‖2 + αCφ
σv√
n
‖ σw√

n
W(ℓ)x(ℓ−1)‖2‖θ − θ̃‖2 + 3σvCφ‖g(ℓ) − g̃(ℓ)‖2

≤ (K̃ + 3σvCφ)‖θ − θ̃‖2 + 3αCφσvσw
1√
n
‖x(ℓ−1)‖2‖θ − θ̃‖2

≤ (K̃ + 3σvCφ + 3αCφσvσwK1)‖θ − θ̃‖2 ≤ c2‖θ − θ̃‖2.

∥
∥
∥g

(ℓ+1) − g̃(ℓ+1)
∥
∥
∥
2
=

∥
∥
∥
∥

σw√
n
W(ℓ+1)x(ℓ) − σw√

n
W̃(ℓ+1)x̃(ℓ)

∥
∥
∥
∥
2

(B.18)

≤ ‖W(ℓ+1) − W̃(ℓ+1)‖ σw√
n
‖x(ℓ)‖2 +

σw√
n
‖W̃(ℓ+1)‖‖x(ℓ) − x̃(ℓ)‖2

≤ σwK1‖θ − θ̃‖2 + 3σwc2‖θ − θ̃‖2 ≤ c3‖θ − θ̃‖2.

Therefore, we have that for all ℓ ∈ [L] : ‖x(ℓ)− x̃(ℓ)‖2, ‖g(ℓ)− g̃(ℓ)‖2 ≤ cL3 ‖θ− θ̃‖2 ≤ K‖θ− θ̃‖2.

The proof for
∥
∥z(ℓ) − z̃(ℓ)

∥
∥
2
≤ K‖θ− θ̃‖2 follows from directly from ‖g(ℓ)− g̃(ℓ)‖2 ≤ cL3 ‖θ−

θ̃‖2:

∥
∥
∥z

(ℓ) − z̃(ℓ)
∥
∥
∥
2
=
∥
∥
∥ασvφ(g

(ℓ))− ασvφ(g̃
(ℓ))
∥
∥
∥
2

(B.19)

≤ αCφσv

∥
∥
∥g

(ℓ) − g̃(ℓ)
∥
∥
∥
2
≤ αCφσvc

L
3 ‖θ − θ̃‖2 ≤ K‖θ − θ̃‖2.

We turn to prove by induction that

∥
∥
∥δ(ℓ) − δ̃

(ℓ)
∥
∥
∥
2
≤ K‖θ − θ̃‖2.

Base case:

∥
∥
∥δ(L) − δ̃

(L)
∥
∥
∥
2
=
∥
∥
∥
σw√
n
w(L+1) − σw√

n
w̃(L+1)

∥
∥
∥
2
≤ σw√

n
‖θ − θ̃‖2 ≤ K̃‖θ − θ̃‖2.
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Assuming that ‖δ(ℓ+1) − δ̃
(ℓ+1)‖2 ≤ K̃‖θ − θ̃‖2, we get

‖δ(ℓ) − δ̃
(ℓ)‖2 =

∥
∥
∥
∥
∥

(

In + α
σv√
n
V(ℓ+1)diag

{

φ′(g(ℓ+1))
} σw√

n
W(ℓ+1)

)⊤
δ(ℓ+1) (B.20)

−
(

In + α
σv√
n
Ṽ(ℓ+1)diag

{

φ′(g̃(ℓ+1))
} σw√

n
W̃(ℓ+1)

)⊤
δ̃
(ℓ+1)

∥
∥
∥
∥
∥
2

≤ ‖δ(ℓ+1) − δ̃
(ℓ+1)‖2 +

∥
∥
∥
∥
∥

(

α
σv√
n
V(ℓ+1)diag

{

φ′(g(ℓ+1))
} σw√

n
W(ℓ+1)

)⊤
(δ(ℓ+1) − δ̃

(ℓ+1)
)

∥
∥
∥
∥
∥
2

+

∥
∥
∥
∥
∥

(

α
σv√
n
V(ℓ+1)diag

{

φ′(g(ℓ+1))
} σw√

n
W(ℓ+1) − α

σv√
n
Ṽ(ℓ+1)diag

{

φ′(g̃(ℓ+1))
} σw√

n
W̃(ℓ+1)

)⊤
δ̃
(ℓ+1)

)

∥
∥
∥
∥
∥
2

≤ (K̃ + 9ασvσwCφK̃)‖θ − θ̃‖2

+K2

∥
∥
∥
∥
α
σv√
n
V(ℓ+1)diag

{

φ′(g(ℓ+1))
} σw√

n
W(ℓ+1) − α

σv√
n
Ṽ(ℓ+1)diag

{

φ′(g̃(ℓ+1))
} σw√

n
W̃(ℓ+1)

∥
∥
∥
∥

≤ c4‖θ − θ̃‖2 + αK2

∥
∥
∥
∥

σv√
n
V(ℓ+1)diag

{

φ′(g(ℓ+1))
} σw√

n
(W(ℓ+1) − W̃(ℓ+1))

∥
∥
∥
∥

+ αK2

∥
∥
∥
∥

(
σv√
n
V(ℓ+1)diag

{

φ′(g(ℓ+1))
}

− σv√
n
Ṽ(ℓ+1)diag

{

φ′(g̃(ℓ+1))
}) σw√

n
W̃(ℓ+1)

∥
∥
∥
∥

≤ (c4 + αK23σv
σw√
n
Cφ)‖θ − θ̃‖2 (B.21)

+ c5

(∥
∥
∥
∥

σv√
n
(V(ℓ+1) − Ṽ(ℓ+1))diag

{

φ′(g̃(ℓ+1))
}
∥
∥
∥
∥
+

∥
∥
∥
∥

σv√
n
V(ℓ+1)(diag

{

φ′(g(ℓ+1))
}

− diag
{

φ′(g̃(ℓ+1))
}

)

∥
∥
∥
∥

)

≤ (c6 + c5
σv√
n
Cφ)‖θ − θ̃‖2 + 3c5σvCφ

∥
∥
∥g

(ℓ+1) − g̃(ℓ+1)
∥
∥
∥
2

≤ (c6 + c5
σv√
n
Cφ)‖θ − θ̃‖2 + 3c5σvCφc

L
3 ‖θ − θ̃‖2 ≤ c7‖θ − θ̃‖2.

Therefore, we have that for all ℓ ∈ [L] : ‖δ(ℓ) − δ̃
(ℓ)‖2 ≤ cL7 ‖θ − θ̃‖2 ≤ K‖θ − θ̃‖2.
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It is left to prove that

∥
∥
∥γ(ℓ) − γ̃(ℓ)

∥
∥
∥
2
≤ K‖θ− θ̃‖2. This is achieved by the previous results for

‖δ(ℓ) − δ̃
(ℓ)‖2 and ‖g(ℓ) − g̃(ℓ)‖2:

∥
∥
∥γ(ℓ) − γ̃(ℓ)

∥
∥
∥
2
=

∥
∥
∥
∥
α
σvσw√

n
diag

{

φ′(g(ℓ))
}

V(ℓ)⊤δ(ℓ) − α
σvσw√

n
diag

{

φ′(g̃(ℓ))
}

Ṽ(ℓ)⊤δ̃
(ℓ)
∥
∥
∥
∥
2

(B.22)

≤ ασw

∥
∥
∥
∥

σv√
n
diag

{

φ′(g(ℓ))
}

V(ℓ)⊤(δ(ℓ) − δ̃
(ℓ)
)

∥
∥
∥
∥
2

+ ασw

∥
∥
∥
∥

σv√
n

(

diag
{

φ′(g(ℓ))
}

V(ℓ)⊤ − diag
{

φ′(g̃(ℓ))
}

Ṽ(ℓ)⊤
)

δ̃
(ℓ)
∥
∥
∥
∥
2

≤ 3ασwσvCφ‖δ(ℓ) − δ̃
(ℓ)‖2

+ ασwK2

(∥
∥
∥
∥

σv√
n
(V(ℓ) − Ṽ(ℓ))diag

{

φ′(g(ℓ))
}
∥
∥
∥
∥
+

∥
∥
∥
∥

σv√
n
Ṽ(ℓ)(diag

{

φ′(g(ℓ))
}

− diag
{

φ′(g̃(ℓ))
}

)

∥
∥
∥
∥

)

≤ (c8c
L
7 + c9

σv√
n
Cφ)‖θ − θ̃‖2 + 3c9σvCφ

∥
∥
∥g

(ℓ+1) − g̃(ℓ+1)
∥
∥
∥
2

≤ c10‖θ − θ̃‖2 ≤ K‖θ − θ̃‖2.

To conclude, we showed that for θ, θ̃ ∈ B(θ0, C) there exists K > 0 (that does not depend on

θ, θ̃, n) such that all the distances

∥
∥
∥γ(ℓ) − γ̃(ℓ)

∥
∥
∥
2
,
∥
∥x(ℓ) − x̃(ℓ)

∥
∥
2
,

∥
∥
∥δ(ℓ) − δ̃

(ℓ)
∥
∥
∥
2
,
∥
∥z(ℓ) − z̃(ℓ)

∥
∥
2

are upper bounded by K‖θ − θ̃‖2.
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Appendix C. Additional Empirical NTK Results

C.1. Functions with Scalar Inputs

In this section we provide more experiments and details on the experimental setting that are missing

in the main body of the paper, due to space limitation.

First, let us state the underlying ground truth function whose samples are used in the interpola-

tion experiments

f(β) =
1

2
cos(β) + sin(4β), −π ≤ β ≤ π. (C.1)

We treat the samples {βi} as points on the sphere (circle) in R2, i.e., samples of {x ∈ R2 : x21 +
x22 = 1}, since any point on the sphere has 1-to-1 mapping to an angle β, and vice versa (β −→
(cosβ, sinβ)). This is motivated by the proof in (Jacot et al., 2018) that restricting the NTK to the

unit sphere yields λmin(Θ) > 0, which is required for the NTK theory. Note that we do not examine

or compare reconstruction errors in this paper, and f(β) is given here for reproducibility reasons.

Next, we present in Figure 6 an extended version of Figure 2 that includes also the results of

ResNet NTK for an extremely small value of α, namely α = 0.01. It can be seen that this small

α does not significantly affect the kernel shape and interpolations’ smoothness compared to the

moderate α = 0.1.

(a) NTKs (normalized to unit peak) L = 5 (b) Interpolation with 6 samples L = 5 (c) Interpolation with 10 samples L = 5

(d) NTKs (normalized to unit peak) L =
15

(e) Interpolation with 6 samples L = 15 (f ) Interpolation with 10 samples L = 15

Figure 6: NTKs for MLP and ResNet (for different values of α) with L = 5 (top) and L = 15
(bottom) nonlinear layers, ReLU nonlinearities, σv = σw = 1, for inputs on the sphere (circle) in

R2. (6(a)),(6(d)): The kernels shape. (6(b))-(6(c)), (6(e))-(6(f )): Interpolations by the closed-form

solutions, measured by µ(·) defined in (22). Note that the legend in (6(a)),(6(d)) applies to all the

figures.
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(a) Kernels (normalized to unit peak) (b) Interpolation with 15 random samples

Figure 7: NTKs for MLP and ResNet (for different values of α) with L = 7 nonlinear layers, ReLU

nonlinearities, σv = σw = 1, for inputs on the sphere (circle) in R2. (7(a)): The kernels shape.

(7(b)): Interpolations by the closed-form solutions, measured by µ(·) defined in (22). Note that the

legend in (7(a)) applies to all the figures.

Figure 8: Magnitude of the first 128 FFT elements (out of 4096) of the NTKs for MLP and ResNet

(with α = 0.1) with L = 5 nonlinear layers, ReLU nonlinearities, σv = σw = 1, for inputs on the

sphere (circle) in R2.

More NTK results, this time for L = 7 nonlinear layers and 15 random samples, are presented

in Figure 7.

Finally, in Figure 8 we present, in logarithmic scale, the FFT spectrums of the NTKs of ResNet

with α = 0.1 and MLP, both with L = 5 nonlinear layers. This figure demonstrates our claim

below (22): Since the decay rates of the FFT coefficients of the different kernels are approximately

different only by a factor, we find the measure µ(f), which depends also on the resulted interpo-

lation and not only on the kernel, to be more informative than comparing the FFT of the kernels.

For example, multiplying the ResNet NTK by a large constant factor will make the magnitude of its

FFT larger than the magnitude of the FFT of MLP NTK. Yet, it will not change the results of the

kernel regression.

C.2. Functions with Multidimensional Inputs

In this section we briefly demonstrate the smoothness distinction between ResNet and MLP NTKs

for multidimensional samples.
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Figure 9: Two-dimensional interpolations from 6 × 3 samples using MLP and ResNet NTKs with

L = 15 nonlinear layers, ReLU nonlinearities, σv = σw = 1, for inputs on the sphere in R3. From

left to right and top to bottom: the underlying function with 6×3 samples, interpolation by the MLP

NTK (µ = 1.47e4), interpolation by the ResNet NTK with α = 1 (µ = 2.33e3), and interpolation

by the ResNet NTK with α = 0.1 (µ = 1.55e1).

First, we extend the previous one-dimensional experiments to two dimensions. We modify the

underlying ground truth function in (C.1) to

f(β, ξ) =

(
1

2
cos(β) + sin(4β)

)

sin(ξ), −π ≤ β ≤ π, 0 ≤ ξ ≤ π. (C.2)

Here, the samples {(βi, ξi)} can be treated as points on the sphere in R3, i.e., samples of {x ∈
R3 : ‖x‖2 = 1}, since any point on the sphere has 1-to-1 mapping to a pair of angles (β, ξ), and

vice versa ((β, ξ) −→ (cosβsinξ, sinβsinξ, cosξ)). Recall that for unique samples (i.e., xi 6= xj for

i 6= j) from the unit sphere we get λmin(Θ) > 0, which is required for the NTK theory (Jacot et al.,

2018).

Figures 9 and 10 show the interpolation results of the ResNet NTK with different values of α
and the MLP NTK, for 6 × 3 uniform samples and for 10 × 5 uniform samples. We also report

there the measure µ(·) defined in (22) (straightforwardly extended to the 2D case). Similar to the

one-dimensional case, it can be seen that the interpolation results of ResNet NTK are smoother,

especially with small α.

We turn to examine the NTKs for high-dimensional data; specifically, the MNIST dataset, which

includes images of size 28 × 28 of handwritten digits. As visualizing and measuring smoothness

is difficult for high-dimensional data, we consider binary classification tasks, in which we interpo-

late (“overfit”) the training set and report accuracy results on the test set. This links the different

smoothness of the different NTKs with their generalization.

We consider the digits “0” and “8” and label them with y ∈ {+1,−1}. The training set includes

N/2 samples from each class, where N ∈ {50, 100}, and the test set includes 1000 images from
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Figure 10: Two-dimensional interpolations from 10 × 5 samples using MLP and ResNet NTKs

with L = 15 nonlinear layers, ReLU nonlinearities, σv = σw = 1, for inputs on the sphere in R3.

From left to right and top to bottom: the underlying function with 10 × 5 samples, interpolation

by the MLP NTK (µ = 2.59e4), interpolation by the ResNet NTK with α = 1 (µ = 1.24e4), and

interpolation by the ResNet NTK with α = 0.1 (µ = 7.18e3).

each class. The samples are presented as vectors in R282 . The mean vector of the training set is

subtracted from all samples and each sample is normalized to have unit Euclidean norm. We exam-

ine the MLP NTK and the ResNet NTK with α ∈ {1, 0.1} and L ∈ {5, 15, 30}. The classification

of a test sample is made according to the sign of the ℓ2 kernel regression (using the closed-form

expression in (4)). The results are presented in Table 1. They demonstrate the advantage of using a

smoother ResNet NTK.

Table 1: Accuracy results of different NTKs for binary MNIST classification tasks.

50 training samples MLP NTK ResNet NTK α = 1 ResNet NTK α = 0.1

L = 5 0.9625 0.967 0.972

L = 15 0.9615 0.9625 0.972

L = 30 0.958 0.9615 0.9715

100 training samples MLP NTK ResNet NTK α = 1 ResNet NTK α = 0.1

L = 5 0.981 0.9885 0.9905

L = 15 0.973 0.982 0.9925

L = 30 0.9645 0.9795 0.991
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(a) NTKs (normalized to unit peak) L = 5 (b) Interpolation with 6 samples L = 5 (c) Interpolation with 10 samples L = 5

Figure 11: NTKs for MLP and ResNet (for different values of α) with L = 5 nonlinear layers, erf

nonlinearities, σv = σw = 1, for inputs on the sphere (circle) in R2. (11(a)): The kernels shape.

(11(b))-(11(c)): Interpolations by the closed-form solutions, measured by µ(·) defined in (22). Note

that the legend in (11(a)) applies to all the figures.

Appendix D. Closed-Form T and Ṫ Expressions for ReLU Nonlinearities

For completeness, we present here the closed-form expression of T (K) and Ṫ (K) for φ(·) which is

the ReLU activation function. These results are due to (Cho and Saul, 2009).

Let K :=

[
K11 K12

K12 K22

]

be a 2 × 2 positive semidefinite matrix, ρ := K12√
K11K22

, and recall the

definitions T (K) := E(u,v)∼N (0,K) [φ(u)φ(v)] and Ṫ (K) := E(u,v)∼N (0,K) [φ
′(u)φ′(v)]. For the

special case where φ(·) = max{0, ·}, we have

T (K) =
1

2π

√

K11K22

(

ρ (π − arccos (ρ)) +
√

1− ρ2
)

, (D.1)

Ṫ (K) =
1

2π
(π − arccos (ρ)) .

Appendix E. NTK Experiments with ERF Nonlinearities

In this section, we present NTK experiments for the erf activation function. First, we present the

closed-form expression of T (K) and Ṫ (K) for φ(·) which is the erf function.

Let K :=

[
K11 K12

K12 K22

]

be a 2 × 2 positive semidefinite matrix and recall the definitions

T (K) := E(u,v)∼N (0,K) [φ(u)φ(v)] and Ṫ (K) := E(u,v)∼N (0,K) [φ
′(u)φ′(v)]. For the special case

where φ(u) = 2√
π

∫ u
0 e−z2dz, we have from (Williams, 1996) that

T (K) =
2

π
arcsin

(

2K12
√

(1 + 2K11)(1 + 2K22)

)

, (E.1)

Ṫ (K) =
4

π
det (I2 + 2K)−1/2 .

Next, we repeat several NTK experiments from Section 4.2, but with the erf activation instead

of the ReLU activation. The other configurations are not changed. The results are presented in
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Figure 11. It can be seen that with erf activations both MLP and ResNet NTKs have rather simi-

lar shapes and similar interpolation results (contrary to the ReLU case). This may imply that the

smoothness distinction between the models requires using nonsmooth activations.
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