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Abstract

Many supervised learning problems involve high-dimensional data such as images, text, or graphs. In
order to make efficient use of data, it is often useful to leverage certain geometric priors in the problem at
hand, such as invariance to translations, permutation subgroups, or stability to small deformations. We study
the sample complexity of learning problems where the target function presents such invariance and stability
properties, by considering spherical harmonic decompositions of such functions on the sphere. We provide
non-parametric rates of convergence for kernel methods, and show improvements in sample complexity
by a factor equal to the size of the group when using an invariant kernel over the group, compared to the
corresponding non-invariant kernel. These improvements are valid when the sample size is large enough,
with an asymptotic behavior that depends on spectral properties of the group. Finally, these gains are
extended beyond invariance groups to also cover geometric stability to small deformations, modeled here as
subsets (not necessarily subgroups) of permutations.

1 Introduction

Learning from high-dimensional data is known to be statistically intractable without strong assumptions on
the problem. A canonical example is learning Lipschitz functions, which generally requires a number of
samples exponential in the dimension due to the curse of dimensionality (e.g., [30]). Many high-dimensional
machine learning problems involve highly structured data such as images, text, or graphs, and may exhibit
invariance to certain transformations of the input data, such as permutations, translations or rotations, and
near invariance to small deformations. More precisely, if X is the high-dimensional data domain, and G
is a set of transformations ¢ : X — X, the learning task can be alleviated if one knows in advance that the
target function f varies smoothly under transformations in G: |f(o - «) — f(z)| is uniformly small over z € X
foro € G.

To further motivate this property, it is useful to view the data domain X as a space of signals X = L?(Q; R)
defined over a geometric domain €2, such as a 2d grid. The set of transformations G can then be articulated
in terms of () rather than &X', a much simpler geometric object, and then lifted into X by composition: if
o:Q— Q,and z € X then (0 - z)(u) := z(0c7 ! (u)) for every u € 2. The smoothness to transformations can
thus be interpreted as a form of geometric stability.

In this paper, we quantify the sample complexity gains brought by geometric stability. Concretely, we
consider target functions f defined on the sphere X = S¢~! in d dimensions with finite L?(S?~!) norm.

In this case, we view the geometric domain as the discrete 1d grid Q = [1,...,d], and consider geometric
transformations G as subsets of the symmetric group of permutations of d elements. Given a set G (not
necessarily a group), we consider the smoothing operator given by S¢ f(z) = ﬁ Y oweq flo-x)for f €

L%(S%71), and assume that our target function f is geometrically stable, in the sense that f = Sgg for
some g € L%(S?"1). In words, the smoothing operator S replaces the prediction f(z) by the average over



transformations of x. In particular, functions which are invariant under the action of ¢ € G, namely
flo-x)=f(x), oceGuaesS, (1)

are also stable, with f = Sg f.

Building on the recent work [23], we proceed by studying harmonic decompositions of such functions
using spherical harmonics [14], which generalize Fourier series on the circle to higher dimensions. This
allows us to obtain rates of approximation for invariant and geometrically stable functions with varying
levels of smoothness, and to study the generalization properties of invariant kernel methods using kernels
defined on the sphere. Specifically, our main contributions are:

e By comparing spectral properties of usual kernels on the sphere with invariant ones, we find that the
latter provide improvements in sample complexity by a factor of the order of the size of the group
when the sample size is large enough (Section 3).

e We study how this improvement factor varies with sample size, in terms of the structure of the group
and on spectral properties of the permutation matrices it contains (Section 4).

o We extend the invariance analysis to geometrically stable functions, establishing similar gains in sample
complexity that depend on the size of the transformation subset (Section 5).

Our proofs rely on comparing the dimension of invariant and non-invariant spherical harmonics at a given
degree, and showing that their ratio decays to the inverse group size as the degree tends to infinity. In contrast
to [23], we consider the dimension to be fixed and study non-parametric rates of convergence for potentially
non-smooth target functions and general groups of permutations, while they consider high-dimensional
limits where only polynomials can be learned, and focus on invariance to translation groups.

Related work. Invariance and deformation stability have been analysed using convolutional neural network-
type architectures such as the scattering transform [22, 7], or convolutional kernels [6, 20]. While these
works characterise the stability in terms of the dyadic structure of convolutional filters (such as wavelets),
they do not cover a statistical analysis of sample complexity. Similarly, models of compositional functions
such as those in [11, 24, 27] study the benefit of hierarchical representations with local connectivity for
approximation, while [19, 21] study benefits of local connectivity with optimization-based algorithms; yet
these works do not consider invariance or stability. [23] studies similar benefits but focus on polynomial
target functions, and consider high-dimensional limits, while we consider a fixed dimension and obtain
non-parametric rates of convergence. While their framework is potentially applicable to general groups,
their results only cover the case of translation groups, leading to improvements in sample complexity of at
most a factor equal to the dimension. [15] also sudies benefits of group invariance, but focuses on linear
models, and only considers interpolating estimators. [10] study benefits of equivariant kernels in structured
prediction problems. [13] studies generalisation advantages of CNNs over fully-connected models, while
our focus is on non-parametrics.

2 Preliminaries

In this section, we describe our setup and provide some background on harmonic decompositions on the
sphere, and how these are affected by invariance.

Statistical learning setup. We consider a supervised learning problem where the data distribution p on
input-label pairs (z,y) is such that x € S%~! and E[y|z] = f*(z) for some target function f*in L?(S?~!). For
simplicity, we will assume that x is uniformly distributed on the sphere, and denote the uniform measure
on S%~! by dr. We consider a regression setup with L? risk given by

R(f) = Ezy)np [(f(2) — )7



For a given estimator f,, based on n samples from p, the goal is then to obtain generalization bounds as a
function of n on the excess risk

E[R(fu)] = B(f*) = Elll fa = f*IZ2an): (2)

where the expectation is over the n samples. Such bounds are well-studied for various classes of target
functions f* such as smoothness classes, and estimators such as kernel ridge regression. These are typically
studied through harmonic decompositions of f* and of a kernel function in appropriate L? bases, which
then relate function regularity and decays of Fourier coefficients.

Harmonic analysis on the sphere. When considering functions in L?(dr), an appropriate choice of or-
thonormal basis is that of spherical harmonic polynomials [1, 14]. More precisely, denote {Y} ;};_ ( *) denote
an orthonormal basis of the space Vg i, of spherical harmonics of degree k, i.e., homogeneous harmomc poly-
nomials of degree k, where N (d, k) = 2k£4=2 (*1473) ‘Then, the collection {V,; : k > 0,j =1,..., N(d, k)}
forms an orthonormal basis of L?(dr), so that any function f € L?(dr) may be written

N(d,k)

Z Z ak,; Y, (@ (3)

k>0 j=1

with >, ZN(d k) 02 < 0. Similarly, any dot-product kernel K (x,z’) = k((x,z’)) on the sphere may be
written

N(dk)
Zﬂk Z Vi j (%)Y, 5 (2"), (4)
k>0 =1
where p, is given by
1
Wa— _
=222 [ k()P0 ) (5)
Wd—1 .J-1

Here, w,_; is the surface measure of the sphere in p dimensions, and P, are Legendre or Gegenbauer
polynomials of degree k in d dimensions (normalized with P, (1) = 1), which form an orthogonal basis
of L2([~1,1], dw), with dw(t) = (1 — t?)(4=3)/24t. When the kernel K is positive definite and is used in the
context of kernel ridge regression with data uniformly distributed on the sphere, then the 1, also correspond
to the eigenvalues of the covariance operator. These eigenvalues and their decay then control the statistical
properties of the kernel ridge regression estimator [8].

Spherical harmonics and group-invariant functions. In order to describe harmonic decompositions of
functions satisfying the group invariance property (1) for a discrete group G, we follow [23] and define the
symmetrization operator

Saf(x > flo-a) (6)
|G| oeG
This operator acts as a projection from L?(dr) to a subset thereof which contains invariant functions. It can
be shown that the spaces Vg i of spherical harmonics of degree k are stable by S [23], and we may then
define an orthonormal basis of Vg 5, := S¢'Vy ; consisting of invariant spherical harmonics {Y, ; };V:(fk) We
then have the following lemma.

Lemma 1 (Representation of projection [23]). For any k > 0, we have

)= ) = ] 2 B Pasl (o) )

The quantity 4 (k) will play an important role in determining the gains in sample complexity brought by
invariance. We will show in Section 4 that v4(k) converges to 1/|G| for large k, with an asymptotic behavior
that is governed by spectral properties of the elements of the group.



3 Sample Complexity of Invariant Kernels

We begin our study by focusing on the invariant case. In this section, we study the sample complexity of
learning invariant functions, by considering kernel ridge regression estimators and providing non-parametric
rates of convergence that illustrate the gains achievable with invariant kernels compared to non-invariant
ones.

Kernel ridge regression (KRR) and invariant kernels. For a positive definite kernel K with RKHS H g,
we consider the KRR estimator fy given by

n

. 1
fr= argfrgg;ﬁ;(f(%) —yi)g‘*‘)\“f”%-tx' ®)

We consider the following kernels, which we assume positive definite, given for z, 2’ € S*~! by
K(z,0") = al(z,27), Kele,x) =1z > (o m,a)), ©)

with k(u) < 1. A common example for « is the arc-cosine kernel [9], which arises from infinite-width shallow
neural networks with ReLU activations. The following integral operator defined on L?(dr) and its eigen
decomposition play an important role for the statistical and approximation properties of kernel methods:

Ty f(z) = / K (2,2 f(2')dr(z'). (10)

We now show that its spectral properties are closely related for K and K.

Lemma 2 (Spectral properties of K and K.). There exists a basis of spherical harmonics in which the operators Tk
and Ty, are jointly diagonalized. They admit the same eigenvalues py. given by (5), with multiplicity N (d, k) for Tx
and N(d, k) for Tk,,.

The decay of the eigenvalues py, controls the smoothness of functions in the RKHS, for instance when i,
decays polynomially, Tx behaves similarly to powers of the Laplacian on the sphere, leading to functional
spaces similar to Sobolev spaces. For the example of the arc-cosine kernel, 11, decays as k=92, leading to an
RKHS containing functions with d/2 + 1 bounded derivatives [2].

Approximation error. The approximation error of kernel methods is often controlled by the following
quantity (e.g., [3, 12]):

where f* is a target function in L?(dr), and H is a given RKHS. In particular, if f* is smooth enough so
that f* € , then we have Ay (X, f*) < A||f*||3,, while if f* ¢ 1, e.g., if f* is only Lipschitz, then Ay (X, f*)
typically grows much faster with A. We now show a useful result for invariant targets, showing that in this
case the approximation error is the same for the kernels K and K.

Lemma 3 (Approximation error for invariant functions.). If f* is invariant to the group G, so that f* = Sq f*,
then we have

AHK()\’f*) = AHKG ()‘uf*) (12)

Degrees of freedom. The above result suggests that any gains of using K¢ instead of K for learning
invariant functions should come from estimation rather than approximation error. The estimation error of
ridge rigression estimators is typically controlled with the following quantity, often called degrees of freedom
or effective dimension (e.g., [3,18]):

Nich) = Te(Sxe (S + A7) = 37 2 (13)

m>0



where X = E, [K(x, ) @y, K(z,-)] is the covariance operator and (A, )m >0 its eigenvalues, taking multi-
plicity into account, which are the same as those of Tx when data is distributed according to dr [8]. We then
obtain the following simple result relating N, to Nk.

Lemma 4 (Degrees of freedom for K and K.). For any ¢ > 0, we have

Nig(A) < D) + va(O) Nk (N),

where D(£) := 3 ., N(d, k) and vq(€) := supy>, va(k), with vq given in (7).

This suggests that for a fixed ¢, the effective dimension of K¢ is controlled by a factor v,4(¢) times that
of K, up to a finite fixed dimension D(¢). For difficult non-parametric problems which require small A at
large sample sizes, the second term will tend to dominate, so that having a small v4(¢) may help reduce
sample complexity compared to using the vanilla kernel K, an observation which we make rigorous below.

Generalization bound for KRR. Armed with the above lemmas on approximation error and degrees of
freedom, we now study generalization of KRR under the following assumptions:

(A1) capacity condition: Nic(\) < CxgA~Y* with a > 1.

(A2) source condition: there exists r > %=1 and g € L*(dr) with ||g||z2(4r) < Cy+ such that f* = T} g.
(A3) invariance: f* is G-invariant.

(A4) problem noise: pis such that E,[(y — f*(x))?|z] < o2.

The first, second, and fourth conditions are commonly used in the kernel methods literature [8]. (A1)
characterizes the “size” of the RKHS, and is satisfied when the eigenvalues A, of Tk decay as k~¢. On the
sphere, a = % corresponds to having s bounded derivatives, e.g., we have s = d/2 + 1 for the arc-cosine
kernel. The parameter r in (A2) defines the regularity of f* relative to that of the kernel: » = 1/2 corresponds
to f* € Hk, while larger (resp. smaller) r implies f* is more (resp. less) smooth. The condition on r is
needed for our specific bound, which is based on [3, Proposition 7.2], but may be bypassed using different
algorithms or analyses [17, 26]. We now present our bound on the excess risk.

Theorem 5 (Generalization of invariant kernel.). Assume (A1-4). Let vq(£) be as in Lemma 4, or an upper bound
thereof, and assume vy := infy>q v4(€) > 0. Let

n > max {|f* |2 /o2, (C1/vo) ™77 | (14)

and define
0y = sup{l: D(¢) < Couy(l)7ariinzart }. (15)

We then have, for A = Cg(yd(gn)/n)a/@arﬂ),

2ar
va(ly) 2+t
BIR(Gh) - R < 0 (M) T (16)
In the same setting, KRR with kernel K and \ = CsnZar+1 achieves E[R(fy) — R(f*)] < Can 241, where Cs,Cy are
the same constants as for the invariant kernel. Here, the constants C4.4 only depend on the parameters of assumptions
(A1-4).

The theorem shows that the generalization error for the invariant kernel behaves as if it effectively had
access to n/vy(¢,) samples, so that v4(¢,,) plays the role of an effective inverse sample complexity gain at
sample size n. Note that v4(¢,,) < 1 and vy is decreasing, so that we always have some improvement in
sample complexity, and this gets better when ¢,, is large. In particular, we show in Section 4 thatyq(k), and
hence v4(¢) converge to 1/|G|, so that asymptotically the gain in sample complexity can be as large as the size
of the group, which in some cases may grow exponentially in d.



Estimating ¢,, and the effective gain v4(¢,,). Since D(¢) increases with ¢, Eq. (15) suggests that ¢,, increases
with n. We now provide intuition on how we might expect ¢,, and v4(¢,,) to behave in a situation of interest
where we know an asymptotic equivalent of v4. Namely, assume that we have

va(l) = vy + =P,

We provide such asymptotic equivalents in Section 4, where vy = 1/|G|, and /3 depends on spectral properties
of the elements of G. For some large groups, 5 may be small, in which case we may consider other approxi-
mations with larger 3, at the cost of a larger vy. When ¢, is large, using the approximation N(d, k) ~ k12,
we have D(¢) ~ Y"i_t k%2 ~ ¢4~1. Hiding constants other than 1, we may then consider ¢, to be solution
of

(d—1)(2ar+1)
2ar

= n’zéﬁ(uo +075).

Since the Lh.s. increases, while the r.h.s. decreases with ¢, we must have ¢,, > max(¢,, 1, £, 2), with

(d—1)(2ar+1) 1 (d—1)(2ar+1) 1 -3
na 0T =nZryy, and £, **7 =nzrl .
This yields
—B —B
vq(£y) < 1o + C'min {(VgaTn) @D2er+D)  p@-DEar+DT28ar } . (17)

Notice that when 3 < d, both exponents of n display a curse of dimensionality, but this curse goes away as 3
grows. Note also that the first exponent yields a faster rate, but one that is only achieved for large »n due to
the factor 13", which may be small for large groups.

Curse of dimensionality and optimality. Note that the bound obtained in Theorem 5 is still cursed for an
invariant target f*, in the sense that the exponent in the rate is of order 1/d when f* is only assumed to be
Lipschitz. Indeed, a Lipschitz assumption on f* corresponds to taking r and « such that 2ar ~ 2/(d — 1),
which makes the source condition (A2) similar to a bound on ||V f*| 2 (4-). This then leads to a cursed rate
n~2/(2+d=1) raising the question of whether this can be improved. We note that since v4(k) = Q(1/|G|)
(as we show in Section 4), the asymptotic decays (as a function of k) of the coefficients of f* and of the
eigenvalues of T, are similar to those for the non-invariant case, which implies that these rates cannot be
improved (see, e.g., [8]), and that constant-factor improvements in the sample complexity may be the best
we can hope for. Nevertheless, this may still lead to significant gains in practice.

Interpretation as Lipschitz under invariant metric. When assuming that f* is Lipschitz, our assumptions
can be interpreted as a ‘geometric’ Lipschitz assumption on the target function. Indeed, combining assump-
tions (A2) and (A3), together with an r such that 2ar ~ 2/(d — 1), which corresponds to a Lipschitz condition
on f* as argued in the previous paragraph, we may interpret these as saying that f* is Lipschitz with respect
to a weaker G-invariant (semi)-norm:

@) = £ @) < B inf Jlo -z — 2’|

In this setting, our main result, Theorem 5, establishes that the gains brought by this stronger Lipschitz
condition do not generally improve the rate (which stays cursed by dimension; see previous paragraph), but
nevertheless may be important in practice thanks to the potentially exponential-in-d improvements in the
effective sample size.

4 Counting Invariant Polynomials

In this section, we study the asymptotic behavior of v4(k), given in (7), when k — oo and the dimension d
and the group G are fixed. This quantity can be seen as capturing the fraction of orthogonal spherical
harmonics of degree k that are invariant to G, and helps us control the possible gains in sample complexity
for learning invariant functions, as described in Section 3. Denoting 4., (k) := E [Py x ({0 - z, x))], we will
show that v4 (k) vanishes for large & for any o that is not the identity. This implies that 4(k) converges



to 1/|G|, since we trivially have 4 14(k) = Py (1) = 1. We further characterize the asymptotic behavior
of v4(k) in terms of properties of the group elements. In the following we consider the case of G being a
subgroup of Sy, the groups of permutations on d elements.

Decay of 74, (k). Our main insight is to leverage the fact that when ¢ is not the identity, then the random
variable z, = (o - z,z) when = ~ 7 admits a density on [—1, 1], which we denote ¢,. This by itself will prove
sufficient to show that -y, (k) decays for large k, thanks to the oscillatory behavior of P, ;. We can then
further characterize its asymptotic behavior by studying the singularities of ¢, leveraging the seminal work
of Saldanha and Tomei [28]. In particular, these depend on spectral properties of the matrix associated to o.
We summarize this in the next proposition.

Proposition 6 (Asymptotic behavior of v4,(k).). Let A, be the matrix associated to o # 1d, that is such that
o-x = Asx. Denote by A, the set of (complex) eigenvalues of A, and by m the multiplicity of A € A,. When k — oo,
we have the asymptotic equivalent 74, (k) = > \cp_ Va0 (k), where

k=dtma 4 o(kdtmay) | if X e {£1},

ox(k) S 18
Vaoa (k) S {k“”m”‘* + o(k~=drmatdy | otherwise, (18)

where < hides constants that may depend on d, o and .

Every permutation o € Sq (where Sy is the symmetric group of permutations) can be decomposed into
cycles on disjoint orbits; the eigenvalues A (and their multiplicities my) of a matrix A, admit an interpretation
based on such decomposition. Indeed, since A, is unitary, its eigenvalues are of the form A = e2™? and
one can verify that necessarily 6 = £ € Q. Furthermore, assuming w.l.0.g. that ¢ is prime, such eigenvalue
appears whenever o contains a cycle of length a multiple of ¢. In particular, the multiplicity of the eigenvalue
1, my, corresponds to the total number of cycles in such a decomposition, which we will denote by ¢(o).
Then 74, (k) can be controlled as follows.

Corollary 7 (Decay of v4,,(k)). Let o # 1Id, and let c(o) denote the number of cycles in o. Then,

kote@) | if (o) > 448
k—4/246  otherwise .

Yd,o (k) SJ {

Decay on specific subgroups. We may now use Corollary 7 to study the asymptotic behaviour of v4(k) as
k — oo for various choices of subgroups of Sy, using the following result.

Corollary 8 (Upper bounds with permutation statistics). Let G be a subset of Sq and define
C(G,s) :={oc € G : c(o) > s}

for s € [d — 1]. Then, for any s, we have

'Yd(k'> < C(%f) +0 (k—d+max{s, d/2+6}) , (19)

with equality if s is such that ((G,s) = 1.

Note that such an upper bound immediately yields a similar upper bound for v4(¢) as defined in Section 3,
which then controls the effective gain in sample complexity in Theorem 5. Indeed, (19) implies that there
is a constant C such that for all k& > 0, v4(k) < ((G, s)/|G| + Ck~d+max{s:d/2+6} " Gince this upper bound
decreases with k, we obtain

l/d(f) < C(E;ﬁ) + C€7d+max{s,d/2+6}'
In the context of the generalization bound of Theorem 5 and our heuristic derivation thereafter, the effective
gain in sample complexity is then governed an upper bound on v4(¢,,) as in (17), with asymptotic gain v
and rate 3 given by

(G, 5)

vy 1= Tl and f:=d— max{s,d/2+ 6}. (20)




Example 9 (Translations). Let G = Cj be the cyclic group on d elements. Then it holds

va(k) = é +0 (k*d/2+6> .

This follows by noticing that every translation o (but the identity) satisfies c(c) < d/2. This leads to an asymptotic
gain vy ' = dand B = d/2 — 6 leads to fast convergence in (17) even when d is large.

Example 10 (Local translations). Let d = s - r (with r, s > 5 for simplicity), and consider the group composed of
traslations over r blocks of coordinates of size s; i.e., the block-cyclic group

G:{O' : U:a'(l)o...o(;—(r)}

where each ") is a translation over the set {(i — 1)s + 1,...,is}, for i € [r]. Then it holds
1
— —s/24+1
va(k) -1 ) (k ) . (21)

This follows by noticing that every local translation o (but the identity) satisfies c(o) < (d — s) + s/2. Here the
asymptotic gain is vy ' = s" = s%/%, which can be exponential in d when s is small. We have 8 = s/2 — 1, which leads
to much slower convergence than the translation case, unless s is large and of order d.

Example 11 (Full permutation group). For the case of G = Sy, we can split the group based on the value of Fix(o),
the number of elements fixed by a permutation o. Denote

d
§(G,s) =0 €G : Fix(c) >s|= > <‘?) '(d— 7).

j=s+1 J

for s € [d — 1], where !k denotes the k-th subfactorial. Then we have

10 (k—d/2+max{s/2, 6}) ’

with equality for s = d — 1. This follows from the fact that c(0) < Fix(o) + (d — Fix(0))/2. In particular, it follows

2
va(k) < 1) +0 (k*d/%ma"{s/?v 6}) )

When considering the full group, we may get a large asymptotic improvement of order vy ' = |G| = d! in sample
complexity, but a slow convergence with § = —1 as per Corollary 8 (assuming d large enough). Using different
values of s may yield different upper bounds with faster convergence rates § = d/2 — max{s/2,6}, but smaller
asymptotic gains in sample complexity, given by vy ' = (s + 1)!/2. For instance, with s = d/2 and d large enough,
we have 8 = d/4, leading to a potentially fast convergence rate in 17 towards a sample complexity gain that is still
significantly large, of order (d/2 + 1)!/2.

Overall, these examples show that the size of the group determines the best possible improvement in
sample complexity, while the spectral properties of its permutations dictate how quickly we may achieve
these gains.

5 Beyond Group Invariance: Geometric Stability

In this section, we study gains in sample complexity when the target function f* is not fully invariant to a
group, but may be stable under small geometric changes on the input. We formalize this by considering a
similar averaging operator S¢, but we allow G to be a generic set of permutations instead of a group, and
allow for a weighted average:

Saf(z) ="y h(o)f(o-x), (22)

ceG



where h(c) > Oforallc € Gand Y-, . h(0) = 1. We assume that G is “symmetric”, i.e., 0~' € Gwheno € G
and h(oc=1) = h(o), so that Sg is self-adjoint. In this case, images of S are not invariant functions, but may
nevertheless exhibit a form of “local” stability to small perturbations of the input data. For instance, if G
consists of local translations by at most a few pixels, or if GG consists of all translations but A is localized
around the identity, then applying S¢ yields functions that are stable to local translations. We may also
consider a more structured set G of permutations that resemble local deformations, consisting of both a
global translation as well as different local translations at different scales, as we describe below.

Spectral properties of Sg. Note that in this setup, we no longer have that S¢ is a projection, however we
may still view it as a smoothing operator, which attenuates certain harmonics that are “less” invariant than
others. The next lemma shows related spectral properties to the invariant case.

Lemma 12 (Spectral properties of S¢). There exists a basis of spherical harmonics Y, j, for k > 0, and j =

1,...,N(d, k), in which the operator S¢ is diagonal, with eigenvalues Ay, ; > 0. In analogy to Lemma 1, we have
N(d,k)
Ya(k) = N(d k)™ > M = > hO)Es [Pag((o - ,2))]. (23)
j=1 oeG

We also define vq(€) := supy>,va(k).

Sample complexity of stable kernel. In analogy to Section 3, we may consider a stable kernel

Kg(z,2') = Z ho)k({o -z, 2')). (24)

ceG

Then, it is easy to check that the integral operator of K¢ is given by Tk, = STk . In contrast to Section 3, we
no longer have that the approximation errors of K and K¢ are the same in general on “geometrically stable"
functions, since the notion is not precisely defined. Nevertheless, we may represent favorable targets f* as
those whose coefficients decay similarly at each frequency k to those of S, by viewing it as a smoothing
of some L? function g*, ie., f* = Stg* for some exponent r. With this in mind, we make the following
assumptions, replacing assumptions (A1-3) of Section 3.

(A5) capacity: the eigenvalues (&,,)m>0 of Tk satisfy &, < C(m + 1)~

(A6) source condition: there exists r > %=1 and g € L?(dr) with [|g||z2(4r) < Cy+ such that f* = STk g.

Note that (A6) corresponds to a standard source condition with the kernel K¢ (since Ty, = STk ), yet it
reveals how K¢ jointly performs smoothing on the sphere, through T, as well as on the permutation group
through Si. While these two forms of smoothing appear “entangled” in this assumption, one may balance
them by choosing different levels of smoothing in the kernel function «, or by averaging multiple times
in (24). Assumption (A5) is needed for obtaining a variant of Lemma 4, and implies (A1) with Cx « C Ve,
We then obtain the following generalization bound.

Theorem 13 (Generalization with geometric stability.). Assume (A4-6), and assume vy := infy>q v4(€) > 0. Let
n 2 max(||f* 2/, (C1/vo) /71 7), and define

Ly :=sup{l: D(¥) < ngd(g)zfrﬁnﬁ}_ (25)
We then have, for A\ = C3(vg(£,)"/* /n)/(Zer+1),
(26)

In the same setting, KRR with kernel K obtains the same bound with Vd(én)l/ * replaced by 1. Here, the constants C1.4
only depend on the parameters of assumptions (A4-6).



Note that the theorem is very similar to Theorem 5, albeit with a gain in sample complexity dictated
by v4(¢,)/® instead of v4(¢,,). This is due to the fact that in contrast to the invariant case, where ~4(k) in (7)
can help precisely control the number of invariant spherical harmonics, in this case v4(k) as computed in (23)
can only give information about the sum of the eigenvalues ), ; at frequency k, which may be insufficient
to precisely estimate the gains in effective dimension. For smooth kernels with fast decays (large ), this
discrepancy can weaken the sample complexity gains shown by our bounds, but for slow decays (o =~ 1), the
gains are similar to the invariant case. We note that in this case we may similarly derive an estimate of v4(¢,,)
as in (17), namely if v4(¢) &~ vy + c£~7, then we have

va(l,) < 1o+ Cmin {(ngn) (d,—1)?2€w+1> N (d—l)(2r:rﬁ+l)+2[37‘ } . (27)

Deformation-like stability. For inputs z defined as signals = € L?({2) over a continuous domain Q C R*,
s = 1,2, the action of ‘small’ diffeomorphisms ¢ : Q — Qas (¢ - z)(u) = z(¢~!(u)) is a powerful diagnostic
of performance of trainable CNNs [25], and a key guiding principle for scattering representations [22, 7]. In

these works, the basic deformation cost is measured as ||¢|| := sup,, ||V (u) —I|. We instantiate an equivalent
of small deformations in our finite-dimensional setting as follows.
O, :={0€S8; : |o(u) —o)— (u—u)| <elu—1u'l}, (28)

where the differences are taken modulo d. For ¢ = 0, we recover the translation group described in Example
9. We can verify that ¢ = 1 also corresponds to the translation group (due to the constraint that o (u) # o(u’)
whenever u # u'), thus the first non-trivial model corresponds to ¢ = 2.

Proposition 14 (Upper bound on v,(k) for deformations.). It holds ®;' = ®,. Moreover, |By| > 7% for
T~ 1.714, and
2n

PR
2n

forn < 1/4. In particular, 771 := @z < 1forn < 0.07, leading to an effective gain in sample complexity

d
b <o ) +o(m) 29)

exponential in d, vy Ve - O(7%/*); and 3 = nd resulting in fast convergence in (27) even for large d.

We thus verify that small deformations, already with ¢ = 2, provide a substantial gain relative to rigid
translations, since ®3 now grows exponentially with the dimension, rather than linearly. Let us remark that
our small deformation model (28) acting on {1, d} differs in important ways from diffeomorphisms acting on
a continuous domain. In our case they define unitary operators (since they are constructed as subsets of the
permutation group), as opposed to diffeorphims, for which || x||12(q) # [|7]|L2() generally. In other words,
the ‘deformations’ in ®. are more akin to local shufflings of the pixels rather than local distortions. That said,
our model does roughly capture the size of small deformation classes. An interesting question for future
work is to extend our framework to non-unitary transformations, which could accommodate appropriate
discretisations of continuous diffeomorphisms.

6 Numerical Experiments

In this section, we provide simple numerical experiments on synthetic data which illustrate our theoretical
results. In Figure 1, we consider KRR on 5000 training samples with inputs uniformly distributed on S?~1,
and outputs generated according to a target non-smooth function f* = Sgg*, with ¢*(z) = 1{w, z > 0.7},
where the averaging operator S¢ is over different groups in each plot. The regularization parameter A is
optimized on 5000 test samples. We use the dot-product kernel function x(u) = (u + 1)k1(u), where x4 is
the arc-cosine kernel of degree 1, which corresponds to an infinite-width shallow ReLU network [9].

When the target is permutation-invariant, we can see in Figure 1(left) that the kernel based on permutation
invariance leads to the largest gain in sample complexity compared to those which use cyclic or block-cyclic
groups. Since the permutation group has the largest cardinality, this is consistent with our finding that the
gains may be of the order of the size of the group. Figures 1(center/right) consider the example of cyclic
translations on local blocks of size 2 or 6 (Example 10 with s = 2 or 6), and illustrate that the improvement
in sample complexity happens later for s = 2 than s = 6, which is consistent with the slower decays of 4
obtained in (21) due to the larger number of cycles.
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Figure 1: Comparison of KRR with invariant and non-invariant kernels. (left) permutation-invariant target
with d = 6, comparison between various invariant kernels (cyclic, block-cyclic, and permutation groups).
(center/right) invariant vs non-invariant kernels on invariant target functions with d = 12, for block-cyclic
groups G of two different sizes.

7 Discussion and Conclusion

We have studied how geometric invariance or stability assumptions on target functions enable more efficient
learning, with improvements in sample complexity which may be as large as the number of permutations
considered in the group or set of elements to which the target is invariant or stable. In particular, this gain
can be exponential in the dimension if we consider, e.g., all permutations, local translations on small blocks,
or permutations that resemble small deformations. This last example provides a strong justification for
seeking models and architectures that are stable to deformations, a natural prior when learning functions
on images [25]. In that respect, our results provide a theoretical baseline to assess learning guarantees
under geometric priors: by designing appropriate geometrically stable kernels, we simultaneously address
approximation and generalisation errors within a framework of convex optimization.

That said, while these gains may be large in practice, the obtained rates are still generically cursed
by dimension if the target is non-smooth. In other words, invariance or geoemtric stability allows us to
express Lipschitz assumptions with respect to weaker metrics. While these stronger regularity assumptions
result in important gains in sample complexity, they do not overcome the inherent difficulty of learning
non-smooth structures in high-dimensions. This suggests that further assumptions may be needed to
learn efficiently on high-dimensional geometric data, for instance with more structured forms of regularity
beyond our invariant/stable setup, which may be exploited perhaps through architectures that involve local
connectivity, hierarchy (which would explain the benefits of depth, as opposed to our current results), or
feature learning [2, 4, 16, 21, 27]. A natural further question is to study stability to transformations that are
not necessarily permutations, and which may then provide more realistic models of continuous deformations.
Another interesting question is to study whether it is possible to adapt to general symmetries present in the
target, instead of encoding them in the model with an appropriately designed kernel as done here.
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This appendix contains additional background on spherical harmonics (Appendix A), and proofs of the
results from Section 3, 4 and 5 (in Appendix B, C and D, respectively).

A Background on Spherical Harmonics and Legendre Polynomials

In this section, we provide background on spherical harmonic and Legendre/Gegenbauer polynomials,
which are used extensively in our analysis. See, e.g., [1, 14] for references. We consider inputs on the d — 1
sphere S*1 = {z € RY, ||z|| = 1}.

We recall some properties of the spherical harmonics Y} ; introduced in Section 2. For j =1,...,N(d, k),
where N(d, k) = 2:44=2 (F1473) the spherical harmonics Y}, ; are homogeneous harmonic polynomials of
degree k that are orthonormal with respect to the uniform distribution 7 on the d-1 sphere. The degree k
plays the role of an integer frequency, as in Fourier series, and the collection {Y}, ;,k > 0,5 =1,...,N(d, k)}
forms an orthonormal basis of L2(S*!, d7). As with Fourier series, there are tight connections between decay
of coefficients in this basis w.r.t. k, and regularity /differentiability of functions, in this case differentiability on
the sphere. In particular, this is a key property that we exploit for obtaining decays related to the number of
invariant polynomials in Proposition 6. This follows from the fact that spherical harmonics are eigenfunctions
of the Laplace-Beltrami operator on the sphere Aga—1 (see [14, Proposition 4.5]):

Aga-1Yy j = —k(k+d—2)Yy ;. (30)
For a given frequency k, we have the following addition formula:

N(d,k)
Z Vi (%)Y i (y) = N(d, k) Pai(z"y), (31)

where Py j, is the k-th Legendre polynomial in dimension d (also known as Gegenbauer polynomial when
using a different scaling), given by the Rodrigues formula:

Pd,k(t) _ (_1/2)/’@%(1 _ t2)(37d)/2 <;it>k (1 B t2)k+(d73)/2' (32)

The polynomials P, are orthogonal in L?([—1, 1], dw) where the measure dw is given by the weight
function dw(t) = (1 — t2)(@=3)/24t, and we have

1
1

P2 (¢ (d=3)/2gy — Pd—1 , 33
/_1 L)1 —17) ou s N B (33)

where w,_; = £ (p /2 denotes the surface of the sphere SP~! in p dimensions. Using the addition formula (31)
and orthogonality of spherical harmonics, we can show

/ Paj(w" @) Pyg(w y)dr(w) = ]\%Pd,k(fy) (34)

We will use the following recurrence relation of Legendre polynomials [14, Eq. 4.36]

k E+d—2

tP(t) = —————Pip1(t) + —— t 35
k(1) St d—2 d,kl()+2k+d_2 dk+1(1), (35)

for k > 1, and for k = 0 we simply have t Py (t) = Py,1(t). We will also use the following pointwise upper
bound on Py x(t) (see [1, Eq. 2.117]):

d—1 (d—2)/2
Pl < 2O (1) (36)
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The Funk-Hecke formula is helpful for computing Fourier coefficients in the basis of spherical harmonics
in terms of Legendre polynomials: for any j = 1,..., N(d, k), we have

/ Fa Y)Y, (y)dr(y) = ~4= —2Y(a) / 1f<t>Pd,k<t><1—t2><d-3>/2dt. (37)

For example, we may use this to obtain decompositions of dot-product kernels by computing Fourier
coefficients of functions x((z, ). Indeed, denoting

1
[ = Wd—2 / k() Py (t)(1 — t2)d=3)/24¢,
Wd—1 1

writing the decomposition of x({z, -)) using (37) leads to the following Mercer decomposition of the kernel:

N(d,k)

Zﬂk Z Vi () Vi s (y Zuk]\f d, k)Pyp(z"y). (38)

k=0

B Proofs for Section 3 (Sample complexity of Invariant Kernels)

B.1 Proof of Lemma 2 (spectral properties of X and K)

Proof. That 1, are eigenvalues of Tk with multiplicity N (d, k) is standard and follows from the Funk-Hecke
formula (see, e.g., [29]). In particular, for any spherical harmonic Y}, € Vy , we have Tk Yy, = uy Yy, and there
are N(d, k) orthogonal spherical harmonics in Vg .

For K, note that we have Tk, = SgTk, so that for any G-invariant spherical harmonic Y, € V4, we

have Tk, Yk = upScY r = purYr, while for any Yy, € Vg N le’k, we have Tk Y, = 0 since S¢Yy, = 0. O

B.2 Proof of Lemma 3 (approximation error)

Proof. Let Yy, for j = 1,...,N(d, k) be an orthonormal basis of Vyx such that (Y},;);<xa ) form an

orthonormal basis of V4 ;.. Then, the collection of Y, ; for k > 0and j = 1,..., N(d, k) forms an orthonormal
basis of L?(dr).
For a function f € L?(dr) with decomposition

N(d,k)
= > Vi)
k>0 j=1

we have the following expressions of the RKHS norms for K and K¢ by Mercer’s theorem (e.g., [12]):

I £115, Zk k>0 ZN(dk a“, if ax,; = 0 whenever i, =0
" otherwise.

I, = Ek k>0 ZN(d *) a;kf, if a, ; = 0 whenever uy, = 0 or j > N(d, k)
Hra T otherwise.
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Assume now that f* is invariant, so that its coefficients aj, ; satisfy aj ; = 0 for j > N(d, k). We have

AN ) = i F = Fo e + AF I

N (d.k) Y
“t X% (o)
J kipgp>0 j=0 Hk
N(d,k) 2 N(d,k)
. * 2 ak? J 2
=inf > > ((aky—ap )P+ A+ D0 Y (L Mmai
Y k>0 j=0 H ki1 >0 j=N(d,k)+1
N(d,k) a2
= inf Z ((a;w- - a}';j)2 + )\k’j>
kg kipugp>0 j=0 Hk
- AHKG (>‘7 f*)a
which proves the lemma. O

B.3 Proof of Lemma 4 (degrees of freedom)

Proof. The result immediately follows from the following expressions of degrees of freedom for K and Kg:

NeO) =S NGB -2 N ) =S N(d, k) —HE 39
K = NGRS M) = RN (39)

O

B.4 Proof of Theorem 5 (generalization bound)

Proof. We start from the following bound from [3, Proposition 7.2], which holds for any A < 1, assum-
ing K¢ (z, z) < 1 almost surely (this is satisfied when r(u) < 1), and for n > 3(1 + log(1/X)):

0_2
BIR()] ~ RUF%) < 1672 N (N) + 164300, O, %) + 25 157 (40)

Under assumption (A2), we have (see, e.g., [12, Theorem 7], using that || ||, = ||TI;1/2f||Lz(dT))

Ag e O\ ) < Cpa X, (41)
with Cp+ := || T" f*[|75 4, By Lemma 3, we also have
Agge (0 fF) S Cpa ¥ (42)

Using Lemma 4 for some integer ¢ > 0 and (A1), the bound (40) becomes

. 2D(¢ Crolvy(l 24
E[R(f\)] — R(f*) < 1607 A2 + 1624 n( ) +16 K”jlyd( T S0 (43)
Jointly optimizing the first and third terms for A yields
CKO'(?Vd(f) ﬁ
_ 44
An ( 2raCy«n (44)

The bound then becomes

~ — ].
E[R(fx)] = R(f*) S Cp2om ( + 515 (45)

Craua()\ ™7 62D(0)
—n M
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Here, < hides only absolute constants that depend on « and r. Now we choose ¢ = /,,, given by (15), with
constant corresponding to:

— 2 _2ar
£y, :=sup{¢: JSD(K) < Cprrh (C’Kogl/d(é)) ZortT ) Bardl I (46)
so that the second term is smaller than the first term. The last term is of the same order when
1F*N12,
Py (47)
o2D(Ly)

which is verified under the condition (14) since D(¢,,) > 1. Note that for the specific bound (40) to hold we
also need \,, 2 1/n (up to logarithmic terms). This imposes the qualification condition r > (a — 1)/2«, and
leads to the additional requirement

Cy- Pryes ey
> —L
s (U(?CKVd(Z)) ' (48)

This is verified under condition (14) with Cy = Cj- /0}Ck.
For the KRR estimator with kernel K, the same bound (43) holds, but without the factor v4(¢) and without
the term involving D(¢). The resulting bound follows from a similar analysis. O

C Proofs for Section 4 (Decays of v,;(k))
C.1 Proof of Proposition 6 (decay of v,,(k))

The proof of Proposition 6 is technical and relies on identifying and analyzing the singularities in the
density ¢, of the random variable Z, = (o - x, z), with  ~ 7, using results in [28]. Lemma 15 provides a
general integration by parts result which is useful throughout the proof to obtain asymptotic decays from
regularity properties. Lemma 17 and Lemma 18 provide asymptotic decays for singularities ¢(t) localized
around some ) in (—1,1) and {+1}, respectively, either through integration by parts or using closed form
expressions of certain integrals. Proposition 6 is then proved by appropriately “cancelling” the singularities
in ¢, using such localized functions ¢, as explained in Lemma 19, and applying the integration by parts
lemma on the resulting function, which is of higher smoothness and thus leads to faster-decaying terms.

Lemma 15 (Integration by parts). Let g : [—1,1] — R be 2s-times differentiable, with all derivatives bounded
n [—1,1]. We then have

| a0Pu®0 -2 Tt = s [ 0P 00— (49)

where §q,s is a bounded function on [—1, 1].
Proof. We use the following relation, derived in [5, Lemma 4] for a function fj:

[ pOP@0 - = o (< p0 -

1
’71

1
+ fot)(1 - tz)“%sPd,k(t) ' o+ / AOPyLt)(1 - t2)(d*3)/2dt),
- -1

where f1(t) = —f/(t)(1 — %) + (d — 1)tf}(t). Note that the terms in brackets vanish when f, and f are
bounded, and that f; is 2s — 2 times differentiable with bounded derivatives if f; is 2s times differentiable.
We may thus apply this recursively s times to fo = g, with

fult) = =FA(OQ = ) + (d = Dt iy (1),
and we obtain the desired result, with § = f.. O
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Lemma 16. Let g € L>°([—1,1]). It holds that

g (@202
[ stmaste - 47 a < ol (£)

Proof. By [1, equation (2.117)], we get that

|Pai(t)] < % (d; 1) (k(14 t2>)(d_2m

(d—3)/2 4 (d—2)/2
< -
= 5) )
—1/2 (d—2)/2 (d—2)/2
<L <oaie (L .
- f 4 1—t2) - k(1 —¢2)
Therefore it follows that
g\ @272 1
‘/ £) Py t2)(d_3)/2 dt’ < 2d_1/2||g||oo (k) / (1- t2)—1/2 dt ,
-1
which concludes the proof. O

Lemma 17 (Decay for A € (—1,1)). Let ¢ry o(t) := (t = XN)Sorr,a(t) and or— o(t) := (t — X)* pr_ a(t), where
Orat.a € C®([—1,1]) have support (—1 + €,1 — €) for some € > 0 and take the value 1 at t = X. Then we have that

1
‘/_1 ¢)\i7a(t)Pd,k(t)dt’ < C(d, Oz)k‘_d/Q_aJ'_S . (50)

Alsolet, for cvinteger, ¢34 () :== (t—=\)% log [t=A|p3 ,(t), where o3 , € C°°([—1, 1]) have support (—1+¢€, 1—¢)
for some € > 0 and take the value 1 at t = A\. Then we have that

1
‘ /_ 1 ¢§i’a(t)Pd,k(t)dt’ < O(d, a)k~4/2at3 (51)

Proof. Let as o(t) := ¢rt.a(t)(1 —t2)~(@=3)/2 Notice that 1), ; , satisfies the assumption of Lemma 15 with
2s =2|%| > o — 2. Therefore we obtain

1 1
] / ¢A+7a<t>Pd,k<t>dt] _ ] RO t%(d*”?dt\
—1 -1

< k—a+2

1
/ Uat,a,d(t) Pax(t) (1 _ t2)(d73)/2 dt‘
-1
< O(d, a)k—oF2-d/2+1

where 5 .4 is a bounded function given by Lemma 15, and where we used Lemma 16 to obtain the
last inequality. The second inequality follows in the same way, by noticing that the function 93, ,(t) :=

G (H)(1 —t2)7(@73)/2 satisfies the assumption of Lemma 15 with 25 = 2| %5+ | > o — 2 (since we assume
that « is integer in this case). O

Lemma 18 (Decay for A = *1). Let ¢1 4,5(t) := (L)1) (1 — ), with o non-integer and s integer. Then,
®1.0.s 15 s times differentiable at —1 and obeys the decay

1
‘ / 1¢17a,s(t)Pd7k(t)dt < C(d, o, )k 2+ (52)

where the constant C(d, o, s) may be different depending on the parity of k.
Similarly, let ¢_1 . 5(t) == (352)oF sl (t + 1), then ¢_1 o, is s times differentiable at 1, and obeys the same
decay.
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Proof. We begin by evaluating the decay of 1, (¢) := (1—t2)“. Following analogous calculations to [5, Lemma
6], we have!

/ Vo (t) Py i (t)dt ~ C(d, o)k~ 2D (53)

for k even, and the integral is equal to zero for k odd. We have

C(d,a)

_ gtarawa2 Do+ 12 T(a+ HP(4HT(a+ *5)
wi-1 T'(2a +2) D(-M (o + 54T (—a

where w,,_1 is the surface of SP~*.
Now, let r := s — | ], so that we have

Pra,s(t) =277 (1 +1)"Ya(t).
Let ¢y, .. ., ¢, denote the coefficients of the degree-r polynomial p(t) = 27*"(1 + ¢)", so that
p(t) =2"""(1+t)" =co+eit +---+ et
Using the relation (see, e.g., [14, Proposition 4.21])

k k+d—2

tPy(t) = —————=Pgr_1(t — P, t
at) = gpra—glas1 0+ g Farn(l),

we may then write
,

p(t)Paj(t) = Y bj(k)Pak;(t),

j=—r

for some coefficients b; (k) satisfying b;(k) = O(1) as k — oco. Then, we have

/¢1,a,sPd,k(t)dt: /¢a(t)p(t)Pd,k(t)dt
- Z bj(k)/¢a(t)Pd,k+j(t)dt.

j=-r

When k — oo, this is a sum of at most 2r + 1 < 2s + 1 terms, each of which decays with k as k=2(*+1) by (53).
This yields the result.
The decay for ¢_; s is proved analogously. O

Lemma 19 (Cancelling singularities of the density). Let g, denote the density of the random variable Z, = (o -z, ),
with o # 1d, and let A, be the set of eigenvalues of A, := (Ay + A])/2, where A, is the permutation matrix of o,
and denote by m the multiplicity of A € A,. Define

d—m
ay = 2. (54)
2
There exists constants {cy ; } such that the function defined by
"dJrl*Oé)CI
o= Y D (Onirtanti + O iOrmanti T A% anti T P anti)
AEAN L Amin} =0
[d+17aAmin—|
+ 1{)‘111111 > _1} Z (c>\mm+«,i¢)\min+704)\mm+i + Cj{merJ(éimm+,a>\min +i)
i=0

[d+1+953 —ay]

+ Z Z CXiPx x4, [d+1+ 452 ]

AeAN{£1} =0

3

satisfies that t — (¢, (t) — ¢ (t))(1 — t2)_d% admits d 4+ 1 bounded derivatives on [—1, 1].

1Note that while Lemma 6 in [5] is stated for a = v + % for v > 0, the derivation still holds for any o > —1.
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Proof. Note that we have
1 _

§(<AUI’,CC> + <I7AG7I>) = <AUI’,ZC>,
where 4, = %(AU +Al)is symmetric and thus has real eigenvalues. When A, is a permutation matrix,
these eigenvalues are in [—1, 1], as the real part of complex roots of unity.

We then identify the singularities of the density ¢,, which are the same as those of the cumulative
distribution function, up to one fewer degree of smoothness. Such singularities are shown in the following
lemma, proved in [28].

(o0-x,x) =

Lemma 20 ([28]). Consider o € G as above, and let A, be the set of eigenvalues of A,. For each X\ € A, we denote
by vy its multiplicity. Then the cumulative distribution function Q. of Z, = (o - x, x) takes the form

Qo(t) = o(t)+ D gx(t)
AEA,

where  is analytic and

d d—

o ga(t) = [t = At = \) 721k (8) + (£ — A) 72 log(|t — Al) @3(t) if d — my is even,

d—my d—m

A
o« ()= (t= N7 @A+ (A=), @R () if d — s odd,
for some 3, o3 analytic. Further, the term involving log(|t — A|) only appears for X € (—1,1).
In particular, it follows from this lemma by differentiation that we may write
@ (t) =)+ Y aa(t),
AeA,

with ¢ analytic and

d—mmy d—m d—imy

d-my a—my - )
o ()= (=N 2 @) +E=N_2 @aa®)+(t=N 2 log([t=A)@as()+(E=N"= log(|t—
A)Pa.a(t), if d — my is even

d—m d—m

o Ga(t)=(t—N), 7 @)+ E—N_7 @rat),if d—my is odd,

where ¢, ; are analytic for i € [4].

The result then follows by appropriately “cancelling” those singularities up to order d using the simple
functions ¢ introduced in the previous lemmas, and noting that for singularities at £1, we require an
additional (d — 3)/2 degrees of smoothness, so that we may divide by the weight function (1 — ¢2)(@=3)/2,

For instance, for A € (—1,1), an appropriate exponent a and an analytic ¢, we may write

d—my 1

(t=N3pt) = ({E=A)p = (co + (E = N(D)), (55)

with ¢ analytic. Then for ¢4  as in Lemma 17, we have

(t = NFe(t) = cobrralt) = (t = NTG(1),

with ¢ analytic. We may then repeat this process with functions ¢x 1 o+1, x4 a+2, etc., to finally obtain that

[d+1—a]

(t—=N)Fe(t) — Z CiOxrt,ati(t)

=0

is d times differentiable, as desired. A similar reasoning can be applied for other types of singularities. For
the terms involving log(|t — A|), which only appear for A € (—1, 1), note that the corresponding exponent )
is integer since d — m is even, so that Lemma 17 applies.

O
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We are now ready to state the proof of Proposition 6.

Proof of Proposition 6. Let g, be the density of (¢ - z,z), and let ¢, be as in Lemma 19. By Lemma 19 and
Lemma 15, we have

/ (aolt) = a6 Pan(0)dt = / 1 Wa,k(m ey < ot

where we have bounded the integral on the r.h.s. of (49) by a constant. Renaming the termsin§as g, = Y, ¢i¢;,
where each ¢; is as in Lemma 17 or Lemma 18, we have

Ya,o (k) < Zci/(hpd,k + O(k™9).

Now, note that the eigenvalues of A, = (A4, + A]) are the real parts of the complex eigenvalues of
the permutation matrix A,. Since A, is real, its complex eigenvalues come in conjugate pairs, so that for
any A € A, with X\ ¢ R, we have my = mp.(»)/2, where m are the multiplicities of Lemma 19. Note that in
the case of permutations, the eigenvalues of A, are roots of unity, so that we have

my, if A e {1}
m =
A MRe(x)/2, otherwise.

The result then follows by applying the decays given by Lemma 17 and Lemma 18 to each component ¢;
with the appropriate a, and focusing on the leading-order terms. Namely, for A € {£1}, by Lemma 18, the
leading order term in 74 . »(k) has decay

k72(oz,\+1) _ kfg(d—;ﬁ)\ —141) _ kfdJer’

while for A ¢ {£1}, we have Re()\) € (—1,1), hence using (54) and mp.(n) = 2my, we have ap.(y) =

g —my — 1, so that the decay, by Lemma 17, is upper bounded by

k—%—aﬁem-&-S < k_d+"“+4.

This concludes the proof. O

C.2 Proof of Corollary 7 (leading order of v, )

Proof. By Proposition 6, we get that
Yar(0) S B

where s = maxyea, {mx +4 - 1(J]A| < 1)}. Notice that, for any permutation o, it holds m; > m. Therefore,
we have
s<mi+4-1{IIN <1 : m <my+4}.

Now, if mq < my + 4 for some |lambda| < 1, since mq +my < d, it must hold 2m < d + 3, or, equivalently,
my < d/2 + 3/2. It follows that

< mq ifm1>(d+3)/2,
~ |d/2+4+55 otherwise.
This concludes the proof, since m; = ¢(o). O

21



C.3 Proof of Corollary 8 (different upper bounds using permutation statistics)
Proof. Forallo € G\ ¢(G, s), itholds ¢(o) < s and
Ya,o(k) S k0
with
= (o) 1(clo) > (@+3)/2)+ (5 +6) 1eto) < (@+3)/2)
In particular, we have

(G, 9)

Ya(k) = ]

+ O (k=)

where
= max 7, .
n c(o)<s G

Denote s*(s) = max,ca\¢(G,s) ¢(0). If s¥(s) > d/2+6, then it holds that s*(s) = 1. Otherwise, c¢(0) < d/2+7
for any o such that ¢(¢0) < s, which implies that s < d/2 + 6. It follows that

n = max{s*(s), d/2+ 6} < max{s, d/2 + 6}.

C.4 Details on Example 11 (full permutation group)

The number of permutations in G = S, which fix exactly n elements is given by (}}) !(n— k), where !m denotes
the m-th subfactorial:
{m! + IJ 2m)!
Im = < —.

e e

It follows that
d

fG,S 1 d! 2 1
(|G|)d! > ml(dfk)sg 3 =

k=s+1 k=s+1
< zd: 1 _ 2 1 - W
= ! k—(s+1) ! _ 1
e(s+1)! Rt (s 42k (D " e(s+ 1) 1— L

20s+2) 1 2
= e(s+1) (s+1)! = (s+1)!°

D Proofs for Section 5

D.1 Proof of Lemma 12 (spectral properties of smoothing operator S )

Proof. As in the invariant case, we note that for any degree k, the space V; ;, of spherical harmonics of degree k
is stable by Sg, i.e., SaVa,r C Vg . Since S is self-adjoint, we may then find an orthonormal basis of such
spherical harmonics, which we denote Yk, j.forj=1,...,N(d, k), such that the restriction of Sg to Vg is
diagonal, and we have S¢Yy ; = Ag ;Y k. j, with Ay ; > 0.

It remains to show (23). Define the operator Il f = E, [Py ((-,y))f(y)]. S¢Il is then an integral operator
with kernel

H(z,y) = Y h(o)Par({o - z,y)). (56)
oeG
Since Yy j, j = 1,...,N(d, k) forms an orthonormal basis of V,, by the addition formula of spherical

harmonics, we have

L N@R
M=—— Y v0,7,
FTN@R) ; Bk
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It follows that

1 N(d,k) 1 N(d,k)
IR R PR A (PRI S W A
SG k N(d,]{) J; SG kgt kg N(d,k‘) ; kgt kgL g

This implies that the kernel H of the operator S¢II;, can also be expressed as

N(d,k)

LS AT ()T (), (57)

H(%y):m

Fixing y = = and taking expectations over x ~ 7 in both (56) and (57) proves the equality.

D.2 Proof of Theorem 13 (generalization with geometric stability)

The proof of the theorem is analogous to that of Theorem 5, replacing the control on Nk, (\) with that of
Lemma 21 below, which provides an extension of Lemma 4 to generic smoothing operators, at the cost of a
weaker constant v4(¢)'/* instead of v4(f).

Lemma 21 (Degrees of freedom for K with stability.). Assume (A5). We have
Ni(A) < Cra™e,

and for any £ > 0, we have
Nio(N) < D) + va(O)V/eCr e, (58)
with the same constant Ck.

Proof. The first statement is a standard consequence of Assumption (A5). Namely, if ,,, denote the eigenvalues
of Tk (namely, the same as yj, counted with their multiplicities) and &, < C'(m + 1)~%, we have

=2

m>0

fm
1
S -1 «a
= 1+ XC~ Y m+1)

/°° dt
< -
= Jo 1+MC-1te

< cHeaTie /OO ul/o " du = CK)\_l/oz
>~ 0 1 T )

o

. oY oo g Ma—lgy,
with O :== =— |, T

We now write

N(d,k)

kg
NKG ];) JZO >\k3/ik+>\
= Ak7]
kzx)zg: )\k,] —|-/\/J,

;. . . N -1
< ZN (d, k) m (by Jensen’s inequality, with A\, = N(d, k) Z Aij)

b
<ZN (d, k) ~2kHE
/\kukJr)\
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We may then write, for some ¢ > 1,

NigV) < D(0) + 3 2
>0 Ok + A
where -
_ )\li“lﬂ ifk>¢
Hi = 0, o/W.
Note that for k£ > ¢, we have \;, = % = 74(k) < vq(¢), and the same holds trivially for k < £. Then,

writing & the collections of fi;, counted with multiplicities, we may write Em < vg(0)C(m +1)~%, with the
same constant C as in (A5). Repeating the argument above for bounding N, ()) in terms of A~1/¢ then
yields the result. O

D.3 Proof of Proposition 14 (upper bound on v,(k) for deformations)

Proof. We first show that @, is stable under inversion, and later proceed to study lower bounds on its number
of elements, and cycle statistics.

Step 1: ,' = ®y. Let us first establish that @, is closed under inversion.
First observe that
Dy ={o;|lo(u+1)—0c(u)—1] <2Vu}. (59)

The inclusion LHS C RHS is immediate by definition. The reverse inclusion is obtained by the triangle
inequality, by observing that if u < @ < «/, then

o) —o(W) = (u—u)| = lo(u)—o(@) - (u—1a)+o(@) - o) — (@ —u)|
< Jo(u)—0o ol

so by induction if the condition holds for small pairs (u, @), (%, u’) it extends to all pairs (u, u').
We directly verify from (59) that o € ®, iff it holds

Vu, olut+1l)=0(u)+{3,2,1,-1}, (60)

since we need to have o(u) # o(u') whenever u # ’.

Let now @ = o(u), so o~ !(#) = u. We will show that o~ also verifies (60). We want to enumerate all
possible u’ so that o(u') = @+ 1. Clearly o= (@ + 1) # o~ (@) so v’ # u.

Suppose by contradiction that ' < u — 1. Note that we must have o(v' + 1) > @ + 2 since ¢ and @ + 1
already have pre-images (namely v and v’), and smaller values would violate o (v’ +1) —o(u') € {3,2,1, —1}.
Similarly o(u' 4+ s) > G+ 2forall s = 2,...,u —u' — 1, since otherwise we would need a step o(v' + s+ 1) —
o(u' +s) < —3, which is ruled out by (60). Then it must be that o(u) —o(u —1) = @ — o(u — 1) < —2, which
is a contradiction. We have thus shown v’ > u — 1.

Similarly, let us show v’ < u+ 3. Assume, by contradiction that v’ > u + 3. Note first that the only way to
have o(u + s) < @ for some s € [0,u’ — u] is to only have o(u + 1) = @ — 1, and o(u + s) > @ + 2 otherwise.
Indeed, values smaller than @ must happen just following u in order to allow decreasing by 1, and having
additional negative steps after u+1 (e.g., o (u+2) = & —2) would require a step o (u+s+1) —o(u+s) > 3 for
some s € [2,u —u] (since the values & — 1, @, & + 1 already have pre-images, given by u+1, u, v/, respectively),
which is a contradiction. Then, if o(u+1) = % — 1, we must have o(u+2) = @+ 2 (since we cannot have longer
steps), which implies o (v’ —1) > @+3 and thus o (u') —o (v’ —1) < —2, which is a contradiction. Alternatively,
we must have o(u+s) > @+ 2forall s € [1,u —u— 1]. This implies o(v' — 1) = 4+ 2, o(u' — 2) = 4+ 3, and
more generally o(u’ —t) = @ + ¢ + 1, since these are the only allowed steps to obtain o(u') = @ + 1. Then, we
haveo(u+1) =o(uv' — (v —u—1)) = a+ (v —u) > @+ 3, which is in contradiction with o(u+1) —o(u) < 3.
We have thus proved v’ < u + 3. We thus have that o~ satisfies (60), which shows &, ' = ®,.
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Step 2: Lower bound on |®;|. Denote as before o(u) = @. By denoting A, = o(v) — v for arbitrary v,
observe that A, — A,/ 1 € {2,1,0,—1}. Similarly we define I'; := c~!(@) — @. By the previous argument,
we also have I'y+1 = I'y + {2,1,0, —1}. Fix an arbitrary ug, say up = 1 and consider the subset of ®, given by
Q)g = {0’ S (I)Q;O'(Uo) = Uo,O'(UO — ].) =Uug — 1} .

®% thus contains permutations with ‘fixed’” boundary conditions. For o € ®3, the boundary condition
prevents A, 11 < A, so we identify the following possible cases:

1-block: A, +1 = Ay, In this case, o(ug + 1) = o(ug) + 1.

2-block: Ayy4+1 = Ay, + 1. This implies I'y;, 42 = 'y, — 1, which in turn implies I';;, +1 = 'z, + 1, and finally

Ayo+2 = Ayg+1 — 2. In summary, o(ug + 1) = o(up) + 2 and o(ug + 2) = o(up) + 1.

3-block: Ayy4+1 = Ay, + 2. This implies I'y;,+3 = 'y, — 2, which necessarily implies I';;; 11 = 'y, + 2,
Tiyto =Tygyy1 —2and Ty 43 = T'g42 — 2. This corresponds to o(ug + 1) = o(ug) + 3, o(ug +2) =
o(ug) +2and o(ug + 3) = o(up) + 1.
So an element of ®} can be constructed sequentially by assembling three possible ‘blocks’ B; of size
i ={1,2,3}. Moreover, we verify immediately that the following transitions are admissible:
By — B123y, Ba = Bf12y, Bs = B

Thus, by denoting B(m; B;) the number of permutations in ®} restricted to their first m elements, and which
that start (after ug) with a block of type B;, we have the following recursion:

B(m;B1) = B(m—1;B1)+ B(m — 1;Bs) + B(m — 1; B3)
B(m;By) = B(m —2;Bs)+ B(m—2;B)
B(m;Bs) = B(m—3;B1), (61)

with B(i; B;) = 1. Let F;(2) :== >, ., B(m, B;)z™ be the generating function associated to each of the above
sequences. We have -

Fi(2) = 27 (F1(2) + F2(2) + F3(2)) , Fa(z) = 272 (F1(2) + Fa(2)) , F3(2) = 27°Fa(2) .
By substituitng F», F3 into the first equation, we obtain

Fi(z)(1-zt =231 -2 -2 =0,

1

so F hasa pole at 7 =~ 1.714, the solution of the associated characterstic equation z = 1+

this pole is also present in F» and F3. This shows that B(m, B;) < C;7™, and hence

1
+ 23. Moreover,

3
|| > [®5] = ZB(d; B;) = 0(r%).
i=1

Step 3: cycle statistics. Let us now compute a bound for 4 (k) using Corollary 8. Let
&(Po,n;d) = {0 € @3 : Fix(o) > n}

denote the set of elements of @, that fix at least n positions, set n = (1 — 1)d, and assume 1 < 1/2. Observe
that this necessarily implies that two consecutive indices, say 4o and uo — 1, are fixed, by the pigeonhole
principle. Thus

5(@2, n) C q)g )

and we can use the characterisation of elements in ®}. We have

d
d
- nadls S (0 )IB0sB + BB + BB
n'=(1-n)d
d

d d
< Cord Z < ,) <C (enil)n e
n’=(1-n)d d=n
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where C is an abolute constant. Finally, from Example 11, we have
n < c¢(o) = 2n —d < Fix(o) ,

thus ((®2,n) < {(P2,2n — d). By picking n = (1 — n)d with n < 1/4, we have 2n — d = (1 — 2n)d > d/2 and

'Yd(k) < 5((1)2, (]- - 277)d) + 9] (k7d+max(n,d/2+7)) (62)
|®s|
< 0(6(277)71)2nd7(2n71)d 10 (k7d+max(n,d/2+7)> ' (63)
e d —nd
= c(W) +0 (k") . (64)

27

When 27 < 0.15, we verify that Wfll*" < 1.
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