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Abstract

Basin-centric long short-term memory (LSTM) network models have recently been shown to be
an exceptionally powerful tool for stream temperature (Ts) temporal prediction (training in one
period and making predictions for another period at the same sites). However, spatial
extrapolation is a well-known challenge to modeling Ts and it is uncertain how an LSTM-based
daily Ts model will perform in unmonitored or dammed basins. Here we compiled a new
benchmark dataset consisting of >400 basins across the contiguous United States in different
data availability groups (DAG, meaning the daily sampling frequency) with or without major dams
and studied how to assemble suitable training datasets for predictions in basins with or without
temperature monitoring. For prediction in unmonitored basins (PUB), LSTM produced an RMSE
of 1.129 °C and R? of 0.983. While these metrics declined from LSTM’s temporal prediction
performance, they far surpassed traditional models’ PUB values, and were competitive with
traditional models’ temporal prediction on calibrated sites. Even for unmonitored basins with major
reservoirs, we obtained a median RMSE of 1.202°C and an R? of 0.984. For temporal prediction,
the most suitable training set was the matching DAG that the basin could be grouped into, e.g.,
the 60% DAG for a basin with 61% data availability. However, for PUB, a training dataset including
all basins with data is consistently preferred. An input-selection ensemble moderately mitigated
attribute overfitting. Our results indicate there are influential latent processes not sufficiently
described by the inputs (e.g., geology, wetland covers), but temporal fluctuations are well
predictable, and LSTM appears to be a highly accurate Ts modeling tool even for spatial
extrapolation.

Highlights

1. Spatial extrapolation for stream temperature modeling is difficult, but LSTM achieved
state-of-the-art prediction accuracy in unmonitored basins (PUB).

2. Fortemporal tests, training sets should contain basins with as much or more data as the
test basins, but all the sites with more than 10 days of data can be used to train models
for PUB.

3. Known input attributes do not cover all necessary features so an input-selection
ensemble is useful.
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1. Introduction:

Stream temperature (Ts, temperature of water in rivers) is an important variable to both
environmental health and human decisions. Ts has significant control on riverine biogeochemistry
(Zhi et al., 2021), fish life cycles (Bowerman et al., 2018), invertebrate biodiversity (Hill & Hawkins,
2014), and aquatic ecosystem health (Justice et al., 2017), and thus has long been known as an
environmental “master factor” (Fry, 1971). Daily Ts predictions enable informed decisions and
science-driven policy, and regulations on acceptable water temperatures affect industrial
processes such as power plant cooling (Gjorgiev & Sansavini, 2018; Liu et al., 2017; J. Ma et al.,
2018) and reservoir operations (Tao et al., 2020; Weber et al., 2017). In line with its importance,
Ts modeling has been reported in hundreds of papers, with models of different types ranging from
statistical to process-based to data-driven (Marcogliese, 2001; Martins et al., 2012).

Ts is controlled by a range of climatic and hydrological processes such as snowmelt,
advection by rain and streamflow, solar radiation, latent heat flux, shading from riparian
vegetation, groundwater-surface water exchange, anthropogenic activities, and heat exchange
with the land, streambed, and air (Essaid & Caldwell, 2017; Ficklin et al., 2012; Mohseni & Stefan,
1999; Younus et al., 2000). Physically based models seek to represent these processes as
mathematical equations, while data-driven models seek to directly learn patterns from data. A
small literature survey of process-based and statistical stream temperature models is provided in
Appendix A1 and Table S1 in Supplementary Materials. However, these models mainly focus on
providing temporal predictions in well-monitored locations, where a model is fitted or calibrated to
one site and then predictions are made for new time periods only at that same site. In addition,
many models focus on long-term, monthly, or seasonal mean predictions. Because ecosystem-
threatening heat waves or temperature shocks can occur on a daily scale (Arambourou & Stoks,

2015), access to accurate daily-scale or even finer resolution predictions could be critical.



Rahmani, Lawson et al. (2021) showed that the long short-term memory (LSTM)
algorithm, a type of recurrent neural network, provided accurate results for Ts at 118 well-
monitored (>60% daily sampling frequency in training and testing period) sites. These models
were tested for long-term daily temporal prediction, i.e., models were trained on a collection of
well-monitored sites for one time period and tested on the same sites for another period. The
inputs included daily atmospheric forcings and static characteristics of the basins. Our model
obtained a median root-mean-square error (RMSE) value of 0.69°C, Nash-Sutcliffe model
efficiency coefficient (NSE) of 0.985, and correlation of 0.994. Even after removing seasonality,
the median NSE of the residuals was 0.95. These results echo with strong performance metrics
reported for LSTM in prediction of soil moisture (Fang et al., 2017; Fang & Shen, 2020),
streamflow (Feng et al., 2020; Kratzert et al., 2019; Xiang et al., 2020), and dissolved oxygen (Zhi
et al.,, 2021), even in spatially data sparse regions (Feng et al.,, 2021a; K. Ma et al., 2021).
However, as a data-driven model’s quality largely depends on the quality and quantity of the
training data, it is unclear how effective such models can be if the sampling frequency is limited,

e.g., only about 10% of the days are sampled and sampling may be concentrated in time.

While temporal prediction is important, extrapolating to unmonitored sites is even more
crucial because temperature in the vast majority of stream reaches remains unmonitored. For
example, for the millions of river reaches in the United States, there are >5000 streamflow stations
in the U.S. Geological Survey’s (USGS) National Water Information System, yet only around ~820
stations had Ts measurements for >10% of the days between 2004 and 2016, and only 118 had
measurement coverage >60% (USGS, 2016). It is well known in the hydrology community that
spatial prediction of Ts is challenging, and that sites with little data tend to have much larger
prediction errors even if there are data for nearby sites. Gallice et al. (2015) called attention to

this problem of Ts prediction in ungauged basins (i.e., basins lacking observations of temperature;



we refer to such basins as “ungauged” or “unmonitored” interchangeably), and reported a mean
seasonal RMSE of 1.36°C and R? of 0.808 at five ungauged sites using a physics-derived
regression model to predict monthly mean temperature, which was calibrated separately for each
season. Also, while there have been other recent studies that used newer machine learning
models to estimate Ts (Graf et al., 2019; Zhu & Piotrowski, 2020), they did not consider problems

with prediction in unmonitored basins (PUB) or spatial extrapolation.

This difficulty with spatial prediction may reflect the fact that there are many local and
often-unmeasured mechanisms (called unknown or latent processes) that influence Ts, such as
aquifer properties, travel time, snow accumulation patterns, and riparian shade, leading to fine-
scale heterogeneity in Ts responses. Consequently, locally calibrated models often tend to be
better than large-scale models. For example, McNyset et al. (2015) reported R? of 0.95 for models
constructed for each individual site but only 0.87 for the model constructed for the whole group of
sites in a basin in Oregon. Considering the effects of latent processes and lessons from the
literature, it is unclear how to best form model training datasets for monitored sites with varied
data availability and unmonitored sites. In addition, understanding the nature of the error can tell
us about current weaknesses in the model-data system and opportunities for improvement; for
example, bias could indicate that the model fails to capture slow-to-change latent processes such
as base-flow rates or mean annual riparian shade, whereas weak correlation could indicate

weakness in (potentially implicitly) representing faster-changing processes such surface runoff.

It remains an unexplored and uncertainty-laden path to make use of LSTM for modeling
daily Ts in reaches with limited or no data (unmonitored). Many previous efforts of spatial
generalizations relied upon the exploitation of geostatistics such as spatial autocorrelation of
prediction residuals (Isaak et al., 2017). It is not clear whether LSTM, which by default does not

model the spatial structures of errors, can exploit such autocorrelation. Meanwhile, given various



data limitations with Ts, it remains unclear how to best assemble training datasets for the PUB
problem as there are two forces at play. On the one hand, in the past we have generally observed
that for deep networks, the best approach is to compile as many data points/sites as possible into
the training set given an effect we call data synergy (Fang et al., 2021). On the other hand, data
availability sometimes poses constraints: we have many stream temperature stations with limited
data availability and concentrated sampling periods; including them in the dataset may introduce
noise and biases into the trained model. Hence, it is not clear how to best choose the training

dataset for Ts modeling on sites with varied data availability.

Another potential limiting factor of most existing Ts models is the effects of major
reservoirs. There are more than 800,000 dammed reservoirs impeding the world’s rivers,
including over 90,000 in the United States (International Rivers, 2007; U.S. Army Corps of
Engineers, 2018). Reservoirs that are deep, with large surface area, large heat capacity, high
thermal stratification, and lower albedo and vapor transfer can exert substantial control on
streamflow and the water heat balance. The effect of reservoirs on downstream temperature is
further complicated by variable depth release and changing human water, energy and
environmental demands that affect decision making (Carron & Rajaram, 2001; Risley et al., 2010).
Some of our recent work with streamflow modeling has indicated that LSTM could successfully
capture some reservoir dynamics even just using generally available information about reservoirs
(Ouyang et al., 2021). Hence, it is worthwhile to examine whether this approach could be

extended to improve Ts modeling as well.

Here we propose LSTM for long-term daily Ts modeling at data-scarce (low sampling-
frequency), unmonitored and dammed basins. The prediction is spatiotemporal (Jackson et al.,
2018) in the sense that the model can output sequences of daily predictions at trained or

unmonitored sites where inputs are available so the spatial coverage can be large. We show the



effect of an input-selection ensemble to prediction error, and, to the extent possible, contrast our
results with the literature. The study answers several research questions: (1) How well do LSTM-
based, contiguous United States (CONUS)-scale models perform for sites with low sampling
frequency or no data (unmonitored sites) with generic input information? (2) How can we compile
data into a model training dataset to obtain best performance for basins with different sampling

frequencies? (3) How much do reservoirs affect LSTM-based temperature model performance?

2. Methods:

We explored how accurately water temperature dynamics could be captured under
different data-availability and reservoir-influence scenarios, given broadly available
meteorological forcing data, streamflow rate observations, and basin characteristics. Here we
predicted daily mean water temperature (Ts) using an LSTM-based model with similar structure
to that in recent Ts work (Rahmani, Lawson, et al., 2021). Each model was trained and tested on
basins across the contiguous United States (CONUS). The overall prediction and loss equations

can be written as:

TSP = LSTM (F7*, Ap) (1)
L= Y5 ¥ e p(Taimp — Tapsp)®)/n (2)

where A, represents all attributes (static values) in a particular basin (b), Fz_p:t is the continuous

t—p:t
sim,b

forcing values fromday t —p today t in basin b, and T is the simulated stream temperature

from day t — p to day t in basin b. L is the total loss in days that observed data are available, B is
the number of basins in a minibatch (a random subset of the basins and time series to be
aggregated for calculating the loss; for each training epoch, we will loop through many mini-

batches so that on average all basins and all time series have been used once), n is the total



number of observed days, and Téim,b and Tf)bs,b are the simulated and observed stream

temperatures, respectively, in day i and basin b.

2.1. Datasets

We focused on stations that were included in the Geological Attributes of Gages for
Evaluating Streamflow dataset, version Il (GAGES-II) (Falcone, 2011). We downloaded mean
daily observed streamflow and Ts data from the USGS National Water Information System
(USGS, 2016). As measured streamflow was one of the desired inputs to our model, we only
considered stations that had continuously observed streamflow data and at least 10 days’ worth
of observed Ts data from 2010 to 2016, resulting in 455 stations. Meteorological forcing data (i.e.
minimum and maximum daily air temperature, precipitation, solar radiation, vapor pressure, and
day length) were extracted from the Daymet dataset (Thornton et al., 2016) using Google Earth
Engine (GEE) (Gorelick et al., 2017) by interpolating the stations’ watersheds’ shape files with the
gridded Daymet dataset. Watershed attributes pertinent to climate, topography, land cover, and
reservoirs were provided in GAGES-II and utilized as model inputs. Table S2 lists the forcing and

attribute inputs.

Of the 455 sites that had at least 10 days of water temperature observations, 415 sites
had observations for at least 10 percent of the days during both the training (2010/10/01 to
2014/09/30) and testing (2014/10/01 to 2016/09/30) time periods. For these 415 sites, the median
basin area was 1,017 km? with the maximum and minimum basin areas being 49,264 km? and
2.1 km?, respectively. The mean Ts, according to sampled data, was 12.4°C, with maximum and
minimum values of 34.3°C and —2.2°C, respectively. Basins had a mean of 5.7 major dams with
the median being 1 major dam (254 basins had at least one major dam). The maximum number
of major dams in a basin was 154 and the minimum was 0 (Falcone, 2011; US Army Corps of

Engineers, 2018). Major dams are characterized as having more than 5,000 acre-feet of normal



storage capacity, more than 50 ft in height, or a maximum storage capacity of more than 25,000

acre-feet (National Atlas of the United States, USGS, 2009).

2.2. Long short-term memory (LSTM) models

Stream temperature dynamics are affected by processes that operate from hourly to
monthly or longer timescales such as rainfall-runoff processes, groundwater interaction, snow
melting effects, and many more. Therefore, tracking the impacts and relationships between these
processes requires methods with the capabilities of both short-term and long-term memory. The
long short-term memory (LSTM) algorithm has grown immensely popular for hydrological
applications in recent years, and is designed to learn and keep information for long periods using
components called memory cells and gates. Memory cells store the information separately from
recurrent hidden states to resolve the vanishing gradient issue faced by other recurrent neural
networks, while gates decide which information comes in and out of the cells. Because the basic
LSTM architecture has been described extensively elsewhere, we refer readers to those papers
for a more detailed discussion of the equations and structure of LSTM (Feng et al., 2020;
Hochreiter & Schmidhuber, 1997).

We applied standardization to all inputs and target values consistently across training and
test datasets. Standardization helps the model, by way of the loss function (the target metric that
is minimized during training), give equal consideration to all watersheds. First, we divided
streamflow by the product of basin area and annual mean precipitation to obtain dimensionless
runoff. We then transformed this dimensionless runoff, along with actual daily precipitation data,

to a more Gaussian distribution (Feng et al., 2020) using equation (3):

v* =log;o(v'v + 0.1) 3)

where v’ is the new variable after transformation, and v represents the variable before
transformation. Next, streamflow, precipitation, and all other inputs and water temperature

observations were standardized using the following formula:



Xinew = @ (4)

in which x and o are the mean and standard deviation, respectively, for each input variable, x; is
the raw value, and X;.ew is the standardized value. All results in this study are reported after
destandardization, which is the complete reversal of the standardization procedures.

Before starting model training and testing for specific experiments, we ran multiple tests
to determine the best values for hyperparameters in our model. The hidden layer size (the
intermediate layer located between input and output layers) was selected by testing with different
values (50, 100, 150, and 200), with constant values of the other hyperparameters. Rho
(maximum number of days used for backpropagation steps for each training sample) was tested
with values of 365, 274 (9 months), and 183 (6 months) without changing other hyperparameters.
Because stream temperature has an annual cycle, it was likely we would get the best results with
rho equal to 365, but we wanted to test other values in case a simpler model could achieve similar
performance. The number of epochs used (one epoch means using all the training data once)
was selected by testing the model with 1000, 2000, and 3000 epochs where the hidden layer size,
rho, and batch size (determines the number of samples given to the model for loss function
calculation before updating weights in a training step) were equal to 100, 365 days, and half of
the number of sites used in training section, respectively. Dropout rate (the probability that some
weights will be randomly set to 0 during model training, which helps prevent model overfitting)
values of 1 and 0.5 were tested. Based on the authors’ experience, satisfactory results were
obtained if the batch size was set to half of the number of sites in the dataset. Therefore, the final
hyperparameters chosen were a hidden layer size of 100, rho of 365 days, 2000 epochs, a batch
size equal to half of the sites in the training dataset, and a dropout rate of 0.5. For each model
(for which hyperparameters, attributes, forcings, and training data were all fixed) we trained the
model six times with different random initial weights each time; final predictions for each model

were daily means of predictions from those six replicates.



The loss function was root-mean-square error (RMSE) summarized for the minibatch. We
report RMSE, bias, unbiased root-mean-square error (UbRMSE), Pearson correlation, and Nash-
Sutcliffe efficiency coefficient (NSE) (Nash & Sutcliffe, 1970) to enable comparison to other
studies. Further, following Rahmani, Lawson et al. (2021), we computed the residual temperature
(Tres) as the difference between daily mean water (Ts) and air temperatures (Tair): Tres=Ts-Tair. We
then calculated NSE and Pearson correlation also based on this seasonality-removed T, instead

of Ts, because otherwise seasonality alone could explain much of the variability in Ts:

NSE‘reS — 1 _ z:‘I€l=1(TI:,DbS_ Ti,sim)z (5)

Z?:l [(Ti,obs_ Ti,air)_ Tobs—air] 2

'1_" — Z?:1(Ti,obs_ Tiair) (6)
obs—air — .

T, . = (Timax+* Timin) )
vair 2

Corr. _ Z?=1[(Ti,obs_Ti,air)_ Tobs—air][(Ti,sim_ Ti,air)_ Tsim—air] (8)

res —
\/Z?:l[(’ri,obs_ Ti,air)_ Tobs—air]2 Z?:l[(Ti,sim_ Ti,air)_ Tsim—air]2

T Yiz1(Tisim= Tiair) (9)

stm—-air —

n

in which T;o.s and Tisin show the observed and simulated, respectively, daily mean stream
temperatures, T;min and T;max represent the lowest and highest, respectively, daily air temperature
values recorded in the meteorological forcing data, and T;.;- is a representation of mean daily air
temperature and calculated from  Timin and Timax. Tops—air@Nd Tym_qirindicate the differences
between daily mean air temperature and either daily observed or simulated stream temperatures,
respectively, while NSE,s and Corres illustrate the residual NSE and residual correlation
coefficient values, respectively. Index i indicates the j-th day of the testing period, and n is the
total number of days of the testing period in which observed stream temperature data were

available.



2.3. Training and testing models on different data availability groups

Many of the GAGES-II basins had water temperature observations available for only a
fraction of the year. We defined three data availability groups (DAG, Figure 1), using p to denote
the percentage of days for which temperature measurements were present. The DAGpsg9
contained basins where temperature observations were present for at least 99% of days during
both training and testing periods. DAGpss0% included basins in p>99% as well as basins with
observations for at least 60% of days, and DAGp-10% was defined similarly (Figure 1). DAGego>p>10
has somewhat seasonally imbalanced measurements with 30.5% of available observations
occurring in the summer,18.6% in the winter, and ~25% in each of spring and fall. We trained
three models, each using all sites from the respective nested DAGs (p>99%, p>60%, and p>10%),
which we call LSTMgsg9%, LSTMp-60%, and LSTMp-10%. We tested each model in two different ways:
temporal prediction using two different configurations, and then three experiments for spatial
generalization (prediction in unmonitored basins, or PUB). We expand on the details of these
tests below.

[Insert Figure 1]

For temporal prediction, the models were trained using data from 2010/10/01 to
2014/09/30 and test predictions were compared to data from 2014/10/01 to 2016/09/30 on the
same basins. We would like to note that temporal prediction is still different from traditional site-
by-site calibration: because a uniform model was trained for multiple sites, this model has to learn
how to use different static attributes to modulate T; fluctuations in time, and hence it is necessarily
more complex than a group of many models fit to only one site apiece, but it is simultaneously
constrained by all sites. On a side note, Rahmani, Lawson et al. (2021) compared temporal
prediction results to locally-fitted autoregressive models with exogenous inputs (ARX), which
represent natural persistence, and found that LSTM (RMSE=0.69°C) significantly outperformed

the ARX model (1.41°C). Because the foci of this paper are on the spatial challenges of



unmonitored and dammed basins, we omitted the comparison to ARX or similar persistence

models here.

In the first configuration of the temporal prediction, the model used for prediction in each
basin was the model trained on basins with data availability matched to that of the test basin: if a
basin had p=99%, LSTM;-g9% Was used for prediction; if a basin had p=65%, LSTMgss0% Was used;
and if a basin had p=11%, LSTM;s10% was used. Results from this test, which we refer to as the
matching-DAG approach, tell us how model performance varied as a function of data availability.
Despite the caveat that there may be correlation between DAG and basin characteristics, we can
still learn simple criteria for including sites into the training datasets. In the second configuration,
the three models were tested on the same subset of basins: basins all having data availability
p>99%. This comparison was to advise us whether we should include basins with lower sampling
frequency in the training set if we are only interested in applying the model on a basin with a high
sampling frequency. As the amount of training data available to the model increased as the p

threshold lowered, we refer to this as the maximum-sites approach.

2.4. Testing the models on prediction for unmonitored sites (PUB)

To test model performance in cases of spatial extrapolation, also known as prediction for
unmonitored basins (PUB), we ran three experiments where we tested our models with different
holdout basins, which means they were not included in the training set. In the first experiment
(random holdout), we randomly selected 40 basins that had at least 60% data availability to serve
as the holdout basins, which constituted 10% of the total dataset. The models were trained with
the remaining basins in the three DAGs. Because these basins were randomly selected, this
experiment avoids the potential confounding correlation between the data availability and other
physical attributes. This test was to inform us as to which training set would be best to choose for

PUB scenarios.



To confirm the robustness of the conclusion, we ran another experiment (p<10% holdout)
where the holdout basins were not in the three training DAGs due to having low sampling density
but still had at least 10 days’ worth of data. 40 basins met these criteria across CONUS to be out-
of-sample basins in this test, and we tested each of the models trained on three DAGs on this
group. This kind of test experiment is sometimes necessary because we may not have enough
high sampling frequency sites to simultaneously train and test on, and thus we want to maximally
utilize their data for training. However, the p<10% sites may have certain properties that are
correlated with model performance. This experiment thus also examines the effect of this data-
economic test strategy.

Finally, to be more comparable to the PUB results published in the literature, in the third
experiment (northwest PUB), we held out five p>99% sites in the US Northwest (latitude > 42 and
longitude < -120.2), which is closest in latitude to the Swiss basins used in the current Ts
benchmark model reported in Gallice et al. (2015), to facilitate comparison. We trained a model
using the rest of the p>60% basins across CONUS and, based on daily predictions, calculated
mean monthly values to compare with their results. We would like to emphasize that Gallice’s
results are not fully comparable to the U.S. Northwest because these regions have different
climate patterns, e.g., U.S. Northwest is influenced by Pacific Ocean oscillations like El Nino/La
Nina while the Swiss Alps are influenced by the Atlantic Ocean. Hence, it is important not to read
too much into the small differences. However, we nonetheless present this comparison because

it seems more reasonable than comparing the whole CONUS to Switzerland.

2.5. Input-selection ensemble

Prediction in unmonitored basins can be an especially challenging problem because of
model overfitting, a not uncommon scenario where models perform well for basins with data
included in the training set but miss some of the underlying physics needed for accurate modeling

(Galllice et al., 2015). This can lead to poor prediction accuracy when applied to basins outside of



the training set, especially for those with environmental conditions different from the basins that
provided the training data. Here we tested an approach we call an input-selection ensemble,
which we recently showed could mitigate some of this risk for streamflow prediction in both
ungauged basins and ungauged contiguous regions (Feng et al., 2021b). The theory is that when
there are not enough basins with measured data available for model training, we cannot
accurately resolve the influence of each static basin attribute (e.g., land cover, or sail
characteristics), and so the model will have a large variance around how the static attributes
influence the model output. For new conditions where an overfitted model could perform very
poorly, a minimal-attribute model (with accompanying low likelihood of overfitting) would be much
more likely to have a correct understanding of the main causal factors, thus resulting in more
accurate predictions. We hypothesized that ensembling (averaging) across multiple models with
different amounts of input attributes could reduce the overall variance for Ts as it did for

streamflow.

In the set of three DAG models LSTMp>g9%, LSTMps60% ,and LSTMp-10% discussed until this point,
we used all available attributes as inputs (At in Table S2). To test our hypothesis about input
selection ensemble, we needed three additional model versions, with decreasing numbers of
attributes included as inputs. The attributes to exclude were conceptualized as being similar to
other existing attributes. In other words, we attempted to select attributes in a way that preserved
critical information while removing redundancies and lower-impact information. In the first
additional set (Ar1), we removed some attributes from the Ar list that we thought would be
redundant to those still included, e.g., attributes related to average distance of basins’ outlet to all
major dams. But we kept the distance of the outlet from the nearest major dam as we
hypothesized the nearest major dam is the most influential one to stream temperature compared
to the farther ones (Kedra & Wiejaczka, 2018) (please see Table S2). The second set (Arz)

excluded these along with even more attributes from the Ar list, e.g., some related to annual-



mean climate attributes. In the third set (Ars), only a few critical attributes such as drainage area,
stream density, reservoir storage, land cover fractions, slope, and distance of gage location to
major dams, were kept as model inputs. Hidden layer sizes were reduced to 80 for Ars and 70 for
Ar2 and Ars to match the reduced complexity of those attribute sets. These four model versions
were each applied to the PUB scenarios described previously, and results were averaged to
obtain the input-selection ensemble result (Eq. (11)). These results, along with the results from
the full-attribute model alone (general PUB test method, Eq. (10)), were compared to the actual
Ts observations. For our experiments, separate models with each of the three additional input

versions were trained for each of the three nested DAGs (DAGp>99%, DAGp>60%, DAGp>10%).

o gen = LSTM (F,Ar) (10)
Ti'b _ (LSTM (F ,AT) + LSTM (F ,ARy) + LSTM (F ,ARz) + LSTM (F ,AR3)) (1 1 )
sim,ens 4

TP and Ti'b

sim,gen sim,ens

represent the simulated stream temperatures obtained using the general PUB

test method and the ensemble-selection method, respectively, for basin b and in day i.

2.6. Reservoirs: Presence or absence of major dams

To understand the effect of reservoirs on Ts modeling, we identified whether there were
reservoirs in each basin from the GAGES-II dataset, and divided each DAG into two sub-groups:
basins with at least one major dam upstream, and those without any. The six new dam-DAGs
were therefore DAGp>99+dam (With dam), DAGpsg9-dam (Without dam), DAGpse0+dam, DAGps60-dam,
DAG;>10+dam, and DAGps10.dam (Table 1). Models were trained on each of these six new dam-DAGs,

and we evaluated their performance in temporal prediction. [Insert Table 1]



3. Results and Discussion

3.1. Temporal Prediction

Overall, models trained using the matching-DAG approach (Section 2.3) performed very
well across the CONUS, giving state-of-the-art performance even for basins that were not
sampled frequently. The median RMSEs were 0.801°C, 0.832°C, and 0.916°C for basins with
data availability p>99%, 99%>p>60%, and 60%>p>10%, respectively (Figure 2a). Lower data
availability (p) in the training set led to a moderate decline in model performance, which is
consistent with the data-driven nature of the model. The corresponding median NSEs were all
above 0.976, which was similar to what was reported in Rahmani, Lawson et al., (2021). As the
dataset expands, the median RMSE values were slightly higher in this current work, however,
potentially due to inclusion of dammed basins. After removing seasonality by subtracting air
temperature from both predictions and observations, the median correlations were all higher than
0.965 for all groups, indicating most of the variability beyond seasonality was captured (Figure
2a). When the three DAG models were all tested on the same sites (sites having p>99%, which
were included in the training dataset for all models), both bias and correlation deteriorated as the
p threshold for training data was lowered (Figure 2b). Notably, despite this decline, even the
lowest DAG 60%>p>10% test group reported better metrics than had been previously reported in
the literature for daily temperature prediction using process-based or statistical methods (Table
S1). Rahmani, Lawson et al. (2021) concluded that LSTM is extremely well-suited to capturing Ts
fluctuations with hysteresis and nonlinear behaviors. Here we show that this conclusion seems to

hold true even for sites with much lower sampling frequencies, e.g., 60%>p>10%.

Each of the DAG models showed similar spatial patterns in performance. These models
generally performed better in the eastern half of CONUS than the western half, with
correspondingly higher NSE and lower RMSE values (e.g. Figure 3). Most of the stations in the

eastern half of CONUS have NSE values above 0.975 and RMSE values below 0.9°C. We noticed



that a belt of basins in the longitudinally central CONUS, going from North Dakota to Texas,
tended to have larger RMSEs (e.g., Figure 3a). This belt has traditionally been difficult to capture
for process-based as well as deep learning streamflow models, as discussed in Feng et al. (2020),
for possible reasons including the presence of very large basin areas with concentrated runoff
production, unclear basin boundaries, and existence of cross-basin groundwater flows (O’Sullivan
et al., 2020; Schaller & Fan, 2009). From our results here, it seems the difficulty of hydrologic
prediction carries over to T prediction as well, which was expected given the strong influence of
streamflow on Ts. A few other sites with larger errors occurred in the state of Washington (U.S.
Northwest). LSTM is strong at modeling seasonal snowpacks, and we hypothesized that LSTM
has learned to internally accrue memory that mimics snow, but perhaps there was not sufficient
memory for inter-annual snowpacks, as would be found in glaciers. Additionally, the Pacific
Northwest has a substantial heterogeneity in the contributions of shallow and deep groundwater,
which have different signatures on streams’ thermal regimes (Hare et al., 2021).
[Insert Figure 2]

[Insert Figure 3]

3.2. Prediction for unmonitored basins (PUB) experiments

Over the entire CONUS, our PUB experiment found state-of-the-art performance with the
model trained on all available basins (p>10%, the maximum-site approach) and with the input
selection ensemble. For the random holdout test, the CONUS-median bias was -0.21°C, RMSE
was 1.129°C, ubRMSE was 0.98°C, NSE was 0.971, and r? was 0.983 (Figure 4a). While the
RMSE was somewhat higher than for temporal prediction, all of these metrics were better than
most values reported in the literature. It seems spatial extrapolation may introduce some bias,
perhaps due to lack of knowledge of latent, local processes, but the seasonality and fluctuations
were well captured. To put the metrics into perspective, the literature review in Gallice et al. (2015)

included a list of daily RMSE values for PUB cases: 1.8°C (DeWeber & Wagner, 2014), 1.4°C



(Gardner & Sullivan, 2004), and 2.1-2.7°C (Stefan & Preud’homme, 1993). In cases where R?
values were reported, they were 0.71 (Stewart et al., 2015), and 0.70 (Westenbroek et al., 2010),
all of which were substantially lower than the CONUS-median value we reported above (0.971).
Not only does LSTM exceed traditional models in terms of PUB metrics, but also its PUB metrics
were even better than traditional models’ temporal prediction (on calibrated or training sites) (see
Table S1). For Ts modeling, where spatial extrapolation was deemed to be much more challenging
than temporal prediction, this result shows that traditional models have been underutilizing the

information in the inputs.

As discussed in Methods (section 2), to compare with Gallice et al. (2015), we trained a
different model and calculated its monthly evaluation metrics in five p>99% holdout basins in a
latitude-longitude box (see Figure 3(c)) in the U.S. Northwest that has the closest temperature
regimes and data density to Switzerland. In this test set, our LSTM’s RMSE was 1.07°C, NSE
was 0.937, and r? was 0.942 for monthly mean prediction through the testing years. These metrics
compare favorably to the values reported in Gallice et al. (2015) (an RMSE of 1.45°C and an R?
of 0.93). In another study at a higher latitude, Jackson et al. (2018) reported an overall RMSE of
1.6°C for their leave-one-basin-out cross validation for 223 Scottish sites. We caution that, despite
our best effort to enable comparisons, these results are still not directly comparable because
different basins were tested and we have different data density and climate patterns. However,

the comparisons indicate that our PUB model represents noticeable advances.

We notice that for PUB, it was the most beneficial to use the maximum-site approach,
which is in sharp contrast to the temporal prediction experiments described above, where a
matching-DAG approach was most effective. For random holdout sites, as the training set
expanded from DAG;s99 to DAGp>10 in input selection models, the median RMSE improved from

1.696°C to 1.129°C (Figure 4a). In fact, for the full-attribute model, all of the metrics (RMSE,



ubRMSE, R?, and Corrres) improved as the training sites increased. The improvement in median
RMSE was largest between DAG-99% and DAGps60%, likely because the number of training basins
increased substantially: a three-fold increase, from 99 to 306 basins, whereas the change from
DAGpss0 to DAGp-10 was only a thirty percent increase, from 306 to 415 basins. We expand on
this contrast in Section 3.3.

[Insert Figure 4]

The p<10% holdout experiment confirms that the maximum-site approach works the best
for PUB (Figure 4b). The errors had the same pattern as Figure 4a, with more training basins
giving better metrics, but for these p<10% sites, there was a significantly larger bias. This
agreement indicates our conclusion is robust while the larger errors show that there is indeed
some systematic correlation between data availability and test metrics. One of the reasons, as
will be discussed in section 3.4, is that the models generally have better performance in fall,
winter, and spring than summer. Summer data constitute more than 50 percent of observations
in p<10% test sites while only 25 percent of data in the p>60% test sites (Table 2). On a side

note, this result cautions us that the data-economic testing scheme may have some limitations.

The input-selection ensemble slightly outperformed the full-attribute model, across all
DAG training datasets. Compared to the full-attribute model trained on each DAG, the
corresponding input-selection ensemble generally had slightly less negative median bias (Figure
4). For NSE, even though the medians were similar between two kinds of models, the input-
selection ensemble models were less likely to produce very poor performance as the lower
whisker is shorter. This supports our theory that the relationships built on static attributes are
uncertain, so ensembling in the dimension of the static attributes can reduce the variance. For

models slightly overfitted to the static attributes, some basins may be modeled very well and some



may be very poor. However, utilizing the input-selection ensemble substantially reduced the

prediction risks of running into major failures.

3.3. Selecting appropriate training sets for sparsely-monitored or unmonitored basins

Our results indicate that, without using the input-selection ensemble, the best modeling
results are achieved by selecting the matching-DAG approach to form a training dataset for basins
with extensive records, while using the maximume-site approach for PUB. With the input-selection
ensemble, if the ranking became slightly nuanced but at least the maximum-site approach will not
produce a noticeably inferior model. As discussed in the Introduction (section 1), when previously
working with deep learning models for streamflow, soil moisture, and other environmental
variables, we have repeatedly observed that deep networks benefit from the inclusion of larger
quantities and larger diversity of data (Fang et al., 2021; Feng et al., 2020; Shen, 2018). This
observation was consistent with our PUB results (Figure 4), but in conflict with our temporal
prediction results. This conflict is more apparently seen from the performance matrix in Table 2.
We see that errors increase as we go from the diagonal to right, indicating the inclusion of more
sites degrade the results for temporal prediction. Meanwhile, errors generally go down as we go
from the left side of the table to the diagonal, indicating expanding sites is beneficial to spatial

extrapolation.

Many reasons could contribute to the apparent contradiction described above, the first
being correlation between DAG and basin characteristics. The adverse effects of including more
basins in the training set for temporal prediction are likely related to the seasonality of data
collection in basins in lower DAGs. Compared to sites with data availability p>99%, sites with data
availability 99%>p>60% and 60%>p>10% had more data present in the summer, when the
temperatures are higher and model RMSEs are also larger (Table 1). In addition, the models

encountered more basins with major dams as the p threshold was lowered (Table 1), which also



had a material effect on Ts prediction accuracy (more in Section 3.5) and may have caused the
models trained on more sites to learn patterns that did not occur in the extensively monitored
sites. In this case, bringing together data from many basins with low sampling frequency may
introduce noise to the supervision of the model, thus slightly degrading the performance for

extensively sampled sites.

Our study results indicate that the maximum-site approach is beneficial for PUB because
the model and inputs are not sufficient to fully capture the fundamental relationships, so the model
relies on having training data that are close to the test basin to be accurate: more basins that are
spatially proximate or physiographically similar to the ungauged test basins can better represent
that part of the input space. Due to the limited number of basins (a few hundred basins is not
dense compared to the dimension of the static attributes), the model cannot fully resolve the effect
of each input. Moreover, there are important bias-inducing latent processes so that the inputs are
not a complete description of the problem, leading to spatial nonstationarity in the relationships
between forcings, attributes, and stream temperature responses. It is then different to accurately
infer the bias (mean difference between prediction and observations) for PUB. When we expand
to p>10% (for PUB), we simply have more basins that are adjacent to the test basins so the model
has a better spatial coverage. Previous research already demonstrated that the error residuals
tend to be spatially autocorrelated (Isaak et al., 2017). Thus, having similar or adjacent basins to
the test ones can reduce the errors. Deep networks can utilize such proximity even if it does not
explicitly model error autocorrelation (Fang et al., 2020; Gal & Ghahramani, 2016). Furthermore,
there are some examples (e.g., in Georgia) where there is a negative autocorrelation between
two adjacent basins, which is probably because these basins are geologically and topographically
distinct (O’Sullivan et al., 2019, 2020). A deep learning approach may be able to model both
positive and negative relationships more flexibly than a statistical spatial covariance model.

[Insert Table 2]



3.4. Model performance in different seasons

When we break down the results of temporal prediction by season, we can see that the
NSEs were better for spring and fall, the two seasons with large temperature shifts, but lower for
winter and summer (Figure 5). Pooling together dammed and undammed basins, the median NSE
values for temporal prediction (p>10% model) in spring, summer, fall, and winter were 0.942,
0.845, 0.947, and 0.890, respectively, and the corresponding median RMSE values were
0.912°C, 0.827°C, 0.864°C, and 0.742°C. As noted in Rahmani, Lawson et al. (2021) and other
studies, previous statistical models often fail in winter in northern basins where air temperature
and water temperature are decoupled. In contrast, our LSTM-based models had the smallest
median RMSE (0.742 for p>10%, also due to small variation) and high median correlation (0.963
for p>10%) in winter. This is potentially enabled by LSTM’s ability to model thresholded functions
(relevant to freezing conditions), keep track of long-term memory, and utilize time-dependent

relationships.

In contrast, LSTM has relatively lower performance in the summer, mostly caused by a
larger bias and lower correlation for either temporal prediction (Figures 5, S1, and S2) or PUB.
The CONUS-median bias for summer was closer to zero compared to other seasons, but the
range was larger for the summer and noticeably smaller for the winter. We observe that LSTM
sometimes underestimated summer flash peaks (Figure 6¢), which were likely caused by surface
runoff washing out the heat from the land surface which is then countered by the colder base flow.
Previous results with streamflow indicate that relative to their performance in other periods, LSTM
models sometimes had difficulty capturing baseflow (Feng et al., 2020). Thus, the stream
temperature model may not be able to accurately account for the effect of the cooler base flow in

its internal representations (our temperature model may not have the ability to track base flow



and runoff dynamics). Because base flow is often a substantial fraction of total flow during the
summer, any inaccurate estimations or representations could result in larger errors in temperature

for this season.

A state-of-the-art regional-scale study reporting strong metrics for August was the
NorWest model (Issak et al., 2017), who reported a spatial RMSE of 1.1°C for their mean August
temperature prediction (one data point per site) for the western United States. They collected
>63,000 site-years worth of data from >22,000 sites. Our dataset did not allow the calculation of
a comparable spatial RMSE because there are not enough basins to simultaneously train a model
and have sufficient PUB sites to test it on. However, their work does indicate it will be highly
beneficial to adapt the daily LSTM model to utilize a larger (though temporally less well-sampled)
dataset with more diverse attributes in future modeling efforts. Pathways like loss function
modification can accommodate such kinds of data.

[Insert Figure 5]



3.5. Impact of reservoirs

For temporal prediction, although we saw a strong, adverse effect of reservoirs on the
accuracy and bias of our water temperature model, overall model performance for dammed
basins remained quite strong. The presence of major dams led to an increase in ubRMSE by a
mean of 0.15°C (Figure 7). Compared to the basins without reservoirs, there was a noticeable
increase in the range of bias and RMSE in summer and fall (Figure 5). However, despite this
increase in error, LSTM produced a median RMSE of <0.88°C for the dammed basins, which is
still smaller than those reported in most other studies (Table S1). Even in the most adversarial
situation, for the CONUS-scale PUB test sets, the median RMSE, NSE, and r2 for dammed basins
(23 basins) were 1.537°C, 0.861 and 0.964 for PUBxest p<10% (23 basins) (Figure S3); and were

1.202, 0.972, and 0.984 for PUBiest p-60% (22 basins) (Figure S4), respectively.

The lower 4 panels in Figure 6 showed some sample time series for PUB predictions,
while the right 4 panels show basins with major dams. Both PUB and dams have negative effects
on the simulations. The PUB panels have noticeably more continuous errors (autocorrelated in
time), e.g., around 2016-07 in Figure 6g, which are rare for in-training basins (Figure 6a-d). In
some basins with reservoirs, the Ts can sometimes show erratic and sudden changes (Figure
6b,f). However, in some other situations, the model captured the fluctuations quite well (Figure
6d), even in a PUB scenario (Figure 6h).

[Insert Figure 6]

[Insert Figure 7]

The LSTM model is informed on some attributes of the reservoir (degree of regulation,
normal capacity, etc.). However, the LSTM model does not know other specifics such as the
dynamical surface area, albedo, current water depth, or release depth, and thus cannot infer the

extent of heating, heat storage, stratification of reservoir water, or propagation of reservoir



influences to the monitoring site. The larger ubRMSE may also be due to the schedule of the
release of reservoir water, for those reservoirs that are actively managed, being unpredictable for
the LSTM model. Nevertheless, we note that even for the reservoir group, the RMSE of the LSTM

model appears to be smaller than those reported in other studies (Table S1).

3.6. Further discussion

In contrast to previous work that utilized spatial structure in error residuals, we train models
with a loss function defined over an entire dataset and obtain a uniform model that resolves the
effects of static basin attributes. Because these attributes are themselves autocorrelated, we
expect the deep network to intrinsically exhibit characteristics of spatial autocorrelation even
without any explicit supervision, which was observed previously with soil moisture (Fang et al.,
2020). However, because the model does not rely on explicit autocorrelation assumptions (but
depend on spatial pattern in input attributes), the model can flexibly capture highly complex,
anisotropic, multidimensional and sometimes even negative autocorrelations. For example, the
autocorrelation of stream temperature is predominantly positive in connected rivers while it may
in fact be negative in short distances in unconnected rivers. Such spatial relationships will be
exceedingly difficult to represent in spatial variograms, but can be seamlessly represented if they
are caused by small-scale heterogeneity in basin attributes, e.g., land use, geology, or upland-

lowland configurations.

Fortunately, bias is arguably a less severe limitation than low correlation would have been,
and so in lieu of additional monitoring data through novel means allowing for bias reduction, we
can provide predictions on a relative-change basis, predicting change in temperature from
yesterday. A primary suspect for inducing bias is poor characterization of geologic formations,
which makes it difficult to accurately model base-flow contributions (Briggs & Hare, 2018; Johnson

etal., 2017; O’Sullivan et al., 2019). This is perhaps also why it was previously found that including



observed streamflow information in model inputs could somewhat improve Ts estimates
(Rahmani, Lawson, et al., 2021). Secondly, the presence of water withdrawals used for irrigation
and other purposes, or release of heated water from power plants, could lead to systematic errors.
These are not problems unique to deep learning, however; without local observations, these
errors are likely difficult to correct with process-based models as well. The errors can be alleviated
in the future by increasing observational constraints, perhaps through the use of new and
unconventional approaches such as satellite remote sensing of stream temperatures (Marti-
Cardona et al., 2019), thermal infrared imagery (Caldwell et al., 2019; Dugdale et al., 2019), or

citizen scientists.

The data used here represent the best-instrumented sites from USGS, and 415 locations
are only a tiny fraction of the millions of river reaches in the United States. In the future, the
combination of process-based modeling and machine learning may allow more robust predictions
on a global scale which are already started by other scholars (Jia et al., 2020; Karpatne et al.,

2018; Read et al., 2019; Tsai et al., 2020).

3.7. Limitations

While the simulations gave unprecedentedly strong metrics for most basins with
reservoirs, there are some dammed basins with sudden Ts spikes that were missed by the model,
e.g., in Figure 6b. There could be days with reservoir-controlled low flows combined with heat
stress for the aquatic ecosystem and downstream heat-sensitive water users. Hence, these
scenarios would benefit from further investigation and careful error quantification with respect to
the extreme values, which is outside of the scope of this paper. Prediction in ungauged basins is

still a difficult task, especially for the basins that have data in the outer bounds of training data.



4. Conclusions

This work expands recent research of deep-learning-based modeling of stream
temperature to data-sparse, unmonitored, or dammed basins. While these challenges slightly
degraded model accuracy, LSTM still presented state-of-the-art performance for daily stream
temperature predictions. Even under the most adverse situations tested here, with significant
amounts of missing data and the presence of major reservoirs, the model still produced strong
NSE in the test period. Extrapolation of the model to basins outside of the training set tended to
incur larger bias, likely due to uncaptured processes or attributes. However, the RMSE and r?
metrics remained substantially higher than the results reported in the literature. The problem of
prediction of stream temperature in basins with reservoirs has not been adequately resolved in
the past and there has not been a comparable study. We showed that LSTM'’s performance is
indeed affected by reservoirs but overall, the model was still functional. simulating this effect in a
process-based manner would have required far more input information about the reservoirs and

their operations.

The results of this study can help select the right training dataset to obtain the best-
performing models. For a basin with observed stream temperature available, the best results were
obtained by pooling data from basins with similar or more available data to include in the training
set. For a basin without observed stream temperature available, the best results were obtained
by including all basins with stream temperature observation records (even those with temperature
observations present little more than 10% of the time) to form the training dataset, so that the
model had the largest spatial coverage possible. A training dataset separation is also useful for
the treatment of reservoirs -- separating out basins with and without major reservoirs and train
models separately for these two groups would be beneficial. These results indicate our inputs do
not fully characterize the stream temperature prediction problem and future improvement efforts

could focus on collecting input and observational data. With increasing amounts of data, deep-



learning-powered models can increase accuracy and applicability, offering a plausible pathway

toward reliable stream temperature predictions for a wide variety of situations around the world.
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Table 1. Data Availability Groups.

Percentage Least Least Number | Sites Sites with | No. Spring | Summer | Fall Winter
of data number of | number of Sites | without | major observed data data (%) | data data
availability days of days major | dams data (%) (%) (%)
observed | observed dams (thousand)
Ts Ts [percentage
available | available of total
(train) (test) sample]
pP>99% 1445 723 99 34 65 216 [28] 25.2 25.1 24.9 24.7
09%>p>60% | 876 438 207 84 123 413 [54] 255 25.6 24.8 23.9
{ p- wue 876 438 306 118 188 630 [82] 25.4 25.5 24.9 24.2
60%>p>10% | 146 73 109 43 66 131 [17] 25.7 30.5 251 18.6
LD>10% 146 73 415 161 254 761 [99] 25.5 26.4 24.9 23.2
: o 0 10 40 17 23 5.8 [0.7] 26.3 50.6 19.9 3.1
(PUB)
-530% 0 438 40 18 22 81.2[10] 25.6 25.5 24 .4 245

| PUB)




Table 2. Median RMSE in different training and testing sets from the input-selection ensemble
model for ungauged basins and from regular full-attribute model for gauged basins. Going to the
right side of the table, the training set becomes broader. Going down the table, the test set becomes
larger. To the right of the diagonal, we are training on a larger set than the test set. To the left of
the diagonal, we are training on a small set and extrapolate the model to test basins. The
underlined cells are input-selection ensemble results. Bold numbers are the best results achieved

in the testing experiments.

train p>99% train p>60% train p>10%
test p>99% 0.801 0.804 0.878
test 99%>p>60% 1.887 0.830 0.877
test 60%>p>10% 2.053 1.559 0.916
test p<10% (PUB) 2.911 1.556 1.536
Test p>60% (PUB) 1.696 1.162 1.129




Figure 1. Data availability groups (DAGs) and other basin categories. (a) DAGs are nested (i.e.
all sites in DAGp>99 are also contained in DAGp>60 and DAGp>10). These DAGs should not be
confused with the separate descriptors of (b) basins with data availability between 60% and 10%

and (c) basins with data availability between 99% and 60%, which are used to discuss model

results.



Figure 2. CONUS-scale aggregated metrics of stream temperature models individually trained on
each data availability group. Each boxplot shows the distribution of that metric over all sites in
the relevant test set using (a) the matching-DAG approach; and (b) the maximum-site approach.

The lower whisker, lower box edge, center bar, upper box edge, and upper whisker represent 5%,
25%, 50%, 75% and 95% of data, respectively.



Figure 3. Map of (a) RMSE, (b) NSE, and (c) R’ values for LSTMp>10, which is the model trained
on all sites with p>10%. The size of the symbol represents data availability, while the shape
(square or circle) indicates with or without major dams, respectively. The blue box in the northwest

of the map shown in (c) is the latitude-longitude box used to compare with Gallice et al.(2015).



Figure 4. Results from the prediction in unmonitored basins (PUB) tests from different training
data (different data availability groups (DAGs)) and different input attributes (full-attribute vs.
the input-selection ensemble). (a) 40 random holdout basins with p>60%. Note that here, the
number of basins in DAGp>10%, DAGp>60%, and DAGp>99% are 375, 266, and 85, respectively,
which are different from the number of basins in three DAGs in experiments in Figures 2 and 4b.
(b) 40 unmonitored basins with p<I10%. The lower box edge, center bar, and upper box edge
represent 25%, 50%, and 75% of data, respectively. However, lower and upper whiskers’ lengths

are not greater than 1.5 times of the interquartile range.



Figure 5. Seasonality plot in temporal prediction for dammed and undammed basins. The model
is LSTMy>10% and is trained with both dammed and undammed basins. The lower whisker, lower

box edge, center bar, upper box edge, and upper whisker represent 5%, 25%, 50%, 75% and 95%
of data, respectively.



Figure 6. Time series plots of observed and simulated T in the test period for temporal prediction
(trained with DAGp>10%) (a-d) and for spatial generalization (PUBiest p>60% testing) (e-f). a, e, and
f'show a positive bias, while the rest show the more common negative bias. Observed (obs) stream

temperature data from USGS (USGS, 2016)



Figure 7. CONUS-scale aggregated metrics of the stream temperature models individually trained
on data availability groups also split into natural and unnatural basins. This is essentially a
repetition of the first temporal prediction (Figure 2a), except that here, models were trained and
tested on basins either with or without major dams present, not both. For example, “>99%, with
dam” means that both the training and testing sets only contained basins with observations
available more than 99% of the time, and also had at least one major dam. The lower whisker,
lower box edge, center bar, upper box edge, and upper whisker represent 5%, 25%, 50%, 75%
and 95% of data, respectively.
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LSTM presented state-of-the-art stream
temperature prediction performance in
both dammed and unmonitored basins.
Known input attributes do not cover all
necessary features so an input-selection
ensemble is useful. For temporal
prediction, the most suitable training set
we's the matching data availability group
“ AG) that the basin could be grouped
into, However, for spatial extrapolation
\uiimonitored basins), a training dataset
including all basins with data is
- sistently preferred.
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