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Abstract 
Basin-centric long short-term memory (LSTM) network models have recently been shown to be 
an exceptionally powerful tool for stream temperature (Ts) temporal prediction (training in one 
period and making predictions for another period at the same sites). However, spatial 
extrapolation is a well-known challenge to modeling Ts and it is uncertain how an LSTM-based 
daily Ts model will perform in unmonitored or dammed basins. Here we compiled a new 
benchmark dataset consisting of >400 basins across the contiguous United States in different 
data availability groups (DAG, meaning the daily sampling frequency) with or without major dams 
and studied how to assemble suitable training datasets for predictions in basins with or without 
temperature monitoring. For prediction in unmonitored basins (PUB), LSTM produced an RMSE 
of 1.129 °C and  R2 of 0.983. While these metrics declined from LSTM’s temporal prediction 
performance, they far surpassed traditional models’ PUB values, and were competitive with 
traditional models’ temporal prediction on calibrated sites. Even for unmonitored basins with major 
reservoirs, we obtained a median RMSE of 1.202°C and an R2 of 0.984. For temporal prediction, 
the most suitable training set was the matching DAG that the basin could be grouped into, e.g., 
the 60% DAG for a basin with 61% data availability. However, for PUB, a training dataset including 
all basins with data is consistently preferred. An input-selection ensemble moderately mitigated 
attribute overfitting. Our results indicate there are influential latent processes not sufficiently 
described by the inputs (e.g., geology, wetland covers), but temporal fluctuations are well 
predictable, and LSTM appears to be a highly accurate Ts modeling tool even for spatial 
extrapolation. 
 
Highlights 

1. Spatial extrapolation for stream temperature modeling is difficult, but LSTM achieved 
state-of-the-art prediction accuracy in unmonitored basins (PUB). 

2. For temporal tests, training sets should contain basins with as much or more data as the 
test basins, but all the sites with more than 10 days of data can be used to train models 
for PUB. 

3. Known input attributes do not cover all necessary features so an input-selection 
ensemble is useful. 
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1. Introduction: 

Stream temperature (Ts, temperature of water in rivers) is an important variable to both 

environmental health and human decisions. Ts has significant control on riverine biogeochemistry 

(Zhi et al., 2021), fish life cycles (Bowerman et al., 2018), invertebrate biodiversity (Hill & Hawkins, 

2014), and aquatic ecosystem health (Justice et al., 2017), and thus has long been known as an 

environmental “master factor” (Fry, 1971). Daily Ts predictions enable informed decisions and 

science-driven policy, and regulations on acceptable water temperatures affect industrial 

processes such as power plant cooling (Gjorgiev & Sansavini, 2018; Liu et al., 2017; J. Ma et al., 

2018) and reservoir operations (Tao et al., 2020; Weber et al., 2017).  In line with its importance, 

Ts modeling has been reported in hundreds of papers, with models of different types ranging from 

statistical to process-based to data-driven (Marcogliese, 2001; Martins et al., 2012).  

Ts is controlled by a range of climatic and hydrological processes such as snowmelt, 

advection by rain and streamflow, solar radiation, latent heat flux, shading from riparian 

vegetation, groundwater-surface water exchange, anthropogenic activities, and heat exchange 

with the land, streambed, and air (Essaid & Caldwell, 2017; Ficklin et al., 2012; Mohseni & Stefan, 

1999; Younus et al., 2000). Physically based models seek to represent these processes as 

mathematical equations, while data-driven models seek to directly learn patterns from data. A 

small literature survey of process-based and statistical stream temperature models is provided in 

Appendix A1 and Table S1 in Supplementary Materials. However, these models mainly focus on 

providing temporal predictions in well-monitored locations, where a model is fitted or calibrated to 

one site and then predictions are made for new time periods only at that same site. In addition, 

many models focus on long-term, monthly, or seasonal mean predictions. Because ecosystem-

threatening heat waves or temperature shocks can occur on a daily scale (Arambourou & Stoks, 

2015), access to accurate daily-scale or even finer resolution predictions could be critical. 



 

Rahmani, Lawson et al. (2021) showed that the long short-term memory (LSTM) 

algorithm, a type of recurrent neural network, provided accurate results for Ts at 118 well-

monitored (>60% daily sampling frequency in training and testing period) sites. These models 

were tested for long-term daily temporal prediction, i.e., models were trained on a collection of 

well-monitored sites for one time period and tested on the same sites for another period. The 

inputs included daily atmospheric forcings and static characteristics of the basins. Our model 

obtained a median root-mean-square error (RMSE) value of 0.69°C, Nash-Sutcliffe model 

efficiency coefficient (NSE) of 0.985, and correlation of 0.994. Even after removing seasonality, 

the median NSE of the residuals was 0.95. These results echo with strong performance metrics 

reported for LSTM in prediction of soil moisture (Fang et al., 2017; Fang & Shen, 2020), 

streamflow (Feng et al., 2020; Kratzert et al., 2019; Xiang et al., 2020), and dissolved oxygen (Zhi 

et al., 2021), even in spatially data sparse regions (Feng et al., 2021a; K. Ma et al., 2021). 

However, as a data-driven model’s quality largely depends on the quality and quantity of the 

training data, it is unclear how effective such models can be if the sampling frequency is limited, 

e.g., only about 10% of the days are sampled and sampling may be concentrated in time.  

 

While temporal prediction is important, extrapolating to unmonitored sites is even more 

crucial because temperature in the vast majority of stream reaches remains unmonitored. For 

example, for the millions of river reaches in the United States, there are >5000 streamflow stations 

in the U.S. Geological Survey’s (USGS) National Water Information System, yet only around ~820 

stations had Ts measurements for >10% of the days between 2004 and 2016, and only 118 had 

measurement coverage >60% (USGS, 2016). It is well known in the hydrology community that 

spatial prediction of Ts is challenging, and that sites with little data tend to have much larger 

prediction errors even if there are data for nearby sites. Gallice et al. (2015) called attention to 

this problem of Ts prediction in ungauged basins (i.e., basins lacking observations of temperature; 



we refer to such basins as “ungauged” or “unmonitored” interchangeably), and reported a mean 

seasonal RMSE of 1.36°C and R2 of 0.808 at five ungauged sites using a physics-derived 

regression model to predict monthly mean temperature, which was calibrated separately for each 

season. Also, while there have been other recent studies that used newer machine learning 

models to estimate Ts (Graf et al., 2019; Zhu & Piotrowski, 2020), they did not consider problems 

with prediction in unmonitored basins (PUB) or spatial extrapolation.  

 

This difficulty with spatial prediction may reflect the fact that there are many local and 

often-unmeasured mechanisms (called unknown or latent processes) that influence Ts, such as 

aquifer properties, travel time, snow accumulation patterns, and riparian shade, leading to fine-

scale heterogeneity in Ts responses. Consequently, locally calibrated models often tend to be 

better than large-scale models. For example, McNyset et al. (2015) reported R2 of 0.95 for models 

constructed for each individual site but only 0.87 for the model constructed for the whole group of 

sites in a basin in Oregon. Considering the effects of latent processes and lessons from the 

literature, it is unclear how to best form model training datasets for monitored sites with varied 

data availability and unmonitored sites. In addition, understanding the nature of the error can tell 

us about current weaknesses in the model-data system and opportunities for improvement; for 

example, bias could indicate that the model fails to capture slow-to-change latent processes such 

as base-flow rates or mean annual riparian shade, whereas weak correlation could indicate 

weakness in (potentially implicitly) representing faster-changing processes such surface runoff. 

 

It remains an unexplored and uncertainty-laden path to make use of LSTM for modeling 

daily Ts in reaches with limited or no data (unmonitored). Many previous efforts of spatial 

generalizations relied upon the exploitation of geostatistics such as spatial autocorrelation of 

prediction residuals (Isaak et al., 2017). It is not clear whether LSTM, which by default does not 

model the spatial structures of errors, can exploit such autocorrelation. Meanwhile, given various 



data limitations with Ts, it remains unclear how to best assemble training datasets for the PUB 

problem as there are two forces at play. On the one hand, in the past we have generally observed 

that for deep networks, the best approach is to compile as many data points/sites as possible into 

the training set given an effect we call data synergy (Fang et al., 2021). On the other hand, data 

availability sometimes poses constraints: we have many stream temperature stations with limited 

data availability and concentrated sampling periods; including them in the dataset may introduce 

noise and biases into the trained model. Hence, it is not clear how to best choose the training 

dataset for Ts modeling on sites with varied data availability. 

 

Another potential limiting factor of most existing Ts models is the effects of major 

reservoirs. There are more than 800,000 dammed reservoirs impeding the world’s rivers, 

including over 90,000 in the United States (International Rivers, 2007; U.S. Army Corps of 

Engineers, 2018). Reservoirs that are deep, with large surface area, large heat capacity, high 

thermal stratification, and lower albedo and vapor transfer can exert substantial control on 

streamflow and the water heat balance. The effect of reservoirs on downstream temperature is 

further complicated by variable depth release and changing human water, energy and 

environmental demands that affect decision making (Carron & Rajaram, 2001; Risley et al., 2010). 

Some of our recent work with streamflow modeling has indicated that LSTM could successfully 

capture some reservoir dynamics even just using generally available information about reservoirs  

(Ouyang et al., 2021). Hence, it is worthwhile to examine whether this approach could be 

extended to improve Ts modeling as well.  

 

Here we propose LSTM for long-term daily Ts modeling at data-scarce (low sampling-

frequency), unmonitored and dammed basins. The prediction is spatiotemporal (Jackson et al., 

2018) in the sense that the model can output sequences of daily predictions at trained or 

unmonitored sites where inputs are available so the spatial coverage can be large. We show the 



effect of an input-selection ensemble to prediction error, and, to the extent possible, contrast our 

results with the literature. The study answers several research questions: (1) How well do LSTM-

based, contiguous United States (CONUS)-scale models perform for sites with low sampling 

frequency or no data (unmonitored sites) with generic input information? (2) How can we compile 

data into a model training dataset to obtain best performance for basins with different sampling 

frequencies? (3) How much do reservoirs affect LSTM-based temperature model performance?  

 

2. Methods: 

We explored how accurately water temperature dynamics could be captured under 

different data-availability and reservoir-influence scenarios, given broadly available 

meteorological forcing data, streamflow rate observations, and basin characteristics. Here we 

predicted daily mean water temperature (Ts) using an LSTM-based model with similar structure 

to that in recent Ts work (Rahmani, Lawson, et al., 2021). Each model was trained and tested on 

basins across the contiguous United States (CONUS). The overall prediction and loss equations 

can be written as: 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑏𝑏
𝑡𝑡−𝜌𝜌:𝑡𝑡  =  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 �𝐹𝐹𝑏𝑏

𝑡𝑡−𝜌𝜌:𝑡𝑡 , 𝐴𝐴𝑏𝑏�  (1) 

𝐿𝐿 =  ∑ ∑ (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑏𝑏
𝑖𝑖  −  𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑏𝑏

𝑖𝑖 )2)/𝑛𝑛𝑡𝑡
𝑖𝑖=𝑡𝑡−𝜌𝜌  𝐵𝐵

𝑏𝑏    (2) 

where  𝐴𝐴𝑏𝑏 represents all attributes (static values) in a particular basin (b), 𝐹𝐹𝑏𝑏
𝑡𝑡−𝜌𝜌:𝑡𝑡 is the continuous 

forcing values from day 𝑡𝑡 − 𝜌𝜌 to day 𝑡𝑡 in basin b,  and 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑏𝑏
𝑡𝑡−𝜌𝜌:𝑡𝑡  is the simulated stream temperature 

from day 𝑡𝑡 − 𝜌𝜌 to day 𝑡𝑡 in basin b. 𝐿𝐿 is the total loss in days that observed data are available, B is 

the number of basins in a minibatch (a random subset of the basins and time series to be 

aggregated for calculating the loss; for each training epoch, we will loop through many mini-

batches so that on average all basins and all time series have been used once), n is the total 



number of observed days, and 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑏𝑏
𝑖𝑖  and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑏𝑏

𝑖𝑖  are the simulated and observed stream 

temperatures, respectively, in day i and basin b.  

 

2.1. Datasets 

We focused on stations that were included in the Geological Attributes of Gages for 

Evaluating Streamflow dataset, version II (GAGES-II) (Falcone, 2011). We downloaded mean 

daily observed streamflow and Ts data from the USGS National Water Information System 

(USGS, 2016). As measured streamflow was one of the desired inputs to our model, we only 

considered stations that had continuously observed streamflow data and at least 10 days’ worth 

of observed Ts data from 2010 to 2016, resulting in 455 stations. Meteorological forcing data (i.e. 

minimum and maximum daily air temperature, precipitation, solar radiation, vapor pressure, and 

day length) were extracted from the Daymet dataset (Thornton et al., 2016) using Google Earth 

Engine (GEE) (Gorelick et al., 2017) by interpolating the stations’ watersheds’ shape files with the 

gridded Daymet dataset. Watershed attributes pertinent to climate, topography, land cover, and 

reservoirs were provided in GAGES-II and utilized as model inputs. Table S2 lists the forcing and 

attribute inputs. 

 

Of the 455 sites that had at least 10 days of water temperature observations, 415 sites 

had observations for at least 10 percent of the days during both the training (2010/10/01 to 

2014/09/30) and testing (2014/10/01 to 2016/09/30) time periods. For these 415 sites, the median 

basin area was 1,017 km2 with the maximum and minimum basin areas being 49,264 km2 and 

2.1 km2, respectively. The mean Ts, according to sampled data, was 12.4°C, with maximum and 

minimum values of 34.3°C and –2.2°C, respectively. Basins had a mean of 5.7 major dams with 

the median being 1 major dam (254 basins had at least one major dam). The maximum number 

of major dams in a basin was 154 and the minimum was 0 (Falcone, 2011; US Army Corps of 

Engineers, 2018). Major dams are characterized as having more than 5,000 acre-feet of normal 



storage capacity, more than 50 ft in height, or a maximum storage capacity of more than 25,000 

acre-feet (National Atlas of the United States, USGS, 2009).   

 

2.2. Long short-term memory (LSTM) models 

Stream temperature dynamics are affected by processes that operate from hourly to 

monthly or longer timescales such as rainfall-runoff processes, groundwater interaction, snow 

melting effects, and many more. Therefore, tracking the impacts and relationships between these 

processes requires methods with the capabilities of both short-term and long-term memory. The 

long short-term memory (LSTM) algorithm has grown immensely popular for hydrological 

applications in recent years, and is designed to learn and keep information for long periods using 

components called memory cells and gates. Memory cells store the information separately from 

recurrent hidden states to resolve the vanishing gradient issue faced by other recurrent neural 

networks, while gates decide which information comes in and out of the cells. Because the basic 

LSTM architecture has been described extensively elsewhere, we refer readers to those papers 

for a more detailed discussion of the equations and structure of LSTM (Feng et al., 2020; 

Hochreiter & Schmidhuber, 1997).  

We applied standardization to all inputs and target values consistently across training and 

test datasets. Standardization helps the model, by way of the loss function (the target metric that 

is minimized during training), give equal consideration to all watersheds. First, we divided 

streamflow by the product of basin area and annual mean precipitation to obtain dimensionless 

runoff. We then transformed this dimensionless runoff, along with actual daily precipitation data, 

to a more Gaussian distribution (Feng et al., 2020) using equation (3): 

𝑣𝑣∗ = 𝑙𝑙𝑙𝑙𝑙𝑙10(√𝑣𝑣  +  0.1)   (3) 

where v* is the new variable after transformation, and v represents the variable before 

transformation. Next, streamflow, precipitation, and all other inputs and water temperature 

observations were standardized using the following formula: 



𝑥𝑥𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥  )
𝜎𝜎

   (4) 

in which 𝑥𝑥 and σ are the mean and standard deviation, respectively, for each input variable, xi is 

the raw value, and xi,new is the standardized value. All results in this study are reported after 

destandardization, which is the complete reversal of the standardization procedures. 

Before starting model training and testing for specific experiments, we ran multiple tests 

to determine the best values for hyperparameters in our model. The hidden layer size (the 

intermediate layer located between input and output layers) was selected by testing with different 

values (50, 100, 150, and 200), with constant values of the other hyperparameters. Rho 

(maximum number of days used for backpropagation steps for each training sample) was tested 

with values of 365, 274 (9 months), and 183 (6 months) without changing other hyperparameters. 

Because stream temperature has an annual cycle, it was likely we would get the best results with 

rho equal to 365, but we wanted to test other values in case a simpler model could achieve similar 

performance. The number of epochs used (one epoch means using all the training data once) 

was selected by testing the model with 1000, 2000, and 3000 epochs where the hidden layer size, 

rho, and batch size (determines the number of samples given to the model for loss function 

calculation before updating weights in a training step) were equal to 100, 365 days, and half of 

the number of sites used in training section, respectively. Dropout rate (the probability that some 

weights will be randomly set to 0 during model training, which helps prevent model overfitting) 

values of 1 and 0.5 were tested. Based on the authors’ experience, satisfactory results were 

obtained if the batch size was set to half of the number of sites in the dataset. Therefore, the final 

hyperparameters chosen were a hidden layer size of 100, rho of 365 days, 2000 epochs, a batch 

size equal to half of the sites in the training dataset, and a dropout rate of 0.5. For each model 

(for which hyperparameters, attributes, forcings, and training data were all fixed) we trained the 

model six times with different random initial weights each time; final predictions for each model 

were daily means of predictions from those six replicates. 



The loss function was root-mean-square error (RMSE) summarized for the minibatch. We 

report RMSE, bias, unbiased root-mean-square error (ubRMSE), Pearson correlation, and Nash-

Sutcliffe efficiency coefficient (NSE) (Nash & Sutcliffe, 1970) to enable comparison to other 

studies. Further, following Rahmani, Lawson et al. (2021), we computed the residual temperature 

(Tres) as the difference between daily mean water (Ts) and air temperatures (Tair): Tres=Ts-Tair. We 

then calculated NSE and Pearson correlation also based on this seasonality-removed Tres instead 

of Ts, because otherwise seasonality alone could explain much of the variability in Ts: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟  = 1 −  ∑ (𝑇𝑇𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜− 𝑇𝑇𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠)2𝑛𝑛
𝑖𝑖=1

∑ [�𝑇𝑇𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜− 𝑇𝑇𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎�− 𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜−𝑎𝑎𝑎𝑎𝑎𝑎]2𝑛𝑛
𝑖𝑖=1

    (5) 

𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜−𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ (𝑇𝑇𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜− 𝑇𝑇𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  (6) 

𝑇𝑇𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎  =  (𝑇𝑇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚+ 𝑇𝑇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)
2

  (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟  =  ∑ ��𝑇𝑇𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜−𝑇𝑇𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎�− 𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜−𝑎𝑎𝑎𝑎𝑎𝑎�[�𝑇𝑇𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠− 𝑇𝑇𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎�− 𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠−𝑎𝑎𝑎𝑎𝑎𝑎]𝑛𝑛
𝑖𝑖=1

�∑ [�𝑇𝑇𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜− 𝑇𝑇𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎�− 𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜−𝑎𝑎𝑎𝑎𝑎𝑎]2  ∑ [�𝑇𝑇𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠− 𝑇𝑇𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎�− 𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠−𝑎𝑎𝑎𝑎𝑎𝑎]2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

   (8) 

𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠−𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ (𝑇𝑇𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠− 𝑇𝑇𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
  (9) 

in which Ti,obs and Ti,sim show the observed and simulated, respectively, daily mean stream 

temperatures, Ti,min and Ti,max represent the lowest and highest, respectively, daily air temperature 

values recorded in the meteorological forcing data, and Ti,air  is a representation of mean daily air 

temperature and calculated from  Ti,min and Ti,max. 𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜−𝑎𝑎𝑎𝑎𝑎𝑎and 𝑇𝑇�𝑠𝑠𝑠𝑠𝑠𝑠−𝑎𝑎𝑎𝑎𝑎𝑎 indicate the differences 

between daily mean air temperature and either daily observed or simulated stream temperatures, 

respectively, while NSEres and Corrres illustrate the residual NSE and residual correlation 

coefficient values, respectively. Index i indicates the i-th day of the testing period, and n is the 

total number of days of the testing period in which observed stream temperature data were 

available. 



 

2.3. Training and testing models on different data availability groups 

Many of the GAGES-II basins had water temperature observations available for only a 

fraction of the year. We defined three data availability groups (DAG, Figure 1), using p to denote 

the percentage of days for which temperature measurements were present. The DAGp>99 

contained basins where temperature observations were present for at least 99% of days during 

both training and testing periods. DAGp>60% included basins in p>99% as well as basins with 

observations for at least 60% of days, and DAGp>10% was defined similarly (Figure 1). DAG60>p>10 

has somewhat seasonally imbalanced measurements with 30.5% of available observations 

occurring in the summer,18.6% in the winter, and ~25% in each of spring and fall. We trained 

three models, each using all sites from the respective nested DAGs (p>99%, p>60%, and p>10%), 

which we call LSTMp>99%, LSTMp>60%, and LSTMp>10%. We tested each model in two different ways: 

temporal prediction using two different configurations, and then three experiments for spatial 

generalization (prediction in unmonitored basins, or PUB). We expand on the details of these 

tests below.  

[Insert Figure 1] 

For temporal prediction, the models were trained using data from 2010/10/01 to 

2014/09/30 and test predictions were compared to data from 2014/10/01 to 2016/09/30 on the 

same basins. We would like to note that temporal prediction is still different from traditional site-

by-site calibration: because a uniform model was trained for multiple sites, this model has to learn 

how to use different static attributes to modulate Ts fluctuations in time, and hence it is necessarily 

more complex than a group of many models fit to only one site apiece, but it is simultaneously 

constrained by all sites. On a side note, Rahmani, Lawson et al. (2021) compared temporal 

prediction results to locally-fitted autoregressive models with exogenous inputs (ARX), which 

represent natural persistence, and found that LSTM (RMSE=0.69oC) significantly outperformed 

the ARX model (1.41oC). Because the foci of this paper are on the spatial challenges of 



unmonitored and dammed basins, we omitted the comparison to ARX or similar persistence 

models here. 

 

In the first configuration of the temporal prediction, the model used for prediction in each 

basin was the model trained on basins with data availability matched to that of the test basin: if a 

basin had p=99%, LSTMp>99% was used for prediction; if a basin had p=65%, LSTMp>60% was used; 

and if a basin had p=11%, LSTMp>10% was used. Results from this test, which we refer to as the 

matching-DAG approach, tell us how model performance varied as a function of data availability. 

Despite the caveat that there may be correlation between DAG and basin characteristics, we can 

still learn simple criteria for including sites into the training datasets. In the second configuration, 

the three models were tested on the same subset of basins: basins all having data availability 

p>99%. This comparison was to advise us whether we should include basins with lower sampling 

frequency in the training set if we are only interested in applying the model on a basin with a high 

sampling frequency. As the amount of training data available to the model increased as the p 

threshold lowered, we refer to this as the maximum-sites approach. 

 

2.4. Testing the models on prediction for unmonitored sites (PUB) 

To test model performance in cases of spatial extrapolation, also known as prediction for 

unmonitored basins (PUB), we ran three experiments where we tested our models with different 

holdout basins, which means they were not included in the training set. In the first experiment 

(random holdout), we randomly selected 40 basins that had at least 60% data availability to serve 

as the holdout basins, which constituted 10% of the total dataset. The models were trained with 

the remaining basins in the three DAGs. Because these basins were randomly selected, this 

experiment avoids the potential confounding correlation between the data availability and other 

physical attributes. This test was to inform us as to which training set would be best to choose for 

PUB scenarios.  



To confirm the robustness of the conclusion, we ran another experiment (p<10% holdout) 

where the holdout basins were not in the three training DAGs due to having low sampling density 

but still had at least 10 days’ worth of data. 40 basins met these criteria across CONUS to be out-

of-sample basins in this test, and we tested each of the models trained on three DAGs on this 

group. This kind of test experiment is sometimes necessary because we may not have enough 

high sampling frequency sites to simultaneously train and test on, and thus we want to maximally 

utilize their data for training. However, the p<10% sites may have certain properties that are 

correlated with model performance. This experiment thus also examines the effect of this data-

economic test strategy. 

Finally, to be more comparable to the PUB results published in the literature, in the third 

experiment (northwest PUB), we held out five p>99% sites in the US Northwest (latitude > 42 and 

longitude < -120.2), which is closest in latitude to the Swiss basins used in the current Ts 

benchmark model reported in Gallice et al. (2015), to facilitate comparison. We trained a model 

using the rest of the p>60% basins across CONUS and, based on daily predictions, calculated 

mean monthly values to compare with their results. We would like to emphasize that Gallice’s 

results are not fully comparable to the U.S. Northwest because these regions have different 

climate patterns, e.g., U.S. Northwest is influenced by Pacific Ocean oscillations like El Nino/La 

Nina while the Swiss Alps are influenced by the Atlantic Ocean. Hence, it is important not to read 

too much into the small differences. However, we nonetheless present this comparison because 

it seems more reasonable than comparing the whole CONUS to Switzerland. 

 

2.5. Input-selection ensemble 

 Prediction in unmonitored basins can be an especially challenging problem because of 

model overfitting, a not uncommon scenario where models perform well for basins with data 

included in the training set but miss some of the underlying physics needed for accurate modeling 

(Gallice et al., 2015). This can lead to poor prediction accuracy when applied to basins outside of 



the training set, especially for those with environmental conditions different from the basins that 

provided the training data. Here we tested an approach we call an input-selection ensemble, 

which we recently showed could mitigate some of this risk for streamflow prediction in both 

ungauged basins and ungauged contiguous regions (Feng et al., 2021b).  The theory is that when 

there are not enough basins with measured data available for model training, we cannot 

accurately resolve the influence of each static basin attribute (e.g., land cover, or soil 

characteristics), and so the model will have a large variance around how the static attributes 

influence the model output. For new conditions where an overfitted model could perform very 

poorly, a minimal-attribute model (with accompanying low likelihood of overfitting) would be much 

more likely to have a correct understanding of the main causal factors, thus resulting in more 

accurate predictions. We hypothesized that ensembling (averaging) across multiple models with 

different amounts of input attributes could reduce the overall variance for Ts as it did for 

streamflow.  

 

In the set of three DAG models LSTMp>99%, LSTMp>60% ,and LSTMp>10% discussed until this point, 

we used all available attributes as inputs (AT in Table S2). To test our hypothesis about input 

selection ensemble, we needed three additional model versions, with decreasing numbers of 

attributes included as inputs. The attributes to exclude were conceptualized as being similar to 

other existing attributes. In other words, we attempted to select attributes in a way that preserved 

critical information while removing redundancies and lower-impact information. In the first 

additional set (AR1), we removed some attributes from the AT list that we thought would be 

redundant to those still included, e.g., attributes related to average distance of basins’ outlet to all 

major dams. But we kept the distance of the outlet from the nearest major dam as we 

hypothesized the nearest major dam is the most influential one to stream temperature compared 

to the farther ones (Kędra & Wiejaczka, 2018) (please see Table S2). The second set (AR2) 

excluded these along with even more attributes from the AT list, e.g., some related to annual-



mean climate attributes. In the third set (AR3), only a few critical attributes such as drainage area, 

stream density, reservoir storage, land cover fractions, slope, and distance of gage location to 

major dams, were kept as model inputs. Hidden layer sizes were reduced to 80 for AR1 and 70 for 

AR2 and AR3 to match the reduced complexity of those attribute sets. These four model versions 

were each applied to the PUB scenarios described previously, and results were averaged to 

obtain the input-selection ensemble result (Eq. (11)). These results, along with the results from 

the full-attribute model alone (general PUB test method, Eq. (10)), were compared to the actual 

Ts observations. For our experiments, separate models with each of the three additional input 

versions were trained for each of the three nested DAGs (DAGp>99%, DAGp>60%, DAGp>10%).  

 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑔𝑔𝑔𝑔𝑔𝑔
𝑖𝑖,𝑏𝑏  =  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝐹𝐹 , 𝐴𝐴𝑇𝑇)  (10) 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖,𝑏𝑏  =  (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝐹𝐹 ,𝐴𝐴𝑇𝑇) + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝐹𝐹 ,𝐴𝐴𝑅𝑅1) + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝐹𝐹 ,𝐴𝐴𝑅𝑅2) + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝐹𝐹 ,𝐴𝐴𝑅𝑅3))

4
  (11) 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑔𝑔𝑔𝑔𝑔𝑔
𝑖𝑖,𝑏𝑏  and 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖,𝑏𝑏  represent the simulated stream temperatures obtained using the general PUB 

test method and the ensemble-selection method, respectively, for basin b and in day i. 

 

2.6. Reservoirs: Presence or absence of major dams 

To understand the effect of reservoirs on Ts modeling, we identified whether there were 

reservoirs in each basin from the GAGES-II dataset, and divided each DAG into two sub-groups: 

basins with at least one major dam upstream, and those without any. The six new dam-DAGs 

were therefore DAGp>99+dam (with dam), DAGp>99-dam (without dam), DAGp>60+dam, DAGp>60-dam, 

DAGp>10+dam, and DAGp>10-dam (Table 1). Models were trained on each of these six new dam-DAGs, 

and we evaluated their performance in temporal prediction. [Insert Table 1] 

 



3. Results and Discussion 

3.1. Temporal Prediction  

Overall, models trained using the matching-DAG approach (Section 2.3) performed very 

well across the CONUS, giving state-of-the-art performance even for basins that were not 

sampled frequently. The median RMSEs were 0.801°C, 0.832°C, and 0.916°C for basins with 

data availability p>99%, 99%>p>60%, and 60%>p>10%, respectively (Figure 2a). Lower data 

availability (p) in the training set led to a moderate decline in model performance, which is 

consistent with the data-driven nature of the model. The corresponding median NSEs were all 

above 0.976, which was similar to what was reported in Rahmani, Lawson et al., (2021). As the 

dataset expands, the median RMSE values were slightly higher in this current work, however, 

potentially due to inclusion of dammed basins. After removing seasonality by subtracting air 

temperature from both predictions and observations, the median correlations were all higher than 

0.965 for all groups, indicating most of the variability beyond seasonality was captured (Figure 

2a). When the three DAG models were all tested on the same sites (sites having p>99%, which 

were included in the training dataset for all models), both bias and correlation deteriorated as the 

p threshold for training data was lowered (Figure 2b). Notably, despite this decline, even the 

lowest DAG 60%>p>10% test group reported better metrics than had been previously reported in 

the literature for daily temperature prediction using process-based or statistical methods (Table 

S1). Rahmani, Lawson et al. (2021) concluded that LSTM is extremely well-suited to capturing Ts 

fluctuations with hysteresis and nonlinear behaviors. Here we show that this conclusion seems to 

hold true even for sites with much lower sampling frequencies, e.g., 60%>p>10%.  

 

Each of the DAG models showed similar spatial patterns in performance. These models 

generally performed better in the eastern half of CONUS than the western half, with 

correspondingly higher NSE and lower RMSE values (e.g. Figure 3). Most of the stations in the 

eastern half of CONUS have NSE values above 0.975 and RMSE values below 0.9°C. We noticed 



that a belt of basins in the longitudinally central CONUS, going from North Dakota to Texas, 

tended to have larger RMSEs (e.g., Figure 3a). This belt has traditionally been difficult to capture 

for process-based as well as deep learning streamflow models, as discussed in Feng et al. (2020), 

for possible reasons including the presence of very large basin areas with concentrated runoff 

production, unclear basin boundaries, and existence of cross-basin groundwater flows (O’Sullivan 

et al., 2020; Schaller & Fan, 2009). From our results here, it seems the difficulty of hydrologic 

prediction carries over to Ts prediction as well, which was expected given the strong influence of 

streamflow on Ts. A few other sites with larger errors occurred in the state of Washington (U.S. 

Northwest). LSTM is strong at modeling seasonal snowpacks, and we hypothesized that LSTM 

has learned to internally accrue memory that mimics snow, but perhaps there was not sufficient 

memory for inter-annual snowpacks, as would be found in glaciers. Additionally, the Pacific 

Northwest has a substantial heterogeneity in the contributions of shallow and deep groundwater, 

which have different signatures on streams’ thermal regimes (Hare et al., 2021). 

[Insert Figure 2]  

[Insert Figure 3]  

 

3.2. Prediction for unmonitored basins (PUB) experiments 

Over the entire CONUS, our PUB experiment found state-of-the-art performance with the 

model trained on all available basins (p>10%, the maximum-site approach) and with the input 

selection ensemble. For the random holdout test, the CONUS-median bias was -0.21°C, RMSE 

was 1.129°C, ubRMSE was 0.98°C, NSE was 0.971, and r2 was 0.983 (Figure 4a). While the 

RMSE was somewhat higher than for temporal prediction, all of these metrics were better than 

most values reported in the literature. It seems spatial extrapolation may introduce some bias, 

perhaps due to lack of knowledge of latent, local processes, but the seasonality and fluctuations 

were well captured. To put the metrics into perspective, the literature review in Gallice et al. (2015) 

included a list of daily RMSE values for PUB cases: 1.8°C (DeWeber & Wagner, 2014), 1.4°C 



(Gardner & Sullivan, 2004), and 2.1-2.7°C (Stefan & Preud’homme, 1993). In cases where R2 

values were reported, they were 0.71  (Stewart et al., 2015), and 0.70 (Westenbroek et al., 2010), 

all of which were substantially lower than the CONUS-median value we reported above (0.971). 

Not only does LSTM exceed traditional models in terms of PUB metrics, but also its PUB metrics 

were even better than traditional models’ temporal prediction (on calibrated or training sites) (see 

Table S1). For Ts modeling, where spatial extrapolation was deemed to be much more challenging 

than temporal prediction, this result shows that traditional models have been underutilizing the 

information in the inputs. 

 

As discussed in Methods (section 2), to compare with Gallice et al. (2015), we trained a 

different model and calculated its monthly evaluation metrics in five p>99% holdout basins in a 

latitude-longitude box (see Figure 3(c)) in the U.S. Northwest that has the closest temperature 

regimes and data density to Switzerland. In this test set, our LSTM’s RMSE was 1.07°C, NSE 

was 0.937, and r2 was 0.942 for monthly mean prediction through the testing years. These metrics 

compare favorably to the values reported in Gallice et al. (2015) (an RMSE of 1.45°C and an R2 

of 0.93). In another study at a higher latitude, Jackson et al. (2018) reported an overall RMSE of 

1.6°C for their leave-one-basin-out cross validation for 223 Scottish sites. We caution that, despite 

our best effort to enable comparisons, these results are still not directly comparable because 

different basins were tested and we have different data density and climate patterns. However, 

the comparisons indicate that our PUB model represents noticeable advances.  

 

We notice that for PUB, it was the most beneficial to use the maximum-site approach, 

which is in sharp contrast to the temporal prediction experiments described above, where a 

matching-DAG approach was most effective. For random holdout sites, as the training set 

expanded from DAGp>99 to DAGp>10 in input selection models, the median RMSE improved from 

1.696°C to 1.129°C  (Figure 4a). In fact, for the full-attribute model, all of the metrics (RMSE, 



ubRMSE, R2, and Corrres) improved as the training sites increased. The improvement in median 

RMSE was largest between DAGp>99% and DAGp>60%, likely because the number of training basins 

increased substantially: a three-fold increase, from 99 to 306 basins, whereas the change from 

DAGp>60  to DAGp>10 was only a thirty percent increase, from 306 to 415 basins. We expand on 

this contrast in Section 3.3.  

[Insert Figure 4]  

 

The p<10% holdout experiment confirms that the maximum-site approach works the best 

for PUB (Figure 4b). The errors had the same pattern as Figure 4a, with more training basins 

giving better metrics, but for these p<10% sites, there was a significantly larger bias. This 

agreement indicates our conclusion is robust while the larger errors show that there is indeed 

some systematic correlation between data availability and test metrics. One of the reasons, as 

will be discussed in section 3.4, is that the models generally have better performance in fall, 

winter, and spring than summer. Summer data constitute more than 50 percent of observations 

in p<10% test sites while only 25 percent of data in the p>60% test sites (Table 2). On a side 

note, this result cautions us that the data-economic testing scheme may have some limitations. 

 

The input-selection ensemble slightly outperformed the full-attribute model, across all 

DAG training datasets. Compared to the full-attribute model trained on each DAG, the 

corresponding input-selection ensemble generally had slightly less negative median bias (Figure 

4). For NSE, even though the medians were similar between two kinds of models, the input-

selection ensemble models were less likely to produce very poor performance as the lower 

whisker is shorter. This supports our theory that the relationships built on static attributes are 

uncertain, so ensembling in the dimension of the static attributes can reduce the variance. For 

models slightly overfitted to the static attributes, some basins may be modeled very well and some 



may be very poor. However, utilizing the input-selection ensemble substantially reduced the 

prediction risks of running into major failures. 

 

3.3. Selecting appropriate training sets for sparsely-monitored or unmonitored basins 

Our results indicate that, without using the input-selection ensemble, the best modeling 

results are achieved by selecting the matching-DAG approach to form a training dataset for basins 

with extensive records, while using the maximum-site approach for PUB. With the input-selection 

ensemble, if the ranking became slightly nuanced but at least the maximum-site approach will not 

produce a noticeably inferior model. As discussed in the Introduction (section 1), when previously 

working with deep learning models for streamflow, soil moisture, and other environmental 

variables, we have repeatedly observed that deep networks benefit from the inclusion of larger 

quantities and larger diversity of data (Fang et al., 2021; Feng et al., 2020; Shen, 2018). This 

observation was consistent with our PUB results (Figure 4), but in conflict with our temporal 

prediction results. This conflict is more apparently seen from the performance matrix in Table 2. 

We see that errors increase as we go from the diagonal to right, indicating the inclusion of more 

sites degrade the results for temporal prediction. Meanwhile, errors generally go down as we go 

from the left side of the table to the diagonal, indicating expanding sites is beneficial to spatial 

extrapolation. 

 

Many reasons could contribute to the apparent contradiction described above, the first 

being correlation between DAG and basin characteristics. The adverse effects of including more 

basins in the training set for temporal prediction are likely related to the seasonality of data 

collection in basins in lower DAGs. Compared to sites with data availability p>99%, sites with data 

availability 99%>p>60% and 60%>p>10% had more data present in the summer, when the 

temperatures are higher and model RMSEs are also larger (Table 1). In addition, the models 

encountered more basins with major dams as the p threshold was lowered (Table 1), which also 



had a material effect on Ts prediction accuracy (more in Section 3.5) and may have caused the 

models trained on more sites to learn patterns that did not occur in the extensively monitored 

sites. In this case, bringing together data from many basins with low sampling frequency may 

introduce noise to the supervision of the model, thus slightly degrading the performance for 

extensively sampled sites.  

 

Our study results indicate that the maximum-site approach is beneficial for PUB because 

the model and inputs are not sufficient to fully capture the fundamental relationships, so the model 

relies on having training data that are close to the test basin to be accurate: more basins that are 

spatially proximate or physiographically similar to the ungauged test basins can better represent 

that part of the input space. Due to the limited number of basins (a few hundred basins is not 

dense compared to the dimension of the static attributes), the model cannot fully resolve the effect 

of each input. Moreover, there are important bias-inducing latent processes so that the inputs are 

not a complete description of the problem, leading to spatial nonstationarity in the relationships 

between forcings, attributes, and stream temperature responses. It is then different to accurately 

infer the bias (mean difference between prediction and observations) for PUB. When we expand 

to p>10% (for PUB), we simply have more basins that are adjacent to the test basins so the model 

has a better spatial coverage. Previous research already demonstrated that the error residuals 

tend to be spatially autocorrelated (Isaak et al., 2017). Thus, having similar or adjacent basins to 

the test ones can reduce the errors. Deep networks can utilize such proximity even if it does not 

explicitly model error autocorrelation (Fang et al., 2020; Gal & Ghahramani, 2016). Furthermore, 

there are some examples (e.g., in Georgia) where there is a negative autocorrelation between 

two adjacent basins, which is probably because these basins are geologically and topographically 

distinct (O’Sullivan et al., 2019, 2020). A deep learning approach may be able to model both 

positive and negative relationships more flexibly than a statistical spatial covariance model. 

[Insert Table 2] 



 

3.4. Model performance in different seasons 

 

When we break down the results of temporal prediction by season, we can see that the 

NSEs were better for spring and fall, the two seasons with large temperature shifts, but lower for 

winter and summer (Figure 5). Pooling together dammed and undammed basins, the median NSE 

values for temporal prediction (p>10% model) in spring, summer, fall, and winter were 0.942, 

0.845, 0.947, and 0.890, respectively, and the corresponding median RMSE values were 

0.912°C, 0.827°C, 0.864°C, and 0.742°C. As noted in Rahmani, Lawson et al. (2021) and other 

studies, previous statistical models often fail in winter in northern basins where air temperature 

and water temperature are decoupled. In contrast, our LSTM-based models had the smallest 

median RMSE (0.742 for p>10%, also due to small variation) and high median correlation (0.963 

for p>10%) in winter. This is potentially enabled by LSTM’s ability to model thresholded functions 

(relevant to freezing conditions), keep track of long-term memory, and utilize time-dependent 

relationships.  

 

In contrast, LSTM has relatively lower performance in the summer, mostly caused by a 

larger bias and lower correlation for either temporal prediction (Figures 5, S1, and S2) or PUB. 

The CONUS-median bias for summer was closer to zero compared to other seasons, but the 

range was larger for the summer and noticeably smaller for the winter. We observe that LSTM 

sometimes underestimated summer flash peaks (Figure 6c), which were likely caused by surface 

runoff washing out the heat from the land surface which is then countered by the colder base flow. 

Previous results with streamflow indicate that relative to their performance in other periods, LSTM 

models sometimes had difficulty capturing baseflow (Feng et al., 2020). Thus, the stream 

temperature model may not be able to accurately account for the effect of the cooler base flow in 

its internal representations (our temperature model may not have the ability to track base flow 



and runoff dynamics). Because base flow is often a substantial fraction of total flow during the 

summer, any inaccurate estimations or representations could result in larger errors in temperature 

for this season.  

 

A state-of-the-art regional-scale study reporting strong metrics for August was the 

NorWest model (Issak et al., 2017), who reported a spatial RMSE of 1.1°C for their mean August 

temperature prediction (one data point per site) for the western United States. They collected 

>63,000 site-years worth of data from >22,000 sites. Our dataset did not allow the calculation of 

a comparable spatial RMSE because there are not enough basins to simultaneously train a model 

and have sufficient PUB sites to test it on. However, their work does indicate it will be highly 

beneficial to adapt the daily LSTM model to utilize a larger (though temporally less well-sampled) 

dataset with more diverse attributes in future modeling efforts. Pathways like loss function 

modification can accommodate such kinds of data.  

[Insert Figure 5]  

 

 



3.5. Impact of reservoirs 

For temporal prediction, although we saw a strong, adverse effect of reservoirs on the 

accuracy and bias of our water temperature model, overall model performance for dammed 

basins remained quite strong. The presence of major dams led to an increase in ubRMSE by a 

mean of 0.15°C (Figure 7). Compared to the basins without reservoirs, there was a noticeable 

increase in the range of bias and RMSE in summer and fall (Figure 5). However, despite this 

increase in error, LSTM produced a median RMSE of <0.88°C  for the dammed basins, which is 

still smaller than those reported in most other studies (Table S1). Even in the most adversarial 

situation, for the CONUS-scale PUB test sets, the median RMSE, NSE, and r2 for dammed basins 

(23 basins) were 1.537°C, 0.861 and 0.964 for PUBtest_p<10% (23 basins) (Figure S3); and were 

1.202, 0.972, and 0.984 for PUBtest_p>60% (22 basins) (Figure S4), respectively.  

 

The lower 4 panels in Figure 6 showed some sample time series for PUB predictions, 

while the right 4 panels show basins with major dams. Both PUB and dams have negative effects 

on the simulations. The PUB panels have noticeably more continuous errors (autocorrelated in 

time), e.g., around 2016-07 in Figure 6g, which are rare for in-training basins (Figure 6a-d). In 

some basins with reservoirs, the Ts can sometimes show erratic and sudden changes (Figure 

6b,f). However, in some other situations, the model captured the fluctuations quite well (Figure 

6d), even in a PUB scenario (Figure 6h).  

[Insert Figure 6]  

[Insert Figure 7] 

 

The LSTM model is informed on some attributes of the reservoir (degree of regulation, 

normal capacity, etc.). However, the LSTM model does not know other specifics such as the 

dynamical surface area, albedo, current water depth, or release depth, and thus cannot infer the 

extent of heating, heat storage, stratification of reservoir water, or propagation of reservoir 



influences to the monitoring site. The larger ubRMSE may also be due to the schedule of the 

release of reservoir water, for those reservoirs that are actively managed, being unpredictable for 

the LSTM model. Nevertheless, we note that even for the reservoir group, the RMSE of the LSTM 

model appears to be smaller than those reported in other studies (Table S1). 

 

3.6. Further discussion 

In contrast to previous work that utilized spatial structure in error residuals, we train models 

with a loss function defined over an entire dataset and obtain a uniform model that resolves the 

effects of static basin attributes. Because these attributes are themselves autocorrelated, we 

expect the deep network to intrinsically exhibit characteristics of spatial autocorrelation even 

without any explicit supervision, which was observed previously with soil moisture (Fang et al., 

2020). However, because the model does not rely on explicit autocorrelation assumptions (but 

depend on spatial pattern in input attributes), the model can flexibly capture highly complex, 

anisotropic, multidimensional and sometimes even negative autocorrelations. For example, the 

autocorrelation of stream temperature is predominantly positive in connected rivers while it may 

in fact be negative in short distances in unconnected rivers. Such spatial relationships will be 

exceedingly difficult to represent in spatial variograms, but can be seamlessly represented if they 

are caused by small-scale heterogeneity in basin attributes, e.g., land use,  geology, or upland-

lowland configurations.  

 

Fortunately, bias is arguably a less severe limitation than low correlation would have been, 

and so in lieu of additional monitoring data through novel means allowing for bias reduction, we 

can provide predictions on a relative-change basis, predicting change in temperature from 

yesterday. A primary suspect for inducing bias is poor characterization of geologic formations, 

which makes it difficult to accurately model base-flow contributions (Briggs & Hare, 2018; Johnson 

et al., 2017; O’Sullivan et al., 2019). This is perhaps also why it was previously found that including 



observed streamflow information in model inputs could somewhat improve Ts estimates 

(Rahmani, Lawson, et al., 2021). Secondly, the presence of water withdrawals used for irrigation 

and other purposes, or release of heated water from power plants, could lead to systematic errors. 

These are not problems unique to deep learning, however; without local observations, these 

errors are likely difficult to correct with process-based models as well. The errors can be alleviated 

in the future by increasing observational constraints, perhaps through the use of new and 

unconventional approaches such as satellite remote sensing of stream temperatures (Martí-

Cardona et al., 2019), thermal infrared imagery (Caldwell et al., 2019; Dugdale et al., 2019), or 

citizen scientists.  

 

The data used here represent the best-instrumented sites from USGS, and 415 locations 

are only a tiny fraction of the millions of river reaches in the United States. In the future, the 

combination of process-based modeling and machine learning may allow more robust predictions 

on a global scale which are already started by other scholars (Jia et al., 2020; Karpatne et al., 

2018; Read et al., 2019; Tsai et al., 2020). 

 

3.7. Limitations 

While the simulations gave unprecedentedly strong metrics for most basins with 

reservoirs, there are some dammed basins with sudden Ts spikes that were missed by the model, 

e.g., in Figure 6b. There could be days with reservoir-controlled low flows combined with heat 

stress for the aquatic ecosystem and downstream heat-sensitive water users. Hence, these 

scenarios would benefit from further investigation and careful error quantification with respect to 

the extreme values, which is outside of the scope of this paper. Prediction in ungauged basins is 

still a difficult task, especially for the basins that have data in the outer bounds of training data. 

 



4. Conclusions 

This work expands recent research of deep-learning-based modeling of stream 

temperature to data-sparse, unmonitored, or dammed basins. While these challenges slightly 

degraded model accuracy, LSTM still presented state-of-the-art performance for daily stream 

temperature predictions. Even under the most adverse situations tested here, with significant 

amounts of missing data and the presence of major reservoirs, the model still produced strong 

NSE in the test period. Extrapolation of the model to basins outside of the training set tended to 

incur larger bias, likely due to uncaptured processes or attributes. However, the RMSE and r2 

metrics remained substantially higher than the results reported in the literature. The problem of 

prediction of stream temperature in basins with reservoirs has not been adequately resolved in 

the past and there has not been a comparable study. We showed that LSTM’s performance is 

indeed affected by reservoirs but overall, the model was still functional. simulating this effect in a 

process-based manner would have required far more input information about the reservoirs and 

their operations. 

 

The results of this study can help select the right training dataset to obtain the best-

performing models. For a basin with observed stream temperature available, the best results were 

obtained by pooling data from basins with similar or more available data to include in the training 

set. For a basin without observed stream temperature available, the best results were obtained 

by including all basins with stream temperature observation records (even those with temperature 

observations present little more than 10% of the time) to form the training dataset, so that the 

model had the largest spatial coverage possible. A training dataset separation is also useful for 

the treatment of reservoirs -- separating out basins with and without major reservoirs and train 

models separately for these two groups would be beneficial. These results indicate our inputs do 

not fully characterize the stream temperature prediction problem and future improvement efforts 

could focus on collecting input and observational data. With increasing amounts of data, deep-



learning-powered models can increase accuracy and applicability, offering a plausible pathway 

toward reliable stream temperature predictions for a wide variety of situations around the world. 

 

 

 

Acknowledgments 

 

FR was supported by the Pennsylvania Water Resources Research Center graduate internship 

G19AC00425. Funding for the internship and AA and SO was provided by the Integrated Water 

Prediction Program at the U.S. Geological Survey. CS was supported by National Science 

Foundation Award OAC #1940190. Data sources have been cited in the paper, and all model 

inputs, outputs, and code are archived in a data release (Rahmani, Shen, et al., 2021). The LSTM 

code for modeling streamflow is available at https://github.com/mhpi/hydroDL. CS and KL have 

financial interests in HydroSapient, Inc., a company which could potentially benefit from the 

results of this research. This interest has been reviewed by the University in accordance with its 

Individual Conflict of Interest policy, for the purpose of maintaining the objectivity and the integrity 

of research at The Pennsylvania State University. Any use of trade, firm, or product names is for 

descriptive purposes only and does not imply endorsement by the U.S. Government. 

 

 

 

 

 

 

 

 



References 

Arambourou, H., & Stoks, R. (2015). Combined effects of larval exposure to a heat wave and 

chlorpyrifos in northern and southern populations of the damselfly Ischnura elegans. 

Chemosphere, 128, 148–154. https://doi.org/10.1016/j.chemosphere.2015.01.044 

Bowerman, T., Roumasset, A., Keefer, M. L., Sharpe, C. S., & Caudill, C. C. (2018). Prespawn 

mortality of female chinook salmon increases with water temperature and percent 

hatchery origin. Transactions of the American Fisheries Society, 147(1), 31–42. 

https://doi.org/10.1002/tafs.10022 

Briggs, M. A., & Hare, D. K. (2018). Explicit consideration of preferential groundwater 

discharges as surface water ecosystem control points. Hydrological Processes, 32(15), 

2435–2440. https://doi.org/10.1002/hyp.13178 

Caldwell, S. H., Kelleher, C., Baker, E. A., & Lautz, L. K. (2019). Relative information from 

thermal infrared imagery via unoccupied aerial vehicle informs simulations and spatially-

distributed assessments of stream temperature. Science of The Total Environment, 661, 

364–374. https://doi.org/10.1016/j.scitotenv.2018.12.457 

Carron, J. C., & Rajaram, H. (2001). Impact of variable reservoir releases on management of 

downstream water temperatures. Water Resources Research, 37(6), 1733–1743. 

https://doi.org/10.1029/2000wr900390 

DeWeber, J. T., & Wagner, T. (2014). A regional neural network ensemble for predicting mean 

daily river water temperature. Journal of Hydrology, 517, 187–200. 

https://doi.org/10.1016/j.jhydrol.2014.05.035 

Dugdale, S. J., Kelleher, C. A., Malcolm, I. A., Caldwell, S., & Hannah, D. M. (2019). Assessing 

the potential of drone-based thermal infrared imagery for quantifying river temperature 

heterogeneity. Hydrological Processes, 33(7), 1152–1163. 

https://doi.org/10.1002/hyp.13395 



Essaid, H. I., & Caldwell, R. R. (2017). Evaluating the impact of irrigation on surface water – 

groundwater interaction and stream temperature in an agricultural watershed. Science of 

The Total Environment, 599–600, 581–596. 

https://doi.org/10.1016/j.scitotenv.2017.04.205 

Falcone, J. A. (2011). GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow 

[Report]. USGS Publications Warehouse. https://doi.org/10.3133/70046617 

Fang, K., Kifer, D., Lawson, K., Feng, D., & Shen, C. (2021). The data synergy effects of time-

series deep learning models in hydrology. ArXiv:2101.01876 [Cs, Stat]. 

http://arxiv.org/abs/2101.01876 

Fang, K., Kifer, D., Lawson, K., & Shen, C. (2020). Evaluating the potential and challenges of an 

uncertainty quantification method for long short-term memory models for soil moisture 

predictions. Water Resources Research, 56(12), e2020WR028095. 

https://doi.org/10.1029/2020wr028095 

Fang, K., & Shen, C. (2020). Near-real-time forecast of satellite-based soil moisture using long 

short-term memory with an adaptive data integration kernel. Journal of 

Hydrometeorology, 21(3), 399–413. https://doi.org/10/ggj669 

Fang, K., Shen, C., Kifer, D., & Yang, X. (2017). Prolongation of SMAP to spatiotemporally 

seamless coverage of continental U.S. using a deep learning neural network. 

Geophysical Research Letters, 44(21), 11,030-11,039. https://doi.org/10/gcr7mq 

Feng, D., Fang, K., & Shen, C. (2020). Enhancing streamflow forecast and extracting insights 

using long-short term memory networks with data integration at continental scales. 

Water Resources Research, 56(9), e2019WR026793. 

https://doi.org/10.1029/2019WR026793 

Feng, D., Lawson, K., & Shen, C. (2021a). Mitigating prediction error of deep learning 

streamflow models in large data-sparse regions with ensemble modeling and soft data. 



Geophysical Research Letters, 48(14), e2021GL092999. 

https://doi.org/10.1029/2021GL092999 

Feng, D., Lawson, K., & Shen, C. (2021b). Prediction in ungauged regions with sparse flow 

duration curves and input-selection ensemble modeling. ArXiv. 

http://arxiv.org/abs/2011.13380 

Ficklin, D. L., Luo, Y., Stewart, I. T., & Maurer, E. P. (2012). Development and application of a 

hydroclimatological stream temperature model within the Soil and Water Assessment 

Tool. Water Resources Research, 48(1), W01511. https://doi.org/10/c984xf 

Fry, F. E. J. (1971). 1—The Effect of Environmental Factors on the Physiology of Fish. In W. S. 

Hoar & D. J. Randall (Eds.), Fish Physiology (Vol. 6, pp. 1–98). Academic Press. 

https://doi.org/10.1016/S1546-5098(08)60146-6 

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model 

uncertainty in deep learning. Proceedings of the 33rd International Conference on 

International Conference on Machine Learning - Volume 48, 1050–1059. 

Gallice, A., Schaefli, B., Lehning, M., Parlange, M. B., & Huwald, H. (2015). Stream temperature 

prediction in ungauged basins: Review of recent approaches and description of a new 

physics-derived statistical model. Hydrology and Earth System Sciences, 19(9), 3727–

3753. https://doi.org/10.5194/hess-19-3727-2015 

Gardner, B., & Sullivan, P. J. (2004). Spatial and temporal stream temperature prediction: 

Modeling nonstationary temporal covariance structures. Water Resources Research, 

40(1). https://doi.org/10.1029/2003wr002511 

Gjorgiev, B., & Sansavini, G. (2018). Electrical power generation under policy constrained 

water-energy nexus. Applied Energy, 210, 568–579. 

https://doi.org/10.1016/j.apenergy.2017.09.011 



Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google 

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of 

Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 

Graf, R., Zhu, S., & Sivakumar, B. (2019). Forecasting river water temperature time series using 

a wavelet–neural network hybrid modelling approach. Journal of Hydrology, 578, 

124115. https://doi.org/10.1016/j.jhydrol.2019.124115 

Hare, D. K., Helton, A. M., Johnson, Z. C., Lane, J. W., & Briggs, M. A. (2021). Continental-

scale analysis of shallow and deep groundwater contributions to streams. Nature 

Communications, 12(1), 1450. https://doi.org/10.1038/s41467-021-21651-0 

Hill, R. A., & Hawkins, C. P. (2014). Using modelled stream temperatures to predict macro-

spatial patterns of stream invertebrate biodiversity. Freshwater Biology, 59(12), 2632–

2644. https://doi.org/10.1111/fwb.12459 

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 

1735–1780. https://doi.org/10/bxd65w 

International Rivers. (2007). Damming Statistics. International Rivers. 

https://archive.internationalrivers.org/damming-statistics 

Isaak, D. J., Wenger, S. J., Peterson, E. E., Hoef, J. M. V., Nagel, D. E., Luce, C. H., Hostetler, 

S. W., Dunham, J. B., Roper, B. B., Wollrab, S. P., Chandler, G. L., Horan, D. L., & 

Parkes‐Payne, S. (2017). The NorWeST summer stream temperature model and 

scenarios for the Western U.S.: A crowd-sourced database and new geospatial tools 

foster a user community and predict broad climate warming of rivers and streams. Water 

Resources Research, 53(11), 9181–9205. https://doi.org/10.1002/2017wr020969 

Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P., & Malcolm, I. A. (2018). A spatio-

temporal statistical model of maximum daily river temperatures to inform the 

management of Scotland’s Atlantic salmon rivers under climate change. Science of The 

Total Environment, 612, 1543–1558. https://doi.org/10.1016/j.scitotenv.2017.09.010 



Jia, X., Zwart, J., Sadler, J., Appling, A., Oliver, S., Markstrom, S., Willard, J., Xu, S., Steinbach, 

M., Read, J., & Kumar, V. (2020). Physics-Guided Recurrent Graph Networks for 

Predicting Flow and Temperature in River Networks. ArXiv:2009.12575 [Physics]. 

http://arxiv.org/abs/2009.12575 

Johnson, Z. C., Snyder, C. D., & Hitt, N. P. (2017). Landform features and seasonal 

precipitation predict shallow groundwater influence on temperature in headwater 

streams. Water Resources Research, 53(7), 5788–5812. 

https://doi.org/10.1002/2017WR020455 

Justice, C., White, S. M., McCullough, D. A., Graves, D. S., & Blanchard, M. R. (2017). Can 

stream and riparian restoration offset climate change impacts to salmon populations? 

Journal of Environmental Management, 188, 212–227. 

https://doi.org/10.1016/j.jenvman.2016.12.005 

Karpatne, A., Watkins, W., Read, J., & Kumar, V. (2018). Physics-guided Neural Networks 

(PGNN): An Application in Lake Temperature Modeling. ArXiv:1710.11431 [Physics, 

Stat]. http://arxiv.org/abs/1710.11431 

Kędra, M., & Wiejaczka, Ł. (2018). Climatic and dam-induced impacts on river water 

temperature: Assessment and management implications. Science of The Total 

Environment, 626, 1474–1483. https://doi.org/10.1016/j.scitotenv.2017.10.044 

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., & Nearing, G. (2019). 

Benchmarking a catchment-aware Long Short-Term Memory network (LSTM) for large-

scale hydrological modeling. Hydrology and Earth System Sciences Discussions, 1–32. 

https://doi.org/10/ggj67p 

Liu, L., Hejazi, M., Li, H., Forman, B., & Zhang, X. (2017). Vulnerability of US thermoelectric 

power generation to climate change when incorporating state-level environmental 

regulations. Nature Energy, 2(8), 17109. https://doi.org/10.1038/nenergy.2017.109 



Ma, J., Li, C., Liu, F., Wang, Y., Liu, T., & Feng, X. (2018). Optimization of circulating cooling 

water networks considering the constraint of return water temperature. Journal of 

Cleaner Production, 199, 916–922. https://doi.org/10.1016/j.jclepro.2018.07.239 

Ma, K., Feng, D., Lawson, K., Tsai, W.-P., Liang, C., Huang, X., Sharma, A., & Shen, C. (2021). 

Transferring hydrologic data across continents – Leveraging data-rich regions to improve 

hydrologic prediction in data-sparse regions. Water Resources Research, 57(5), 

e2020WR028600. https://doi.org/10.1029/2020wr028600 

Marcogliese, D. J. (2001). Implications of climate change for parasitism of animals in the aquatic 

environment. Canadian Journal of Zoology, 79(8), 1331–1352. 

https://doi.org/10.1139/z01-067 

Martí-Cardona, B., Prats, J., & Niclòs, R. (2019). Enhancing the retrieval of stream surface 

temperature from Landsat data. Remote Sensing of Environment, 224, 182–191. 

https://doi.org/10.1016/j.rse.2019.02.007 

Martins, E. G., Hinch, S. G., Patterson, D. A., Hague, M. J., Cooke, S. J., Miller, K. M., 

Robichaud, D., English, K. K., & Farrell, A. P. (2012). High river temperature reduces 

survival of sockeye salmon (Oncorhynchus nerka) approaching spawning grounds and 

exacerbates female mortality. https://doi.org/10.1139/f2011-154 

McNyset, K. M., Volk, C. J., & Jordan, C. E. (2015). Developing an effective model for predicting 

spatially and temporally continuous stream temperatures from remotely sensed land 

surface temperatures. Water, 7(12), 6827–6846. https://doi.org/10.3390/w7126660 

Mohseni, O., & Stefan, H. G. (1999). Stream temperature/air temperature relationship: A 

physical interpretation. Journal of Hydrology, 218(3), 128–141. 

https://doi.org/10.1016/S0022-1694(99)00034-7 

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — 

A discussion of principles. Journal of Hydrology, 10(3), 282–290. 

https://doi.org/10/fbg9tm 



National Atlas of the United States, USGS. (2009). Major Dams of the United States [Data set]. 

https://web.archive.org/web/20090814080910/http://nationalatlas.gov/mld/dams00x.html 

O’Sullivan, A. M., Devito, K. J., & Curry, R. A. (2019). The influence of landscape characteristics 

on the spatial variability of river temperatures. CATENA, 177, 70–83. 

https://doi.org/10.1016/j.catena.2019.02.006 

O’Sullivan, A. M., Devito, K. J., Ogilvie, J., Linnansaari, T., Pronk, T., Allard, S., & Curry, R. A. 

(2020). Effects of topographic resolution and geologic setting on spatial statistical river 

temperature models. Water Resources Research, 56(12), e2020WR028122. 

https://doi.org/10.1029/2020WR028122 

Ouyang, W., Lawson, K., Feng, D., Ye, L., Zhang, C., & Shen, C. (2021). Continental-scale 

streamflow modeling of basins with reservoirs: Towards a coherent deep-learning-based 

strategy. Journal of Hydrology, 599, 126455. 

https://doi.org/10.1016/j.jhydrol.2021.126455 

Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S., & Shen, C. (2021). Exploring the 

exceptional performance of a deep learning stream temperature model and the value of 

streamflow data. Environmental Research Letters, 16(2), 024025. 

https://doi.org/10.1088/1748-9326/abd501 

Rahmani, F., Shen, C., Oliver, S. K., Lawson, K., Watkins, W. D., & Appling, A. P. (2021). Deep 

learning approaches for improving prediction of daily stream temperature in data-scarce, 

unmonitored, and dammed basins: U.S. Geological Survey data release. U.S. 

Geological Survey. https://doi.org/10.5066/P9VHMO56 

Read, J. S., Jia, X., Willard, J., Appling, A. P., Zwart, J. A., Oliver, S. K., Karpatne, A., Hansen, 

G. J., Hanson, P. C., Watkins, W., & others. (2019). Process-guided deep learning 

predictions of lake water temperature. Water Resources Research, 55(11), 9173–9190. 

https://doi.org/10.1029/2019wr024922 



Risley, J. C., Constantz, J., Essaid, H., & Rounds, S. (2010). Effects of upstream dams versus 

groundwater pumping on stream temperature under varying climate conditions. Water 

Resources Research, 46(6). https://doi.org/10.1029/2009wr008587 

Schaller, M. F., & Fan, Y. (2009). River basins as groundwater exporters and importers: 

Implications for water cycle and climate modeling. Journal of Geophysical Research, 

114(D4). https://doi.org/10/bg3nv2 

Shen, C. (2018). A transdisciplinary review of deep learning research and its relevance for water 

resources scientists. Water Resources Research, 54(11), 8558–8593. 

https://doi.org/10/gd8cqb 

Stefan, H. G., & Preud’homme, E. B. (1993). Stream temperature estimation from air 

temperature. JAWRA Journal of the American Water Resources Association, 29(1), 27–

45. https://doi.org/10.1111/j.1752-1688.1993.tb01502.x 

Stewart, J. S., Westenbroek, S. M., Mitro, M. G., Lyons, J. D., Kammel, L. E., & Buchwald, C. A. 

(2015). A model for evaluating stream temperature response to climate change in 

Wisconsin (Scientific Investigations Report 2014–5186; p. 64). U.S. Geological Survey. 

http://dx.doi.org/10.3133/sir20145186 

Tao, Y., Wang, Y., Rhoads, B., Wang, D., Ni, L., & Wu, J. (2020). Quantifying the impacts of the 

Three Gorges Reservoir on water temperature in the middle reach of the Yangtze River. 

Journal of Hydrology, 582, 124476. https://doi.org/10.1016/j.jhydrol.2019.124476 

Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda, R., Vose, R. S., & Cook, 

R. B. (2016). Daymet: Daily surface weather data on a 1-km grid for North America, 

version 3. ORNL Distributed Active Archive Center. 

https://doi.org/10.3334/ORNLDAAC/1328 

Tsai, W.-P., Pan, M., Lawson, K., Liu, J., Feng, D., & Shen, C. (2020). From parameter 

calibration to parameter learning: Revolutionizing large-scale geoscientific modeling with 

big data. ArXiv:2007.15751 [Preprint]. http://arxiv.org/abs/2007.15751 



US Army Corps of Engineers. (2018). National Inventory of Dams (NID) [Data set]. 

https://nid.sec.usace.army.mil/ 

USGS. (2016). USGS Surface-Water Data for the Nation. http://waterdata.usgs.gov/nwis/sw 

Weber, M., Rinke, K., Hipsey, M. R., & Boehrer, B. (2017). Optimizing withdrawal from drinking 

water reservoirs to reduce downstream temperature pollution and reservoir hypoxia. 

Journal of Environmental Management, 197, 96–105. 

https://doi.org/10.1016/j.jenvman.2017.03.020 

Westenbroek, S., Stewart, J. S., Buchwald, C. A., Mitro, M., Lyons, J. D., & Greb, S. (2010). A 

model for evaluating stream temperature response to climate change scenarios in 

wisconsin. Watershed Management 2010, 1–12. https://doi.org/10.1061/41143(394)1 

Xiang, Z., Yan, J., & Demir, I. (2020). A rainfall-runoff model with LSTM-based sequence-to-

sequence learning. Water Resources Research, 56(1), e2019WR025326. 

https://doi.org/10.1029/2019WR025326 

Younus, M., Hondzo, M., & Engel, B. A. (2000). Stream temperature dynamics in upland 

agricultural watersheds. Journal of Environmental Engineering, 126(6), 518–526. 

https://doi.org/10.1061/(ASCE)0733-9372(2000)126:6(518) 

Zhi, W., Feng, D., Tsai, W.-P., Sterle, G., Harpold, A., Shen, C., & Li, L. (2021). From 

hydrometeorology to river water quality: Can a deep learning model predict dissolved 

oxygen at the continental scale? Environmental Science & Technology, 55(4), 2357–

2368. https://doi.org/10.1021/acs.est.0c06783 

Zhu, S., & Piotrowski, A. P. (2020). River/stream water temperature forecasting using artificial 

intelligence models: A systematic review. Acta Geophysica, 68(5), 1433–1442. 

https://doi.org/10.1007/s11600-020-00480-7 

 

 

 
 



Table 1. Data Availability Groups.  

Percentage 
of data 
availability 

Least 
number of 
days 
observed 
Ts 
available 
(train) 

Least 
number 
of days 
observed 
Ts 
available 
(test) 

Number 
of Sites 

Sites 
without 
major 
dams 

Sites with 
major 
dams 

No. 
observed 
data 
(thousand) 
[percentage 
of total 
sample] 

Spring 
data 
(%) 

Summer 
data (%) 

Fall 
data 
(%) 

Winter 
data 
(%) 

p>99% 1445 723 99 34 65 216 [28] 25.2 25.1 24.9 24.7 

99%>p>60% 876 438 207 84 123 413 [54] 25.5 25.6 24.8 23.9 

p>60% 876 438 306 118 188 630 [82] 25.4 25.5 24.9 24.2 

60%>p>10% 146 73 109 43 66 131 [17] 25.7 30.5 25.1 18.6 

p>10% 146 73 415 161 254 761 [99] 25.5 26.4 24.9 23.2 

p<10% 
(PUB) 

0 10 40 17 23 5.8 [0.7] 26.3 50.6 19.9 3.1 

P>60% 
(PUB) 

0 438 40 18 22 81.2 [10] 25.6 25.5 24.4 24.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Median RMSE in different training and testing sets from the input-selection ensemble 

model for ungauged basins and from regular full-attribute model for gauged basins. Going to the 

right side of the table, the training set becomes broader. Going down the table, the test set becomes 

larger. To the right of the diagonal, we are training on a larger set than the test set. To the left of 

the diagonal, we are training on a small set and extrapolate the model to test basins. The 

underlined cells are input-selection ensemble results. Bold numbers are the best results achieved 

in the testing experiments. 

 train p>99% train p>60% train p>10% 

test p>99% 0.801 0.804 0.878 

test 99%>p>60% 1.887 0.830 0.877 

test 60%>p>10% 2.053 1.559 0.916 

test p<10% (PUB) 2.911 1.556 1.536 

Test p>60% (PUB) 1.696 1.162 1.129 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1. Data availability groups (DAGs) and other basin categories. (a) DAGs are nested (i.e. 

all sites in DAGp>99 are also contained in DAGp>60 and DAGp>10). These DAGs should not be 

confused with the separate descriptors of (b) basins with data availability between 60% and 10% 

and (c) basins with data availability between 99% and 60%, which are used to discuss model 

results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 2. CONUS-scale aggregated metrics of stream temperature models individually trained on 

each data availability group. Each boxplot shows the distribution of that metric over all sites in 

the relevant test set using (a) the matching-DAG approach; and (b) the maximum-site approach. 

The lower whisker, lower box edge, center bar, upper box edge, and upper whisker represent 5%, 

25%, 50%, 75% and 95% of data, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 3. Map of (a) RMSE, (b) NSE, and (c) R2 values for LSTMp>10 , which is the model trained 

on all sites with p>10%. The size of the symbol represents data availability, while the shape 

(square or circle) indicates with or without major dams, respectively. The blue box in the northwest 

of the map shown in (c) is the latitude-longitude box used to compare with Gallice et al.(2015).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 4. Results from the prediction in unmonitored basins (PUB) tests from different training 

data (different data availability groups (DAGs)) and different input attributes (full-attribute vs. 

the input-selection ensemble). (a) 40 random holdout basins with p>60%. Note that here, the 

number of basins in  DAGp>10%, DAGp>60%, and DAGp>99% are 375, 266, and 85, respectively, 

which are different from the number of basins in three DAGs in experiments in Figures 2 and 4b. 

(b) 40 unmonitored basins with p<10%. The lower box edge, center bar, and upper box edge 

represent 25%, 50%, and 75% of data, respectively. However, lower and upper whiskers’ lengths 

are not greater than 1.5 times of the interquartile range. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 5. Seasonality plot in temporal prediction for dammed and undammed basins. The model 

is LSTMp>10% and is trained with both dammed and undammed basins. The lower whisker, lower 

box edge, center bar, upper box edge, and upper whisker represent 5%, 25%, 50%, 75% and 95% 

of data, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Figure 6. Time series plots of observed and simulated T in the test period for temporal prediction 

(trained with DAGp>10%) (a-d) and for spatial generalization (PUBtest_p>60% testing) (e-f). a, e, and 

f show a positive bias, while the rest show the more common negative bias. Observed (obs) stream 

temperature data from USGS (USGS, 2016)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Figure 7. CONUS-scale aggregated metrics of the stream temperature models individually trained 

on data availability groups also split into natural and unnatural basins. This is essentially a 

repetition of the first temporal prediction (Figure 2a), except that here, models were trained and 

tested on basins either with or without major dams present, not both. For example, “>99%, with 

dam” means that both the training and testing sets only contained basins with observations 

available more than 99% of the time, and also had at least one major dam. The lower whisker, 

lower box edge, center bar, upper box edge, and upper whisker represent 5%, 25%, 50%, 75% 

and 95% of data, respectively. 
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LSTM presented state-of-the-art stream 
temperature prediction performance in 
both dammed and unmonitored basins. 
Known input attributes do not cover all 
necessary features so an input-selection 
ensemble is useful. For temporal 
prediction, the most suitable training set 
was the matching data availability group 
(DAG) that the basin could be grouped 
into, However, for spatial extrapolation 
(unmonitored basins), a training dataset 
including all basins with data is 
consistently preferred. 
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