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Abstract

We show a simple reduction which demonstrates the cryptographic hardness of learning
a single periodic neuron over isotropic Gaussian distributions in the presence of noise. More
precisely, our reduction shows that any polynomial-time algorithm (not necessarily gradient-
based) for learning such functions under small noise implies a polynomial-time quantum algorithm
for solving worst-case lattice problems, whose hardness form the foundation of lattice-based
cryptography. Our core hard family of functions, which are well-approximated by one-layer neural
networks, take the general form of a univariate periodic function applied to an affine projection
of the data. These functions have appeared in previous seminal works which demonstrate their
hardness against gradient-based (Shamir’18), and Statistical Query (SQ) algorithms (Song et
al.’17). We show that if (polynomially) small noise is added to the labels, the intractability of
learning these functions applies to all polynomial-time algorithms, beyond gradient-based and
SQ algorithms, under the aforementioned cryptographic assumptions.

Moreover, we demonstrate the necessity of noise in the hardness result by designing a
polynomial-time algorithm for learning certain families of such functions under exponentially
small adversarial noise. Our proposed algorithm is not a gradient-based or an SQ algorithm, but
is rather based on the celebrated Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algorithm.
Furthermore, in the absence of noise, this algorithm can be directly applied to solve CLWE
detection (Bruna et al.’21) and phase retrieval with an optimal sample complexity of d + 1
samples. In the former case, this improves upon the quadratic-in-d sample complexity required
in (Bruna et al.’21).

∗Equal contribution.
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1 Introduction

The empirical success of Deep Learning has given an impetus to provide theoretical foundations
explaining when and why it is possible to efficiently learn from high-dimensional data with neural
networks. Currently, there are large gaps between positive and negative results for learning, even for
the simplest neural network architectures [Zho+17, Goe+20, Bru+17, GLM17]. These gaps offer
a large ground for debate, discussing the extent up to which improved learning algorithms can be
designed, or whether a fundamental computational barrier has been reached.

One particular challenge in closing these gaps is establishing negative results for improper learning
in the distribution-specific setting, in which the learner can exploit the peculiarities of a known input
distribution, and is not limited to outputting hypotheses from the target function class. Over the last
few years, authors have successfully developed distribution-specific hardness results in the context of
learning neural networks, offering different flavors. On one hand, there have been several results
proving the failure of a restricted class of algorithms, such as gradient-based algorithms [Sha18,
SSS17], or more generally Statistical Query (SQ) algorithms [Kea98, Fel+17, Son+17, Goe+20,
Dia+20b]. Notably, such results apply to the simplest cases, such as learning one-hidden-layer neural
networks over the standard Gaussian input distribution [Goe+20, Dia+20b]. On the other hand, a
different line of work has shown the hardness of learning two-hidden-layer neural networks for any
polynomial-time algorithm by leveraging cryptographic assumptions, such as the existence of local
pseudorandom generators (PRGs) with polynomial stretch [DV21]. Despite such significant advances,
important open questions remain, such as whether the simpler case of learning one hidden-layer
neural network over standard Gaussian input remains hard for algorithms not captured by the SQ
framework. To make this question more precise, are non-SQ polynomial-time algorithms, which
may inspect individual samples – such as stochastic gradient descent (SGD) [AS20] – able to learn
one-hidden layer neural networks over Gaussian input? Understanding the answer to this question is
a partial motivation of the present work.

A key technique for constructing hard-to-learn functions is leveraging “high-frequency” oscillations
in high-dimensions. The simplest instance of such functions is given by pure cosines of the form
f(x) = cos(2πγ〈w, x〉), where we refer to w ∈ Sd−1 as its hidden direction, and γ as its frequency.
Such functions have already been investigated by previous works [Son+17, Sha18, SSS17] in the
context of lower bounds for learning neural networks. For these hard constructions, the frequency γ
is taken to scale polynomially with the dimension d. Note that as the univariate function cos(2πγt)
is O(γ)-Lipschitz, the function f is well-approximated by one-hidden-layer ReLU network of poly(γ)-
width on any compact set (see e.g., Appendix E). Hence, understanding the hardness of learning such
functions is an unavoidable step towards understanding the hardness of learning one-hidden-layer
ReLU networks.

In this work, we pursue this line of inquiry, focusing on weakly learning the cosine neuron class
over the standard Gaussian input distribution in the presence of noise. Our main result is a proof,
via a reduction from a fundamental problem in lattice-based cryptography called the Shortest Vector
Problem (SVP), that such learning task is hard for any polynomial-time algorithm, based on the
widely-believed cryptographic assumption that (approximate) SVP is computationally intractable
against quantum algorithms (See e.g., [Reg05, MR09, Duc+17, Ala+20] and references therein).
Our result therefore extends the hardness of learning such functions from a restricted family of
algorithms, such as gradient-based algorithms or SQ, to all polynomial-time algorithms by leveraging
cryptographic assumptions. Note, however, that SQ lower bounds are unconditional because they are
of an information-theoretic nature. Therefore, our result, which is conditional on a computational
hardness assumption, albeit a well-founded one in the cryptographic community, and SQ lower
bounds are not directly comparable.
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The problem of learning cosine neurons with noise can be studied in the broader context of
inferring hidden structures in noisy high-dimensional data, as a particular instance of the family
of Generalized Linear Models (GLM) [NW72, Mül00]. Multiple inference settings, including, for
example, the well-known planted clique model [Jer92, AKS98], but also GLMs such as sparse
regression [GZ17] exhibit so-called computational-to-statistical gaps. These gaps refer to intervals of
signal-to-noise ratio (SNR) values where inference of the hidden structure is possible by exponential-
time estimators but appears out of reach for any polynomial-time estimator. Following this line
of work, we define the SNR of our cosine neuron learning problem to be the inverse of the noise
level, and analyze its hardness landscape. As it turns out, weakly learning the cosine neuron class
provides a rich landscape, yielding a computational-to-statistical gap based on a worst-case hardness
guarantee. We note that this is in contrast with the “usual” study of such gaps where such worst-case
hardness guarantees are usually elusive and they are mostly based on the refutation of restricted
computational classes, such as Sum-of-Squares [Bar+16], low-degree polynomial estimators [KWB19],
Belief Propagation [BPW18], or local search methods [GZ19b].

Finally, we establish an upper bound for the computational threshold, thanks to a polynomial-
time algorithm based on the Lenstra-Lenstra-Lovász(LLL) lattice basis reduction algorithm (see
details in Section 3.3). Our proposed algorithm is shown to be highly versatile, in the sense that it
can be directly used to solve two seemingly very different GLMs: the CLWE detection problem from
cryptography and the phase retrieval problem from high-dimensional statistics. Remarkably, this
method bypasses the SQ and gradient-based hardness established by previous works [Sha18, Son+17].
Our use of the LLL algorithm to bypass a previously considered “computationally-hard” region
adjoins similar efforts to solve linear regression with discrete coefficients [ZG18, GKZ19], [KWB19,
Sec. 4.2.1], as well as the correspondence retrieval problem [And+17], which includes phase retrieval
as a special case. We show in Section 3.3 how our algorithms obtain optimal sample complexity for
recovery in both these problems in the noiseless setting. An interesting observation is that in the
latter case, the resulting algorithm, and also the very similar LLL-based algorithm by [And+17],
improves upon AMP-based algorithms [Bar+19] in terms of sample complexity, often thought to be
optimal among all polynomial-time algorithms [Mai+20]. While our LLL algorithm can be seen as
an appropriate modification of [And+17], our analysis employs different tools, leading to improved
guarantees. More precisely, our analysis easily extends to distributions that are both log-concave and
sub-Gaussian, as opposed to solely Gaussian in [And+17]. In addition, our algorithm incorporates an
explicit rounding step for LLL, which allows us to determine its precise noise-tolerance (see details
in Section 3.4).

1.1 Related work

Hardness of learning from cryptographic assumptions. Among several previous works [KV94,
Kha93] which leverage cryptographic assumptions to establish hardness of improper learning, most
relevant to our results is the seminal work of Klivans and Sherstov [KS09] whose hardness results
are also based on SVP. To elaborate, they show that learning intersections of halfspaces, which can
be seen as neural networks with the threshold activation, is hard based on the worst-case hardness
of approximate SVP. Our work differs, though, in several important aspects from theirs. First, and
perhaps most importantly, our result holds over the well-behaved Gaussian input distribution over
R
d, whereas their hardness utilizes a non-uniform distribution over the Boolean hypercube {0, 1}d.

Second, at a technical level and in agreement with our continuous input domain and their discrete
input domain, we take a different reduction route from SVP. Their link to SVP is the Learning
with Errors (LWE) Problem [Reg05], whereas our link in the reduction is the recently developed
Continuous Learning with Errors (CLWE) Problem [Bru+21]. On another front, very recently,
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[DV21] presented an abundance of novel hardness results in the context of improper learning by
assuming the mere existence of Local Pseudorandom Generators (LPRGs) with polynomial stretch.
While the LPRG and SVP assumptions are not directly comparable, we emphasize that we rely
on the worst-case hardness of SVP, whereas LPRG assumes average-case hardness. A worst-case
hardness assumption is arguably weaker as it requires only one instance to be hard, whereas an
average-case hardness assumption requires instances to be hard on average.

Lower bounds against restricted class of algorithms and upper bounds. As mentioned pre-
viously, a widely adapted method for proving hardness of learning is through SQ lower bounds [Kea98,
Blu+94, Szö09, Fel+17]. Among previous work, most closely related to our work is [Son+17]
and [Sha18], who consider learning linear-periodic function classes which contain cosine neurons.
By constructing a different class of hard one-hidden-layer networks, stronger SQ lower bounds
over the Gaussian distribution, in terms of both query complexity and noise rate, have been estab-
lished [Goe+20, Dia+20b]. Yet, for technical reasons, the SQ model cannot rule out algorithms such
as stochastic gradient descent (SGD), since these algorithms can in principle inspect each sample
individually. In fact, [AS20] carry this advantage of SGD to the extreme and show that SGD is
poly-time universal. [AGJ21] establishes sharp bounds using SGD for weakly learning a single planted
neuron, and reveals a fundamental dependency between the regularity of their dimension-independent
activation function, which they name the “information exponent”, and the sample complexity. The
regularity of the activation function has been leveraged in several works to yield positive learning
results [Kak+11, Zho+17, GLM17, Sol17, ALL18, GKK19, FCG20, Dia+20a]. Finally, statistical-to-
computational gaps using the family of Approximate Message Passing (AMP) algorithms [DMM09,
Ran11] for the algorithmic frontier have been established in various high-dimensional inference
settings, including proper learning of certain single-hidden layer neural networks [Aub+19], spiked
matrix-tensor recovery [Sar+20] and also GLMs [Bar+19].

The LLL algorithm and statistical inference problems. For our algorithmic results, we
employ the LLL algorithm. Specifically, our techniques are originally based on the breakthrough
use of the LLL algorithm to solve a class of average-case subset sum problems in polynomial-time,
as established first by Lagarias and Odlyzko [LO85] and later via a greatly simplified argument by
Frieze [Fri86]. While the power of LLL algorithm is very well established in the theoretical computer
science [Sha82, Lag84], integer programming [Kan83], and computational number theory communities
(see [Sim10] for a survey), to the best of our knowledge, it has found only a handful of applications in
the theory of statistical inference. Nevertheless, a few years ago, a strengthening of the original LLL-
based arguments by Lagarias, Odlyzko and Frieze has been used to prove that linear regression with
rational-valued hidden vector and continuous features can be solved in polynomial-time given access
only to one sample [ZG18]. This problem has been previously considered “computationally-hard”
[GZ17] and is proven to be impossible for the LASSO estimator [Wai09, GZ19a], greedy local-search
methods [GZ17] and the AMP algorithm [RXZ19]. In a subsequent work to [ZG18], the suggested
techniques have been generalized to the linear regression and phase retrieval settings under the more
relaxed assumptions of discrete (and therefore potentially irrational)-valued hidden vector [GKZ19].
Our work is based on insights from [ZG18, GKZ19], but is importantly generalizing the use of the
LLL algorithm (a) for the recovery of an arbitrary unit continuous-valued hidden vector and (b)
for multiple GLMs such as the cosine neuron, the phase retrieval problem, and the CLWE problem.
However, for noiseless phase retrieval, we note that the optimal sample complexity of d + 1 has
previously been achieved by [And+17] using an LLL-based algorithm very similar to ours.
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1.2 Main Contributions: the Hardness Landscape of Learning Cosine Neurons

In this work, we thoroughly study the hardness of improperly learning single cosine neurons over
isotropic d-dimensional Gaussian data. We study them under the existence of a small amount
of adversarial noise per sample, call it β ≥ 0, which we prove is necessary for the hardness to
take place. Specifically we study improperly (weakly) learning in the squared loss sense, the
function f(x) = cos(2πγ〈w, x〉), for some hidden direction w ∈ Sd−1, from m samples of the form

zi = f(xi) + ξi, i = 1, . . . ,m where xi
i.i.d.∼ N(0, Id) and arbitrary |ξi| ≤ β.

Information-theoretic bounds under constant noise. We first address the statistical, or also
known as information-theoretic, question of understanding for which noise level β one can hope to
learn f(x) from polynomially in d many samples, by using computationally unconstrained estimators.
Since the range of the functions f = fw is the interval [−1, 1] it is a trivial observation that for any
β ≥ 1 learning is impossible. This follows because the (adversarial) noise could then produce always
the uninformative case where zi = 0 for all i = 1, . . . ,m.

Our first result (see Section 3.1 for details), is a design and analysis of an algorithm which
runs in O(exp(d log(γ/β))) time and satisfies the following property. For any β smaller than a
sufficiently small constant, the output hypothesis of the algorithm learns the function f with
access to O(d log(γ/β)) samples, with high probability. To the best of our knowledge, such an
information-theoretic result has not appeared before in the literature of learning a single cosine
neuron. We consider this result essential and reassuring as it implies that the learning task is
statistically achievable if β is less than a small constant. Therefore, any hardness claim in terms of
polynomial-time algorithms aiming to learn this function class is meaningful and implies an essential
computational barrier.

Cryptographic hardness under moderately small noise. Our second and main result, pre-
sented in Section 3.2, is a reduction establishing that (weakly) learning this function class under any
β which scales at least inverse polynomially with d, i.e. β ≥ d−C for some constant C > 0, is as
hard as a worst-case lattice problem on which the security of lattice-based cryptography is based on.

Theorem 1.1 (Informal). Consider the function class Fγ = {fγ,w(x) = cos(2πγ〈x,w〉) | w ∈ Sd−1}.
Weakly learning Fγ over Gaussian inputs x ∼ N(0, Id) under any inverse-polynomial adversarial
noise when γ ≥ 2

√
d and β = 1/poly(d), is hard, assuming worst-case lattice problems are secure

against quantum attacks.

The exact sense of cryptographic hardness used is that weakly learning the single cosine neuron
under the described assumptions, reduces to solving a worst-case lattice problem, known as the
approximate Shortest Vector Problem (SVP). The approximation factor of SVP obtained in our
reduction, is not known to be NP-hard [AR05], but it is widely believed to be computationally hard
against any polynomial-time algorithm, including quantum algorithms [MR09]. The reduction makes
use of a recently developed average-case detection problem, called Continuous Learning with Errors
(CLWE) [Bru+21] which has been established to be hard under the same hardness assumption on
SVP. Our reduction shows that weakly learning the single cosine neuron in polynomial time, implies
a polynomial-time algorithm for solving the CLWE problem (see Section 2 for the definition). The
link here between the two settings comes from the periodicity of the cosine function, and the fact
that the CLWE has an appropriate mod 1 structure, as well.

Interestingly, our reduction works for any class of function g(x) = φ(γ〈w, x〉) where φ is a
1-periodic and O(1)-Lipschitz function and under γ ≥ 2

√
d, generalizing the hardness claim much

beyond the single cosine neuron. Moreover, our reduction shows that the computational hardness in
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fact applies to a certain position-dependent random noise model, instead of bounded adversarial
noise (See Remark 3.5). Lastly, as mentioned above, we highlight that this is a (conditional) lower
bound against any polynomial-time estimator, not just SQ or gradient-based methods.

Polynomial-time algorithm under exponentially small noise. We finally address the ques-
tion of whether there is some polynomial-time algorithm that can weakly learn the single cosine
neuron, in the presence of potentially exponentially small noise. Notably, the current lower bound
with respect to SQ [Son+17] or gradient based methods [Sha18] apply without any noise assumption
per-sample, raising the suspicion that no “standard” learning method works even in the case β = 0.

We design and analyze an algorithm for the single cosine neuron which provably succeeds in
learning the function f = fw when β ≤ exp(−Õ(d3)), and with access to only d+ 1 samples. Note
that this sample complexity is perhaps surprising: one needs only one more sample than just receiving
the samples in the “pure” linear system form 〈w, xi〉 instead of cos(2πγ〈w, xi〉) + ξi. The algorithm
comes from reducing the problem to an integer relation detection question and then make a careful
use of the powerful Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algorithm [LLL82] to solve
it in polynomial time. The integer relation detection allows us to recover the (unknown) integer
periods naturally occuring because of the periodicity of the cosine, which then allows us to provably
“invert” the cosine, and then learn the hidden direction w simply by solving a linear system and then
the function.

The LLL algorithm is a celebrated algorithm in theoretical computer science and mathematics,
which has rarely been used in the learning literature (with the notable recent exceptions [And+17,
ZG18, GKZ19]). We consider our connection between learning the single cosine neuron, integer
relation detection and the LLL algorithm, a potentially interesting algorithmic novelty of the present
work. We note that [Bru+21] likewise use the LLL algorithm to solve CLWE in the noiseless setting.
When applied to CLWE, our algorithm, via a significantly more involved application of the LLL
algorithm and careful analysis, improves upon their algorithm in terms of both sample complexity
and noise-tolerance.

Application to noiseless phase retrieval: d + 1 samples suffice. Notice that the cosine
activation function loses information in two distinct steps: first it “loses” the sign, since it is an even
function, and then it “loses” localisation beyond its period (fixed at [−1/2, 1/2)). As a result, any
algorithm learning the cosine neuron (such as our proposed LLL-based algorithm) can be immediately
extended to solve the two separate cases, where one only loses the sign (which is known as the phase
retrieval problem in high dimensional statistics) or only the localisation (which is known as the
CLWE problem in cryptography). In particular, the noiseless cosine learning problem ‘contains’ the
phase retrieval problem, where one is asked to recover an unknown vector w from measurements
|〈xi, w〉|, since cos(2πγ〈w, xi〉) = cos(2πγ|〈xi, w〉|). Therefore, as an immediate consequence of our
algorithmic results, we achieve the optimal sample complexity of noiseless1 phase retrieval. As
mentioned previously, this algorithmic result, while interesting and a consequence of our analysis
for cosine learning, has already been established in the prior work [And+17] using a very similar
LLL-based algorithm.

We note that achieving in polynomial-time the optimal sample complexity is perhaps of indepen-
dent interest from a pure algorithm design point of view. While Gaussian elimination can trivially

solve for w given d samples of the form 〈xi, w〉 where xi
i.i.d.∼ N(0, Id), our algorithm shows that by

“losing” the sign of 〈xi, w〉 one needs only one sample more to recover again w in polynomial-time.

1Or exponentially small noise; see Corollary 3.11 for the precise statement
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Figure 1: Our results at a glance for weakly learning the class Fγ . Section 3.1 describes information-
theoretical limits, Section 3.2 presents the reduction from CLWE, while Section 3.3 introduces an
efficient algorithm based on LLL.

However, we remark that the LLL algorithm has a running time of O(d6 log3M) [NS09]2, where d is
the dimension and M is the maximum ℓ2-norm of the given lattice basis vectors, which can relatively
quickly become computationally challenging with increasing dimension despite its polynomial time
complexity. We refer the reader to Section 3.4 for a formal statement of the phase retrieval problem
and our results.

1.3 Future Directions

Our results heavily rely on the specific nature of the periodic activation function, so a natural
question is to which extent our results can be extended beyond the single periodic neuron class.

• For lower bounds, a challenging but very interesting generalization would be to establish the
cryptographic-hardness of learning certain family of GLMs whose activation function does
not need to be periodic. A potentially easier route forward on this direction, would be to
consider the Hermite decomposition of the activation function, similar to [AGJ21], and establish
lower bounds on the performance of low-degree methods [KWB19], of SGD [AGJ21], or of
local search methods methods [GZ19b], for activation functions whose low-degree Hermite
coefficients are exponentially small.

• For upper bounds, we believe that our proposed LLL-based algorithm may be extended beyond
learning even periodic activation functions, such as the cosine activation, by appropriately
post-processing the measurements, but leave this for future work. Furthermore, it would
be interesting to better understand (empirically or analytically) the noise tolerance of our
LLL-based algorithm for “low-frequency” activation functions, such as the absolute value
underlying the phase retrieval problem which has “zero” frequency.

2 Definitions and Notations

Distribution-specific PAC-learning. We consider the problem of learning a sequence of real-
valued function classes {Fd}d∈N, each over the standard Gaussian input distribution on R

d, an
instance of what is called distribution-specific PAC learning [Kha93, Sha18]. The input is a multiset
of i.i.d. labeled examples (x, y) ∈ R

d × R, where x ∼ N(0, Id), y = f(x) + ξ, f ∈ Fd, and ξ ∈ R is
some type of observation noise. We denote by D = Df the resulting data distribution. The goal

2The L
2 algorithm by [NS09] speeds up LLL using floating-point arithmetic, but the running time still grows faster

than O(d5).
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of the learner is to output an hypothesis h : Rd → R that is close to the target function f in the
squared loss sense over the Gaussian input distribution. We say a learning algorithm is proper if it
outputs an hypothesis h ∈ Fd. On the other hand, we say a learning algorithm is improper if h is not
necessarily in Fd [SB14]. We omit the index d, when the input dimension is clear from the context.

We denote by ℓ : R × R → R≥0 the squared loss function defined by ℓ(y, z) = (y − z)2. For a
given hypothesis h and a data distribution D on pairs (x, z) ∈ R

d × R, we define its population loss
LD(h) over a data distribution D by

LD(h) = E
(x,y)∼D

[ℓ(h(x), y)] . (1)

Definition 2.1 (Weak learning). Let ǫ = ǫ(d) > 0 be a sequence of numbers, δ ∈ (0, 1) a fixed
constant, and let {Fd}d∈N be a sequence of function classes defined on input space R

d. We say that a
(randomized) learning algorithm A ǫ-weakly learns {Fd}d∈N over the standard Gaussian distribution if
for every f ∈ Fd the algorithm outputs a hypothesis hd such that for large values of d with probability
at least 1− δ

LDf
(hd) ≤ LDf

(E[f(x)])− ǫ .

Note that E[f(x)] is the best constant predictor for the data distribution D = Df . Hence, we refer to
LD(E[f(x)]) = VarZ∼N(0,Id)(f(Z)), as the trivial loss, and ǫ as the edge of the learning algorithm.

From simplicity, we refer to an hypothesis as weakly learning a function class if it can achieve
edge ǫ which is depending inverse polynomially in d.

Periodic Neurons. Let γ = γ(d) > 1 be a sequence of numbers indexed by the input dimension

d ∈ N, and let φ : R→ [−1, 1] be an 1-periodic function. We denote by Fφ
γ the function class

Fφ
γ = {f : Rd → [−1, 1] | f(x) = φ(γ〈w, x〉), w ∈ Sd−1} (2)

Note that each member of the function class Fφ
γ is fully characterized by a unit vector w ∈ Sd−1.

We refer such function classes as periodic neurons.

Cosine Learning. We define the cosine distribution on dimension d with frequency γ = γ(d),
adversarial noise rate β = β(d), and hidden direction w ∈ Sd−1 to be the distribution of samples of

the form (x, z) ∈ R
d × R, where x

i.i.d.∼ N(0, Id), some bounded adversarial noise |ξ| ≤ β, and

z = cos(2πγ〈w, x〉) + ξ. (3)

The cosine learning problem consists of weakly learning the cosine distribution, per Definition 2.1.
This learning problem is the central subject of our analysis. Hence, we slightly abuse notation and
denote the corresponding cosine function class by

Fγ = {cos(2πγ〈w, x〉) | w ∈ Sd−1}. (4)

Continuous Learning with Errors (CLWE) [Bru+21]. We define the CLWE distribution
Aw,β,γ on dimension d with frequency γ = γ(d) ≥ 0, and noise rate β = β(d) ≥ 0 to be the distribution
of i.i.d. samples of the form (x, z) ∈ R

d×[−1/2, 1/2) where for independent x ∼ N(0, Id), ξ ∼ N(0, β)
and

z = γ〈x,w〉+ ξ mod 1 . (5)
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Note that for the mod 1 operation, we take the representatives in [−1/2, 1/2). The CLWE problem
consists of detecting between i.i.d. samples from the CLWE distribution or an appropriate null
distribution. In the context of CLWE, we refer to the distribution N(0, Id)× U([−1/2, 1/2)) as the
null distribution and denote it by A0. Given γ = γ(d) and β = β(d), we consider a sequence of
decision problems {CLWEβ,γ}d∈N, indexed by the input dimension d, in which the learner is given
samples from an unknown distribution D such that either D ∈ {Aw,β,γ | w ∈ Sd−1}, and D = A0.
The algorithm is asked to decide whether D ∈ {Aw,β,γ | w ∈ Sd−1} or D = A0 in polynomial-time.
Under this setup, we define the advantage of an algorithm as the difference between the probability
that it correctly detects samples from D ∈ {Aw,β,γ | w ∈ Sd−1}, and the probability that errs
(decides “D 6= A0”) given samples from D = A0. We call the advantage negligible if it decays
superpolynomially. For a more detailed setup of this problem, we refer the reader to Appendix A.

Bruna et al. [Bru+21] showed worst-case evidence that the CLWE problem is computationally
hard even with inverse polynomial noise rate β if γ ≥ 2

√
d, despite its seemingly mild requirement of

non-negligible advantage. In fact, their evidence of computational intractability is based on worst-case
lattice problems called the Shortest Vector Problem (SVP) [MG02]. In particular, they showed that
distinguishing a typical CLWE distribution, where the randomness is over the uniform choice of
hidden direction w ∈ Sd−1, from the null distribution is as hard as solving the worst instance of
approximate SVP. For a formal definition of the approximate SVP, we refer the reader to Appendix A,
but note that the (quantum) worst-case hardness of this lattice problems is widely-believed by the
cryptography community [MR09] (See Conjecture 2.3).

Theorem 2.2 ([Bru+21, Corollary 3.2]). Let β = β(d) ∈ (0, 1) and γ = γ(d) ≥ 2
√
d such that γ/β is

polynomially bounded. Then, there is a polynomial-time quantum reduction from O(d/β)-approximate
SVP to CLWEβ,γ.

Conjecture 2.3 ([MR09, Conjecture 1.2]). There is no polynomial-time quantum algorithm that
approximates SVP to within polynomial factors.

Weak learning and parameter recovery. Recall that every element of the function class Fγ

is fully characterized by the hidden unit vector w ∈ Sd−1. Hence, one possible strategy towards
achieving weak learning of the cosine distribution, could be to recover the vector w from samples of
the form (3). The following lemma (proven in Appendix G) shows that given any w′ sufficiently
close to w one can construct an hypothesis that weakly learns the function f(x) = cos(2πγ〈w, x〉).

Proposition 2.4. Suppose γ = ω(1). For any w′ ∈ Sd−1 with min{‖w − w′‖22, ‖w + w′‖22} ≤
1/(16π2γ2), the functions hA(x) = cos(2πγ〈A, x〉), A ∈ {w′, w} satisfy for large values of d that

Ex∼N(0,Id)[ℓ((hw(x), hw′(x))] ≤ Varx∼N(0,Id)[(hw(x))
2]− 1/12.

The LLL algorithm and integer relation detection. In our algorithmic result, we make use
of an appropriate integer relation detection application of the celebrated lattice basis reduction LLL
algorithm [LLL82]. We say that for some b ∈ R

n the vector m ∈ Z
n \ {0} is an integer relation for

b if 〈m, b〉 = 0. We make use of the following theorem, and we refer the interested reader to the
Appendix D for a complete proof and intuition behind the result.

Theorem 2.5. Let n,N ∈ N. Suppose b ∈ (2−N
Z)n with b1 = 1. Let also m ∈ Z

n be an integer
relation of b. Then an appropriate application of the LLL algorithm with input b outputs an
integer relation m′ ∈ Z

n of b with ‖m′‖2 = O(2n/2‖m‖2‖b‖2) in time polynomial in n,N and
log(‖m‖∞‖b‖∞).
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Notation. Let Z denote the set of integers and R denote the set of real numbers. For a ∈ R,
We use Z≥a and R≥a for the set of integers at least equal to a, and for the set of real numbers at
least equal to a, respectively. We denote by N = Z≥1 the set of natural numbers. For k ∈ N we set
[k] := {1, 2, . . . , k}. For d ∈ N, 1 ≤ p <∞ and any x ∈ R

d, ‖x‖p denotes the p−norm (
∑d

i=1 |xi|p)1/p
of x, and ‖x‖∞ denotes max1≤i≤d |xi|. Given two vectors x, y ∈ R

d the Euclidean inner product

is 〈x, y〉 := ∑d
i=1 xiyi. By log : R+ → R we refer the natural logarithm with base e. For x ∈ Z

and N ∈ N we denote by (x)N := sgn(x)⌊2Nx⌋/2N . Throughout the paper we use the standard
asymptotic notation, o, ω,O,Θ,Ω for comparing the growth of two positive sequences (ad)d∈N and
(bd)d∈N: we say ad = Θ(bd) if there is an absolute constant c > 0 such that 1/c ≤ ad/bd ≤ c;
ad = Ω(bd) or bd = O(ad) if there exists an absolute constant c > 0 such that ad/bd ≥ c; and
ad = ω(bd) or bd = o(ad) if limd ad/bd = 0. We say x = poly(d) if for some 0 ≤ q < r it holds
Ω(dq) = x = O(dr).

3 Main Results

In this section we present our main results towards understanding the fundamental hardness of
(weakly) learning the single cosine neuron class given by (4). We present our results in terms of
signal to noise ratio (SNR) equal to 1/β, where recall that β > 0 is an upper bound on the level of
adversarial noise ξ one may introduce at the samples given by (3). All proofs of the statements are
deferred to the appendices of each subsection.

A key correspondence. At the heart of our main results are the following simple elementary
equalities that hold for all v ∈ R, and may help the intuition of the reader.

cos(2π(v mod 1)) = cos(2πv) (6)

arccos(cos(2πv)) = 2π|v mod 1| , (7)

where in Eq (7), we recall that our mod 1 operation takes representatives in [−1/2, 1/2).
An immediate outcome of these equalities, is a key correspondence between the labels of cosine

samples and “phaseless” CLWE samples, where we reminder the reader that the notion of a CLWE
sample is defined in (5). By (6), applying the cosine function to CLWE labels results in the cosine
distribution with the same frequency, and hidden direction. Conversely, by (7), applying arccos to
cosine labels results in an arguably harder variant of CLWE, in which the (mod 1)-signs of the labels
are dropped, with again the same frequency and hidden direction. We say this “phaseless” variant of
CLWE is harder than CLWE as we can trivially take the absolute value of CLWE labels to obtain
these phaseless CLWE samples, and so an algorithm for solving phaseless CLWE automatically
implies an algorithm for CLWE.

We have ignored the issue of additive noise for the sake of simplicity in the above discussion.
Indeed, the amount of noise in the samples is a key quantity for characterizing the difficulty of these
learning problems and the main technical challenge in carrying the reduction between learning single
cosine neurons and CLWE. In subsequent sections, we carefully analyze the interplay between the
noise level and the computational difficulty of these learning problems.

3.1 The Information-Theoretically Possible Regime: Small Constant Noise

Before discussing the topic of computational hardness, we address the important first question of
identifying the noise levels β under which some estimator, running in potentially exponential time,
can weakly learn the class of interest from polynomially many samples. Note that any constant
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Algorithm 1: Information-theoretic recovery algorithm for learning cosine neurons

Input: Real numbers γ = γ(d) > 1, β = β(d), and a sampling oracle for the cosine
distribution (3) with frequency γ, β-bounded noise, and hidden direction w.

Output: Unit vector ŵ ∈ Sd−1 s.t. min{‖ŵ − w‖2, ‖ŵ + w‖2} = O(arccos(1− β)/γ).

Let τ = arccos(1− β)/(2π), ǫ = 2τ/γ, m = 64d log(1/ǫ), and let C be an ǫ-cover of the unit
sphere Sd−1. Draw m samples {(xi, yi)}mi=1 from the cosine distribution (3).

for i = 1 to m do
zi = arccos(yi)/(2π)

for v ∈ C do
Compute Tv = 1

m

∑m
i=1 ✶ [|γ〈v, xi〉 − zi mod 1| ≤ 3τ ] + ✶ [|γ〈v, xi〉+ zi mod 1| ≤ 3τ ]

return ŵ = argmaxv∈C Tv.

level of noise above 1, that is β ≥ 1, would make learning impossible for trivial reasons. Indeed, as
the cosine takes values in [−1, 1] if β ≥ 1 all the labels zi can be transformed to the uninformative
0 value because of the adversarial noise. One can naturally wonder whether any estimator can
succeed at the presence of some constant noise level β ∈ (0, 1). In this section, we establish that
for sufficiently small but constant β > 0 weak learning is indeed possible with polynomially many
samples by running an appropriate exponential-time estimator.

Towards establishing this result, we leverage Proposition 2.4, according to which to achieve weak
lernability it suffices to construct an estimator that achieves ℓ2 recovery of w or −w with an ℓ2 error
O(1/γ). For this reason, we build an exponential-time algorithm that can provably obtain this ℓ2
guarantee.

Theorem 3.1 (Information-theoretic upper bound). For some constants c0, C0 > 0 (e.g. c0 =
1 − cos( π

200), C0 = 40000) the following holds. Let d ∈ N and let γ = γ(d) > 1, β(d) ≤ c0, and
τ = arccos(1− β)/(2π). Moreover, let P be data distribution given by (3) with frequency γ, hidden
direction w, and noise level β. Then, there exists an exp(O(d log(γ/τ)))-time algorithm using
O(d log(γ/τ)) i.i.d. samples from P that outputs a direction ŵ ∈ Sd−1 satisfying min{‖ŵ−w‖22, ‖ŵ+
w‖22} ≤ C0τ

2/γ2 with probability 1− exp(−Ω(d)).

The following corollary follows immediately from Theorem 3.1, Proposition 2.4 and the elementary
identity that arccos(1− β) = Θ(

√
β) for small β.

Corollary 3.2. Under the assumptions of Theorem 3.1 there exists some sufficiently small c1 > 0,
such that if β ≤ c1 there exist a exp(O(d log(γ/β)))-time algorithm using O(d log(γ/β)) i.i.d. samples
from P that weakly learns the function class Fγ.

The proof of both Theorem 3.1 and Corollary 3.2 can be found in Appendix B.
The exponential-time algorithm achieving the guarantees of Theorem 3.1 is described in Algorithm

1 and proceeds as following. First, it needs to construct an ǫ-cover C of the sphere Sd−1 where
ǫ = τ/γ. Note that this step already requires at least exponential-time as any such cover needs to
be of exponential size. Furthermore, note that such a construction is indeed possible in exponential
time by just drawing O(N logN) uniform random points on the sphere where N ≈ ǫ−d is the
ǫ-covering number of the sphere. Following that it assigns a score to each point in the cover, call it
v, which simply counts the number of samples that could have been possibly produced under the
assumption that the vector v was the true hidden vector. The algorithm then outputs the element
of maximum score. The analysis then proceeds by a careful probabilistic reasoning to claim that
the maximizer needs to land O(1/γ)-close to the true hidden vector (or its antipode), something
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true for all β less than a sufficiently small constant. Finally, notice that to properly choose the
appropriate quantification of the score assignment the algorithm uses the “key correspondence” (7)
to transform the samples into “phaseless CLWE samples”, which allowed for a cleaner presentation
of the algorithm and an easier analysis. We refer the reader to Appendix B for full details.

3.2 The Cryptographically Hard Regime: Polynomially Small Noise

Given the results in the previous subsection, we discuss now whether a polynomial-time algorithm
can achieve weak learnability of the class Fγ for some noise level β smaller than an inverse polynomial
quantity in d, which we call an inverse-polynomial edge, per Definition 2.1. We answer this in
the negative by showing a reduction from CLWE to the problem of weakly learning Fγ to any
inverse-polynomial edge. This implies that a polynomial-time algorithm for weakly learning Fγ

would yield polynomial-time quantum attacks against worst-case lattice problems, which are widely
believed to be hard against quantum computers. As mentioned in the introduction, our reduction
applies with any 1-periodic and O(1)-Lipschitz activation φ. We provide a proof sketch below, and
defer the full details to Appendix C.

Theorem 3.3. Let d ∈ N, γ = ω(
√
log d), β = β(d) ∈ (0, 1). Moreover, let L > 0, let φ : R→ [−1, 1]

be an L-Lipschitz 1-periodic univariate function, and τ = τ(d) be such that β/(Lτ) = ω(
√
log d).

Then, a polynomial-time (improper) algorithm that weakly learns the function class Fφ
γ = {fγ,w(x) =

φ(γ〈w, x〉) | w ∈ Sd−1} over Gaussian inputs x
i.i.d.∼ N(0, Id) under β-bounded adversarial noise

implies a polynomial-time algorithm for CLWEτ,γ.

By the hardness of CLWE (Theorem 2.2) and our Theorem 3.3, we can immediately deduce the
cryptographic hardness of learning the single cosine neuron under inverse polynomial noise.

Corollary 3.4. Let d ∈ N, γ = γ(d) ≥ 2
√
d and τ = τ(d) ∈ (0, 1) be such that γ/τ = poly(d),

and β = β(d) be such that β/τ = ω(
√
log d). Then, a polynomial-time algorithm that weakly learns

the cosine neuron class Fγ under β-bounded adversarial noise implies a polynomial-time quantum
algorithm for O(d/τ)-approximate SVP.

Proof sketch of Theorem 3.3. Recall that the goal is to reduce CLWEτ,γ to the problem of weakly

learning the function class Fφ
γ . Now, CLWEτ,γ is the problem of distinguishing the distribution Aw,τ,γ

which outputs samples of the form (x, z) where z = γ〈w, x〉+ ξ, x ∼ N(0, Id), ξ ∼ N(0, τ), for some
hidden direction w ∈ Sd−1, from the null distribution A0 which outputs (x, z) where x ∼ N(0, Id)
but z ∼ U [−1/2, 1/2] independent from x. Notice that (similar to Eq (6)) the 1-periodicity and the
Lipschitzness of φ implies that for any γ ≥ 0, w ∈ Sd−1, x ∈ R

d, and ξ ∈ R,

φ(zi) = φ(γ〈w, x〉+ ξ mod 1) = φ(γ〈w, x〉+ ξ) = φ(γ〈w, x〉) + ξ̃′ , (8)

for some ξ̃ ∈ [−L|ξ|, L|ξ|]. Using Eq. (8) one can then directly use m CLWE samples with Gaussian

random noise, say, (xi, zi), and transform them into m samples from Dφ
w with bounded adversarial

noise by Lτ ≤ β, by simply considering the pairs (xi, φ(zi)), i = 1, 2, . . . ,m.

Let us suppose now we have a learning algorithm that weakly learns the function class Fφ
γ with

β-bounded adversarial noise. Then we can draw m samples from Aw,τ,γ , transform them as above

into samples from Dφ
w, run the (robust) learning algorithm on Dφ

w, and finally obtain an hypothesis

h = h(xi, φ(zi)) that weakly learns the function class Fφ
γ . On the other hand, samples from A0 have

labels zi independent with xi and therefore are completely uninformative for the learning problem
of interest. In particular, one can never hope to achieve weak learning of the function class Fφ

γ ,
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Algorithm 2: LLL-based algorithm for learning the single cosine neuron.

Input: i.i.d. noisy γ-single cosine neuron samples {(xi, zi)}d+1
i=1 .

Output: Unit vector ŵ ∈ Sd−1 such that min(‖ŵ − w‖, ‖ŵ + w‖) = exp(−Ω((d log d)3)).
for i = 1 to d+ 1 do

zi ← sgn(zi) ·min(|zi|, 1)
z̃i = arccos(zi)/(2π) mod 1

Construct a d× d matrix X with columns x2, . . . , xd+1, and let N = d3(log d)2.
if det(X) = 0 then

return ŵ = 0 and output FAIL

Compute λ1 = 1 and λi = λi(x1, . . . , xd+1) given by (λ2, . . . , λd+1)
⊤ = X−1x1.

Set M = 23d and ṽ =
(
(λ2)N , . . . , (λd+1)N , (λ1z1)N , . . . , (λd+1zd+1)N , 2−N

)
∈ R

2d+2

Output (t1, t2, t) ∈ Z
d+1 × Z

d+1 × Z from running the LLL basis reduction algorithm on the
lattice generated by the columns of the following (2d+ 3)× (2d+ 3) integer-valued matrix,

(
M2N (λ1)N M2N ṽ

0(2d+2)×1 I(2d+2)×(2d+2)

)

Compute g = gcd(t2), by running Euclid’s algorithm.
if g = 0 ∨ (t2/g) /∈ {−1, 1}d+1 then

return ŵ = 0 and output FAIL

ŵ ← SolveLinearEquation(w′, X⊤w′ = (t2/g)z + (t1/g))
return ŵ/‖ŵ‖ and output SUCCESS.

using the hypothesis function h = h(xi, φ(zi)) on the samples (xi, zi) now generated from A0. This
difference is quantified by the loss of the hypothesis LD(h) which in case D = Aw,τ,γ , is smaller by
an inverse polynomial additive factor from the trivial error, while in the case in case D = A0 it is
lower bounded by the trivial error. This property is what allows indeed to detect between Aw,τ,γ

and A0, and therefore solve CLWEβ,γ and complete the reduction.

Remark 3.5 (Robust learning under position-dependent random noise is hard). Robustness against
advesarial noise in Theorem 3.3 is not necessary for computational hardness. In fact, the reduction
only requires robustness against a certain position-dependent random noise. More precisely, for a
fixed hidden direction w ∈ Sd−1, the random noise ξ̃ is given by ξ̃ = φ(γ〈w, x〉 + ξ) − φ(γ〈w, x〉),
where x ∼ N(0, In) and ξ ∼ N(0, β).

3.3 The Polynomial-Time Possible Regime: Exponentially Small Noise

In this section, in sharp contrast with the previous section, we design and analyze a novel polynomial-
time algorithm which provably weakly learns the single cosine neuron with only d+ 1 samples, when
the noise is exponentially small. The algorithm is based on the celebrated lattice basis reduction LLL
algorithm and its specific application obtaining the integer relation detection guarantee described in
Theorem 2.5. Let us also recall from notation that for a real number x and N ∈ Z≥1, we denote by
(x)N := sgn(x)⌊2Nx⌋/2N . We establish the following result, proved in Appendix D.

Theorem 3.6. Suppose that 1 ≤ γ ≤ dQ for some fixed Q > 0, and β ≤ exp(−(d log d)3). Then
Algorithm 2 with input (xi, zi)i=1,...,d+1 i.i.d. samples from (3) with frequency γ, hidden direction w
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and noise level β, outputs w′ ∈ Sd−1 with

min{‖w′ − w‖2, ‖w′ + w‖2} = O

(
β

γ

)
=

1

γ
exp(−Ω((d log d)3)) ,

and terminates in poly(d) steps, with probability 1− exp(−Ω(d)). Moreover, if the algorithm skips
the last normalization step, the output w′ ∈ R

d satisfies min{‖w′ − γw‖2, ‖w′ + γw‖2} = O (β) =
exp(−Ω((d log d)3)).

In particular, by combining our result with Proposition 2.4, one concludes the following result.

Corollary 3.7. Suppose that ω(1) = γ = poly(d) and β ≤ exp(−(d log d)3). Then there exists a
polynomial-in-d time algorithm using d + 1 samples from a single cosine neuron distribution (3),
with frequency γ and noise level β, that weakly learns the function class Fγ .

Proof sketch of Theorem 3.6. For the purposes of the sketch let us focus on the noiseless case,
explaining at the end how an exponentially small tolerance is possible. In this setting, we receive m
samples of the form zi = cos(2π〈w, xi〉), i ∈ [m]. The algorithm then uses the arcosine and obtains
the “phaseless” CLWE values z̃i which according to (7) satisfy for some unknown ǫi ∈ {−1, 1},Ki ∈ Z

〈w, xi〉 = ǫiz̃i+Ki. Notice that if we knew the integer values of ǫi,Ki, since we know z̃i, the problems
becomes simply solving a linear system for w. The algorithm then leverages the application of the
powerful LLL algorithm to perform integer relation detection and identify the values of ǫi,Ki, as
stated in Theorem 2.5. The way it does it is as follows. It first finds coefficients λi, i = 1, 2, . . . , d+ 1
such that

∑d+1
i=1 λixi = 0 which can be easily computed because we have d+ 1 vectors in R

d. Then
using the definition of z̃i, the relation between the coefficient implies the identity

d+1∑

i=1

ǫiλiz̃i +
d+1∑

i=1

Kiλi =
d+1∑

i=1

λi〈xi, w〉 = 0. (9)

In particular, the ǫi,Ki are coefficients in an integer relation connecting the known numbers
λizi, λi, i = 1, 2, . . . , d+ 1. Now, an issue is that as one cannot enter the real numbers as input for
the lattice-based LLL, the algorithm truncates the numbers to the first N bits and then hope that
post-truncation all the near-minimal integer relations between these truncated numbers remain a
(small multiple of) ǫi,Ki, a sufficient condition so that LLL can identify them based on Theorem
2.5. We establish that indeed this the case and this is the most challenging part of the argument.
The argument is based on some careful application of the anticoncentration properties of low-degree
polynomials (notice that the λi are rational functions of xi by Cramer’s rule), to deduce that
the numbers λi, λizi are in “sufficient general position”, in terms of rational independence, for the
argument to work. We remark that this is a potentially important technical advancement over
the prior applications of the LLL algorithm towards performing such inference tasks, such as for
average-case subset sum problems [LO85, Fri86] or regression with discrete coefficients [ZG18, GKZ19]
where the corresponding λi, λizi coefficients are (truncated) i.i.d. continuous random variables in
which case anticoncentration is immediate (see e.g. [ZG18, Theorem 2.1]). The final step is to prove
that the algorithm is able to tolerate some noise level. We establish that indeed if N = Θ̃(d3) then
indeed the argument can still work and tolerate exp(−Θ̃(d3))-noise by showing that the near-minimal
integer relations remain unchanged under this level of exponentially small noise.

Remark 3.8. While the main recovery guarantee in Theorem 3.6 is stated in terms of the hidden
direction w ∈ Sd−1, Algorithm 2 in fact also recovers the vector γw (up to global sign), if one skips
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the last line of the algorithm, which normalises the output to the unit sphere. Such recovery is shown
as a crucial step towards establishing the main result. This stronger recovery will be used in the next
section.

Remark 3.9 (CLWE with exponentially small noise). Notice that the detection problem in CLWE
(5) reduces to the cosine learning problem (3). Indeed, if ž = γ〈x,w〉+ ξ̌ mod 1 ∈ [−1/2, 1/2) is a
CLWE sample, then z = cos(ž) satisfies

z = cos(2πγ〈x,w〉) + ξ ,

with |ξ| ≤ 2πγ|ξ̌|. Algorithm 2 and the associated analysis Theorem 3.6 thus improve upon the exact
CLWE recovery of [Bru+21, Section 6] in two aspects: (i) it requires d+ 1 samples as opposed to d2;
and (ii) it tolerates exponentially small noise.

Remark 3.10 (CLWE with subexponentially small noise). The intermediate regime of subex-
ponentially small noise, which corresponds to the uncharted region between “Crypto-Hard” and
“Polynomial-Time Possible” in Figure 1 where β = exp(−Θ(dc)) for some c ∈ (0, 1), has not been
explored in our work. However, we conjecture that this regime is still hard for polynomial-time
algorithms. While [Bru+21] did not consider this noise regime for the CLWE problem, given the
problem’s analogy to the LWE problem [Reg05], it is plausible that the quantum reduction from
CLWE to approximate SVP also applies for subexponentially small noise, since the quantum reduc-
tion for LWE extends to subexponentially small noise. That is, it is possible that the requirement
γ/β = poly(d) in Theorem 2.2 can be relaxed, given the high degree of similarity between CLWE
and LWE. If this is true, then a polynomial-time algorithm for CLWE with γ ≥ 2

√
d and β ∈ (0, 1)

implies a polynomial-time quantum algorithm for O(d/β)-approximate SVP. Hence, by Theorem 3.3,
a polynomial-time algorithm for our setting with subexponentially small noise would yield a “break-
through” quantum algorithm for approximate SVP, since no polynomial-time algorithms are known
to achieve subexponential approximation factors of the form 2O(dc) for any constant c < 1. In more
detail, the best known algorithms for approximate SVP are lattice block reductions, such as the Block
Korkin-Zolotarev (BKZ) algorithm and its variants [Sch87, SE94, MW16], or slide reductions [GN08,
Agg+20]. These block reduction algorithms, which can be seen as generalizations of the LLL algorithm,
trade-off running time for better SVP approximation factors. However, none is known to achieve
SVP approximation factor 2O(dc) for any constant c < 1 in polynomial time.

3.4 Exact Recovery for Phase Retrieval with Optimal Sample Complexity

Phase retrieval is a classic inverse problem [Fie82] with important applications in computational
physics and signal processing, and which has been thoroughly studied in the high-dimensional
statistics and non-convex optimization literature [BCE06, JEH15, GS18, MM18, Bar+19, Che+19,
Man+20, MVZ20, MUZ21]. In the noiseless setting, the phase retrieval problem asks one to exactly
recover a hidden signal w ∈ R

d, up to global symmetry ±w, given sign-less measurements of the
form

y = |〈x,w〉| .

As mentioned in Section 1.2, our cosine learning problem can be seen as “containing” the phase
retrieval problem since the even-ness of the cosine function immediately “erases” the sign of the inner
product 〈x,w〉. More precisely, the phase retrieval problem can be reduced to the cosine learning
problem by simply applying the cosine function to the measurements and noticing that

cos(2π|〈x,w〉|) = cos(2π〈x,w〉) .
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Hence, Algorithm 2, without the last normalization step (see Remark 3.8), can be immediately
used to exactly solve phase retrieval under exponentially small noise. Formally, Theorem 3.6 (for
γ = ‖w‖2) certifies near exact recovery for (Gaussian) phase retrieval using only d+ 1 samples:

Corollary 3.11 (Recovery of Phase Retrieval under exponentially small noise). Let us consider
noise level β ≤ (2π)−1 exp(−(d log d)3), and arbitrary w ∈ R

d such that 1 ≤ ‖w‖2 = poly(d). Suppose
{(xi, yi)}i=1,...d+1 are i.i.d. samples of the form xi ∼ N(0, Id) and yi = |〈xi, w〉|+ ξ̌i, with arbitrary
|ξ̌i| ≤ β. Then Algorithm 2 with input {(xi, zi = cos(2πyi))}i=1,...d+1 returns an un-normalized output
w′ satisfying min{‖w′ − w‖2, ‖w′ + w‖2} = O(β) and terminates in poly(d) steps, with probability
1− exp(−Ω(d)).

Remarkably, our lattice-based algorithm improves upon the AMP-based algorithm analysed
in [Bar+19], which requires m ≈ 1.128d in the high-dimensional regime for exact recovery, and
therefore shows that AMP is not optimal amongst polynomial-time algorithms in the regime of
exponentially small adversarial noise. Hence, this adds phase retrieval to a list of problems, including
for example linear regression with discrete coefficients, where in the exponentially-small noise regime
no computational-statistical gap is present [ZG18] [KWB19, Section 4.2.1]. We note that the
possibility that LLL might be efficient for exponentially-small noise phase retrieval was already
suggested in [ZG18] and later established for discrete-valued w in [GKZ19]. In fact, previous results
by [And+17] have already shown that exact (i.e., noiseless) phase retrieval is possible with optimal
sample complexity using an LLL-based algorithm very similar to ours. We also remark that our result
is stated under the Gaussian distribution, as opposed to generic i.i.d. entries as in [Bar+19]. The
reason is that we rely crucially on anti-concentration properties of random low-degree polynomials,
which are satisfied in the Gaussian case [CW01, MNV16]. However, these anti-concentration
properties can be extended to log-concave random variables [CW01, Theorem 8], and as a result our
analysis easily extends to xi following a product distribution of a density which is both log-concave
and sub-Gaussian. In this respect, we strengthen previous results by [And+17], whose analysis is
tailored to the Gaussian case.

An interesting question is whether the sample size d+ 1 is information-theoretically optimal to
recover w up to error β from the studied phase retrieval setting. In other words, whether the recovery
is possible with d samples by any estimator, and irrespective of any computational constraints. For
simplicity, we focus on the noiseless case β = 0, in which case the goal is exact recovery. We note that
the answer depends on the prior knowledge on w, or, assuming throughout a rotationally invariant
prior for w, on the prior distribution of ‖w‖. Indeed, in the extreme setting where the hidden vector
w ∈ R

d is unconstrained, we immediately observe that there are 2d possible vectors w′ satisfying
|〈xi, w′〉| = |〈xi, w〉|. As a consequence, by taking into consideration the global sign flip symmetry,
exact recovery is possible only with probability at most 2−d+1. On the other extreme, if one knew
that ‖w‖ = 1, then generically only two (w and −w) of these 2d possibilities will satisfy the exact
norm constraint, making exact recovery (up to global sign flip) possible with only d samples in that
case. The following theorem addresses the general case between these two extremes, and establishes
that exact recovery using only d samples cannot be generally certified with high probability, in stark
contrast with Corollary 3.11.

Theorem 3.12. Assume a uniform prior on the direction w/‖w‖2 ∈ Sd−1, and assume that
γ = ‖w‖2 > 0 is distributed independently of w according to a probability density qγ which satisfies
the following assumption: For some B >

√
2 and C > 0, the function qγ : R→ [0,+∞) satisfies

qγ(t)t
−d+1 is non-increasing in t ∈ [1, B] , and

∫ B

√
2
qγ(t)dt ≥ C. (10)
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Consider d ≥ 2 i.i.d. samples {xi, yi = |〈xi, w〉|}i=1...d, where xi are i.i.d. N(0, Id) and w is drawn
from two independent variables: w/‖w‖ uniformly distributed in Sd−1 and ‖w‖ is distributed with
density qγ satisfying (10). Let A be any estimation procedure (deterministic or randomized) that takes
as input {(xi, yi)}i=1,...,d and outputs w′ ∈ R

d. Then with probability ω(d−2) it holds w′ 6∈ {−w,w}.

This theorem is proved in Appendix H. The main idea of the proof is to show that, with
non-neglibile probability (ω(d−2)), some of the ‘spurious’ solutions w′ satisfying |〈xi, w′〉| = |〈xi, w〉|
are such that ‖w′‖ ≤ ‖w‖. Combined with our assumption on the prior qγ and the optimality of
MAP estimators in terms of error probability, the result follows. We also note that Assumption
(10) is very mild, and is satisfied e.g. when γ is uniformly distributed in [1, B], or when w is either
uniformly distributed in a circular ring, or follows a Gaussian distribution. Therefore, our proposed
algorithm, as well as the algorithm used in [And+17], obtains a sharp optimal sample complexity in
this phase-retrieval setup, in the sense that even one less sample than the sample complexity of our
algorithm is not sufficient for exact recovery with high probability.

Finally, we would like to highlight that our result and the described lower bound should be also
understood in contrast with the recently established weak recovery threshold that d/2(1 + o(1))
measurements actually suffice for achieving some non-trivial (constant) error with w [MM18].
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A Formal Setup

In this section, we present the formal definitions of all problems required to state our hardness result
(Theorem 2.2). We begin with a description of average-case decision problems, of which the CLWE
decision problem is a special instance [Bru+21].

A.1 Average-Case Decision Problems

We introduce the notion of average-case decision problems (or simply binary hypothesis testing
problems), based on [Gol01], where we refer the interested reader for more details. In such average-
case decision problems the statistician receives m samples from either a distribution D or another
distribution D′, and needs to decide based on the produced samples whether the generating distribu-
tion is D or D′. We assume that the statistician may use any, potentially randomized, algorithm
A which is a measurable function of the m samples and outputs the Boolean decision {YES,NO}
corresponding to their prediction of whether D or D′ respectively generated the observed samples.
Now, for any Boolean-valued algorithm A examining the samples, we define the advantage of A
solving the decision problem, as the sequence of positive numbers

∣∣∣Px∼D⊗m [A(x) = YES]− Px∼D′⊗m [A(x) = YES]
∣∣∣ .

As mentioned above, we assume that the algorithm A outputs two values “YES” or “NO”. Furthermore,
the output “YES” means that algorithm A has decided that the given samples x comes from the
distribution D, and “NO” means that A decided that x comes from the alternate distribution D′.
Therefore, naturally the advantage quantifies by how much the algorithm is performing better than
just deciding with probability 1/2 between the two possibilities.

Our setup requires two standard adjustments to the setting described above. First, in our setup
we consider a sequence of distinguishing problems, indexed by a growing (dimension) d ∈ N, and for
every d we receive m = m(d) samples and seek to distinguish between two distributions Dd and D′

d.
Now, for any sequence of Boolean-valued algorithms A = Ad examining the samples, we naturally
define the advantage of A solving the sequence of decision problems, as the sequence of positive
numbers

∣∣∣Px∼D⊗m
d

[A(x) = YES]− Px∼D′⊗m
d

[A(x) = YES]
∣∣∣ .

As a remark, notice that any such distinguishing algorithm A required to terminate in at most time
T = T (d), is naturally implying that the algorithm has access to at most m ≤ T samples.

Now, as mentioned above, we require another adjustment. We assume that the distributions
Dd, D

′
d are each generating m samples in two stages: first by drawing a common structure for

all samples, unknown to the statistician (also usually called in the statistics literature as a latent
variable), which we call s, and second by drawing some additional and independent-per-sample
randomness. In CLWE, s corresponds to the hidden vector w chosen uniformly at random from the
unit sphere and the additional randomness per sample comes from the Gaussian random variables xi.
Now, to appropriately take into account this adjustment, we define the advantage of a sequence of
algorithms A = {Ad}d∈N solving the average-case decision problem of distinguishing two distributions
Dd,s and D′

d,s parametrized by d and some latent variable s chosen from some distribution Sd, as

∣∣∣Ps∼Sd,x∼D⊗m
d,s

[A(x) = YES]− Ps∼Sd,x∼D′⊗m
d,s

[A(x) = YES]
∣∣∣ .

Finally, we say that algorithm A = {Ad}d∈N has non-negligible advantage if its advantage is at
least an inverse polynomial function of d, i.e., a function behaving as Ω(d−c) for some constant c > 0.
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A.2 Decision and Phaseless CLWE

We now give a formal definition of the decision CLWE problem, continuing the discussion from
Section 2. We also introduce the phaseless-CLWE distribution, which can be seen as the CLWE
distribution Aw,β,γ defined in (5), with the absolute value function applied to the labels (recall that
we take representatives in [−1/2, 1/2) for the mod 1 operation). The Phaseless-CLWE distribution
is, at an intuitive level, useful for stating and proving guarantees of our LLL algorithm in the
exponentially small noise regime for learning the cosine neuron (See Section 3.3 and Appendix D).

Definition A.1 (Decision-CLWE). For parameters β, γ > 0, the average-case decision problem
CLWEβ,γ is to distinguish from i.i.d. samples the following two distributions over R

d × [−1/2, 1/2)
with non-negligible advantage: (1) the CLWE distribution Aw,β,γ , per (5), for some uniformly random
unit vector w ∈ Sd−1 (which is fixed for all samples), and (2) N(0, Id)× U([−1/2, 1/2]).

Phaseless-CLWE. We define the Phaseless-CLWE distribution on dimension d with frequency γ,
β-bounded adversarial noise, hidden direction w to be the distribution of the pair (x, z) ∈ R

d×[0, 1/2]
where x

i.i.d.∼ N(0, Id) and

z = ǫ(γ〈x,w〉+ ξ) mod 1 (11)

for some ǫ ∈ {−1, 1} such that z ≥ 0, and bounded noise |ξ| ≤ β.

A.3 Worst-Case Lattice Problems

We begin with a definition of a lattice. A lattice is a discrete additive subgroup of Rd. In this work,
we assume all lattices are full rank, i.e., their linear span is R

d. For a d-dimensional lattice Λ, a set
of linearly independent vectors {b1, . . . , bd} is called a basis of Λ if Λ is generated by the set, i.e.,
Λ = BZ

d where B = [b1, . . . , bd]. Formally,

Definition A.2. Given linearly independent b1, . . . , bd ∈ R
d, let

Λ = Λ(b1, . . . , bd) =

{
d∑

i=1

λibi : λi ∈ Z, i = 1, . . . , d

}
, (12)

which we refer to as the lattice generated by b1, . . . , bd.

We now present a worst-case decision problem on lattices called GapSVP. In GapSVP, we are
given an instance of the form (Λ, t), where Λ is a d-dimensional lattice and t ∈ R, the goal is to
distinguish between the case where λ1(Λ), the ℓ2-norm of the shortest non-zero vector in Λ, satisfies
λ1(Λ) < t from the case where λ1(Λ) ≥ α(d) · t for some “gap” α(d) ≥ 1. Given a decision problem,
it is straightforward to conceive of its search variant. That is, given a d-dimensional lattice Λ,
approximate λ1(Λ) up to factor α(d). Note that the search version, which we call α-approximate
SVP in the main text, is harder than its decision variant, since an algorithm for the search variant
immediately yields an algorithm for the decision problem. Hence, the worst-case hardness of decision
problems implies the hardness of their search counterparts. We note that GapSVP is known to be
NP-hard for “almost” polynomial approximation factors, that is, 2(log d)

1−ǫ
for any constant ǫ > 0,

assuming problems in NP cannot be solved in quasi-polynomial time [Kho05, HR07]. As mentioned
in the introduction of the paper, the problem is strongly believed to be computationally hard (even
with quantum computation), for any polynomial approximation factor α(d) [MR09].
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Algorithm 3: Information-theoretic recovery algorithm for learning cosine neurons (Re-
stated)

Input: Real numbers γ = γ(d) > 1, β = β(d), and a sampling oracle for the cosine
distribution (3) with frequency γ, β-bounded noise, and hidden direction w.

Output: Unit vector ŵ ∈ Sd−1 s.t. min{‖ŵ − w‖2, ‖ŵ + w‖2} = O(arccos(1− β)/γ).

Let τ = arccos(1− β)/(2π), ǫ = 2τ/γ, m = 64d log(1/ǫ), and let C be an ǫ-cover of the unit
sphere Sd−1. Draw m samples {(xi, yi)}mi=1 from the cosine distribution (3).

for i = 1 to m do
zi = arccos(yi)/(2π)

for v ∈ C do
Compute Tv = 1

m

∑m
i=1 ✶ [|γ〈v, xi〉 − zi mod 1| ≤ 3τ ] + ✶ [|γ〈v, xi〉+ zi mod 1| ≤ 3τ ]

return ŵ = argmaxv∈C Tv.

Below we present formal definitions of two of the most fundamental lattice problems, GapSVP
and the Shortest Independent Vectors Problem (SIVP). The SIVP problem, similar to GapSVP, is
also believed to be computationally hard (even with quantum computation) for any polynomial
approximation factor α(d). Interestingly, the hardness of CLWE can also be based on the worst-case
hardness of SIVP [Bru+21].

Definition A.3 (GapSVP). For an approximation factor α = α(d), an instance of GapSVPα is
given by an d-dimensional lattice Λ and a number t > 0. In YES instances, λ1(Λ) ≤ t, whereas in
NO instances, λ1(Λ) > α · t.
Definition A.4 (SIVP). For an approximation factor α = α(d), an instance of SIVPα is given by
an d-dimensional lattice Λ. The goal is to output a set of d linearly independent lattice vectors of
length at most α · λd(Λ).

B Exponential-Time Algorithm: Constant Noise

We provide full details of the proof of Theorem 3.1, restated as Corollary B.5 at the end of this
section. Algorithm 1, the recovery algorithm in the main text, is restated as Algorithm 3 here. The
goal of Algorithm 3 is to use m = poly(d) samples to recover in polynomial-time the hidden direction
w ∈ Sd−1, in the ℓ2 sense. More concretely, the goal is to compute an estimator ŵ = ŵ((xi, zi)i=1,...,m)
for which it holds min{‖ŵ − w‖22, ‖ŵ + w‖22} = o(1/γ2), with probability 1− exp(−Ω(d)).

We first start with Lemma B.1, which reduces the recovery problem under the cosine distribution
(See Eq. (3)) to the recovery problem under the phaseless CLWE distribution (See Appendix A.2).
Then, we prove Lemma B.4, which states that there is an exponential-time algorithm for recovering the
hidden direction w ∈ Sd−1 in Phaseless-CLWE under sufficiently small adversarial noise. Theorem 3.1
follows from Lemmas B.1 and B.4.

Lemma B.1. Assume β ∈ [0, 1]. Suppose that one receives a sample (x, z̃) from the cosine distribu-
tion on dimension d with frequency γ under β-bounded adversarial noise. Let z̄ := sgn(z̃)min(1, |z̃|).
Then, the pair (x, arccos(z̄)/(2π) mod 1) is a sample from the Phaseless-CLWE distribution on
dimension d with frequency γ under 1

2π arccos(1− β)-bounded adversarial noise.

Proof. Recall z̃ = cos(2π(γ〈w, x〉)) + ξ, for x ∼ N(0, Id) and |ξ| ≤ β. It suffices to show that

1

2π
arccos(z̄) = ǫγ〈w, x〉+ ξ′ mod 1 (13)
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Algorithm 4: Information-theoretic recovery algorithm for learning the Phaseless-CLWE

Input: Real numbers γ = γ(d) > 1, β = β(d), and a sampling oracle for the phaseless-CLWE
distribution (11) with frequency γ, β-bounded noise, and hidden direction w.

Output: Unit vector ŵ ∈ Sd−1 s.t. min{‖ŵ − w‖2, ‖ŵ + w‖2} = O(β/γ).

Let ǫ = 2τ/β, m = 64d log(1/ǫ), and let C be an ǫ-cover of the unit sphere Sd−1. Draw m
samples {(xi, zi)}mi=1 from the phaseless CLWE distribution (11).

for v ∈ C do
Compute Tv = 1

m

∑m
i=1 ✶ [|γ〈v, xi〉 − zi mod 1| ≤ 3β] + ✶ [|γ〈v, xi〉+ zi mod 1| ≤ 3β]

return ŵ = argmaxv∈C Tv.

for some ǫ ∈ {−1, 1} and ξ′ ∈ R with |ξ′| ≤ 1
2π arccos(1− β).

First, notice that we may assume that without loss of generality z̄ = z̃. Indeed, assume for now
z̃ > 1. The case z̃ < −1 can be shown with almost identical reasoning. From the definition of z̃, it
must hold that ξ > 0 and z̃ ≤ 1 + ξ. Hence

z̄ = 1 = cos(2π(γ〈w, x〉)) + ξ̃.

for ξ̃ := ξ+1− z̃ ∈ (0, ξ) ⊆ (0, β). Hence, (x, z̄) is a sample from the cosine distribution in dimension
d with frequency γ under β-bounded adversarial noise.

Now, given the above observation, to establish (13), it suffices to show that for some ǫ ∈ {−1, 1},
and K ∈ Z,

∣∣∣∣
1

2π
arccos(z̃)− ǫγ〈w, x〉 −K

∣∣∣∣ ≤
1

2π
arccos(1− β) ,

or equivalently using that the cosine function is 2π periodic and even, it suffices to show that

| arccos(z̃)− arccos(cos(2πγ〈w, x〉))| ≤ arccos(1− β) .

The result then follows from the definition of z̃ and the simple calculus Lemma I.7.

We will use the following covering number bound for the running time analysis of Algorithm 3,
and the proof of Lemma B.4.

Lemma B.2 ([Ver18, Corollary 4.2.13]). The covering number N of the unit sphere Sd−1 satisfies
the following upper and lower bound for any ǫ > 0

(
1

ǫ

)d

≤ N (Sd−1, ǫ) ≤
(
2

ǫ
+ 1

)d

. (14)

Remark B.3. An ǫ-cover for the unit sphere Sd−1 can be constructed in time O(exp(d log(1/ǫ)))
by sampling O(N logN) unit vectors uniformly at random from Sd−1, where we denote by N =
N (Sd−1, ǫ). The termination time gurantee follows from Lemma B.2 and the property holds with
probability 1− exp(−Ω(d)). We direct the reader for a complete proof of this fact in Appendix F.

Now we prove our main lemma, which states that recovery of the hidden direction in Phaseless-
CLWE under adversarial noise is possible in exponential time, when the noise level β is smaller than
a small constant.
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Lemma B.4 (Information-theoretic upper bound for recovery of Phaseless-CLWE). Let d ∈ N and
let γ = γ(d) > 1, and β = β(d) ∈ (0, 1/400). Moreover, let P be the Phaseless-CLWE distribution
with frequency γ, β-bounded adversarial noise, and hidden direction w. Then, there exists an
exp(O(d log(γ/β)))-time algorithm, described in Algorithm 4, using O(d log(γ/β)) samples from P
that outputs a direction ŵ ∈ Sd−1 satisfying

min(‖ŵ − w‖22, ‖ŵ + w‖22) ≤ 40000β2/γ2 (15)

with probability 1− exp(−Ω(d)).

Proof. Let P be the Phaseless-CLWE distribution and w be the hidden direction of P . We describe
first the steps of the Algorithm 4 we use and then prove its correctness.

Let ǫ = β/γ, and C be an ǫ-cover of the unit sphere. By Remark B.3, we can construct
such an ǫ-cover C in O(exp(d log(γ/β))) time such that |C| ≤ exp(O(d log(γ/β))). We now draw
m = 36d log(γ/β) samples {(xi, zi)}mi=1 from P . Now, given these samples and the threshold value
t = 3β, we compute for each of the |C| ≤ exp(O(d log(γ/β))) directions v ∈ C the following counting
statistic,

Tv :=
1

m

m∑

i=1

(✶ [|γ〈v, xi〉 − zi mod 1| ≤ 3β] + ✶ [|γ〈v, xi〉+ zi mod 1| ≤ 3β]) .

Tv is simply measuring the fraction of the zi’s falling in a mod 1-width 3β interval around γ〈v, xi〉
or −γ〈v, xi〉, accounting for the uncertainty over the sign ǫ ∈ {−1, 1} in the definition of Phaseless-
CLWE. We then suggest our estimator to be ŵ = argmaxv∈C Tv. The algorithm can be clearly
implemented in |C| ≤ exp(O(d log(γ/β))) time.

We prove the correctness of our algorithm by establishing (15) with probability 1− exp(−Ω(d)).
We first show that some direction v ∈ C which is sufficiently close to w satisfies Tv ≥ 2

3 with probability
1− exp(−Ω(d)). Indeed, let us consider v ∈ C be a direction such that ‖w − v‖2 ≤ ǫ = β/γ. The
existence of such a v follows from our definition of C. We denote for every i = 1, . . . ,m by ǫi ∈ {−1, 1}
the sign chosen by the i-th sample, and

ξi = zi − ǫiγ〈w, xi〉 (16)

the adversarial noise added to the sample per (11). Now notice that the following trivially holds
almost surely for v,

Tv ≥
1

m

m∑

i=1

✶ [|γ〈v, xi〉 − ǫizi mod 1| ≤ 3β] .

By elementary algebra and using (16) we have ǫizi − γ〈v, xi〉 mod 1 = γ〈w − v, xi〉 + ξi mod 1.
Combining the above it suffices to show that

1

m

m∑

i=1

✶ [|γ〈w − v, xi〉+ ξi mod 1| ≤ 3β] ≥ 2

3
. (17)

with probability 1− exp(−Ω(d)).
Now we have

P[|γ〈w − v, xi〉+ ξi mod 1| ≤ 3β] ≥ P[|γ〈w − v, xi〉 mod 1| ≤ 2β]

≥ P[|γ〈w − v, xi〉| ≤ 2β]
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using for the first inequality that β-bounded adversarial noise cannot move points within distance 2β
to the origin to locations with distance larger than 3β from the origin and for the second the trivial
inequality |a| ≥ |a mod 1|. Now, notice that γ〈w− v, xi〉 is distributed as a sample from a Gaussian
(see Definition I.1) with mean 0 and standard deviation at most γ‖v−w‖2 ≤ γǫ = β. Hence, we can
immediately conclude P[|γ〈w − v, xi〉| ≤ 2β] ≥ 3/4 since the probability of a Gaussian vector falling
within 2 standard deviations of the mean is at least 0.95. By a standard application of Hoeffding’s
inequality, we can then conclude that (17) holds with probability 1− exp(−Ω(m)) = 1− exp(−Ω(d)).

We now show that with probability 1 − exp(−Ω(d)) for any v ∈ C which satisfies min(‖v −
w‖2, ‖v + w‖2) ≥ 200β/γ, it holds Tv ≤ 1/2. Notice that given the established existence of a v
which is β/γ-close to w and satisfies Tv ≥ 2/3, with probability 1− exp(−Ω(d)), the result follows.
Let v ∈ C be a direction satisfying ‖v − w‖2 ≥ 200β/γ. Without loss of generality, assume that
‖v − w‖2 ≤ ‖v + w‖2. Then, using (16) we have γ〈v, xi〉 − zi = γ〈v − ǫiw, xi〉 − ǫiξi mod 1 and
γ〈v, xi〉+ zi = γ〈v + ǫiw, xi〉+ ǫiξi mod 1. Hence, since ǫ ∈ {−1, 1}, |ξi| ≤ β for all i = 1, . . . ,m we
have by a triangle inequality

Tv ≤
1

m

m∑

i=1

(✶ [|γ〈v − w, xi〉 mod 1| ≤ 4β] + ✶ [|γ〈v + w, xi〉 mod 1| ≤ 4β]) .

Now by our assumption on v both γ〈v − w, xi〉 and γ〈v + w, xi〉 are distributed as mean-zero
Gaussians with standard deviation at least γ‖w− v‖2 ≥ 200β. Hence, both γ〈v −w, xi〉 mod 1 and
γ〈v+w, xi〉 mod 1 are distributed as periodic Gaussians with width at least 200β (see Definition I.1).
By Claim I.6 and the fact that β < 1/400,

P[|γ〈v − w, xi〉 mod 1| ≤ 4β] ≤ 16β/(400β
√
2π) · (1 + 2(1 + (400β)2)e−1/(160000β2)

≤ 4/(25
√
2π) <

1

12
.

By symmetry the same upper bound holds for P[|γ〈v + w, xi〉 mod 1| ≤ 4β]. Hence,

P(xi,zi)∼P [{|γ〈v − w, xi〉 mod 1| ≤ 3β} ∪ {|γ〈v + w, xi〉 mod 1 mod 1| ≤ 3β}] < 1/6 .

By a standard application of Hoeffding’s inequality, we have

P[Tv > 1/2] ≤ exp(−m/18) ≤ exp(−2d log(1/ǫ)),

and by the union bound over all v ∈ C satisfying ‖v − w‖ ≥ 200β/γ,

P


 ⋃

‖v−w‖≥200β/γ

{Tv > 1/2}


 < |C| · exp(−2d log(1/ǫ)) = exp(−Ω(d)) .

This completes the proof.

Finally, we discuss the recovery in terms of samples from the cosine distribution.

Corollary B.5 (Restated Theorem 3.1). For some constants c0, C0 > 0 (e.g., c0 = 1−cos(π/200), C0 =
40000) the following holds. Let d ∈ N and let γ = γ(d) > 1, β = β(d) ≤ c0, and τ =
1
2π arccos(1 − β). Moreover, let P be the cosine distribution with frequency γ, hidden direction
w, and noise level β. Then, there exists an exp(O(d log(γ/τ)))-time algorithm, described in Algo-
rithm 3, using O(d log(γ/τ)) i.i.d. samples from P that outputs a direction ŵ ∈ Sd−1 satisfying
min{‖ŵ − w‖22, ‖ŵ + w‖22} ≤ C0τ

2/γ2 with probability 1− exp(−Ω(d)).
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Proof. We first define m = O(d log(γ/β)) reflecting the sample size needed for the algorithm analyzed
in Lemma B.4 to work. We then draw m samples {(xi, z̃i)}mi=1 from the cosine distribution. From
this point Algorithm 3 simply combines the reduction step of Lemma B.1 and then the algorithm
described in the proof of Lemma B.4.

Specifically, using Lemma B.1, we can transform our i.i.d. samples to i.i.d. samples from the
Phaseless CLWE distribution on dimension d with frequency γ under 1

2π arccos(1 − β)-bounded
adversarial noise. The transformation simply happens by applying the arccosine function to every
projected z̃i, so it takes O(1) time per sample, a total of O(m) steps. We then use the last step
of Algorithm 3 and employ Lemma B.4 which analyzes Algorithm 3 to conclude that the output
ŵ ∈ Sd−1 satisfies min(‖ŵ − w‖2, ‖ŵ + w‖2) ≤ 40000τ2/γ2 with probability 1− exp(−Ω(d)).

C Cryptographically-Hard Regime: Polynomially-Small Noise

We give a full proof of Theorem 3.3, restated as Theorem C.1 here. Given Theorem 3.3, Corollary 3.4,
also restated below as Corollary C.2, follows from the hardness of CLWE [Bru+21].

Theorem C.1 (Restated Theorem 3.3). Let d ∈ N, γ = ω(
√
log d), β = β(d) ∈ (0, 1). Moreover,

let L > 0, let φ : R → [−1, 1] be an L-Lipschitz 1-periodic univariate function, and τ = τ(d) be
such that β/(Lτ) = ω(

√
log d). Then, a polynomial-time (improper) algorithm that weakly learns the

function class Fφ
γ = {fγ,w(x) = φ(γ〈w, x〉) | w ∈ Sd−1} over Gaussian inputs x

i.i.d.∼ N(0, Id) under
β-bounded adversarial noise implies a polynomial-time algorithm for CLWEτ,γ.

Proof. Recall that a polynomial-time algorithm for CLWEτ,γ refers to distinguishing between m
samples (xi, zi = γ〈w, xi〉+ξi mod 1)i=1,2,...,m, where xi ∼ N(0, Id), ξi ∼ N(0, τ) and w ∼ U(Sd−1),
from m random samples (xi, zi)i=1,2,...,m, where yi ∼ U([0, 1]) with non-negligible advantage over
the trivial random guess (See Appendix A.1 and A.2). We refer to the former sampling process
as drawing m i.i.d. samples from the CLWE distribution, where from now on we call P for the
CLWE distribution, and to the latter sampling process as drawing m i.i.d. samples from the null
distribution, which we denote by Q. Here, and everywhere in this proof, the number of samples m
denotes a quantity which depends polynomially on the dimension d.

Let ǫ = ǫ(d) ∈ (0, 1) be an inverse polynomial, and let A be a polynomial-time learning
algorithm that takes as input m samples from P , and with probability 2/3 outputs a hypothesis
h : R→ R such that LP (h) ≤ LP (E[φ(z)])− ǫ. Since we are using the squared loss, we can assume
without loss of generality that h : R→ [−1, 1] because clipping the output of the hypothesis h, i.e.,
h̃(x) = sgn(h) · max(|h(x)|, 1) is always an improvement over h pointwise because the labels are
always inside the range [−1, 1].

Let D be an unknown distribution on 2m i.i.d. samples, that is equal to either P or Q. Our
reduction consists of a statistical test that distinguishes between D = P and D = Q. Our test
is using the (successful in weakly learning fγ,w if D = P ) predictor h returned by A on (some
appropriate function of the first) m out of the 2m samples drawn from D. Then, we compute the
empirical loss of h on the remaining m samples from D, and m samples drawn from Q, respectively,
and test

L̂D(h) ≤ L̂Q(h)− ǫ/4 . (18)

We conclude D = P if h passes the test and D = Q otherwise. The way we prove that this test
succeeds with probability 2/3− o(1), is by using the fact that A outputs a hypothesis h with ǫ-edge
with probability 2/3 when given m samples from P as input. In the following, we now formally
prove the correctness of this test.
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We first assume D = P , and consider the first m samples (xi, zi)i=1,...,m drawn from P . Now
observe the elementary equality that for all v ∈ R it holds φ(v mod 1) = φ(v). Hence,

φ(γ〈w, xi〉+ ξi) = φ(zi).

Furthermore, notice that by the fact that the φ is an L-Lipschitz function we have

φ(γ〈w, xi〉) + ξ̃i = φ(zi) (19)

for some ξ̃i ∈ [−L|ξi|, L|ξi|]. By Mill’s inequality, for all i = 1, 2, . . . ,m we have P[|ξi| > β/L] ≤√
2/π exp(−β2/(2L2τ2)). Since β/(Lτ) = ω(

√
log d), we conclude that

P[
m⋃

i=1

{|ξi| > β/L}] ≤
√
2/π ·m exp(−β2/(8π2τ2)) = md−ω(1) = o(1) ,

where the last equality holds because m depends polynomially on d. Hence, it holds that

|ξ′i| ≤ L|ξi| ≤ β ,

for all i = 1, . . . ,m with probability 1− o(1) over the randomnesss of ξi, i = 1, 2, . . . ,m. Combining
the above with (19), we conclude that with probability 1−o(1) over ξi, using our knowledge of (xi, zi),
we have at our disposal samples from the function fγ,w(x) = φ(γ〈w, x〉) corrupted by adversarial
noise of magnitude at most β. Let us write by φ(P ) the data distribution obtained by applying φ to
labels of the samples from P , and similarly write φ(Q) for the null distribution Q.

By assumption and the above, given these samples (xi, φ(zi))i=1,2,...,m we have that A outputs
an hypothesis h : Rd → [−1, 1] such that for m large enough, with probability at least 2/3,

Lφ(P )(h) ≤ Lφ(P )

(
E

(x,z)∼P
[φ(z)]

)
− ǫ,

for some ǫ = 1/poly(d) > 0.
Now, note that by Claim I.6, the marginal distribution of φ(γ〈w, x〉) is 2 exp(−2π2γ2)-close in

total variation distance to the distribution of φ(y), where y ∼ U([0, 1]). Moreover, notice that since
the loss ℓ is continuous, and h(x), x ∈ R

d and of course φ(z), y ∈ R both take values in [−1, 1],

sup
(x,y)∈Rd×R

ℓ(h(x), φ(y)) ≤ sup
(a,b)∈[−1,1]d×[−1,1]

ℓ(a, b) ≤ 4; . (20)

Let us denote c = E(x,y)∼Q[φ(y)] for simplicity. Clearly |c|, |φ(y)| ≤ 1. Also,

|Lφ(P )(c)− Lφ(Q)(c))| =
∣∣∣∣ E
(x,y)∼P

[(φ(y)− c)2]− E
(x,y)∼Q

[(φ(y)− c)2]

∣∣∣∣

≤
∫ 1

−1
φ(y)2|P (y)−Q(y)|dy + 2c

∫ 1

−1
|φ(y)||P (y)−Q(y)|dy

≤ (1 + 2|c|)
∫ 1

−1
|P (y)−Q(y)|dy

≤ 6 · TV (Py, Qy)

≤ 12 exp(−2π2γ2) .
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From the above, since Ez∼P [φ(z)] is the optimal predictor for P under the squared loss, we deduce

Lφ(P )

(
E

(x,z)∼P
[φ(z)]

)
≤ Lφ(P )

(
E

y∼Q
[φ(y)]

)
≤ Lφ(Q)

(
E

y∼Q
[φ(y)]

)
+ 12 exp(−2π2γ2) .

Now since Ey∼Q[φ(y)] is the optimal predictor for Q under the squared loss, Lφ(Q)(E[φ(y)]) ≤ Lφ(Q)(h)
for any predictor h. In addition, exp(−2π2γ2) = o(ǫ) since γ = ω(

√
log d) and ǫ is an inverse

polynomial in d. Hence, for d large enough, with probability at least 2/3

Lφ(P )(h) ≤ Lφ(P )(E[φ(γ〈w, x〉)])− ǫ

≤ Lφ(Q)(h) + 12 exp(−2π2γ2)− ǫ

≤ Lφ(Q)(h)− ǫ/2 . (21)

Using the remaining m samples from P , we now compute the empirical losses L̂φ(P )(h) =
1
m

∑m
i=1 ℓ(h(xi), φ(zi)),

and L̂φ(Q)(h) =
1
m

∑m
i=1 ℓ(h(xi), φ(yi)), where (xi, zi) are drawn from P and (xi, yi) are drawn from

Q. By a standard use of Hoeffding’s inequality, and the fact that the loss is bounded based on (20),
it follows that

|L̂φ(P )(h)− Lφ(P )(h)| ≤
ǫ

8
,

with probability 1− exp(−Ω(m)) and respectively

|L̂φ(Q)(h)− Lφ(Q)(h)| ≤
ǫ

8
,

with probability 1− exp(−Ω(m)) for sufficiently large, but still polynomial in d, m. Combining the
last two displayed equations with (21), we have that, for m large enough, with probability at least
2/3− o(1),

L̂φ(P )(h) ≤ Lφ(P )(h) +
ǫ

8
≤ L̂φ(Q)(h)−

ǫ

4
.

Hence, for m large enough, with probability at least 2/3− o(1), the test correctly concludes D = P
or D = Q by using the empirical loss L̂φ(D)(h), and comparing it with the value L̂φ(Q)(h)− ǫ/4.

Corollary C.2 (Restated Corollary 3.4). Let d ∈ N, γ = γ(d) ≥ 2
√
d and τ = τ(d) ∈ (0, 1) be

such that γ/τ = poly(d), and β = β(d) be such that β/τ = ω(
√
log d). Then, a polynomial-time

algorithm that weakly learns the cosine neuron class Fγ under β-bounded adversarial noise implies a
polynomial-time quantum algorithm for O(d/τ)-approximate SVP.

Proof. The cosine function φ(z) = cos(2πz) is 2π-Lipschitz and 1-periodic. Hence, the result follows
from Theorem C.1 with L = 2π.

D LLL-based Algorithm: Exponentially Small Noise

In this section we offer the required missing proofs from the Section 3.3.
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D.1 The LLL Algorithm: Background and the Proof of Theorem 2.5

The most crucial component of the algorithm analyzed in this section is an appropriate use of the LLL
lattice basis reduction algorithm. The LLL algorithm receives as input n linearly independent vectors
v1, . . . , vn ∈ Z

n and outputs an integer combination of them with “small" ℓ2 norm. Specifically, let us
(re)-define the lattice generated by n integer vectors as simply the set of integer linear combination
of these vectors.

Definition D.1. Given linearly independent v1, . . . , vn ∈ Z
n, let

Λ = Λ(v1, . . . , vn) =

{
n∑

i=1

λivi : λi ∈ Z, i = 1, . . . , n

}
, (22)

which we refer to as the lattice generated by integer-valued v1, . . . , vn. We also refer to (v1, . . . , vn)
as an (ordered) basis for the lattice Λ.

The LLL algorithm is defined to approximately solve the search version of the Shortest Vector
Problem (SVP) on a lattice Λ, given a basis of it. We have already defined decision-SVP in
Appendix A.3. We define the search version below for completeness.

Definition D.2. An instance of the algorithmic ∆-approximate SVP for a lattice Λ ⊆ Z
n is as

follows. Given a lattice basis v1, . . . , vn ∈ Z
n for the lattice, Λ; find a vector x̂ ∈ Λ, such that

‖x̂‖ ≤ ∆ min
x∈Λ,x 6=0

‖x‖ .

The following theorem holds for the performance of the LLL algorithm, whose details can be
found in [LLL82].

Theorem D.3 ([LLL82]). There is an algorithm (namely the LLL lattice basis reduction algorithm),
which receives as input a basis for a lattice Λ given by v1, . . . , vn ∈ Z

n which

(1) solves the 2
n
2 -approximate SVP for Λ and,

(2) terminates in time polynomial in n and log (maxni=1 ‖vi‖∞) .

In this work, we use the LLL algorithm for an integer relation detection application.

Definition D.4. An instance of the integer relation detection problem is as follows. Given a vector
b = (b1, . . . , bn) ∈ R

n, find an m ∈ Z
n \ {0}, such that 〈b,m〉 =∑n

i=1 bimi = 0. In this case, m is
said to be an integer relation for the vector b.

We now establish Theorem 2.5, by proving following more general result. In particular, Theorem
2.5 follows from the theorem below by choosing M = 2n+1‖m′‖2 and using notation m (used in
Theorem 2.5) instead of m′ (used in Theorem D.5), and m′ (used in Theorem 2.5) instead of t (used
in Theorem D.5).

The following theorem, is rigorously showing how the LLL algorithm can be used for integer
relation detection. The proof of the theorem, is based upon some key ideas of the breakthrough use
of the LLL algorithm to solve the average-case subset sum problem by Lagarias and Odlyzko [LO85],
and Frieze [Fri86], and its recent extensions in the context of regression [ZG18, GKZ19].
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Theorem D.5. Let n,N ∈ Z>0. Suppose b ∈ (2−N
Z)n with b1 = 1. Let also m′ ∈ Z

n be an integer

relation of b, an integer M ≥ 2
n+1
2 ‖m′‖2 and set b−1 = (b2, . . . , bn) ∈ (2−N

Z)n−1. Then running
the LLL basis reduction algorithm on the lattice generated by the columns of the following n × n
integer-valued matrix,

B =

(
M2Nb1 M2Nb−1

0(n−1)×1 I(n−1)×(n−1)

)
(23)

outputs t ∈ Z
n which

(1) is an integer relation for b with ‖t‖2 ≤ 2
n+1
2 ‖m′‖2‖b‖2 and,

(2) terminates in time polynomial in n,N, logM and log(‖b‖∞).

Proof. It is immediate that B is integer-valued and that the determinant of B is M2N 6= 0, and
therefore the columns of B are linearly independent. Hence, from Theorem D.3, we have that the
LLL algorithm outputs a vector z = Bt with t ∈ Z

n such that it holds

‖z‖2 ≤ 2
n
2 min
x∈Zn\{0}

‖Bx‖2. (24)

Moreover, it terminates in time polynomial in n and log(M2N‖b∞‖∞) and therefore in time
polynomial in n,N, logM and log(‖b‖∞).

Since m′ is an integer relation for b it holds, Bm′ = (0,m′
2, . . . ,m

′
n)

t and therefore

min
x∈Zn\{0}

‖Bx‖2 ≤ ‖Bm′‖2 ≤ ‖m′‖2.

Hence, combining with (24) we conclude

‖z‖2 ≤ 2
n
2 ‖m′‖2. (25)

or equivalently
√
(M〈2Nb, t〉)2 + ‖t−1‖22 ≤ 2

n
2 ‖m′‖2, (26)

where t−1 := (t2, . . . , tn) ∈ Z
n−1.

Now notice that since 2N 〈b, t〉 = 〈2Nb, t〉 ∈ Z either 2N 〈b, t〉 6= 0 and the left hand side of (26) is
at least M , or 2N 〈b, t〉 = 0. Since the former case is impossible given the right hand side of inequality

described in (26) and that M ≥ 2
n+1
2 ‖m′‖2 > 2

n
2 ‖m′‖2 we conclude that 2N 〈b, t〉 = 0 or equivalently

〈b, t〉 = 0. Therefore, t is an integer relation for b.
To conclude the proof it suffices to show that ‖t‖2 ≤ 2

n
2
+1‖m′‖2‖b‖2. Now again from (26) and

the fact that t is an integer relation for b, we conclude that

‖t−1‖2 ≤ 2
n
2 ‖m′‖2. (27)

But since 〈b, t〉 = 0 and b1 = 1 we have by Cauchy-Schwartz and (26)

|t1| = |〈t−1, b−1〉| ≤ ‖t−1‖2‖b−1‖2 ≤ 2
n
2 ‖m′‖2‖b‖2.

Hence,

‖t‖2 ≤
√
2max{2n

2 ‖m′‖2‖b‖2, 2
n
2 ‖m′‖2} ≤ 2

n+1
2 ‖m′‖2‖b‖2,

since ‖b‖2 ≥ |b1| = 1.
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Algorithm 5: LLL-based algorithm for learning the single cosine neuron (Restated)

Input: i.i.d. noisy γ-single cosine neuron samples {(xi, zi)}d+1
i=1 .

Output: Unit vector ŵ ∈ Sd−1 such that min(‖ŵ − w‖, ‖ŵ + w‖) = exp(−Ω((d log d)3)).
for i = 1 to d+ 1 do

zi ← sgn(zi) ·min(|zi|, 1)
z̃i = arccos(zi)/(2π) mod 1

Construct a d× d matrix X with columns x2, . . . , xd+1, and let N = d3(log d)2.
if det(X) = 0 then

return ŵ = 0 and output FAIL

Compute λ1 = 1 and λi = λi(x1, . . . , xd+1) given by (λ2, . . . , λd+1)
⊤ = X−1x1.

Set M = 23d and ṽ =
(
(λ2)N , . . . , (λd+1)N , (λ1z1)N , . . . , (λd+1zd+1)N , 2−N

)
∈ R

2d+2

Output (t1, t2, t) ∈ Z
d+1 × Z

d+1 × Z from running the LLL basis reduction algorithm on the
lattice generated by the columns of the following (2d+ 3)× (2d+ 3) integer-valued matrix,

(
M2N (λ1)N M2N ṽ

0(2d+2)×1 I(2d+2)×(2d+2)

)

Compute g = gcd(t2), by running Euclid’s algorithm.
if g = 0 ∨ (t2/g) /∈ {−1, 1}d+1 then

return ŵ = 0 and output FAIL

ŵ ← SolveLinearEquation(w′, X⊤w′ = (t2/g)z + (t1/g))
return ŵ/‖ŵ‖ and output SUCCESS.

D.2 Towards proving Theorem 3.6: Auxiliary Lemmas

We first repeat the algorithm we analyze here for convenience, see Algorithm 5. Next, we present
here three crucial lemmas towards proving the Theorem 3.6. The proofs of them are deferred to
later sections, for the convenience of the reader.

The first lemma establishes that given a small, in ℓ2 norm, “approximate" integer relation between
real numbers, one can appropriately truncate each number to some sufficiently large number of
bits, so that the truncated numbers satisfy a small in ℓ2-norm integer relation between them. This
lemma is important for the appropriate application of the LLL algorithm, which needs to receive
integer-valued input. Recall that for real number x we denote by (x)N its truncation to its first N
bits after zero, i.e. (x)N := 2−N⌊2Nx⌋.
Lemma D.6. Suppose n ≤ C0d for some constant C0 > 0 and s ∈ R

n satisfies for some m ∈ Z
n that

|〈m, s〉| = exp(−Ω((d log d)3)). Then for some sufficiently large constant C > 0, if N = ⌈d3(log d)2⌉
there is an m′ ∈ Z

n+1 which is equal with m in the first n coordinates, which satisfies that ‖m′‖2 ≤
Cd

1
2 ‖m‖2 and is an integer relation for the numbers (s1)N , . . . , (sn)N , 2−N .

The proof of Lemma D.6 is in Section I.3.
The following lemma establishes multiple structural properties surrounding d+ 1 samples from

the cosine neuron, of the form (xi, zi), i = 1, . . . , d+ 1 given by (3).

Lemma D.7. Suppose that γ ≤ dQ for some constant Q > 0. For some hidden direction w ∈ Sd−1

we observe d+ 1 samples of the form (xi, zi), i = 1, . . . , d+ 1 where for each i, xi is a sample from
the distribution N(0, Id), and

zi = cos(2π(γ〈w, xi〉)) + ξi,
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for some unknown and arbitrary ξi ∈ R satisfying |ξi| ≤ exp(−(d log d)3). Denote by X ∈ R
d×d the

random matrix with columns given by the d vectors x2, . . . , xd+1. With probability 1− exp(−Ω(d))
the following properties hold.

(1) maxi=1,...,d+1 ‖xi‖2 ≤ 10
√
d.

(2) mini=1,...,d+1 | sin(2πγ〈xi, w〉)| ≥ 2−d.

(3) For all i = 1, . . . , d+ 1 it holds zi ∈ [−1, 1] and zi = cos(2π(γ〈xi, w〉+ ξ′i)), for some ξ′i ∈ R

with |ξ′i| = exp(−Ω((d log d)3)).

(4) The matrix X is invertible. Furthermore, ‖X−1x1‖∞ = O(2
d
2

√
d).

(5) 0 < |det(X)| = O(exp(d log d)).

The proof of Lemma D.7 is in Section I.3.
As explained in the description of our main results in Section 3.3, a step of crucial importance

is to show that all “near-minimal" integer relations, such as (9), for the (truncated versions of)
λi, λiz̃i, i = 1, . . . , d+ 1 are "informative". In what follows, we show that the integer relation with
appropriately “small" norm are indeed informative in terms of recovering the unknown ǫi,Ki of (9)
and therefore the hidden vector w. The following technical lemma is of instrumental importance for
the analysis of the algorithm.

Lemma D.8. Suppose that γ ≤ dQ for some constant Q > 0, and N = ⌈d3(log d)2⌉. Let ξ′ ∈ R
d+1

be such that ‖ξ′‖∞ ≤ exp(−(d log d)3) and w ∈ Sd−1. Suppose that for all (xi)i=1,...,d+1 are i.i.d.
N(0, Id) and that for each i = 1, . . . , d+ 1 for some z̃i ∈ [−1/2, 1/2] there exist ǫi ∈ {−1, 1},Ki ∈ Z

with |Ki| ≤ dQ such that

γ〈w, xi〉 = ǫiz̃i +Ki − ξ′i. (28)

Define also X ∈ R
d×d the matrix with columns the x2, . . . , xd+1 and set λ1 = 1 and (λ2, . . . , λd+1)

t =
X−1x1. Then with probability 1 − exp(−Ω(d)), any integer relation t ∈ Z

2d+3 between the num-
bers (λ1)N , . . . , (λd+1)N , (λ1z̃1)N , . . . , (λd+1z̃d+1)N , 2−N with ‖t‖2 ≤ 22d satisfies in the first 2d+ 2
coordinates it is equal to a non-zero integer multiple of (K1, . . . ,Kd+1, ǫ1, . . . , ǫd+1).

The proof of Lemma D.8 is in Section D.4.

D.3 Proof of Theorem 3.6

We now proceed with the proof of the Theorem 3.6 using the lemmas from the previous sections.

Proof. We analyze the algorithm by first analyze it’s correctness step by step as it proceeds and
then conclude with the polynomial-in-d bound on its termination time.

We start with using part 3 of Lemma D.7 which gives us that zi ∈ [−1, 1] with probability
1− exp(−Ω(d)) for all i = 1, 2, . . . , d+ 1. Therefore the zi’s remain invariant under the operation
zi ← sgn(zi)min(|zi|, 1), with probability 1− exp(−Ω(d)). Furthermore, using again the part 3 of
Lemma D.7 the z̃i’s computed in the second step satisfy

cos(2πz̃i) = cos(2π(γ〈w, xi〉+ ξ′i))
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for some ξ′i ∈ R with |ξ′i| ≤ exp(−Ω((d log d)3)). Using the 2π- periodicity of the cosine as well as that
it is an even function we conclude that for all for i = 1, . . . , d+ 1 there exists ǫi ∈ {−1, 1},Ki ∈ Z

for which it holds for every i = 1, . . . , d+ 1

γ〈w, xi〉 = ǫiz̃i +Ki − ξ′i. (29)

Notice that if we knew the exact values of ǫi,Ki, since we already know xi, z̃i the problem would
reduce to inverting a (noisy) linear system of d + 1 equations and d unknowns. The rest of the
algorithm uses an appropriate application of the LLL to learn the values of ǫi,Ki and solve the
(noisy) linear system.

Now, notice that using the part 5 of Lemma D.7 with probability 1− exp(−Ω(d)) the matrix X
is invertible and the algorithm is not going to terminate in the second step.

In the following step, the λi, i = 1, 2, . . . , d + 1 are given by λ1 = 1 and the unique λi =
λi(x1, . . . , xd+1) ∈ R, i = 2, . . . , d+ 1 satisfying

d+1∑

i=1

λixi = x1 +X(λ2, . . . , λd+1)
⊤ = 0.

Hence, we conclude that for the unknown direction w it holds

d+1∑

i=1

λiγ〈w, xi〉 = γ〈w,
d+1∑

i=1

λixi〉 = 0.

Using now (29) and rearranging the noise terms we conclude

d+1∑

i=1

λiz̃iǫi +
d+1∑

i=1

λiKi =
d+1∑

i=1

λiξ
′
i. (30)

Now using the fourth part of Lemma D.7 and the upper bound on ‖ξ′‖∞ we have with probability
1− exp(−Ω(d)) that

∣∣∣∣∣

d+1∑

i=1

λiξ
′
i

∣∣∣∣∣ = O(d‖λ‖∞‖ξ′‖∞) = O(d2
d
2

√
d exp(−Ω((d log d)3))) = exp(−Ω((d log d)3)).

Hence, using (30) we conclude that with probability 1− exp(−Ω(d)) it holds

∣∣∣∣∣

d+1∑

i=1

λiz̄iǫi +
d+1∑

i=1

λiKi

∣∣∣∣∣ = exp(−Ω((d log d)3)). (31)

Define s ∈ R
2d+2 given by si = λi, i = 1, . . . , d+ 1 and si = λi−d−1z̃i−d−1, i = d+ 2, . . . , 2d+ 2.

Define also m ∈ Z
2d+2 given by mi = Ki, i = 1, . . . , d + 1 and mi = ǫi−d−1, i = d + 1, . . . , 2d + 2.

For these vectors, given the above, it holds with probability 1 − exp(−Ω(d)) that |〈s,m〉| =
exp(−Ω((d log d)3)) based on (31). Now notice that

max
i=1,...,d+1

|Ki| = O(γ
√
d) (32)

with probability 1− exp(−Ω(d)). Indeed, from the definition of Ki we have for large enough values
of d that |Ki| ≤ γ|〈w, xi〉| + 1 + |ξi| ≤ γ‖xi‖2 + 2. Recall that using part 1 of Lemma D.7 for
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all i = 1, . . . , d + 1 it holds ‖xi‖2 = O(
√
d) with probability 1 − exp(−Ω(d)). Hence, for all i,

|Ki| = O(γ
√
d), with probability 1− exp(−Ω(d)). Therefore, since |ǫi| = 1 for all i = 1, . . . , d+ 1 it

also holds with probability 1− exp(−Ω(d)) that ‖m‖2 = O(d‖K‖∞) = O(γd
3
2 ).

We now employ Lemma D.6 for our choice of s and m to conclude that for the N chosen by the
algorithm there exists an integer m′

2d+3 so that m′ = (m,m′
2d+3) ∈ Z

2d+3 is an integer relation for

(λ1)N , . . . , (λd+1)N , (λ1z1)N , . . . , (λd+1zd+1)N , 2−N with ‖m′‖2 = O(d2γ).
Now we set b ∈ (2−N

Z)2d+3 given by bi = (λi)N for i = 1, . . . , d+ 1, bi = (λi−d−1z̃i−d−1)N for
i = d + 2, . . . , 2d + 2, and b2d+3 = 2−N . Notice that b1 = (1)N = 1 and furthermore that the ṽ
defined by the algorithm satisfies ṽ = (b2, . . . , b2d+3). On top of this, we have that the m′ defined in
previous paragraph is an integer relation for b with ‖m′‖2 = O(d2γ). Since γ is polynomial in d we

have that 2
2d+3+1

2 ‖m′‖2 ≤ 23d for large values of d. Hence, to analyze the LLL step of our algorithm
we use Theorem D.5 for n = 2d+ 3, to conclude that the output of the LLL basis reduction step is a
t = (t1, t2, t

′) ∈ Z
d+1 × Z

d+1 × Z which is an integer relation for b and it satisfies that

‖t‖2 ≤ 2d+2‖m′‖2‖b‖2,
with probability 1− exp(−Ω(d)).

Now we use part 4 of Lemma D.7 to conclude that ‖λ‖2 ≤ d‖λ‖∞ = O(2
d
2 d

3
2 ), with probability

1− exp(−Ω(d)). Since for any real number x it holds |(x)N | ≤ |x|+ 1 and z̃i ∈ [−1/2, 1/2] for all

i = 1, 2, . . . , d+ 1 we conclude that ‖b‖2 = O(‖λ‖2) = O(2
d
2 d

3
2 ), with probability 1− exp(−Ω(d)).

Furthermore, since ‖m′‖ = O(d2γ) we conclude that since γ is polynomial in d, for large values of d
it holds,

‖t‖2 = O(2
3d
2 ) ≤ 22d , (33)

with probability 1− exp(−Ω(d)).
We now use the above and (32) to crucially apply Lemma D.8 and conclude that for some non-zero

integer multiple c it necessarily holds (t1)i = cKi and (t2)i = cǫi, with probability 1− exp(−Ω(d)).
Note that the assumptions of the Lemma can be checked to be satisfied in straightforward manner.
Now, the greatest common divisor between the elements of t2 equals either c or −c, since the elements
of t2 are just c-multiples of ǫi which themselves are taking values either −1 or 1. Hence the step
of the algorithm using Euclid’s algorithm outputs g such that g = ǫc for some ǫ ∈ {−1, 1}. In
particular, t2/g = ǫ(ǫ1, . . . , ǫd+1) 6= 0 implying that the algorithm does not enter the if-condition
branch on the next step.

Finally, since c = ǫg it also holds t1/g = ǫ(K1, . . . ,Kd+1) and therefore the last step of the
algorithm is solving the linear equations for i = 2, . . . , d+ 1 given by

〈xi, ŵ〉 = ǫ (ǫiz̃i + ǫKi) = ǫγ〈xi, w〉+ ǫξ′i,

where we have used (29). Hence if ξ′ = (ξ′2, . . . , ξ
′
d+1)

t we have

ŵ = ǫγw + ǫX−1ξ .

Hence,

‖ŵ − ǫγw‖2 ≤ ‖X−1ξ‖2.
Now, using standard results on the extreme singular values of X, such as [RV, Equation (3.2)], we
have that σmax(X

−1) = 1/σmin(X) ≤ 2d, with probability 1− exp(−Ω(d)). Hence, with probability
1− exp(−Ω(d)) it holds

‖ŵ − ǫγw‖2 ≤ O
(
2

d
2 ‖ξ‖2

)
.
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Now since almost surely ‖ξ‖2 ≤ dβ and β ≤ exp(−(d log d)3) we have 2
d
2 ‖ξ‖2 = O(β) = exp(−Ω((d log d)3))

and therefore, with probability 1− exp(−Ω(d)) it holds

‖ŵ − ǫγw‖2 ≤ O (β) = exp(−Ω((d log d)3)). (34)

Finally, since |‖x‖2 − ‖x′‖2| ≤ ‖x− x′‖2 we also have |‖ŵ‖2 − γ| ≤ O(β) = exp(−Ω((d log d)3)) and
therefore

∥∥∥∥
ŵ

‖ŵ‖ − ǫw

∥∥∥∥
2

= γ−1

∥∥∥∥
γ

‖ŵ‖2
ŵ − ǫwγ

∥∥∥∥
2

≤ γ−1

(
‖ŵ − ǫγw‖2 +

‖ŵ − γ‖2
γ − |γ − ‖ŵ‖2|

)

≤ γ−1 (‖ŵ − ǫγw‖2 +O(β))

≤ O

(
β

γ

)
= exp(−Ω((d log d)3)) ,

since γ = ω(β). Since ǫ ∈ {−1, 1} the proof of correctness is complete.
For the termination time, it suffices to establish that the step using the LLL basis reduction

algorithm and the step using the Euclid’s algorithm can be performed in polynomial-in-d time. For
the LLL step we use Theorem D.5 to conclude that it runs in polynomial-time in d,N, logM and
log ‖λ‖∞. Now clearly N, logM are polynomial in d. Furthermore, by part 4 of Lemma D.7 also
log ‖λ‖∞ is polynomial in d with probability 1− exp(−Ω(d)). The Euclid’s algorithm takes time
which is polynomial in d and in log ‖t2‖∞. But we have established in (33) that ‖t2‖2 ≤ ‖t‖2 ≤ 22d,
with probability 1− exp(−Ω(d)) and therefore the Euclid’s algorithm step also indeed requires time
which is polynomial-in-d.

D.4 Proof of Lemma D.8

We focus this section on proving the crucial Lemma D.8. As mentioned above, the proof of the lemma
is quite involved, and, potentially interestingly, it requires the use of anticoncentration properties of
the coefficients λi which are rational function of the coordinates of xi. In particular, the following
result is a crucial component of establishing Lemma D.8.

Lemma D.9. Suppose w ∈ Sd−1 is an arbitrary vector on the unit sphere and γ ≥ 1. For two
sequences of integer numbers C = (Ci)i=1,2,...,d+1, C

′ = (C ′
i)i=1,2,...,d+1 we define the polynomial

PC,C′(x1, . . . , xd+1) in d(d+ 1) variables which equals

det(x2, . . . , xd+1)
(
〈γw, x1〉C1 + (C ′)1

)
(35)

+
d+1∑

i=2

det(x2, . . . , xi−1,−x1, xi+1, . . . , xd+1)
(
〈γw, xi〉Ci + (C ′)i

)
,

where each x1, . . . , xd+1 is assumed to have a d-dimensional vector form.
We now draw xi’s in an i.i.d. fashion from the standard Gaussian measure on d dimensions. For

any two sequences C,C ′ it holds

Var(PC,C′(x1, . . . , xd+1)) = (d− 1)!γ2
∑

1≤i<j≤d+1

(Ci − Cj)
2 + d!

d+1∑

i=1

(C ′)2i .

Furthermore, for some universal constant B > 0 the following holds. If Ci, C
′
i are such that

either the Ci’s are not all equal to each other or the C ′
i’s are not all equal to zero, then for any ǫ > 0,

P(|PC,C′(x1, . . . , xd+1)| ≤ ǫ) ≤ B(d+ 1)ǫ
1

d+1 . (36)
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Proof. The second part follows from the first one combined with the fact that under the assumptions
on C,C ′ in holds that for some i = 1, . . . , d+ 1 either (Ci − C ′

i)
2 ≥ 1 or (C ′

i)
2 ≥ 1. In particular, in

both cases since γ ≥ 1,

Var(PC,C′(x1, . . . , xd+1)) ≥ (d− 1)! ≥ 1.

Now we employ [MNV16, Theorem 1.4] (originally proved in [CW01]) which implies that for some
universal constant B > 0, since our polynomial is multilinear and has degree d+ 1 it holds for any
ǫ > 0

P

(
|PC,C′(x1, . . . , xd+1)| ≤ ǫ

√
Var(PC,C′(x1, . . . , xd+1))

)
≤ B(d+ 1)ǫ

1
d+1 .

Using our lower bound on the variance we conclude the result.
Now we proceed with the variance calculation. First we denote

µ(x−1) := det(x2, . . . , xd+1) ,

and for each i > 2

µ(x−i) := det(x2, . . . , xi−1,−x1, xi+1, . . . , xd+1).

As all coordinates of the xi’s are i.i.d. standard Gaussian, for each i = 1, . . . , d + 1 the random
variable µ(x−i) has mean zero and variance d!. Furthermore, let us denote ℓ(xi) := 〈γw, xi〉, which
is a random variable with mean zero and variance γ2. In particular µ(x−i)ℓ(xi) has also mean zero
as µ(x−i) is independent with xi. Now notice that under this notation,

PC,C′(x1, . . . , xd+1) =

d∑

i=1

Ciµ(x−i)ℓ(xi) +

d∑

i=1

C ′
iµ(x−i).

Hence, we conclude

E[PC,C′(x1, . . . , xd+1)] = 0.

Now we calculate the second moment of the polynomial. We have

E[P 2
C,C′(x1, . . . , xd+1)] =

d+1∑

i=1

C2
i d!γ

2 +
∑

1≤i 6=j≤d

CiCjE[µ(x−i)ℓ(xi)µ(x−j)ℓ(xj)] +

d+1∑

i=1

C ′2
i d! .

Now for all i 6= j,

E[µ(x−i)ℓ(xi)µ(x−j)ℓ(xj)]

= E[det(. . . , xi−1,−x1, xi+1, . . .) det(. . . , xj−1,−x1, xj+1, . . .)〈γw, xi〉〈γw, xj〉]

=
d∑

p,q=1

γ2wpwqE[det(. . . , xi−1,−x1, xi+1, . . .) det(. . . , xj−1,−x1, xj+1, . . .)(xi)p(xj)q]

Now observe that the monomials of the product

det(. . . , xi−1,−x1, xi+1, . . .) det(. . . , xj−1,−x1, xj+1, . . .)(xi)p(xj)q
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have the property that each coordinate of the various x′is appears at most twice; in other words
the degree per variable is at most 2. Hence, the monomials that could potentially have not zero
mean with respect to the standard Gaussian measure are the ones where all coordinates of every
xi, i = 1, . . . , d+ 1 appear exactly twice or none at all, in which case the monomial has mean equal
to the coefficient of the monomial. By expansion of the determinants, we have that the studied
product of polynomials equals to the sum over all σ, τ permutations on d variables of the terms

(−1)sgn(στ−1)(. . . xi−1,σ(i−1)(−x1)σ(i)xi+1,σi+1 . . .)(. . . xj−1,τ(j−1)(−x1)τ(j)xj+1,τ(j+1) . . .)(xi)p(xj)q.

Hence, a straightforward inspection allows us to conclude that for every coordinate to appear exactly
twice, we need the corresponding permutations σ, τ to satisfy τ(i) = p, σ(j) = q (from the coordinates
(xi)p, (xj)q), σ(i) = τ(j) (from the coordinate of x1) and finally σ(x) = τ(x) for all x ∈ [d] \ {i, j}
(the rest coordinates). Furthermore, the value of the mean of this monomial would then be given
simply by (−1)sgn(στ−1).

Now we investigate more which permutations σ, τ can satisfy the above conditions. The last two
conditions imply in straightforward manner that τ−1σ is the transposition (i, j). Hence, τ−1σ(j) = i.
But we have σ(j) = q and therefore i = τ−1σ(j) = τ−1(q) which gives τ(i) = q. We have though as
our condition that τ(i) = p which implies that for such a pair of permutations σ, τ to exist it must
hold p = q. Furthermore, for any σ with σ(j) = p there exist a unique τ satisfying the above given
by τ = σ ◦ (i, j), where ◦ corresponds to the multiplication in the symmetric group Sd. Hence, if
p 6= q no such pair of permutations exist and the mean of the product is zero. If p = q there are
exactly (d− 1)! such pairs (all permutations σ sending j to p and τ given uniquely given σ) which
correspond to (d− 1)! monomials with mean (−1)sgn(σ)+sgn(τ) = (−1)sgn(σ−1τ) = −1, where we used
that the sign of a transposition is −1. Combining the above we conclude that

E[det(. . . , xi−1,−x1, xi+1, . . .) det(. . . , xj−1,−x1, xj+1, . . .)(xi)p(xj)q] = −(d− 1)!1(p = q).

Hence, since ‖w‖2 = 1,

E[µ(x−i)ℓ(xi)µ(x−j)ℓ(xj)] =

d∑

p=1

−γ2w2
p = −γ2.

Therefore,

E[P 2
C,C′(x1, . . . , xd+1)] =

d+1∑

i=1

C2
i d!γ

2 − (d− 1)!γ2
∑

1≤i 6=j≤d+1

CiCj +
d+1∑

i=1

C ′2
i d!

= (d− 1)!γ2
∑

1≤i<j≤d+1

(Ci − Cj)
2 + d!

d+1∑

i=1

(C ′)2i .

The proof is complete.

We now proceed with the proof of Lemma D.8.

Proof of Lemma D.8. Let t1, t2 ∈ Z
d+1, t′ ∈ Z with ‖(t1, t2, t′)‖2 ≤ 22d which is an integer relation;

d+1∑

i=1

(λi)N (t1)i +

d+1∑

i=1

(λiz̃i)N (t2)i + t′2−N = 0.
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First note that it cannot be the case that t1 = t2 = 0 as from the integer relation it should be also
that t′ = 0 and therefore t = 0 but an integer relation needs to be non-zero. Hence, from now on we
restrict ourselves only to the case where t1, t2 are not both zero. Now, as clearly |t′| ≤ 22d it also
holds

∣∣∣∣∣

d+1∑

i=1

(λi)N (t1)i +
d+1∑

i=1

(λiz̃i)N (t2)i

∣∣∣∣∣ ≤ 22d2−N .

Consider T the set of all pairs t = (t1, t2) ∈ (Zd+1 × Z
d+1) \ {0} for which there does not exist a

c ∈ Z \ {0} such that for i = 1, . . . , d+ 1 (t1)i = cKi and (t2)i = cǫi.
To prove our result it suffices therefore to prove that

P


 ⋃

t∈T ,‖t‖2≤22d

{∣∣∣∣∣

d+1∑

i=1

(λi)N (t1)i +

d+1∑

i=1

(λiz̃i)N (t2)i

∣∣∣∣∣ ≤ 22d/2N

}
 ≤ exp(−Ω(d))

for which, since for any x it holds |x− (x)N | ≤ 2−N and ‖(t1, t2)‖1 ≤
√
2(d+ 1)‖(t1, t2)‖2 ≤ 23d for

large values of d, it suffices to prove that for large enough values of d,

P


 ⋃

t∈T ,‖t‖2≤22d

{∣∣∣∣∣

d+1∑

i=1

λi(t1)i +
d+1∑

i=1

λiz̃i(t2)i

∣∣∣∣∣ ≤ 24d/2N

}
 ≤ exp(−Ω(d)).

Notice that by using the equations (28) it holds

d+1∑

i=1

λi(t1)i +

d+1∑

i=1

λiz̃i(t2)i

=
d+1∑

i=1

λi(t1)i +
d+1∑

i=1

λi(ǫiγ〈w, xi〉 − ǫiKi + ǫiξ
′
i)(t2)i

=
d+1∑

i=1

λi (ǫi〈γw, xi〉(t2)i − ǫiKi(t2)i + ǫiξi(t2)i + (t1)i)

=

d+1∑

i=1

λi

(
〈γw, xi〉Ci + C ′

i

)
+

d∑

i=1

λiξ
′
iCi,

for the integers Ci = ǫi(t2)i and C ′
i = −ǫiKi(t2)i+(t1)i. Since t ∈ T some elementary algebra consid-

erations imply that either not all (Ci)i=1,...,d+1 are equal to each other or one of the (C ′
i)i=1,2,...,d+1

is not equal to zero. Let us call this region of permissible pairs (C,C ′) as C. Furthermore, given
that all t satisfy ‖t‖2 ≤ 22d, and that for all Ki satisfy |Ki| ≤ dQ it holds that any (C,C ′) defined
through the above equations with respect to t1, t2, ǫi,Ki satisfies the crude bound that

‖(C,C ′)‖22 ≤ ‖t2‖22 + 2(d2Q‖t2‖22 + ‖t1‖22) ≤ 26d.

Hence, using this refined notation it suffices to show

P


 ⋃

(C,C′)∈C,‖(C,C′)‖2≤23d

{∣∣∣∣∣

d+1∑

i=1

λi

(
〈γw, xi〉Ci + C ′

i

)
+

d∑

i=1

λiξiCi

∣∣∣∣∣ ≤ 24d/2N

}
 ≤ exp(−Ω(d)).
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Now notice that from our exponential-in-d norm upper bound assumptions on C, the part 4 of
Lemma D.7, and since N = o((d log d)3), the following holds with probability 1− exp(−Ω(d))

d∑

i=1

|λiξiCi| = O(24d‖ξ‖∞) = O(exp(−(d log d)3)) = O(2−N ).

Hence it suffices to show that for large enough values of d,

P


 ⋃

(C,C′)∈C,‖(C,C′)‖2≤23d

{∣∣∣∣∣

d+1∑

i=1

λi

(
〈γw, xi〉Ci + C ′

i

)
∣∣∣∣∣ ≤ 25d/2N

}
 ≤ exp(−Ω(d)).

Using the polynomial notation of Lemma D.9 and specifically notation (35), as well as the fact that
by Cramer’s rule λi are rational functions of the coordinates of xi satisfying λidet(x2, . . . , xd+1) =
det(. . . , xi−1,−x1, xi+1, . . .) it suffices to show

P


 ⋃

(C,C′)∈C,‖(C,C′)‖2≤23d

{|PC,C′(x1, . . . , xd+1)| ≤ |det(x2, . . . , xd+1)|25d/2N}


 ≤ exp(−Ω(d)).

Using the fifth part of the Lemma D.7 there exists some constant D > 0 for which it suffices to
show

P


 ⋃

(C,C′)∈C,‖(C,C′)‖2≤23d

{|PC,C′(x1, . . . , xd+1)| ≤ 2Dd log d/2N}


 ≤ exp(−Ω(d)).

Now since N = Θ(d3(log d)2) we have N = ω(d log d). Hence, for sufficiently large d it suffices to
show

P


 ⋃

(C,C′)∈C,‖(C,C′)‖2≤23d

{|PC,C′(x1, . . . , xd+1)| ≤ 2−
N
2 }


 ≤ exp(−Ω(d)).

By a union bound, it suffices

∑

(C,C′)∈C,‖(C,C′)‖2≤23d

P

(
|PC,C′(x1, . . . , xd+1)| ≤ 2−

N
2

)
≤ 2−Ω(d). (37)

Now the integer points (C,C ′) with ℓ2 norm at most 23d are at most 23d
2+d as they have at most

23d+1 choices per coordinate. Furthermore, using the anticoncentration inequality (36) of Lemma
D.9, we have for any (C,C ′) ∈ C that it holds for some universal constant B > 0,

P

(
|PC,C′(x1, . . . , xd+1)| ≤ 2−

N
2

)
≤ B(d+ 1)2

− N
2(d+1) .

Combining the above with the left hand side of (37), the right hand side is at most

B(d+ 1)23d
2+d2

− N
2(d+1) = exp(O(d2)− Ω(N/d)) = exp(−Ω(d)),

where we used that N/d = Ω(d2 log d). This completes the proof.
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E Approximation with One-Hidden-Layer ReLU Networks

The members of the cosine function class Fγ = {cos(2πγ〈w, x〉) | w ∈ Sd−1} consist of a composition
of the univariate 2π-Lipschitz, 1-periodic function φ(z) = cos(2πz), and an one-dimensional linear
projection z = γ〈w, x〉. Notice that since x ∼ N(0, Id), z lies within the interval [−R,R], where
R = γ

√
2 log(1/δ), with probability at least 1 − δ due to Mill’s inequality (Lemma I.3). Hence,

to achieve ǫ-squared loss over the Gaussian input distribution, it suffices for the ReLU network
to uniformly approximate the univariate function φ(z) = cos(2πz) on some compact interval
[−R(γ, ǫ), R(γ, ǫ)], and output 0 for all z ∈ R outside the compact interval.

The uniform approximability of univariate Lipschitz functions by the family of one-hidden-layer
ReLU networks on compact intervals is well-known. To establish our results, we will use the
quantitative result from [ES16], which we reproduce here as Lemma E.1. We present our ReLU
approximation result for the cosine function class right after, in Theorem E.2.

Lemma E.1 ([ES16, Lemma 19]). Let σ(z) = max{0, z} be the ReLU activation function, and fix
L, η,R > 0. Let f : R→ R be an L-Lipschitz function which is constant outside an interval [−R,R].
There exist scalars a, {αi, βi}wi=1, where w ≤ 3RL

η , such that the function

h(x) = a+
w∑

i=1

αiσ(x− βi)

is L-Lipschitz and satisfies

sup
x∈R

∣∣f(x)− h(x)
∣∣ ≤ η.

Moreover, one has |αi| ≤ 2L.

Theorem E.2. Let d ∈ N, γ ≥ 1, and ǫ ∈ (0, 1) be a real number. Then, the cosine function
class Fγ = {cos(2πγ〈w, x〉) | w ∈ Sd−1} can be ǫ-approximated (in the squared loss sense) over
the Gaussian input distribution x ∼ N(0, Id) by one-hidden-layer ReLU networks of width at most

O

(
γ

√
log(1/ǫ)

ǫ

)
.

Proof. Let R = ⌈γ
√

2 log(8/ǫ)⌉+ 1/2, and z = γ〈w, x〉. Then, by Mill’s inequality (Lemma I.3) and
the fact that R > γ,

P(|z| ≥ R) ≤
√

2

π
exp

(
− R2

2γ2

)
≤ ǫ

8
. (38)

Let f : R→ R be a function which is equal to cos(2πz) on [−R,R] and 0 outside the compact
interval. We claim that f is still 2π-Lipschitz. First, note that cos(2πR) = cos(−2πR) = 0. Moreover,
f is 2π-Lipschitz within the interval [−R,R] and 0-Lipschitz in the region |z| > R. Hence, it suffices
to consider the case when one point z falls inside [−R,R] and another point z′ falls outside the
interval. Without loss of generality, assume that z ∈ [−R,R] and z′ > R. The same argument
applies for z′ < −R. Then,

|f(z′)− f(z)| = |f(R)− f(z)| ≤ 2π|R− z| ≤ 2π|z′ − z| .
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Now set L = 2π, η =
√
ǫ/2, R = ⌈γ

√
2 log(8/ǫ)⌉ + 1/2 in the statement of Lemma E.1, and

approximate f with a one-hidden-layer ReLU network g(z) of width at most O

(
γ

√
log(1/ǫ)

ǫ

)
. Then,

E
x∼N(0,Id)

[(cos(2πγ〈w, x〉)− g(γ〈w, x〉))2] = E
z∼N(0,γ)

[(cos(2πz)− g(z))2]

=
1

γ
√
2π

∫
(cos(2πz)− g(z))2 exp(−z2/(2γ2))dz

=
1

γ
√
2π

∫

|z|≤R
(cos(2πz)− g(z))2 exp(−z2/(2γ2))dz

+
1

γ
√
2π

∫

|z|>R
(cos(2πz)− g(z))2 exp(−z2/(2γ2))dz

≤ η2 +
4

γ
√
2π

∫

|z|>R
exp(−z2/(2γ2))dz

≤ η2 + 4(ǫ/8)

< ǫ ,

where the first inequality follows from the fact that the squared loss is bounded by 4 for all z /∈ [−R,R]
since cos(2πz) ∈ [−1, 1] and g(z) ∈ [−η, η] ⊂ [−1, 1] and the second inequality uses (38). This
completes the proof.

F Covering Algorithm for the Unit Sphere

The (very simple) randomized exponential-time algorithm for constructing an ǫ-cover of the d-
dimensional unit sphere Sd−1 is presented in Algorithm 6. We prove the algorithm’s correctness in
the following claim, which is essentially an appropriate application of the coupon collector problem.

Claim F.1. Let d ∈ N be a number, let ǫ ∈ (0, 1) be a real number, and let N = ⌈(1 + 4/ǫ)d⌉.
Then, ⌈2N logN⌉ vectors sampled from Sd−1 uniformly at random forms an ǫ-cover of Sd−1 with
probability at least 1− exp(−Ω(d)).

Proof. By Lemma B.2, we know that there exists an ǫ/2-cover of Sd−1 with size less than N =
⌈(1 + 4/ǫ)d⌉. Let us assume for simplicity and without loss of generality, that it’s size equals to
N , by adding additional arbitrary points on the sphere to the cover if necessary. We denote this
ǫ/2-cover by K. Of course, K ⊆ Sd−1 by the definition of an ǫ-cover in [Ver18, Section 4.2].

Now, observe that any family W of M vectors on the sphere, say W = {w1, . . . , wM}, with the
property that for any v ∈ K there exist i ∈ [M ] such that ‖v − wi‖2 ≤ ǫ/2 is an ǫ-cover of Sd−1.
Indeed, let x ∈ Sd−1. Since K is an ǫ/2-cover, there exist v ∈ K with ‖x − v‖2 ≤ ǫ/2. Moreover,
using the property of the family W , there exists some i ∈ [M ] for which ‖v−wi‖2 ≤ ǫ/2. By triangle
inequality we have ‖wi − x‖2 ≤ ǫ.

Now, by definition of the ǫ/2-cover it holds

⋃

v∈K

(
B(v, ǫ/2) ∩ Sd−1

)
= Sd−1,

where by B(x, r) we denote the Euclidean ball in R
d with center x ∈ R

d and radius r. Hence,
denoting by µ the uniform probability measure on the sphere, by a simple union bound we conclude
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Algorithm 6: Exponential-time algorithm for constructing an ǫ-cover of the unit sphere

Input: A real number ǫ ∈ (0, 1), and natural number d ∈ N.
Output: An ǫ-cover of the unit sphere Sd−1 containing 2N logN points, where

N = (1 + 4/ǫ)d with probability 1− exp(−Ω(d)).
Initialize the cover C = ∅, and set m = 2N logN .
for i = 1 to m do

Sample x ∼ N(0, 1)
v ← x/‖x‖2
Add v ∈ Sd−1 to C

return C.

that for all v ∈ K, Nµ(B(v, ǫ/2) ∩ Sd−1) ≥ 1 or

µ(B(v, ǫ/2) ∩ Sd−1) ≥ 1

N
. (39)

In other words, if we fix some v ∈ K and sample a uniform point w on the sphere, it holds that with
probability at least 1/N we have ‖w − v‖2 ≤ ǫ/2.

Hence, the probability that M random i.i.d. unit vectors w1, . . . , wM are all at distance more
than ǫ/2 from a fixed v ∈ K is upper bounded by

P

(
M⋂

i=1

{‖ui − v‖2 > ǫ/2}
)
≤ (1− 1/N)m ≤ exp(−m/N) .

Now let M = 2N logN . By the union bound, the probability that there exists some v ∈ K not
covered by M random unit vectors w1, . . . , wM is upper bounded by

P

(
⋃

v∈K
{‖ui − v‖2 > ǫ/2 for all i = 1, . . . ,M}

)
≤ |K| · exp(−M/N) ≤ 1/N .

Since N = exp(Ω(d)), we conclude that M = 2N logN random unit vectors form an ǫ-cover of
Sd−1 with probability 1− exp(−Ω(d)). The proof is complete.

G The Population Loss and Parameter Estimation

Let f(x) = cos(2πγ〈w, x〉) be the target function defined on Gaussian inputs x ∼ N(0, Id). In this
section, we consider the proper learning setup, where we wish to learn a unit vector w′ such that the
hypothesis gw′(x) = cos(2πγ〈w′, x〉) achieves small squared loss with respect to the target function
f . Towards this goal, we define the squared loss associated with a unit vector w′ ∈ Sd−1.

Definition G.1. Let d ∈ N, γ ≥ 1, and w ∈ Sd−1 be some fixed hidden direction. For any w′ ∈ Sd−1,
we define the population loss L(w′) of the hypothesis gw′(x) = cos(2πγ〈w′, x〉) with respect to w by

L(w′) = Ex∼N(0,Id)[(cos(2πγ〈w, x〉)− cos(2πγ〈w′, x〉))2] . (40)

Notice that because the cosine function is even, the population loss inherits the sign symmetry
and satisfies that L(w′) = L(−w′) for all w′ ∈ Sd−1. Reflecting that symmetry, we obtain a Lipschitz
relation between the population loss and the squared ℓ2 difference between w and w′ (or −w′ if
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‖w+w′‖2 ≤ ‖w−w′‖2). In particular, when γ is diverging, we can rigorously show that recovery of w
with o(1/γ) ℓ2-error is sufficient for (properly) learning the associated cosine function with constant
edge. This is formally stated in Corollary G.3. We start with the following useful proposition.

Proposition G.2. For every w′ ∈ Sd−1 it holds

L(w′) = 2
∑

k∈2Z≥0

(2πγ)2k

k!
exp(−4π2γ2)

(
1− 〈w,w′〉k

)
. (41)

In particular,

L(w′) ≤ 4π2γ2min{‖w − w′‖22, ‖w + w′‖22}. (42)

Proof. Let {hk}k∈Z≥0
be the (probabilist’s) normalized Hermite polynomials. We have that the pair

Z = 〈w, x〉, Zρ = 〈w′, x〉 is a bivariate pair of standard Gaussian random variables with correlation
ρ = 〈w,w′〉. Using the fact that hk’s form an orthonormal basis in Gaussian space (See item (1) of
Lemma I.10), we have by Parseval’s identity that

L(w′) = 2(E[cos(2πγZ)2]− E[cos(2πγZ) cos(2πγZρ)])

= 2
∑

k∈Z

(
E[cos(2πγZ)hk(Z)]2 − E[cos(2πγZ)hk(Z)]E[cos(2πγZρ)hk(Z)]

)
.

Using now item (2) of Lemma I.10 for ρ = 1 and for ρ = 〈w,w′〉, we have

L(w′) = 2
∑

k∈Z

(
(2πγ)2k

k!
exp(−4π2γ2)− 〈w,w′〉k (2πγ)

2k

k!
exp(−4π2γ2)

)

= 2
∑

k∈2Z≥0

(2πγ)2k

k!
exp(−4π2γ2)

(
1− 〈w,w′〉k

)
,

as we wanted for the first part.
For the second part, notice that since the summation on the right hand from Eq. (41) is only

containing an even power of 〈w,w′〉 it suffices to establish the upper bound in terms of ‖w − w′‖22.
The exact same argument can be used to obtain the upper bound in terms of ‖w + w′‖22, due to the
observed sign symmetry of the population loss with respect to w′.

Now notice that using the elementary inequality that for α ∈ (0, 1), x ≥ 1 we have (1−a)x ≥ 1−ax,
we conclude that for all k ≥ 0 (the case k = 0 is trivial) it holds

1− 〈w,w′〉k = 1− (1− 1

2
‖w − w′‖22)k ≤

k

2
‖w − w′‖22 .

Hence, combining with the first part, we have

L(w′) ≤
∑

k∈2Z≥0

k
(2πγ)2k

k!
exp(−4π2γ2)‖w − w′‖22

≤
∑

k∈Z≥0

k
(2πγ)2k

k!
exp(−4π2γ2)‖w − w′‖22 .

Now notice that
∑

k∈Z≥0
k (2πγ)2k

k! exp(−4π2γ2) is just the mean of a Poisson random variable with

parameter (and mean) equal to 4π2γ2. Hence, the proof of the second part of the proposition is
complete.
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The following Corollary is immediate given the above result and the item (3) of Lemma I.10.

Corollary G.3. Let d ∈ N and γ = γ(d) = ω(1). For any w′ ∈ Sd−1 which satisfies min{‖w −
w′‖22, ‖w + w′‖22} ≤ 1

16π2γ2 and sufficiently large d,

L(w′) ≤ Var(cos(2πγ〈w, x〉))− 1/12 .

Proof. Using our condition and w′ and the second part of the Proposition G.2 we conclude

L(w′) ≤ 1

4
.

Now using item (3) of Lemma I.10 we have that for large values of d (since γ = ω(1)), it holds

1

3
≤ Var(cos(2πγ〈w, x〉)) .

The result follows from combining the last two displayed inequalities.

H Optimality of d+1 samples for exact recovery under norm priors

In this appendix, we argue that d+ 1 samples are necessary in order to obtain exact recovery with
probability 1− exp(−Ω(d)), irrespective of any estimation procedure. Since our upper bound holds
for arbitrary w/‖w‖2 ∈ Sd−1, and arbitrary 1 ≤ γ = ‖w‖2 = poly(d), it suffices to prove a lower
bound for some distributional assumption on γ and w/‖w‖2 which respects these constraints. Hence,
for our lower bound, we assume a uniform prior on the direction w/‖w‖2 ∈ Sd−1, and assume that
γ = ‖w‖2 > 0 is distributed independently of w according to a probability density qγ which satisfies
the following assumption.

Assumption H.1. For some B >
√
2 and C > 0, the function qγ : R → [0,∞) satisfies that

qγ(t)t
−d+1 is non-increasing for t ∈ [1, B], and

∫ B√
2 qγ(t)dt ≥ C.

We now state our lower bound, restating Theorem 3.12 for convenience.

Theorem H.2. Consider d ≥ 2 samples {(xi, yi = |〈xi, w〉|)}i=1...d, in which the xi’s are drawn
i.i.d. from N(0, Id), and w is drawn from two independent variables: w/‖w‖ uniformly distributed in
Sd−1 and ‖w‖ distributed with density satisfying Assumption H.1. Let A be any estimation procedure
(deterministic or randomized) that takes as input {(xi, yi)}i=1,...,d and outputs w′ ∈ R

d. Then with
probability ω(d−2) it holds w′ 6∈ {−w,w}.
Proof. The key idea of the proof will be to establish that with probability ω(d−2) over the draws
of the data {xi}i=1,...,d and the hidden vector w, the following event occurs: There exist a pair
of antipodal solutions {−w′, w′} different from ±w, such that the posterior probability measure
p(w̃ | {(xi, yi)}i=1,...,d) over any possible hidden vector w̃ ∈ R

d satisfies p({−w′, w′} | {(xi, yi)}) ≥
p({−w,w}| | {(xi, yi)}). In this event, the MAP estimator will thus fail to exactly recover {−w,w}
at least with probability 1/2 (over the randomness of the algorithm). Finally, using the optimality of
the Maximum-a-Posteriori Bayes estimator in minimizing the probability of error, the result follows.

Let X = (xi)i=1...d ∈ R
d×d, be the matrix where for i = 1, . . . , d with i-th row equal to x⊤i , and

X−1 its inverse (which exists with probability 1 since the determinant of a squared matrix with i.i.d.
Gaussian entries is non-zero almost surely [CT05]). Furthermore, let y = (yi)i=1...d ∈ R

d the vector
of the labels. Let us introduce binary variables ε ∈ {−1, 1}d, and the associated matrix

Aε := X−1diag(ε)X, .
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where by diag(ε) we refer to the d× d diagonal matrix with the vector ε on the diagonal.
We say that a w′ ∈ R

d is a feasible solution if for all i = 1, . . . , d it holds that |〈xi, w′〉| = yi.
Notice that if w′ is a feasible solution, then for any ε ∈ {−1, 1}d, Aεw

′ is also a feasible solution.
This follows since for each i = 1, . . . , d it holds by definition x⊤i X

−1 = e⊤i , where ei is the i-th
standard basis vector, and therefore x⊤i Aǫ = εix

⊤
i . Hence we have

|x⊤i Aεw
′| = |εix⊤i w′| = yi .

On the other hand, if w′ is a feasible solution, then there exists ε ∈ {−1, 1}d, for which for all
i = 1, . . . , d, it holds 〈xi, w′〉 = εiyi. Therefore, using the definition of yi and the already established
properties of Aε,

〈xi, w′〉 = εiyi = x⊤i εiw = x⊤i Aεw .

Hence, X(w′ − Aεw) = 0. As X is invertible almost surely, we conclude that w′ = Aεw.
Combining the above, we conclude that the set of feasible solutions is almost surely the set

Bw = {Aεw|ε ∈ {−1, 1}d}.

Of course, this set includes w when ε = 1 is the all-one vector, and −w when ε = −1 is the all-
minus-one vector. Furthermore, from the almost sure linear independence of all xi, i = 1, . . . , d+ 1,
and that w is drawn independent of X, we conclude that for all ε 6∈ {−1,1} it holds almost surely
that Aεw 6∈ {−w,w}.

Now consider the joint density of the setup in this notation (where we recall that w̃ ∈ R
d denotes

the generic vector to be recovered, while w is the actual draw of the prior), which decomposes as

p(X, w̃, y) = pX(X) · pw̃(w̃) · p(y | X, w̃) , X ∈ R
d×d, w̃ ∈ R

d, y ∈ R
d .

Notice that since we work under the noiseless assumption it holds p(y | X, w̃) = δ (y − |Xw̃|), where
by a slight abuse of notation for a vector v ∈ R

d we denote by |v| ∈ R
d the vector with elements

|vi|, i = 1, . . . , d. Further recall that in this notation we sample a hidden w ∼ pw̃ and independently
a matrix X ∼ pX . We observe the vector of labels y = |Xw| and X. The posterior probability
p(w̃ | X, y) is therefore

p(w̃ | X, y) =
p(X, w̃, y)

p(X, y)
∝ pw̃(w̃) · p(y | X, w̃) . (43)

From our previous argument, we know that this posterior distribution is necessarily supported in the
set Bw of 2d points of the form (X−1 · diag(ε))y for any ε ∈ {−1, 1}d, which include w. Denoting by
δ(w̃) the Dirac unit mass at w̃, we have

p(w̃ | X, y) =
1

Z

∑

w′∈Bw

αX,y(w
′)δ(w̃ − w′) , (44)

for some normalizing constant Z and some coefficients αX,y(ε) that we now determine. We evaluate
the posterior distribution over w̃ from (43) using the coarea formula [MSZ03]: Given an arbitrary
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test function φ ∈ C∞
c (Rd), and F : Rd → R

d defined as F (u) := |Xu|, we have

Z

∫

Rd

p(w̃ | X, y)φ(w̃)dw̃ =

∫

Rd

pw̃(w̃)δ(y − F (w̃))φ(w̃)dw̃ (45)

=

∫

Rd

(∫

F−1(z)
δ(y − z)pw̃(u)φ(u)|DF (u)|−1dH0(u)

)
dz (46)

=

∫

Rd

δ(y − z)

(∫

Bz

pw̃(u)φ(u)|DF (u)|−1dH0(u)

)
dz (47)

=
∑

w′∈Bw

pw̃(w
′)φ(w′)|det(X)|−1 , (48)

where dH0 is the 0-th dimensional Hausdorff measure. From (44) we also have that

∫

Rd

p(w̃ | X, y)φ(w̃)dw̃ =
∑

w′∈Bw

αX,y(w
′)φ(w′) ,

hence we deduce that the weights in (44) satisfy

∀ ε , αX,y(X
−1 · diag(ε)y) = pw̃(X

−1 · diag(ε)y)|det(X)|−1 .

By plugging y = |Xw| = diag(ε∗)Xw for the sign coefficients ε∗i = sign(〈xi, w〉), and recalling the
definition of Aε, we conclude that the posterior distribution over the hidden vector w̃ satisfies almost
surely

p(w̃ | X, y) =

{
1
Z pw̃(w̃) w̃ ∈ Bw
0 w̃ 6∈ Bw

where Z :=
∑

w̃∈Bw
pw̃(w̃).

Now to prove the desired result, based on the folklore optimality of the Maximum-A-Posteriori
(MAP) estimator in minimizing probability of failure of exact recovery (see Lemma H.4 for com-
pleteness) it suffices to prove that with probability ω(d−2) there exists w′ ∈ Bw \ {−w,w} such
that

pw̃(w
′) ≥ pw̃(w) . (49)

Indeed, recall that since pw̃ is rotationally invariant, we have pw̃(w̃) = pw̃(−w̃) for any w̃, therefore (49)
immediately implies pw̃(±w′) ≥ pw̃(±w). Hence, the MAP estimator (and therefore any estimator)
fails to exactly recover an element of {w,−w} with probability ω(d−2), as we wanted.

Now, using a standard change of variables to spherical coordinates, for all w̃ ∈ R
d the density of

the prior equal to pw̃(w̃) = qγ(‖w̃‖2)‖w̃‖−d+1
2 . In particular, based on Assumption 10 it suffices to

prove that with probability ω(d−2) there exists a w′ ∈ Bw \ {−w,w} such that 1 ≤ ‖w′‖2 < ‖w‖2,
or equivalently there exists ε ∈ {−1, 1}d \ {−1,1} such that

1 ≤ ‖Aεw‖2 < ‖w‖2 . (50)

We establish (50) by actually studying only one such ε, potentially the simplest choice, which we

call ε(1) where ε
(1)
1 = −1 and ε

(1)
j = +1 for j = 2, . . . , d. This is accomplished by the following key

lemma:
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Lemma H.3. Suppose X ∈ R
d×d has i.i.d. N(0, Id) entries, and w is drawn independently of X, such

that w/‖w‖2 is drawn from the uniform measure of Sd−1 and its norm ‖w‖2 is independent of w/‖w‖2
and distributed according to a density qγ satisfying Assumption (10). Set also Aε(1) = X−1diag(ε(1))X.
Then with probability greater than ω(d−2), it holds

1 ≤ ‖Aε(1)w‖2 < ‖w‖2 . (51)

This lemma thus proves (50) and the failure of the MAP estimator with probability ω(d−2).
We conclude the proof by formally stating and using the optimality of the MAP estimator in

terms of minimizing the error probability, by relating it to a standard error correcting setup. From
our previous argument, we can reduce ourselves to decoders that operate in the discrete set Bw,
since any w̃ outside this set will be different from ±w almost surely.

Lemma H.4. Suppose X is a discrete set, and let x∗ ∈ X be an element to be recovered, with
posterior distribution p(x|y), x ∈ X , after having observed the output y = g(x∗). Then, any estimator
producing x̂ = x̂(y) will incur in an error probability P(x̂ 6= x∗) at least 1−maxx p(x|y), with equality
if x̂ is the Maximum-A-Posterior (MAP) estimator which outputs argmaxx p(x|y).

We apply the Lemma H.4 for X containing all the pairs of antipodal elements of Bw, that is
X = {{w′,−w′} : w′ ∈ Bw} and x∗ = {w,−w}. As we have established that the MAP estimator
fails to exactly recover x∗ with probability ω(d−2) this completes the proof.

H.1 Proof of Lemma H.3

Proof. If e1 denotes the first standard basis vector, observe that by elementary algebra,

Aε(1) = X−1
(
Id − 2e1e

⊤
1

)
X = Id − 2x̃1x1 , (52)

where x⊤1 is the first row of X and x̃1 is the first column of X−1.
We need a spectral decomposition of matrices of the form A = Id − 2uv⊤, which is provided in

the following lemma:

Lemma H.5. Let η ∈ R and A = Id − 2ηuv⊤ ∈ R
d×d, with ‖u‖2 = ‖v‖2 = 1, and α = 〈u, v〉.

Then A⊤A has the eigenvalue 1 with multiplicity d− 2, and two additional eigenvalues λ1, λ2 with
multiplicity 1 given by

λ1 = 1 + 2η
(
η − α−

√
η2 + 1− 2ηα

)
, λ2 = 1 + 2η

(
η − α+

√
η2 + 1− 2ηα

)
. (53)

In particular, λmin(A
⊤A) = λ1 < 1 and λmax(A

⊤A) = λ2 > 1 whenever η > 0 and |α| < 1.

From (52), we now apply Lemma H.5. By noting that 〈x1, x̃1〉 = 1 since XX−1 = Id, note that
the lemma applies for Aε(1) with parameters

α =

〈
x1
‖x1‖2

,
x̃1
‖x̃1‖2

〉
=

1

‖x1‖2 · ‖x̃1‖2
, and η = ‖x1‖2 · ‖x̃1‖2 .

Since |α| ∈ (0, 1] by Cauchy-Schwarz and and αη = 1, it follows that η ≥ 1 and the eigenvalues of

A⊤
ε(1)

Aε(1) are
(
λmin(A

⊤
ε(1)

Aε(1)), 1, . . . , 1, λmax(A
⊤
ε(1)

Aε(1))
)
, with

λmin(A
⊤
ε(1)

Aε(1)) = 1 + 2η
(
η − α−

√
η2 − 1

)
= −1 + 2η2 − 2η

√
η2 − 1 (54)

λmax(A
⊤
ε(1)

Aε(1)) = 1 + 2η
(
η − α+

√
η2 − 1

)
= −1 + 2η2 + 2η

√
η2 − 1 . (55)
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In fact, we claim that |α| < 1 with probability 1, which by Lemma H.5 implies that

λmin(A
⊤
ε(1)

Aε(1)) < 1 < λmax(A
⊤
ε(1)

Aε(1)) . (56)

Indeed, recalling from Lemma H.5 that by definition α = 〈 x1
‖x1‖ ,

x̃1
‖x̃1‖〉 with x̃1 = (X⊤X)−1x1, first

observe that |α| < 1 almost surely. Indeed, |α| = 1 iff x̃1 and x1 are colinear, that is for some scalar
λ it holds (X⊤X)−1x1 = λx1, which in particular implies that x1 is an eigenvector of (X⊤X)−1, or
equivalently of X⊤X. Letting yi = x⊤i x1, this means that

λx1 = (X⊤X)x1 =

(
∑

i

xix
⊤
i

)
x1 =

∑

i

xiyi .

Since X has rank d almost surely, {xi}i=1...d are linearly independent almost surely, which in turn
implies that yi = 〈x1, xi〉 = 0 for i 6= 1 almost surely. This is a 0-probability event since the xi’s are
continuously distributed and independent of each other.

In what follows to ease notation we denote ε(1) simply by ε and in particular Aε(1) simply by Aε.
In the following lemma we establish that η . d2 with probability close to 1. The proof of this fact is
given in Section H.2. More precisely, we claim the following:

Lemma H.6. There exist constants C > 0 and d0 > 0 such that for any d ≥ d0,

P
(
η ≤ Cd2

)
≥ 1− 1/d .

We shall now establish (51) building from Lemma H.6. We first relate the spectrum of Aε with

the probability that ‖Aεw‖2 < ‖w‖2 or equivalently
∥∥∥Aε

w
‖w‖2

∥∥∥
2
< 1. Let w̌ := w/‖w‖, so w = γw̌,

with w̌ ∈ Sd−1 uniformly distributed, and independent from γ. We claim that with respect to the
randomness of w̌ but conditioning on X it holds

Pw̌(‖Aεw̌‖ < 1) =
2

π
arcsin

(√
1− λmin(A⊤

ε Aε)

λmax(A⊤
ε Aε)− λmin(A⊤

ε Aε)

)
. (57)

Indeed, assuming without loss of generality that the two eigenvectors of A⊤
ε Aε associated with the

distinct eigenvalues λmin(A
⊤
ε Aε) and λmax(A

⊤
ε Aε) are respectively e1 and e2, the first two standard

basis vectors, we have that

‖Aεw̌‖22 = λmin(A
⊤
ε Aε)w̌

2
1 + λmax(A

⊤
ε Aε)w̌

2
2 +

∑

i>2

w̌2
i ,

and therefore, using the uniform distribution on Sd−1 of w̌, it holds

Pw̌(‖Aεw̌‖2 < 1) = Pw̌(‖Aεw̌‖22 ≤ ‖w̌‖2)
= Pw̌(λmin(A

⊤
ε Aε)w̌

2
1 + λmax(A

⊤
ε Aε)w̌

2
2 ≤ w̌2

1 + w̌2
2)

= Pw̌

(
λmin(A

⊤
ε Aε)

w̌2
1

w̌2
1 + w̌2

2

+ λmax(A
⊤
ε Aε)

w̌2
2

w̌2
1 + w̌2

2

≤ 1

)

= Pθ∼U [0,2π]

(
λmin(A

⊤
ε Aε) cos(θ)

2 + λmax(A
⊤
ε Aε) sin(θ)

2 ≤ 1
)

, (58)

where the last equality follows since the marginal of w̌ corresponding to the first two coordinates is
also rotationally invariant.
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From the last identity of (58) and (56), we verify that

Pθ∼U [0,2π]

(
λmin(A

⊤
ε Aε) cos(θ)

2 + λmax(A
⊤
ε Aε) sin(θ)

2 ≤ 1
)

=
1

2π

∫ 2π

0
✶

[
λmin(A

⊤
ε Aε) cos(θ)

2 + λmax(A
⊤
ε Aε) sin(θ)

2 ≤ 1
]
dθ

=
2

π

∫ π/2

0
✶

[
λmin(A

⊤
ε Aε) cos(θ)

2 + λmax(A
⊤
ε Aε) sin(θ)

2 ≤ 1
]
dθ

=
2

π
θ∗ ,

where θ∗ is the only solution in (0, π/2) of

λmin(A
⊤
ε Aε) cos(θ)

2 + λmax(A
⊤
ε Aε) sin(θ)

2 = 1 . (59)

From (59) we obtain directly (57), as claimed.

Now, the quantity ρ := 1−λmin(A
⊤
ε Aε)

λmax(A⊤
ε Aε)−λmin(A⊤

ε Aε)
, expressed in terms of α = 1/η and η becomes

ρ =
1− λmin(A

⊤
ε Aε)

λmax(A⊤
ε Aε)− λmin(A⊤

ε Aε)
=
−η2 + η

√
η2 − 1 + 1

2η
√
η2 − 1

,

and satisfies 0 ≤ ρ = ρ(η) < 1 almost surely. Denoting

f(η) := arcsin (
√
ρ) ,

we verify that f ′(η) < 0 for η ≥ 1. In order to leverage Lemma H.6, we consider the event that
η ≤ C2d

2. We can lower bound f(η) as follows. First, observe that t 7→ arcsin(
√
t) is non-decreasing

in t ∈ (0, 1), thus

f(η) ≥ arcsin



√

η(
√

η2 − 1−
√
η2) + 1

2η2


 ,

since

−η2 + η
√
η2 − 1 + 1

2η
√

η2 − 1
≥ −η

2 + η
√
η2 − 1 + 1

2η2
=

η(
√
η2 − 1−

√
η2) + 1

2η2
.

Moreover, since
√
t+ 1−

√
t = 1

2
√
t
+O(t−3/2), we have that

η(
√
η2 − 1−

√
η2) + 1

2η2
=

3

4
η−2 +O(η−4) ,

which, combined with the fact that arcsin(t) = t+O(t3) for |t| ≤ 1, leads to

f(η) ≥ 3

4
η−1 +O(η−2) .

Finally, using Lemma H.6 and the definition of f(η), we obtain that

Pw̌(‖Aεw̌‖ ≤ 1) ≥ 6

4πC2
d−2 +O(d−4)
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with probability (over X) greater than 1/2. Since X and w are independent, we conclude that

PX,w̌(‖Aεw̌‖ ≤ 1) ≥ 1

2

(
6

4πC2
d−2 +O(d−4)

)
= C4d

−2 +O(d−4) , (60)

where C4 is a constant.
Now we show that

Pw̌

(
‖Aεw̌‖22 ≥ 1− 1/

√
d
)
≥ 1− exp

(
−Ω(
√
d)
)

.

Recall that w̌ is distributed uniformly on the sphere Sd−1, and that all eigenvalues of A⊤
ε Aε are all

greater or equal to 1, except for λmin. Assuming without loss of generality that e1 is the eigenvector
corresponding to λmin, we have for any w̌ ∈ Sd−1,

‖Aεw̌‖22 ≥ 1− w̌2
1 .

Let H be the hemisphere H = {w̌1 ≤ 0 | w̌ ∈ Sd−1}. By the classic isoperimetric inequality for the
unit sphere Sd−1 [Led01, Chapter 1], the measure of the r-neighborhood of H, which we denote by
Hr = {u ∈ Sd−1 | dist(u,H) ≤ r}, satisfies

Pw̌(Hr) = Pw̌(w̌1 ≤ r) ≥ 1− exp(−(d− 1)r2/2) .

An analogous inequality holds for the event {w̌1 ≥ −r} by the sign symmetry of the distribution of
w̌. Plugging in r = d−1/4, It follows that

Pw̌

(
‖Aεw̌‖2 ≥ 1− 1/

√
d
)
≥ Pw̌

(
1− w̌2

1 ≥ 1− 1/
√
d
)

= Pw̌

(
|w̌1| ≤ 1/d1/4

)

≥ 1− exp
(
−Ω(
√
d)
)

.

Therefore, combining the above with (60) using the union bound, we obtain

PX,w̌

(√
1− d−1/2 ≤ ‖Aεw̌‖ ≤ 1

)
≥ C4d

−2 +O(d−4)− exp(−Ω(
√
d)) = C4d

−2 +O(d−4) . (61)

Finally, since B >
√
2 and

√
1− d−1/2 ≥ 1/

√
2, we have

Pw̃(γ
√
1− d−1/2 ≥ 1) = Pw̃

(
γ ≥ 1√

1− d−1/2

)

=

∫ B

1√
1−d−1/2

qγ(v)dv := Qs (62)

Since w = γw̌, where w̌ is uniformly distributed in Sd−1 and γ is independent of w̌, we conclude
by assembling (61) and (62) that

PX,w (1 ≤ ‖Aεw‖ ≤ ‖w‖) ≥ (C4d
−2 +O(d−4))Qs = C5d

−2 +O(d−4) ,

since Qs ≥ Q1/
√
2 ≥ C for d ≥ 2 thanks to Assumption 10. This concludes the proof of (51).
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H.2 Auxiliary Lemmas

Proof of Lemma H.4. Observe that

P(x̂ 6= x∗) = 1− P(x̂ = x∗) = 1− p(x̂|y) ≥ 1−max
x

p(x|y) ,

with equality if x̂ is the Maximum-a-Posteriori estimator.

Proof of Lemma H.5. First notice that we can reduce to a two-by-two matrix, since the directions
orthogonal to both u and v clearly belong to an eigenspace of eigenvalue 1. The result follows directly
by computing the characteristic equation det[A⊤A− λI] = 0.

Proof of Lemma H.6. First, observe that since the law of X is rotationally invariant, we can assume
without loss of generality that x1 is proportional to e⊤1 , the first standard basis vector. Using the
Schur complement, we have

X =

(
‖x1‖2 0
v X̄

)
, and X−1 =

(
‖x1‖−1

2 0
b X̄−1

)
, (63)

where v is the (d− 1)-dimensional vector given by vi = ‖x1‖−1
2 〈x1, xi+1〉 = xi+1,1 ∼ N(0, 1), X̄ is a

(d− 1)× (d− 1) matrix whose entries are drawn i.i.d. from N(0, 1), and b = −‖x1‖−1
2 X̄−1v. Observe

that X̄ and v are independent, since the choice of basis depends only on x1. The coordinates of v
are independent as well for the same reason. It follows that

‖x̃1‖22 = ‖x1‖−2
2

(
1 + ‖X̄−1v‖22

)

≤ ‖x1‖−2
2

(
1 + ‖X̄−1‖2 · ‖v‖22

)
, (64)

where ‖X̄−1‖ = maxu∈Sd−1 ‖X̄−1u‖2 is the operator norm of X̄−1. Now let α be a fixed constant,
which will be specified later. Additionally, assume that d is sufficiently large so that αd4 ≥ 2. From
Eq. (64), we have that

P{η2 ≥ αd4} ≤ P
{
‖x1‖22

(
‖x1‖−2

2

(
1 + ‖X̄−1‖2 · ‖v‖22

))
≥ αd4

}

= P
{
1 + ‖X̄−1‖2 · ‖v‖22 ≥ αd4

}

≤ P
{
‖X̄−1‖2 · ‖v‖22 ≥ αd4/2

}

= P

{
‖X̄−1‖ · ‖v‖2 ≥

√
α/2 · d2

}
. (65)

To upper bound Eq. (65), we use the fact that X̄−1 and v are independent, and split the event into
two cases: {‖v‖2 ≥

√
d/2} and {‖v‖2 <

√
d/2}. By [Ver18, Theorem 3.1.1], we know that there

exists a constant C1 > 0 such that

P

{
‖v‖2 <

√
d/2
}
≤ exp(−C1 · d) .

Moreover, by [Sza91, Theorem 1.2], we have that for sufficiently large d, there exists a universal
constant C2 > 0 such that for any t > 0,

P

{
‖X̄−1‖ ≥ t

√
d
}
≤ C2/t .
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By setting α = 2C2
2 and d sufficiently large so that exp(−C1d) ≤ 1/(2d), we have

P

{
‖X̄−1‖ · ‖v‖2 ≥

√
α/2 · d2

}

≤ P

{
‖X̄−1‖ ·

√
d/2 ≥

√
α/2 · d2

}
· P
{
‖v‖2 >

√
d/2
}
+ P

{
‖v‖2 ≤

√
d/2
}

≤ P

{
‖X̄−1‖ ·

√
d/2 ≥

√
α/2 · d2

}
+ exp(−C1d)

= P

{
‖X̄−1‖ ≥

√
2α · d3/2

}
+ exp(−C1d)

≤ C2/(
√
2α · d) + exp(−C1d)

≤ 1/d .

Therefore,

P{η ≥
√
2C2 · d2} = P{η2 ≥ 2C2

2 · d4} ≤ P

{
‖X̄−1‖ · ‖v‖2 ≥ C2 · d2

}
≤ 1/d .

I Auxiliary Results

I.1 The Periodic Gaussian

Definition I.1. Let Ψs(z) : [−1/2, 1/2)→ R+ be the periodic Gaussian density function defined by

Ψs(z) :=
∞∑

k=−∞

1

s
√
2π

exp

(
− 1

2

(z − k

s

)2
)

.

We refer to the parameter s, the standard deviation of the Gaussian before periodicization, as the
“width” of the periodic Gaussian Ψs.

Remark I.2. For intuition, we can consider two extreme settings of the width s. If s≪ 1, then Ψs

is close in total variation distance to the Gaussian of standard deviation s since the tails outside
[−1/2, 1/2) will be very light. On the other hand, if s≫ 1, then Ψs is close in total variation distance
to the uniform distribution on [0, 1). This intuition is formalized in Claim I.6.

The Gaussian distribution on R satisfies the following tail bound called Mill’s inequality.

Lemma I.3 (Mill’s inequality [Ver18, Proposition 2.1.2]). Let z ∼ N(0, 1). Then for all t > 0, we
have

P(|z| ≥ t) =

√
2

π

∫ ∞

t
e−x2/2dx ≤ 1

t
·
√

2

π
e−t2/2 .

The Poisson summation formula, stated in Lemma I.5 below, will be useful in our calculations.
We first define the dual of a lattice Λ to make the formula easier to state.

Definition I.4. The dual lattice of a lattice Λ, denoted by Λ∗, is defined as

Λ∗ = {y ∈ R
d | 〈x, y〉 ∈ Z for all x ∈ Λ} .
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A key property of the dual lattice is that if B is a basis of Λ then (BT )−1 is a basis of Λ∗; in
particular, det(Λ∗) = det(Λ)−1, where det(Λ) is defined as det(Λ) = det(B) (the determinant of a
lattice is basis-independent) [MG02, Chapter 1].

For “nice” functions defined any lattice, the following formula holds [EH94, Theorem 2.3].

Lemma I.5 (Poisson summation formula). For any lattice Λ ⊂ R
d and any function f : Rd → C

satisfying some “niceness” assumptions3,
∑

x∈Λ
f(x) = det(Λ∗) ·

∑

y∈Λ∗

f̂(y) ,

where f̂(y) =
∫
Rd f(x)e

−2πi〈y,x〉dx, and Λ∗ is the dual lattice of Λ.

Note that by the properties of the Fourier transform, for a fixed c ∈ R
d

∑

x∈Λ+c

f(x) =
∑

x∈Λ
f(x+ c) = det(Λ∗)

∑

y∈Λ∗

exp(−2πi〈c, y〉) · f̂(y) .

Claim I.6 (Adapted from [Ste17, Claim 2.8.1]). For any s > 0 and any z ∈ [−1/2, 1/2) the periodic
Gaussian density function Ψs(z) satisfies

Ψs(z) ≤
1

s
√
2π

(
1 + 2(1 + s2)e−1/(2s2)

)
.

and

|Ψs(z)− 1| ≤ 2(1 + 1/(4πs)2)e−2π2s2 .

Proof. We first derive an expression for Ψs(0) using the Poisson summation formula. Note that the
Fourier transform of f(y) = exp(−y2/2) is given by f̂(u) =

√
2π · exp(−2π2u2). Moreover, viewing

Z as a one-dimensional lattice, the determinant of the dual lattice ((1/s)Z)∗ = sZ is s. Hence,

Ψs(0) =
1

s
√
2π

∑

y∈(1/s)Z
exp(−y2/2)

=
det(sZ)

√
2π

s
√
2π

·
∑

u∈sZ
exp(−2π2u2)

=
∑

u∈sZ
exp(−2π2u2) . (66)

We now observe that Ψs(z) ≤ Ψs(0) for any z ∈ [−1/2, 1/2). This can again be shown using the
Poisson summation formula as follows.

Ψs(z) =
1

s
√
2π

∑

y∈(1/s)Z+z/s

exp(−y2/2)

=
∑

u∈sZ
exp(−2πiuz/s) · exp(−2π2u2)

≤
∑

u∈sZ
| exp(−2πiuz/s)| · exp(−2π2u2)

≤
∑

u∈sZ
exp(−2π2u2)

= Ψs(0) .

3For our purposes, it suffices to know that the Gaussian function of any variance s > 0 satisfies this niceness
assumption. Precise conditions can be found in [EH94, Theorem 2.3].
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Hence, it suffices to upper bound Ψs(0) and show a lower bound for Ψs(z) for all z ∈ [−1/2, 1/2).
For the first upper bound, we use Mill’s inequality (Lemma I.3) to obtain

Ψs(0) =
1

s
√
2π

∑

y∈(1/s)Z
exp(−y2/2)

≤ 1

s
√
2π

(
1 + 2 exp(−1/(2s2)) + 2

∫ ∞

1
exp(−x2/(2s2))dx

)

≤ 1

s
√
2π

(
1 + 2(1 + s2) exp(−1/(2s2))

)
.

For the second upper bound, we use Eq. (66) and Mill’s inequality to obtain

Ψs(0) =
∑

u∈sZ
exp(−2π2u2)

= 1 +
∑

u∈sZ\{0}
exp(−2π2u2)

= 1 + 2

∞∑

k=1

exp(−2π2s2k2)

≤ 1 + 2 exp(−2π2s2) + 2

∫ ∞

1
exp(−2π2s2x2)dx

≤ 1 + 2(1 + 1/(4πs)2) exp(−2π2s2) .

For the lower bound on Ψs(z), we use the Poisson summation formula and Mill’s inequality again to
obtain

Ψs(z) =
∑

u∈sZ
exp(−2πizu/s) · exp(−2π2u2)

= 1 +
∑

u∈sZ\{0}
exp(−2πizu/s) · exp(−2π2u2)

≥ 1− 2
∞∑

k=1

| exp(−2πizk)| · exp(−2π2s2k2)

≥ 1− 2

(
exp(−2π2s2) +

∫ ∞

1
exp(−2π2s2x2)dx

)

≥ 1− 2(1 + 1/(4πs)2) exp(−2π2s2) .

I.2 Auxiliary Lemmas for the Constant Noise Regime

Lemma I.7. Fix some τ ∈ (0, 1]. Then, for arccos : [−1, 1]→ [0, π] it holds that

sup
x,y∈[−1,1],|x−y|≤τ

| arccos(x)− arccos(y)| ≤ arccos(1− τ).

Proof. Let us fix some arbitrary ξ ∈ [0, τ ] and consider the function G(x) = arccos(x)−arccos(x+ξ).
Given the fact that arccos is decreasing, it suffices to show that |G(x)| ≤ arccos(1 − τ) for all
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x ∈ [−1, 1− ξ]. By direct computation it holds

G′(x) = − 1√
1− x2

+
1√

1− (x+ ξ)2

=
ξ(2x+ ξ)√

1− x2
√

1− (x+ ξ)2(
√
1− x2 +

√
1− (x+ ξ)2)

.

Hence, the function G decreases until x = −ξ/2 and increases beyond this point. Consequently, G
obtains its global maximum at one the endpoints of [−1, 1− ξ]. But since cos(π − a) = − cos(a) for
all a ∈ R it also holds for all b ∈ [−1, 1] arccos(−b) + arccos(b) = π. Hence,

G(−1) = π − arccos(−1 + ξ) = arccos(1− ξ) = G(1− ξ).

Therefore,

G(x) ≤ arccos(1− ξ) ≤ arccos(1− τ).

The proof is complete.

I.3 Auxiliary Lemmas for the Exponentially Small Noise Regime

Lemma I.8. [Restated Lemma D.6] Suppose n ≤ C0d for some constant C0 > 0 and s ∈ R
n satisfies

for some m ∈ Z
n that |〈m, s〉| = exp(−Ω((d log d)3)). Then for some sufficiently large constant

C > 0, if N = ⌈d3(log d)2⌉ there is an m′ ∈ Z
n+1 which is equal with m in the first n coordinates,

satisfies ‖m′‖2 ≤ Cd
1
2 ‖m‖2 and is an integer relation for the (s1)N , . . . , (sn)N , 2−N .

Proof. We start with noticing that since N = o((d log d)3) we have

|〈m, s〉| ≤ exp(−Ω((d log d)3)) = O(2−N ) .

Hence, since for any real number x we have |x− (x)N | ≤ 2−N , it holds

n∑

i=1

mi(si)N =
n∑

i=1

misi +O(
n∑

i=1

mi2
−N )

= O(2−N ) +O(
n∑

i=1

|mi|2−N )

= O(
n∑

i=1

|mi|2−N ).

Now observe that the number
∑n

i=1mi(si)N is a rational number of the form a/2N , a ∈ Z. Hence
using the last displayed equation we can choose some integer m′

n+1 with

n∑

i=1

mi(si)N = m′
n+12

−N .

for which using Cauchy-Schwartz and n = O(d) it holds

|m′
n+1| = O(‖m‖1) = O(

√
n‖m‖2) = O(

√
d‖m‖2).

Hence m′ = (m1, . . . ,mn,−m′
n+1) is an integer relation for (s1)N , . . . (sn)N , 2−N . On top of that

‖m′‖22 ≤ ‖m‖22 +O(d‖m‖22) = O(d‖m‖22).
This completes the proof.
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Lemma I.9 (Restated Lemma D.7). Suppose that γ ≤ dQ for some Q > 0. For some hidden
direction w ∈ Sd−1 we observe d+ 1 samples of the form (xi, zi), i = 1, . . . , d+ 1 where for each i, xi
is a sample from N(0, Id) samples, and

zi = cos(2π(γ〈w, xi〉)) + ξi,

for some unknown and arbitrary ξi ∈ R satisfying |ξi| ≤ exp(−(d log d)3). Denote by X ∈ R
d×d the

random matrix with columns given by the d vectors x2, . . . , xd+1. With probability 1− exp(−Ω(d))
the following properties hold.

(1)

max
i=1,...,d+1

‖xi‖2 ≤ 10
√
d.

(2)

min
i=1,...,d+1

| sin(2πγ〈xi, w〉)| ≥ 2−d.

(3) For all i = 1, . . . , d+ 1 it holds zi ∈ [−1, 1] and

zi = cos(2π(γ〈xi, w〉+ ξ′i)),

for some ξ′i ∈ R with |ξ′i| = exp(−Ω((d log d)3)).

(4) The matrix X is invertible. Furthermore,

‖X−1x1‖∞ = O(2
d
2

√
d).

(5)

0 < |det(X)| = O(exp(d log d)).

Proof. For the first part, notice that for each i = 1, 2, . . . , d+ 1, the quantity ‖xi‖22 is distributed
like a χ2(d) distribution with d degrees of freedom. Using standard results on the tail of the χ2

distribution (see e.g. [Wai19, Chapter 2]) we have for each i,

P

(
‖x1‖2 ≥ 10

√
d
)
= exp(−Ω(d)).

Hence,

P

(
d+1⋃

i=1

‖xi‖2 ≥ 10
√
d

)
≤ (d+ 1)P

(
‖x1‖2 ≥ 10

√
d
)
= O(d exp−Ω(d)) = exp(−Ω(d)),

For the second part, first notice that for large d the following holds: if for some α ∈ R we
have | sin(α)| ≤ 2−d then for some integer k it holds |α− kπ| ≤ 2−d+1. Indeed, by substracting an
appropriate integer multiple of π we have α− kπ ∈ [−π/2, π/2]. Now by applying the mean value
theorem for the branch of arcsin defined with range [−π/2, π/2] we have that

|α− kπ| = | arcsin(sinα)− arcsin(0)| ≤ 1√
1− ξ2

| sinα| ≤ 1

1− ξ2
2−d

61



for some ξ with |ξ| ≤ | sinα| ≤ 2−d. Hence, using the bound on ξ we have

|α− kπ| ≤ 1

1− 2−2d
2−d ≤ 2−d+1 .

Using the above observation, we have that if for some i it holds | sin(2πγ〈xi, w〉)| ≤ 2−d then for
some integer k ∈ Z it holds |〈xi, w〉 − k

2γ | ≤ 1
γ 2

−d. Furthermore, since by Cauchy-Schwartz and the
first part with probability 1− exp(−Ω(d)) we have

|〈xi, w〉| ≤ ‖xi‖ ≤ 10
√
d,

it suffices to consider only the integers k satisfying |k| ≤ 10γ
√
d, with probability 1− exp(−Ω(d)).

Hence,

P

(
d+1⋃

i=1

| sin(2πγ〈xi, w〉)| ≤ 2−d

)
≤ P




d+1⋃

i=1

⋃

k:|k|≤10γ
√
d

|〈xi, w〉 −
k

2γ
| ≤ 1

γ
2−d




≤ 20d
√
dγ sup

k∈Z
P

(
|〈x1, w〉 − k/2γ| ≤ 1

γ
2−d

)

≤ 40d
√
d2−d

= exp(−Ω(d)),

where we used the fact that 〈x1, w〉 is distributed as a standard Gaussian, and that for a standard
Gaussian Z and for any interval I of any interval of length t it holds P(Z ∈ I) ≤ 1√

2π
t ≤ t.

For the third part, notice that from the second part for all i = 1, . . . , d+ 1 it holds

1− cos2(2πγ〈xi, w〉) = sin2(2πγ〈xi, w〉) = Ω(2−2d)

with probability 1 − exp(−Ω(d)). Hence, since ‖ξ‖∞ ≤ exp(−(d log d)3) we have that for all i =
1, . . . , d+ 1 it holds

zi = cos(2πγ〈xi, w〉)) + ξi ∈ [−1, 1],

with probability 1− exp(−Ω(d)). Hence, the existence of ξ′i follows by the fact that image of the
cosine is the interval [−1, 1]. Now by mean value theorem we have

ξi = cos(2π(γ〈xi, w〉+ ξ′i))− cos(2πγ〈xi, w〉)) = 2πγξ′i sin(2πγt)

for some t ∈ (〈xi, w〉 − |ξi|, 〈xi, w〉 + |ξi|). By the 1-Lipschitzness of the sine function, the second
part and the exponential upper bound on the noise we can immediately conclude

| sin(2πγt)| ≥ sin(2πγ〈xi, w〉)− |ξi| = Ω(2−d),

with probability 1− exp(−Ω(d)). Hence it holds |ξ′i|Ω(2−d) ≤ |ξi| and therefore

|ξ′i| ≤ 2d|ξi| = exp(−Ω((d log d))3)

with probability 1− exp(−Ω(d)).
For the fourth part, for the fact that X is invertible, consider its determinant, that is the random

variable det(X). The determinant is non-zero almost surely, i.e. det(X) 6= 0 almost surely. This
follows from the fact that the determinant is a non-zero polynomial of the entries of X, e.g. for
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X = Id it equals one, hence, using folklore results as all entries of X are i.i.d. standard Gaussian
it is almost surely non-zero [CT05]. Now, using standard results on the extreme singular values
of X, such as [RV, Equation (3.2)], we have that σmax(X

−1) = 1/σmin(X) ≤ 2d, with probability
1− exp(−Ω(d)). In particular, using also the first part, it holds

‖X−1x1‖∞ ≤ ‖X−1x1‖2 ≤
√
σmax(X−1)‖x1‖2 ≤ 2

d
2

√
d,

with probability 1− exp(−Ω(d)).
For the fifth part, notice that the determinant is non-zero from the fourth part.
For the upper bound on the determinant, we apply Hadamard’s inequality [Had93] and part 1 of

the Lemma to get that

|det(x2, . . . , xd+1)| ≤
d+1∏

i=2

‖xi‖2 ≤ (10
√
d)d = O(exp(d log d)),

with probability 1− exp(−Ω(d)).

I.4 Auxiliary Lemmas for the Population Loss

Fix some hidden direction w ∈ Sd−1. Recall that for any w′ ∈ Sd−1, we denote by

L(w′) = Ex∼N(0,Id)[(cos(2πγ〈w, x〉)− cos(2πγ〈w′, x〉))2] .

Lemma I.10. Let us consider the (probabilist’s) normalized Hermite polynomials on the real line
{hk}k∈Z≥0

. The following identities hold for Z ∼ N(0, 1).

(1) For all k, ℓ ∈ Z≥0

E[hk(Z)hℓ(Z)] = ✶[k = ℓ] .

(2) Let Zρ be a standard Gaussian which is ρ-correlated with Z. Then, for all γ > 0, k ∈ Z≥0,

E[hk(Z) cos(2πγZρ)] = (−1)k/2ρk (2πγ)
k

√
k!

exp(−2π2γ2) · ✶[k ∈ 2Z≥0] .

(3) The performance of the trivial estimator, which always predicts 0, equals

Var(cos(2πγZ)) =
∑

k∈2Z≥0\{0}

(2πγ)2k

k!
exp(−4π2γ2) =

1

2
+O(exp(−Ω(γ2))) .

Proof. The first part follows from the standard property that the family of normalized Hermite
polynomials form a complete orthonormal basis of L2(N(0, 1)) [KWB19, Proposition B.2].
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For the second part, recall the basic fact that we can set Zρ = ρZ +
√

1− ρ2W for some W
standard Gaussian independent from Z. Using [KWB19, Proposition 2.10], we get

E[hk(Z) cos(2πγZρ)] = E[hk(Z) cos(2πγ(ρZ +
√
1− ρ2W )]

=
1√
k!
E

[
dk

dZk
cos(2πγ(ρZ +

√
1− ρ2W )

]

= (−1)k/2(2πργ)k 1√
k!
E[cos(2πγ(ρZ +

√
1− ρ2W )] · ✶(k ∈ 2Z≥0)

+ (−1)(k+1)/2(2πργ)k
1√
k!
E[sin(2πγ(ρZ +

√
1− ρ2W )] · ✶(k 6∈ 2Z≥0)

= (−1)k/2(2πργ)k 1√
k!
E[cos(2πγ(ρZ +

√
1− ρ2W )] · ✶(k ∈ 2Z≥0)

= (−1)k/2(2πργ)k 1√
k!
E[cos(2πγZ)] · ✶(k ∈ 2Z≥0)

= (−1)k/2(2πργ)k 1√
k!

exp(−2π2γ2) · ✶(k ∈ 2Z≥0) ,

where (a) in the third to last line we used that the sin is an odd function and therefore when k
is odd the corresponding term is zero, (b) in the second to last line we used that Zρ follows the
same standard Gaussian law as Z and, (c) in the last line we used the characteristic function of the
standard Gaussian to conclude that for any t > 0,

E[cos(tZ)] = Re[E[eitZ ]] = e−t2/2 .

For the third part, notice that by applying the result from part (1) and the result from part (2)
(for ρ = 1) it holds,

Var(cos(2πγZ)) =
∑

k∈Z≥0\{0}
E[cos(2πγZ)hk(Z)]2

=
∑

k∈2Z≥0\{0}

(2πγ)2k

k!
exp(−4π2γ2)

=
∑

k∈2Z≥0

(2πγ)2k

k!
exp(−4π2γ2)− exp(−4π2γ2)

=
∑

k≥0

1

2
· (2πγ)

2k

k!
exp(−4π2γ2)(1 + (−1)k)− exp(−4π2γ2)

=
1

2


∑

k≥0

(4π2γ2)k

k!
exp(−4π2γ2) +

∑

k≥0

(−4π2γ2)k

k!
exp(−4π2γ2)


− exp(−4π2γ2)

=
1

2
+

1

2
exp(−8π2γ2)− exp(−4π2γ2)

=
1

2
+O(exp(−Ω(γ2))) .
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