

1 Running Head: Tundra Response to Climate with Grazing

2 **Model Responses to CO₂ and Warming Are Underestimated without Explicit**

3 **Representation of Arctic Small-Mammal Grazing**

4 Edward B. Rastetter^{1,*}, Kevin L. Griffin^{2,3,4}, Rebecca J. Rowe⁵, Laura Gough⁶, Jennie R.

5 McLaren⁷, and Natalie T. Boelman⁴

6 ¹The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA

7 ²Department of Ecology, Evolution and Environmental Biology, Columbia University, New

8 York, NY 10027, USA

9 ³Department of Earth and Environmental Sciences, Columbia University, Palisades, NY 10964,

10 USA

11 ⁴Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA

12 ⁵Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824,

13 USA

14 ⁶Department of Biological Sciences, Towson University, Towson, MD 21252, USA

15 ⁷ Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA

16 *Corresponding author, erastetter@mbl.edu

17

18 Open Research Statement: New empirical data were not used for this research. The code (Rastetter et al.,

19 2021a) is available from Zenodo: <http://doi.org/10.5281/zenodo.5083290> and the simulation results

20 (Rastetter et al., 2021b & 2021c) are available from the Environmental Data Initiative:

21 <https://doi.org/10.6073/pasta/67108cef344d93cfdd060e7e0f0911f5> and

22 <https://doi.org/10.6073/pasta/42e6660b2d1f2b59985ed0940e53f0d4>.

23 **ABSTRACT**

24 We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to
25 examine how explicitly representing grazers versus having grazer effects implicitly aggregated in
26 with other biogeochemical processes in the model alters predicted responses to elevated carbon
27 dioxide and warming. The aggregated approach can affect model predictions because grazer-
28 mediated processes can respond differently to changes in climate from the processes with which
29 they are typically aggregated. We use small-mammal grazers in arctic tundra as an example and
30 find that the typical three-to-four-year cycling frequency is too fast for the effects of cycle peaks
31 and troughs to be fully manifested in the ecosystem biogeochemistry. We conclude that
32 implicitly aggregating the effects of small-mammal grazers with other processes results in an
33 underestimation of ecosystem response to climate change relative to estimations in which the
34 grazer effects are explicitly represented. The magnitude of this underestimation increases with
35 grazer density. We therefore recommend that grazing effects be incorporated explicitly when
36 applying models of ecosystem response to global change.

37

38 **KEYWORDS:** arctic tundra, biogeochemistry, carbon cycling, carbon-nitrogen ecosystem
39 model, climate change, nitrogen cycling, population cycles, small-mammal herbivores

40

41 **INTRODUCTION**

42 Despite evidence that animals can influence ecosystem carbon (C) and nutrient cycles
43 (Schmitz et al., 2014), explicit incorporation of animals into terrestrial biogeochemical models is
44 rare (Metcalfe and Olofsson 2015). To maintain mass balance in these models without explicit
45 representation of animals, the effects of animals have to be implicitly aggregated into other
46 biochemical processes through model calibration (e.g., animal respiration included with other
47 heterotrophic respiration). However, animal-mediated processes can behave differently from the
48 processes with which they are aggregated. For example, combining microbial and mammal
49 respiration into a single value for heterotrophic respiration can cause problems because warming
50 generally increases respiration in microbes, but can slow respiration in mammals if the warming
51 reduces the energy needed to maintain body temperature (Batzli et al., 1980). Here we examine
52 the effects of aggregating grazer-mediated processes in with other biogeochemical processes
53 when modeling ecosystem response to elevated carbon dioxide (CO₂) and warming. We use
54 small-mammal grazers in arctic tundra as an example. However, the principles are general, and
55 we conclude with a discussion of how our results might apply more generally to other grazers
56 and other ecosystems.

57 Recent studies suggest that animals influence the response of tundra to climate change
58 (Tuomi et al., 2019, Petit Bon et al., 2020). Experimental manipulations conducted across a
59 range of tundra ecosystems have shown that while warming or fertilization typically enhances
60 above ground productivity and nutrient cycling in tundra, the presence of herbivores - including
61 rodents, geese, and ungulates - can dampen or negate this response (e.g., Grellman et al., 2002,
62 Sjögersten et al., 2008, Post and Pedersen 2008, Rinnan et al., 2009, Cahoon et al., 2011,
63 Kaarlejärvi et al., 2015, Leffler et al., 2019) or might enhance productivity (Gough et al., 2012).

64 Further, observational studies have shown that trophic interactions on the tundra strengthen
65 under warmer conditions (McKinnon et al., 2010, Legagneux et al., 2012), suggesting that
66 animal influences on arctic C cycling might be stronger in the future.

67 In other terrestrial ecosystems, animals are known to affect C and nutrient cycling
68 (McNaughton 1985, McLaren and Jefferies 2004, Wilkinson and Sherratt 2016). The direct
69 effects of animals vary among ecosystems, type of herbivore, and plant growth form (Jai et al.
70 2018) but have historically been thought of as small relative to plant and microbial processes
71 (e.g., Hairston et al., 1960). Nevertheless, animals can accelerate nutrient cycles and influence
72 plants and microbes indirectly by mediating chemical and biological processes and altering
73 community structure and can thereby have a large influence on ecosystem C and nutrient
74 processing (Pastor et al., 1988, Schmitz et al., 2014, Wardle et al., 2004, Zimov et al., 2009,
75 Metcalfe et al., 2014).

76 Although herbivore-vegetation models have been made for other ecosystems (e.g., Seagle
77 and McNaughton 1993, Bennett 2003), we are aware of only one vegetation-dynamics model -
78 ArcVeg - that explicitly addresses the effect of an arctic herbivore (caribou) on tundra
79 biogeochemistry (Yu et al., 2011). This model indicates that grazing dampens the increase in
80 plant biomass expected from warming soils and the consequent increase in nutrient cycling (Yu
81 et al., 2011). These results suggest that the explicit inclusion of grazers in biogeochemical
82 models could be necessary for predicting tundra responses to climate change.

83 Other modeling studies have addressed arctic biogeochemical responses to climate
84 change, but without the explicit representation of the effects of animals as separate from other C
85 and nutrient cycling processes. These biogeochemical models indicate significant long-term
86 impacts of elevated CO₂ and warming, but the model predictions differ on how these responses

87 will ultimately affect net C source versus sink activity. This source-sink disparity is due to
88 uncertainty in the balance between elevated autotrophic and heterotrophic respiration (source)
89 resulting from warming versus enhanced photosynthesis (sink) resulting from the direct effects
90 of elevated CO₂ and warming on production and from the acceleration of nutrient cycles by
91 warming (McKane et al., 1997, Rastetter et al., 1997, McGuire et al., 2012, Pearce et al., 2015,
92 Jiang et al., 2017). This trade-off between source versus sink activity is likely to be confounded
93 by arctic herbivores.

94 From the perspective of ecosystem biogeochemistry, aggregating herbivore effects in
95 with other processes can be justified because grazers perform several nutrient-cycling processes
96 that parallel other plant and microbial processes within ecosystems. Here we examine
97 aggregation effects for four such processes in relation to the response of ecosystems to elevated
98 CO₂ and warming: (1) Grazing mediates the transfer of plant C to detritus and soil organic matter
99 (soil), and thereby acts in parallel with tissue senescence and litter fall. (2) Similarly, grazing
100 transfers plant N to soil organic matter in parallel with tissue senescence and litter fall, but does
101 so before the plants can resorb N. (3) Consumption of plant material and subsequent
102 heterotrophic respiration by grazers parallels litter fall and the subsequent heterotrophic
103 respiration resulting from processing of soil organic matter by microbes and other detritivores.
104 (4) Finally, metabolic processing of plant matter consumed by grazers produces dissolved labile
105 N in urine in parallel with litter fall and microbially mediated mineralization.

106 Even though these processes act in parallel, the grazer-mediated and non-grazer-mediated
107 processes might respond differently to climate change, or even in opposite directions.
108 Furthermore, the cyclic dynamics of small-mammal grazers in the Arctic might complicate the

109 relative contributions of these parallel processes to ecosystem responses to elevated CO₂ and
110 climate change. Based on the modeling analysis we present below:

111 (1) We hypothesize that aggregating the effects of small-mammal grazers with other C and N
112 cycling processes results in an underestimation of tundra responses to elevated CO₂ and
113 warming. For our model, after 100 years the underestimation of C sequestration in tundra
114 ecosystems in response to elevated CO₂ and warming is 50 to 80% relative to estimations
115 in which the grazer effects are explicitly represented.

116 (2) We hypothesize that although three-to-four-year cycles in the density of small-mammal
117 grazers have measurable short-term effects of tundra biogeochemistry (e.g., Olofsson et
118 al. 2012), densities averaged over the grazer cycles can be used to assess long-term
119 responses of tundra to elevated CO₂ and warming.

120

121 We use a simple model of coupled C and N cycles in ecosystems applied to the effects of
122 small-mammal grazers on the responses of moist acidic tundra to elevated CO₂ and warming.
123 Most of the data we use is for lemmings and voles, but the model applies to generic small-
124 mammal grazers in the Arctic, which we refer to as "voles" for simplicity. We apply the model
125 both with vole densities explicitly represented and with vole densities unspecified, but their
126 effects implicitly subsumed into other biogeochemical processes. In all applications of the
127 model, we assume voles are present on the landscape. The model applications differ only in the
128 way that vole and other biogeochemical processes are separated from one another.

129

130 **METHODS**

131 **Model:** We use a model developed by Rastetter et al., (2020) to examine recovery of
132 ecosystems from disturbances that remove vegetation (Box 1, Rastetter et al. 2021a). We have
133 modified that model to account for temperature sensitivity of six metabolic processes
134 (photosynthesis, autotrophic and heterotrophic respiration, plant and microbial N uptake, and N
135 mineralization). We have also modified it to account for the effects of voles on the transfer of C
136 and N from vegetation to soil organic matter and the transfer of N in urine from vegetation to
137 inorganic N (although not all N in urine is inorganic, it is labile, and we treat it as inorganic). The
138 basic model is fully described in Rastetter et al., (2020); here we describe only the changes to
139 that model for the current analyses.

140 *Temperature response of metabolic processes:* Because we use an annual time step in the
141 model (i.e., no seasonality) and restrict warming to 5 °C above current temperatures, we use a
142 simple Q_{10} function to simulate temperature responses rather than more complex formulations
143 (e.g., Heskel et al., 2016 or Carey et al., 2016). We have therefore modified the photosynthesis,
144 autotrophic respiration, heterotrophic respiration, plant N uptake, microbial N uptake, and N
145 mineralization in the Rastetter et al., (2020) model to increase exponentially with warming (Box
146 1: Eqs. 9, 10, 13, 14, 19, and 20).

147 *Vole grazing:* We drive the model by specifying vole density in each year (V).
148 Consistent with values and cycle frequency reported in the literature (Batzli et al., 1980, Krebs et
149 al., 1995, Korpimaki et al., 2004, Pitelka and Batzli 2007, Krebs 2013, Ehrich et al. 2020), we
150 use a randomly generated time series of vole abundance with peaks every three or four years,
151 with abundances at the peak ranging from 90 to 110 voles ha^{-1} , minimum abundances ranging
152 from 8 to 12 voles ha^{-1} , and a mean vole abundance over the full time series of 40 voles ha^{-1} (Fig.
153 1). We chose to take this prescribed approach to vole density because the drivers of vole cycles

154 are not fully understood (Korpimaki et al., 2004, Prevedello et al., 2013, Oli 2019) and likely
155 include a top-down component (Pitelka et al., 1955, Hairston et al., 1960, Krebs 2013), which is
156 well beyond the domain of our model. For convenience, we specify vole density in voles ha^{-1}
157 and correct to m^{-2} units by dividing by 10,000 $\text{m}^2 \text{ha}^{-1}$ (Eqs. 15, 17, & 18).

158 The removal of C from vegetation for nest building and ingestion are lumped into a
159 single process for our model (Eq. 15). We assume this C removal is proportional to the specified
160 vole density but decrease the per capita rate of ingestion with warming to account for decreased
161 energy requirements to maintain body temperature (Eq.15; Batzli et al., 1980). Vole respiration
162 is proportional to the ingestion component of C removal from vegetation by voles and therefore
163 also declines with warming (Eq. 17). We do not account for other temperature responses like
164 those associated with cold or heat stress. We assume a constant C:N ratio of material removed
165 from vegetation by grazers (Eq. 16) but, because of the respiration loss of C and the N
166 transferred to inorganic N in urine, the C:N of material removed from vegetation and the C:N of
167 material added to the soil organic matter differ. Finally, we assume urine losses of N are
168 proportional to vole density (Eq. 18).

169

170 **Model calibration:** We calibrate the model to be consistent with the C and N stocks and
171 process rates compiled by Pearce et al., (2015) for the Multiple Element Limitation (MEL)
172 model (Table 1). Because voles are part of the ecosystem, the effects of voles on tundra C and N
173 stocks and fluxes are implicitly included in the data compiled by Pearce et al.,
174 (2015). Therefore, by using these data to calibrate (fit) the model without explicit vole
175 representation, we are implicitly aggregating those vole effects in with the parallel ecosystem
176 processes described above. In the calibrations in which voles are explicitly represented, we

177 assume a constant vole density and that the ecosystem is in steady state. We then specify the
178 vole effects directly and subtract these effects from the parallel ecosystem processes before
179 calibration (Table 2). The combined rates of vole-mediated processes plus the parallel
180 ecosystem processes are therefore identical in all calibrations (rows labeled "Total" in Table 2),
181 thus providing the basis of comparison for assessing the consequences of explicit versus
182 aggregated representation of vole grazing.

183 In the calibrations, first we set allometric, C:N, Q_{10} , half-saturation, and vole-related
184 parameters (derivation of these parameter values is presented in Appendix S1). We then set the
185 rate parameters for each process so that flux rates are consistent with rates reported in Pearce et
186 al., (2015). Because annual rates of plant and microbial processes are dominated by growing-
187 season rates, we use average summer temperature (10 °C) to calibrate the model; in any case,
188 because of the Q_{10} formulation, once calibrated to a specified temperature, model responses are
189 sensitive to changes in temperature, not to the temperature value itself. For vole processes, we
190 correct this summer temperature to average annual temperature with an off-set (Eq. 15).

191 We made three calibrations (Tables 3 & 4). In calibration I, vole densities are not
192 explicitly specified, and we assume that vole-mediated processes can be implicitly represented
193 by aggregating them with the parallel biogeochemical processes described in the introduction
194 above (Table 2). In this calibration, we therefore set the number of voles (V) in the model to
195 zero but incorporate the effects of voles in with the parallel processes through the calibration. In
196 calibration II, we set the number of voles to 40 voles ha^{-1} so that vole-mediated processes are
197 explicitly represented, and the number of voles is the mean abundance of voles we use in our
198 simulated vole cycle (described above). In calibration III, we set the number of voles to 100
199 voles ha^{-1} , which is the mean peak-vole abundance in our simulated vole cycle. In calibration

200 III, the parallel ecosystem process rates are decreased proportionally more than in calibration II
201 to account for the higher vole density (Table 2).

202 All but four of the parameters have the same values in all three calibrations. To maintain
203 the same steady state in all three calibrations, we adjust the values of these four parameters to
204 compensate for how voles are represented in the model (m_{CB} , m_{NB} , r_D , and m_{Nm} ; rows labeled
205 "PAR" in Table 2). These parameters are adjusted so that the rates of C and N litter losses,
206 heterotrophic soil respiration, and gross N mineralization all decrease to compensate for the
207 parallel vole-mediated C and N fluxes in calibrations II and III where voles are explicitly
208 represented. Because we calibrate to the same data set (Pearce et al., 2015), the overall C and N
209 stocks and cycling rates are identical for these three calibrations (rows labeled "Total" in Table
210 2).

211

212 **Simulations:** We run a total of thirteen simulations in two sets (Tables 3 & 4, Rastetter et
213 al. 2021b&c).

214 In the first set of simulations, we assume that the average vole density is 40 voles ha^{-1} and
215 use calibration II with vole effects explicitly represented (Table 3). We then run four 200-year
216 simulations with no change in either CO_2 or temperature. We drive the model with: (1) voles
217 held constant at 40 voles ha^{-1} ; (2) voles cycling on the three-to-four-year cycle between 8 and
218 110 voles ha^{-1} for 200 years; (3) voles cycling for ten years, followed by maintenance of a
219 constant vole density of 100 voles ha^{-1} (equivalent to adding voles to the ecosystem); and (4)
220 voles cycling for ten years, followed by maintenance of a constant vole density of 0 voles ha^{-1}
221 (equivalent to removing voles from the ecosystem).

222 This first set of simulations serves two purposes. First, it illustrates the effects of long-
223 term changes in vole density and thereby draws the distinction between adding or removing
224 voles from calibrating the model assuming high or low vole density. Second, it allows us to
225 assess the potential long-term effects of voles if their numbers were maintained at high or low
226 levels. We can thereby address the question: "Do the simulated changes in the ecosystem
227 approach their potential changes during peaks and troughs in the vole cycle?"

228 The second set of simulations is to address our central question about aggregated versus
229 explicit representations of grazer effects on ecosystem responses to climate change (Table 4).
230 We run nine 100-year simulations in a two-factor design. The first factor relates to how vole
231 effects are represented in the three calibrations (Table 3) and vole abundance: (1) calibration I
232 (aggregated) and vole abundance subsumed in the calibration of the parallel processes and
233 therefore assumed constant but unspecified (although V is set to 0 in the model, vole effects are
234 aggregated in with the parallel ecosystem processes); (2) calibration II (40 voles ha^{-1}) and vole
235 abundance cycling on the three-to-four-year cycle between 8 and 110 voles ha^{-1} ; and (3)
236 calibration III (100 voles ha^{-1}) and vole abundance held constant at 100 voles ha^{-1} . The second
237 factor relates to climate change: (1) a linear increase in atmospheric CO₂ from 400 to 800 μmol
238 mol^{-1} over 100 years; (2) a linear increase in temperature from 10 to 15 °C over 100 years; and
239 (3) a linear increase in both atmospheric CO₂ from 400 to 800 $\mu mol mol^{-1}$ and temperature from
240 10 to 15 °C over 100 years.

241

242 **RESULTS**

243 **Set 1: Effects of vole cycling and adding or removing voles.**

244 *Simulation 1: Effects of holding voles constant at the calibration abundance.* Because
245 the model was calibrated to a steady state with 40 voles ha^{-1} , all ecosystem C and N stocks and
246 fluxes remained constant when vole abundance was held at 40 voles ha^{-1} in the 200 year
247 simulations (dotted horizontal lines in Fig. 2). This simulation only serves to illustrate the
248 stability of the model and to serve as a control to which the other simulations can be compared.

249 *Simulation 2: Effects of vole cycling on plant and soil C and N.* In the 200-year
250 simulations with vole abundance cycling, the plant and soil C and N stocks cycle at the same
251 three-to-four-year frequency as the voles (Fig. 2). In addition, there are some longer-term
252 dynamics in these stocks associated with the auto-correlated nature of plant production and the
253 legacy of the random variations in the vole cycle. Despite these dynamics, vole cycling does not
254 cause the plant and soil C and N stocks to diverge far from the values to which they are
255 calibrated (dotted and solid lines in Fig. 2).

256 The plant biomass cycles out of phase with the vole cycle. The lowest plant C and N
257 values occur in years of peak vole numbers and the highest plant C and N values occur three or
258 four years after peak vole numbers or the year prior to the subsequent vole peak (Fig. 3). This
259 phase shift in the plant relative to vole cycles as well as the magnitude of the plant C cycle (20 to
260 30 g C m^{-2} peak to trough) are roughly consistent with the phase and magnitude of the cycles
261 reported by Olofsson et al., (2012). In addition, the dependence of plant production on plant
262 biomass results in a strong autocorrelation in the plant C and N time series, which in turn results
263 in longer-term dynamics less clearly tied to the vole cycle (Fig. 2). This autocorrelation is
264 reflected in the strong positive correlation between the plant C and N and their respective values
265 at the time of the previous peak in vole numbers (open dots remain high and closed dots remain
266 low in Fig. 3).

267 The dynamics of soil C and N stocks are closely tied to the plant dynamics. Because N
268 inputs to the ecosystem are less than 3% of the annual plant requirement (Table 1), plant
269 recovery from vole outbreaks relies almost exclusively on N from soil organic matter. As a
270 consequence, the three-to-four-year soil N cycles are directly out of phase with plant N cycles
271 and the longer-term dynamics are also opposite those in plant N (Fig. 2). Soil C also cycles out
272 of phase with plant C, but the relation is not as strong as it is for N. However, because soil C is
273 ultimately derived from plant C, the longer-term dynamics in plant C are paralleled in the soil C
274 following about a 9-year lag (Fig. 2).

275 *Simulations 3 & 4: Effects of removing or adding voles.* When voles are removed from
276 the ecosystem, plant C and N increase by about 13%, or increase by 116 g C m^{-2} and 2.7 g N m^{-2} .
277 Because of the reliance of plants on soil N, soil N decreases by almost the same absolute amount
278 as the plants gain, 2.5 g N m^{-2} . However, the amount of N in the soil is so large that this loss
279 amounts to only about a 0.3% loss. The increase in plant biomass results in higher litter inputs
280 to the soil. Consequently, soil C increases by about 4% or 727 g C m^{-2} . The gain of soil C and
281 loss of soil N widens the soil C:N ratio by about 4%, which in turn increases microbial N
282 immobilization into soil organic matter (effect of Φ in Eq. 14).

283 When voles are increased and then held constant at $100 \text{ voles ha}^{-1}$, plant C and N
284 decrease by about 20%, or 175 g C m^{-2} and 4 g N m^{-2} . Again, because of the tight cycling of N
285 in the ecosystem, soil N increases by almost the same absolute amount as the plants lose, 3.7 g N
286 m^{-2} (0.4%). The loss of plant biomass translates into lower litter inputs to soil and a large
287 absolute decrease in soil C, 1170 g C m^{-2} (6%). Because of the increase in soil N and decrease in
288 soil C, the soil C:N narrows by about 6%, which in turn decreases microbial N immobilization
289 into soil organic matter (effect of Φ in Eq. 14).

290 In the simulations where vole density is increased or decreased and then held constant, it
291 takes 10 to 20 year for the vole effects to reach their largest deviation from the steady state and
292 another 60 to 90 years for those effects to stabilize. Because of this long response time, the
293 potential effects of voles on tundra biogeochemistry cannot be approached if vole abundance
294 cycles on a three-to-four-year cycle. Indeed, when voles are cycling, the magnitude of these
295 effects relative to the peak effects of the long-term increase or decrease in vole abundance is only
296 about 12% for plant C, 2% for soil C, and 20% for both plant and soil N.

297 **Set 2: Effects of aggregated versus explicit representations of vole effects.**

298 *Simulations 5, 8, & 11: Responses to increasing CO₂.* Predicted responses to increased
299 CO₂ do not differ substantially between the aggregated model in which vole effects are implicitly
300 aggregated in with other biogeochemical processes through model calibration (calibration I) and
301 the distributed model in which vole effects are explicitly represented (calibrations II & III: Figs.
302 4, 5, & 6). The only process affected by elevated CO₂ is photosynthesis. However, because the
303 plants are strongly N limited, elevated CO₂ increases net primary production (NPP) by only 10-
304 11% in both aggregated and distributed simulations (Fig. 6). This increase in production
305 translates into about an 11-12% increase in biomass, again in both aggregated and distributed
306 simulations (Fig. 4). The increase in production results in only about a 4% increase in soil C in
307 all the simulations. This increase in soil C is a small relative change but, because soil has such a
308 large fraction of the organic matter, it is a large absolute change amounting to about 90% of the
309 total change in ecosystem C.

310 The amount of N entering the ecosystem is too small to support even the small gain in
311 plant C in response to elevated CO₂. The gain is instead supported by a net transfer of 0.9 - 1.3 g
312 N m⁻² from soil to plants over the 100-year simulations. The amount of N transferred from soil

313 to plants is about the same in all three simulations (Fig. 5). Elevated CO₂ increases the C:N ratio
314 of the plants, which in turn increases N uptake (effect of Ψ in Eq. 10). However, the increase in
315 soil C:N resulting from increased litter inputs also increases microbial N uptake (effect of Φ in
316 Eq. 14). This competition between plants and microbes for N limits the ecosystem response to
317 elevated CO₂. Again, the effects of aggregated versus explicit representation of voles on this
318 response to elevated CO₂ are negligible (Figs. 4, 5, & 6).

319 *Simulations 6, 9, & 12: Responses to warming.* In contrast, the effects of aggregated
320 versus explicit representation of voles on the response to warming are large (Figs. 4, 5, & 6).
321 Warming not only stimulates photosynthesis, it also stimulates autotrophic and heterotrophic
322 respiration, and, more importantly, it stimulates the N cycle in three places: (1) N mineralization,
323 (2) microbial N uptake, and (3) plant N uptake. A major effect of this stimulation of the N cycle
324 is an increase in net N mineralization, a resulting relaxation of N limitation on plant growth, and
325 a large increase in plant biomass. The increase in plant production increases litter inputs to soils,
326 which in turn mitigates soil C losses. In addition, the increased production allows the ecosystem
327 to accumulate a small amount of N (<0.3 g N m⁻²; Fig. 6). The effects of this chain of events are
328 much stronger in the simulations where voles are explicitly represented than in the simulations
329 with the aggregated model and the effects are stronger when the model is calibrated assuming
330 higher vole densities (response stronger for calibration III [100 vole ha⁻¹] than for calibration II
331 [40 voles ha⁻¹]). Thus, explicit representation of vole effects results in an amplification of the
332 predicted transfer of N from soil to plants, larger predicted gains in plant C or higher predicted
333 retention of soil C, and higher predicted rates of gross primary production (GPP), net primary
334 production (NPP), and net ecosystem production (NEP). If the simulations are run with vole
335 density held constant at 40 voles ha⁻¹, the C and N stocks and fluxes follow the same general

336 patterns as in the simulations with the three-to-four-year vole cycle (data not shown). The size
337 of the differences between the simulations with constant 40 voles ha^{-1} and cycling vole density
338 are about the same as those of the cycle simulation from the steady state with no climate change
339 (Fig. 2). In addition, the temperature effects on vole consumption and respiration (Box 1, Eqs.
340 15 & 17) have only a small effect on this general pattern (simulations rerun with $\varepsilon_v = 0$ resulted
341 in < 2% difference in C and N stocks; data not shown).

342 *Simulations 7, 10, & 13: Responses to increasing CO_2 and warming.* The effects of
343 elevated CO_2 and warming are slightly amplified when the two are combined (the two interact
344 synergistically). Under both elevated CO_2 and warming, GPP is 12% and NPP is 8% higher than
345 the sum of the changes in GPP and NPP under elevated CO_2 alone and warming alone (Fig. 6).
346 The net transfer of N from soil to plants is about 3% stronger and the increase in plant C is about
347 7.5% stronger (Fig. 4 & 5). Overall, because the response to CO_2 alone is so much smaller than
348 the response to warming alone, the response to the two combined is dominated by the warming
349 response. The consequences of aggregated versus explicit representations of vole effects are
350 therefore the same as in the warming simulations.

351 In our analysis we assume vole density is top-down controlled and therefore does not
352 increase with plant production. However, if the average vole density during the cycle increases
353 in proportion to NPP (~80% over 100 years), some of the increased production with elevated
354 CO_2 and warming is consumed and the increase in plant biomass is about 7.6% lower than when
355 the average vole density remains constant (data not shown). The increase in vole density causes
356 soil C to decrease by 0.9% rather than increase by 0.4%.

357

358 **DISCUSSION**

359 Our analysis indicates that failure to explicitly represent small-mammal grazers (voles) in
360 biogeochemical models can result in an underestimation of the response of arctic ecosystems to
361 climate warming but has only a small effect on the response to elevated CO₂ (Fig. 4, 5, & 6).
362 Underestimation of the warming response increases with the assumed density of voles used to
363 calibrate the model. Although cycling of vole density has short-term effects on ecosystem stocks
364 and fluxes, it neither amplifies nor dampens the underestimation in the long-term response to
365 warming. Why is the explicit representation so important?

366 Before addressing this question, we again emphasize the distinction between explicit
367 representation of voles and adding voles to the ecosystem. Adding voles to the ecosystem
368 accelerates nutrient cycling by increasing the transfer of nutrients from plants to soil. Such an
369 acceleration of nutrient cycling might be expected to increase the responsiveness to elevated CO₂
370 and warming. However, in our analysis of the response to elevated CO₂ and warming we do not
371 add voles; we simply change how the voles are represented in the model. Vole effects are either
372 implicitly aggregated in with other processes or they are explicitly represented. In all three of
373 our calibrations, the total amounts of C and N removed from vegetation, the total heterotrophic
374 respiration, and the total mineralization of N are identical (Table 2). Thus, the *magnitudes* of
375 vole-mediated processes plus the parallel ecosystem processes are represented identically in all
376 three calibrations. Furthermore, in the analysis where we did add voles, any acceleration of
377 nutrient cycles by vole activity is transient; our analysis indicates that the net effect of adding
378 voles is to transfer N from plants, with relatively high N turnover, to soil, with slower N turnover
379 (Fig. 2); although it would be impossible to detect the 0.6% change in soil N predicted by our
380 model. Thus, the long-term effect of adding voles is to slow the nutrient cycle. Furthermore,
381 adding and maintaining 100 voles ha⁻¹ resulted in a loss of over a kilogram of C from the

382 ecosystem (Fig. 2). Thus, the effect of adding grazers is to *decrease* ecosystem C whereas
383 explicitly representing voles in the model is to *increase* the estimate of C gain with climate
384 change (Fig. 4).

385

386 **Why are the differences in responses to elevated CO₂ so small between aggregated**
387 **versus explicit representation of vole effects?** Elevated CO₂ stimulates only one ecosystem
388 process, photosynthesis (Fig. 7). The associated increase in C gain increases biomass and leaf
389 area, which further stimulates photosynthesis (Fig. 7: $\uparrow C_a \rightarrow \uparrow P_s \rightarrow \uparrow B_C \rightarrow \uparrow S \rightarrow \uparrow P_s$).
390 However, there is a much stronger negative feedback associated with the change in
391 stoichiometry; increased photosynthesis increases biomass C and consequently increases
392 vegetation C:N, which feeds back to decrease photosynthesis ($\uparrow C_a \rightarrow \uparrow P_s \rightarrow \uparrow B_C \rightarrow \uparrow \Psi \rightarrow \downarrow P_s$).
393 Tissue and Oechel (1987) used this stoichiometric feedback to argue why tussock tundra exposed
394 to elevated CO₂ alone had only a transient increase in production. Without an increase in the N
395 supply to vegetation, the CO₂-stimulation of photosynthesis cannot be maintained. However, the
396 increase in vegetation C:N increases the litter-fall C:N and consequently the soil C:N, which in
397 turn decreases net N mineralization and the supply of N to plants ($\uparrow C_a \rightarrow \uparrow P_s \rightarrow \uparrow B_C \rightarrow \uparrow \Psi \rightarrow$
398 $\downarrow L_{itN} \rightarrow \downarrow D_N \rightarrow \uparrow \Phi \rightarrow \downarrow (N_{min} - U_{Nm})$). Because none of the steps in this chain were modified to
399 incorporate voles explicitly in the model calibration, this N feedback is about the same for both
400 explicit and aggregated representation of voles in the model and therefore does not have a large
401 effect on the relative responses with and without explicit representation of vole effects.

402

403 **Why are the predicted responses to warming stronger when vole effects are**
404 **explicitly represented in the model than when they are aggregated with other processes?** In

405 the model, warming stimulates six processes: photosynthesis, autotrophic and heterotrophic
406 respiration, N mineralization, microbial N uptake, and plant N uptake (Fig. 7). Although
407 warming decreased the energy cost of thermoregulation and therefore decreases vole
408 consumption of plants (Eq. 15) and vole respiration (Eq. 17), we found that this effect is too small
409 to explain the differences between simulations with versus without voles explicitly represented
410 (accounting for < 2% of the response in C and N stocks).

411 Among these many effects of warming in the model, the main effect that results in the
412 accumulation of plant C in simulations with both explicit and aggregated representations of vole
413 effects is the release from N limitation through the stimulation of net N mineralization (Fig. 7:
414 $\uparrow T \rightarrow \uparrow(N_{\min} - U_{Nm}) \rightarrow \uparrow N \rightarrow \uparrow U_N \rightarrow \uparrow B_N \rightarrow \downarrow \Psi \rightarrow \uparrow P_s$). Thus, one effect of this mobilization of
415 soil N is for both C and N uptake by plants to increase, causing plant biomass to accumulate.
416 Because N mineralization (N_{\min}) was decreased in calibrations II and III to accommodate the
417 explicit representation of voles (Table 2), this warming-induced growth in plant biomass is about
418 0.8% (40-vole calibration II) to 2% (100-vole calibration III) weaker in the simulations with the
419 explicit representation of vole effects. These simulations nevertheless accumulate more, not less,
420 biomass.

421 The main reason that plant C and N accumulation differed between simulations with
422 aggregated versus explicit representations of voles is the change made to litter fall rates to
423 accommodate the voles in calibrations II and III (Table 2). Litter fall is not directly stimulated
424 by warming (Eqs. 11 & 12), but it does increase as plant biomass increases. This increase in
425 litter fall in turn limits the amounts of C and N that can accumulate in plants. However, the
426 fraction of plant C and N lost in litter fall was decreased in calibrations II and III in which voles
427 are explicitly represented to accommodate the C and N consumed by voles (Table 2: m_{CB} & m_{NB}

428 were decreased). Consumption by voles does not increase with plant biomass (Eq. 15), and vole
429 density does not increase with plant biomass because we assume top-down control on voles and
430 therefore use a prescribed vole density. As a consequence, the increase in litter fall as biomass
431 accumulates is smaller with voles explicitly represented than in the aggregate representation.
432 The accumulation of C and N in vegetation is therefore larger with the explicit inclusion of vole
433 effects than in the simulation where vole effects are aggregated with other processes. When we
434 do allow vole density to increase in proportion of the increase in NPP (~80% over 100 years), the
435 increase in plant biomass is less than 8% lower because of consumption and the small increase in
436 soil C (<0.5%) becomes a small decrease (<1%).

437 In addition, because the C:N ratio of forage ($19.15 \text{ g C g}^{-1} \text{ N}$) is lower than the C:N ratio
438 of litter ($40 \text{ g C g}^{-1} \text{ N}$), the fraction of vegetation N lost in litter fall was decreased more than the
439 fraction of vegetation C lost in litter fall in calibrations II and III with explicit vole
440 representations (Table 2; e.g., 13.7% decrease in litter N versus 6.6% decrease in litter C with 40
441 vole ha^{-1}). As a consequence, as vegetation biomass accumulates, the litter-fall C:N ratio
442 increases more with the explicit representation of voles than with aggregated representation of
443 vole effects. Soil organic C therefore increases more with the explicit vole representation than
444 without it (Fig. 4), and soil organic N decreases more with the explicit vole representation than
445 without it (Fig. 5).

446

447 **Why is there a synergistic response to elevated CO₂ and warming in combination?**

448 If the response to CO₂ were stronger so that there was a substantial increase in plant biomass and
449 plant C:N ratio, then the feedback associated with litter fall would have come into play and
450 differences between explicit and aggregated representations of vole activity would have made

451 more of a difference by the same mechanism described above for the response to warming.
452 When elevated CO₂ is combined with warming, the warming mobilizes soil N, easing N
453 limitation of plant production, and the inhibiting feedback on production associated with higher
454 plant C:N is weakened. This weakening of the C:N feedback allows the direct effects of elevated
455 CO₂ to be more strongly manifested, and hence a stronger response to both elevated CO₂ and
456 warming than the sum of the responses to each factor individually. Tissue and Oechel (1987)
457 found the same synergistic effect resulting in a sustained increase in production with elevated
458 CO₂ and warming but only a transient increase with CO₂ alone.

459

460 CONCLUSIONS

461 Grazing animals can have large effects on ecosystems (Grellman et al., 2002, McLaren
462 and Jefferies 2004, Sjögersten et al., 2008, Post and Pedersen 2008, Rinnan et al., 2009, Cahoon
463 et al., 2011, Kaarlejärvi et et al., 2015, Leffler et al., 2019, Min et al., 2021). Our simulations
464 suggest that long-term exclusion of voles or maintenance of vole populations at high densities
465 can result in large gains or losses of both plants and soil C (Fig. 2). However, the response time
466 of plants and soil to these persistent changes in grazing takes several decades in our model. As a
467 consequence, the full effect of changes in vole densities are never realized when voles cycle on a
468 three-to-four-year time scale. Indeed, cycling at such a high frequency can be incorporated in
469 our model using the long-term mean density without any substantial change in the predicted
470 long-term dynamics of the ecosystem. Our simulations excluding and including voles are not
471 purely academic. Recent studies suggest that arctic rodent population cycles could dampen in
472 amplitude or be punctuated with periods of non-cyclic dynamics in response to altered climate
473 conditions, in particular changes in snow conditions (Gilg 2006, Ims et al., 2008, Kausrud 2008,

474 Brommer et al., 2010, Domine 2018). Our results suggest that the important dynamics for
475 predicting long-term changes in tundra biogeochemistry in response to climate change are the
476 mean grazer dynamics on decadal scales, not the higher frequency three-to-four-year cycles.

477 The effects of voles on C and N cycling can have major effects on the biogeochemical
478 responses of tundra to elevated CO₂ and warming. These effects need to be explicitly
479 represented in models rather than aggregated with other ecosystem processes. Even if these
480 other processes act in parallel with vole processes, their response to changes in the environment
481 can be very different. Our analysis indicates that failure to explicitly account for voles results in
482 large underestimation of the responses of tundra to climate warming and to elevated CO₂ and
483 warming. Our analysis is analogous to that of Thornton et al., (2007) who found that predicted
484 responses of the terrestrial biosphere to elevated CO₂ and climate change was likely
485 overestimated unless N limitation was explicitly represented in models. We recommend that
486 grazing effects be explicitly incorporated when applying models of tundra response to global
487 change.

488 Our analysis is based on a simple, annual-time-step model of ecosystem C and N
489 interactions calibrated to arctic tundra. The simplicity of the model facilitates causal tracing
490 (Fig. 7) and heuristic analysis of the results, but at the expense of quantitative detail in the
491 dynamics (Rastetter 2017). The results should therefore be confirmed for more complex models
492 with, for example, more detailed representations of vegetation and soil characteristics, finer-scale
493 seasonal dynamics, and the effects animals can have on plant-community composition and soil
494 structure. Although our model was calibrated for arctic tundra, the qualitative conclusions
495 probably apply more broadly. In our analysis, a key process is vole respiration, which decreases
496 with warming, unlike the increase with warming for plant and microbial respiration. This

497 property is clearly relevant to mammal grazers in cold climates, but not for mammal grazers in
498 warm climates or for insects in any climate. Nevertheless, for these other ecosystems there
499 might be analogous model biases associated with aggregating biogeochemical processes
500 mediated by these grazers with other ecosystem processes. Similarly, the consequences of
501 resource limitation need to be examined for grazers in ecosystems that are bottom-up regulated.
502 All these possibilities need to be analyzed, first with heuristic models like the one we use and
503 then incorporated into more detailed biogeochemical models. To perform these analyses, more
504 data like those in Batzli et al. (1980) and Olofsson et al. (2012) are needed that can be directly
505 applied in these biogeochemical models. Collection of these data will require a biogeochemical,
506 as well as a community, perspective on plant-grazer interactions.

507

508 **ACKNOWLEDGEMENTS**

509 This work was supported in part by the National Science Foundation under NSF grants
510 1651722, 1637459, 1603560, 1556772, 1841608 to E.B.R.; 1603777 to N.T.B. and K.L.G.;
511 1603654 to R.J.R.; 1603760 to L.G.; 1603677 to J.R.M. Any opinions, findings and conclusions
512 or recommendations expressed in this material are those of the authors and do not necessarily
513 reflect those of the National Science Foundation. We also want to thank Bonnie Kwiatkowski
514 for assistance with code development and archiving.

515

516

517 **LITERATURE CITED**

518 Batzli, G. O., R. G. White, S. F. MacLean Jr, F. A. Pitelka, and B. D. Collier. 1980. The
519 herbivore-based trophic system. pp 335-410 in Brown, J., Miller, P.C., Tieszen, L.L., and
520 Brunnell, F.L. eds.. *An Arctic Ecosystem: the Coastal Tundra at Barrow, Alaska.*
521 Dowden, Hutchinson, and Ross Inc, Stroudsburg, PA, USA

522 Bennett, V. J. 2003. Computer modelling the Serengeti-mara ecosystem. Doctor of Philosophy
523 dissertation, School of Biology, The University of Leeds.

524 Brommer, J. E., H. Pietianen, K. Ahola, P. Karell, T. Karstinen, and H. Kolunen. 2010. The
525 return of the vole cycle in southern Finland refutes generality of the loss of cycles
526 through 'climatic forcing'. *Global Change Biology* 16:577-586

527 Cahoon, S. M. P., P. F. Sullivan, E. Post, and J. M. Welker. 2011. Large herbivores limit CO₂
528 uptake and suppress carbon cycle responses to warming in West Greenland. *Global
529 Change Biology* 18:469–479.

530 Carey, J. C., J. Tang, P. H. Templar, K. D. Kroger, T. W. Crowther, A. J. Burton, J. S. Dukes, B.
531 Emmett, S. D. Frey, M. A. Heskel, L. Jiang, M. B. Machmuller, J. Mohan, A. M.
532 Panetta, P. B. Reich, S. Reinsch, X. Wang, S. D. Allison, C. Bamminger, S. Bridgham, S.
533 L. Collins, G. de Dato, W. C. Eddy, B. J. Enquist, M. Estiarte, J. Harte, A. Henderson, B.
534 R. Johnson, K. S. Larsen, Y. Luo, S. Marhan, J. M. Melillo, J. Peñuelas, L. Pfeifer-
535 Meister, C. Poll, E. Rastetter, A. B. Reinmann, L. L. Reynolds, I. K. Schmidt, G. R.
536 Shaver, A. L. Strong, V. Suseela, and A. Tietema. 2016. Temperature response of soil
537 respiration largely unaltered with experimental warming. *Proc Natl Acad Sci* 113:13797-
538 13802.

539 Domine, F., Gauthier G., Vionnet V., Fauteux D., Dumont M., and Barrere M. 2018. Snow
540 physical properties may be a significant determinant of lemming population dynamics in
541 the high Arctic, *Arctic Science*, 4: 813–826 <https://doi.org/10.1139/as-2018-0008>

542 Ehrich, D., N.M. Schmidt, G. Gauthier, R. Alisauskas, A. Angerbjörn, K. Clark, F. Ecke, N.E.
543 Eide, E. Framstad, J. Frandsen, A. Franke, O. Gilg, M.A. Giroux, H. Henttonen, B.
544 Hörnfeldt, R.A. Ims, G.D. Kataev, S.P. Kharitonov, S.T. Killengreen, C.J. Krebs, R.B.
545 Lanctot, N. Lecomte, I.E. Menyushina, D.W. Morris, G. Morrisson, L. Oksanen, T.
546 Oksanen, J. Olofsson, I.G. Pokrovsky, I.Y. Popov, D. Reid, J.D. Roth, S.T. Saalfeld, G.
547 Samelius, B. Sittler, S.M. Sleptsov, P.A. Smith, A.A. Sokolov, N.A. Sokolova, M.Y.
548 Soloviev, D.V. Solov'yeva. 2020. Documenting lemming population change in the Arctic:
549 Can we detect trends? *Ambio* 49:786-800. doi: 10.1007/s13280-019-01198-7.

550 Gilg, O., B. Sittler, and I. Hanski. 2009. Climate change and cyclic predator–prey population
551 dynamics in the high Arctic. *Glob. Change Biol.* 15, 2634–265210.1111/j.1365-
552 2486.2009.01927.x [doi:10.1111/j.1365-2486.2009.01927.x](https://doi.org/10.1111/j.1365-2486.2009.01927.x).

553 Gough, L., J. C. Moore, G. R. Shaver, R. T. Simpson, and D. R. Johnson. 2012. Above- and
554 belowground responses of arctic tundra to altered soil nutrients and mammalian
555 herbivory. *Ecology* 93:1683-1694.

556 Grellman, D. 2002. Plant responses to fertilization and exclusion of grazers on an arctic tundra
557 heath. *Oikos*, 98:190–204.

558 Hairston, N. G., F. E. Smith, and L. B. Slobodkin. 1960. Community structure, population
559 control, and competition. *The American Naturalist* 94:421–425.

560 Heskel, M. A., O. S. O'Sullivan, P. B. Reich, M. G. Tjoelker, L. K. Weerasinghe, A. Penillard, J.
561 J. G. Egerton, D. Creek, K. J. Bloomfield, J. Xiang, F. Sinca, Z. R. Stangl, A. Martinez-

562 de la Torre, K. L. Greffin, C. Huntingford, V. Hurry, P. Meir, M. H. Turnbull, and O. K.
563 Atkin. 2016. Convergence in the temperature response of leaf respiration across biomes
564 and plant functional types. *Proc Nat Accad Sci* 113: 3832-3837.

565 Ims, R. A., J. A. Henden, and S. T. Killengreen. 2008. Collapsing population cycles. *Trends*
566 *Ecol. Evol.* 23, 79–8610.1016/j.tree.2007.10.010 [doi:10.1016/j.tree.2007.10.010](https://doi.org/10.1016/j.tree.2007.10.010).

567 Jai, S., X. Wang, Z. Yuan, F. Lin, Z. Hao, and M.S. Luskin. 2018. Global signal of top-down
568 control of terrestrial plant communities by herbivores. *Proceedings of the National*
569 *Academy of Sciences* 115, 6237-6242. DOI: 10.1073/pnas.1707984115.

570 Jiang, Y., E. B. Rastetter, G. R. Shaver, A. V. Rocha, Q. Zhuang, and B. L. Kwiatkowsk. 2017.
571 Modeling long-term changes in tundra carbon balance following wildfire, climate change
572 and potential nutrient addition. *Ecological Applications* 27:105-117

573 Kaarlejärvi, E., K. S. Hoset, and J. Olofsson. 2015. Mammalian herbivores confer resilience of
574 arctic shrub-dominated ecosystems to changing climate. *Global Change Biology* 21,
575 3379-3388.

576 Kausrud, K. L., A. Mysterud, H. Steen, J. O. Vik, E. Ostbye, B. Cazelles, E. Framstad, A. M.
577 Eikeset, I. Mysterud, T. Solhoy, and N. C. Stenseth. 2008. Linking climate change to
578 lemming cycles. *Nature* 456, 93–9710.1038/nature07442 doi:10.1038/nature07442.

579 Korpimaki, E., P. R. Brown, J. Jacobs, and R. P. Pech. 2004. The puzzles of population cycles
580 and outbreaks of small mammals solved? *Bioscience* 5412.:1071-1079

581 Krebs, C. J. 2013. Population fluctuations in rodents. University of Chicago Press, Chicago, IL
582 USA

583 Krebs, C. J., R. Boonstra, and A. J. Kenney. 1995. Population dynamics of the collared lemming
584 and the tundra vole at Pearce Point, Northwest Territories, Canada. *Oecologia* 103:481-
585 489.

586 Leffler, A. J., K. H. Beard, K. C. Kelsey, R. T. Choi, J. A. Schmutz, and J. M. Welker. 2019.
587 Delayed herbivory by migratory geese increases summer-long CO₂ uptake in coastal
588 western Alaska. *Global Change Biology*, 25, 277–289.

589 Legagneux, P., G. Gauthier, D. Berteaux, J. Béty, M. C. Cadieux, F. Bilodeau, E. Bolduc, L.
590 McKinnon, A. Tarroux, J. F. Therrien, L. Morissette, and C. J. Krebs. 2012.
591 Disentangling trophic relationships in a high arctic tundra ecosystem through food web
592 modeling. *Ecology* 93:1707-1716

593 McGuire, A. D., T. R. Christensen, D. Hayes, A. Heroult, E. Euskirchen, J. S. Kimball, C.
594 Koven, P. Lafleur, P. A. Miller, W. Oechel, P. Peylin, M. Williams, and Y. Yi. 2012. An
595 assessment of the carbon balance of arctic tundra: Comparisons among observations,
596 process models, and atmospheric inversions. *Biogeosciences* 9:3185-3204.

597 McKane, R., E. Rastetter, G. Shaver, K. Nadelhoffer, A. Giblin, J. Laundre, and F. Chapin. 1997.
598 Reconstruction and analysis of historical changes in carbon storage in arctic tundra.
599 *Ecology* 78:1188-1198.

600 McKinnon, L., P. A. Smith, E. Nol, J. L. Martin, F. I. Doyle, F.I., Abraham, H. G. Gilchrist, R. I.
601 G. Morrison, and J. Béty. 2010. Lower predation risk for migratory birds at high
602 latitudes. *Science* 327:326-327

603 McLaren, J. R., and R. L. Jefferies. 2004.. Initiation and maintenance of vegetation mosaics in an
604 Arctic salt marsh. *J Ecol* 92:648-660.

605 McNaughton, S. J. 1985. Ecology of a grazing ecosystem: The Serengeti. *Ecological*
606 *Monographs* 55:259-294.

607 Metcalfe, D. B., G. P. Asner, R. E. Martin, J. E. Silva Espejo, W. H. Huasco, F. F. Farfán
608 Amézquita, L. Carranza-Jimenez, D. F. Galiano Cabrera, L.D. Baca, F. Sinca, L. P.
609 Huaraca Quispe, I. A. Taype, L. E. Mora, A. R. Dávila, M. M. Solórzano, B. L. Puma
610 Vilca, J. M. Laupa Román, P. C. Guerra Bustios, N. S. Revilla, R. Tupayachi, C. J.
611 Girardin, C. E. Doughty, and Y. Malhi. 2014. Herbivory makes major contributions to
612 ecosystem carbon and nutrient cycling in tropical forests. *Ecology Letters* 17:324–32.
613 doi: 10.1111/ele.12233

614 Metcalfe, D. B., and J. Olofsson. 2015. Distinct impacts of different mammalian herbivore
615 assemblages on arctic tundra CO₂ exchange during the peak of the growing season.
616 *Oikos* 124: 1632-1638. <https://doi.org/10.1111/oik.02085>

617 Min, E., M. Wilcots, S. Naeem, L. Gough, J. R. McLaren, R. J. Rowe, E. Rastetter, N. Boelman,
618 and K. L. Griffin. 2021. Herbivore absence can shift dry heath tundra from carbon source
619 to sink during peak growing season. *Environ. Res. Lett.* 162021. 024027

620 Oli, M. 2019. Population cycles in voles and lemmings: state of the science and future directions.
621 *Mammal Review* 49 2019. 226–239

622 Roberts, P and Jones DL. 2012. Microbial and plant
623 uptake of free amino sugars in grassland soils. *Soil Biology and Biochemistry* 49:139–
624 149.

625 Olofsson, J., H. Tømmervik, and T. V. Callaghan. 2012. Vole and lemming activity observed
626 from space. *Nature Climate Change Letters* DOI: 10.1038/NCLIMATE1537

627 Pastor, J. R., J. Naiman, B. Dewey. and P. McInnes. 1988. Moose, microbes and the boreal
628 forest. *Bioscience* 38:770-779.

628 Pearce, A. R., E. B. Rastetter, W. B. Bowden, M. C. Mack, Y. Jiang, Y., and B. L. Kwiatkowski,
629 B.L. 2015. Recovery of arctic tundra from thermal erosion disturbance is constrained by
630 nutrient accumulation: a modeling analysis. *Ecological Applications* 25:1271-1289.

631 Petit Bon, M., K. G. Inga, I. S. Jónsdóttir, T. A. Utsi, E. M. Soininen, and K. A. Bråthen. 2020.
632 Interactions between winter and summer herbivory affect spatial and temporal plant
633 nutrient dynamics in tundra grassland communities. *Oikos* 129:1229-1242.

634 Pitelka, F. A. and G. O. Batzli. 2007. Population cycles of lemmings near Barrow, Alaska: a
635 historical review. *Acta Theriologica* 52: 323–336.

636 Pitelka, F. A., P. Q. Tomich, and G. W. Treichel. 1955. Ecological relations of jaegers and owls
637 as lemming predators near Barrow, Alaska. *Ecological Monographs* 25: 85–117.

638 Post, E., and C. Pedersen. 2008. Opposing plant community responses to warming with and
639 without herbivores. *Proceedings of the National Academy of Sciences* 105, 12353-12358.

640 Prevedello, J. M., C. R. Dickman, M. V. Vieira, and E. M. Vieira, E.M. 2013. Population
641 responses of small mammals to food supply and predators: a global meta-analysis. *J
642 Animal Ecol.* 82:927-936.

643 Rastetter, EB. 2017. Modeling for understanding v. modeling for numbers. *Ecosystems* 20:215-
644 221.

645 Rastetter, E. B., G. I. Ågren, and G. R. Shaver. 1997. Responses of N-limited ecosystems to
646 increased CO₂: A balanced-nutrition, coupled-element-cycles model. *Ecol. Appl.* 7: 444–
647 460.

648 Rastetter, E., K. Griffin, R. Rowe, L. Gough, J. McLaren, and N. Boelman. 2021a. ARC-LTER/vole:
649 Initial release - VOLE v4.0 (Version v4.0). Zenodo. <http://doi.org/10.5281/zenodo.5083290>

650 Rastetter, E., K. Griffin, R. Rowe, L. Gough, J. McLaren, and N. Boelman. 2021b. Modeling the effect of
651 explicit vs implicit representation of grazing on ecosystem carbon and nitrogen cycling in

652 response to elevated carbon dioxide and warming in arctic tussock tundra, Alaska - Dataset A ver
653 2. Environmental Data Initiative.
654 <https://doi.org/10.6073/pasta/67108cef344d93cfdd060e7e0f0911f5>.

655 Rastetter, E., K. Griffin, R. Rowe, L. Gough, J. McLaren, and N. Boelman. 2021c. Modeling the effect of
656 explicit vs implicit representation of grazing on ecosystem carbon and nitrogen cycling in
657 response to elevated carbon dioxide and warming in arctic tussock tundra, Alaska - Dataset B ver
658 2. Environmental Data Initiative.
659 <https://doi.org/10.6073/pasta/42e6660b2d1f2b59985ed0940e53f0d4>.

660 Rastetter, E. B., G. W. Kling, G. R. Shaver, B. C. Crump, L. Gough, and K. L. Griffin. 2020.
661 Ecosystem recovery from disturbance is constrained by N cycle openness, vegetation-soil
662 N distribution, form of N losses, and the balance between vegetation and soil-microbial
663 processes. *Ecosystems* <https://doi.org/10.1007/s10021-020-00542-3>

664 Rinnan, R., S. Stark, and A. Tolvanen. 2009. Responses of vegetation and soil microbial
665 communities to warming and simulated herbivory in a subarctic heath. *Journal of
666 Ecology* 97:788–800.

667 Schmitz, O. J., P. A. Raymond, J. A. Estes, W. A. Kurz, G. W. Holtgrieve, M. E. Ritchie, D. E.
668 Schindler, A. C., Spivak, R. W. Wilson, M. A. Bradford, V. Christensen, L. Deegan, V.
669 Smetacek, M. J. Vanni, and C. C. Wilmers. 2014. Animating the carbon cycle.
670 *Ecosystems* 17:344-359.

671 Seagle, S. W. and S. J. McNaughton. 1993. Simulated effects of precipitation and nitrogen on
672 Serengeti grassland productivity. *Biogeochemistry*, 22,157-178.

673 Sjögersten, S., R. van der Wal, and S. J. Woodin. 2008.. Habitat type determines herbivory
674 controls over CO₂ fluxes in a warmer Arctic. *Ecology* 89:2103–16.

675 Thornton, P. E., J. F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald. 2007. Influence of
676 carbon-nitrogen cycle coupling on land model response to CO₂ fertilization and climate
677 variability. *Global Biogeochemical Cycles* 21 GB4018, doi:10.1029/2006GB002868

678 Tissue, D. T., and W. C. Oechell. 1987. Response of *Eriophorum vaginatum* to elevated CO₂
679 and temperature in the Alaskan tussock tundra. *Ecology* 68:401-410.

680 Tuomi, M., S. Stark, K. S. Hoset, M. Väisänen, L. Oksanen, F. J. A. Murguzur, H. Tuomisto, J.
681 Dahlgren, and K. A. Bråthen, K.A. 2019. Herbivore effects on ecosystem process rates in
682 a low-productive system. *Ecosystems* 22:827-843.

683 Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setälä, W. H., Van der Putten, and D. H.
684 Wall. 2004. Ecological linkages between aboveground and belowground biota. *Science*
685 304:1629-1633

686 Wilkinson, D. M., and T. N. Sherratt. 2016. Why is the world green? The interactions of top–
687 down and bottom–up processes in terrestrial vegetation ecology, *Plant Ecology and*
688 *Diversity*, 9:2, 127-140, DOI: 10.1080/17550874.2016.1178353

689 Yu, Q., H. E. Epstein, D. A. Walker, G. V. Frost, and B. C. Forbes. 2011. Modeling dynamics of
690 tundra plant communities on the Yamal Peninsula, Russia, in response to climate change
691 and grazing pressure. *Environmental Research Letters* 6. doi:10.1088/1748-
692 9326/6/4/045505.

693 Zimov, N. S., S. A. Zimov, A. E. Zimova, G. H. Zimova, V. I. Chuprynin, and F. S. Chapin III.
694 2009. Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: Role
695 in the global carbon budget. *Geophysical Research Letters* 36.
696 doi:10.1029/2008GL036332.

697

698 **Box 1:** Model Equations. Variables and parameters defined in Table 1.

MASS-BALANCE EQUATIONS			
1	$\frac{dB_C}{dt} = P_s - L_{itC} - R_a - G_C$	2	$\frac{dB_N}{dt} = U_N - L_{itN} - G_N$
3	$\frac{dD_C}{dt} = L_{itC} + L_{VC} - R_h - Q_{CR}$	4	$\frac{dD_N}{dt} = L_{itN} + U_{Nm} + L_{VN}$ $- N_{min} - Q_{NR}$
		5	$\frac{dN}{dt} = N_{in} + N_{min} + V_{UN} - U_N$ $- U_{Nm} - Q_{DIN}$
ALLOMETRY & STOICHIOMETRY CONSTRAINTS			
6	$S = B_C \frac{(\alpha B_C + 1)}{(\gamma B_C + 1)}$		
7	$\Psi = \frac{B_C}{B_N q_B}$	8	$\Phi = \frac{D_C}{D_N q_D}$
PROCESS EQUATIONS			
CARBON		NITROGEN	
9	$P_s = \frac{g_C S C_a}{\Psi (k_C + C_a)} Q_{10Ps}^{T/10}$	10	$U_N = \frac{g_N \Psi S N}{k_N + N} Q_{10U}^{T/10}$
11	$L_{itC} = m_{CB} B_C$	12	$L_{itN} = \frac{m_{NB}}{\Psi} B_N$

13	$R_a = r_B B_C \Psi Q_{10Ra}^{T/10}$	14	$U_{Nm} = \frac{g_{Nm} \Phi D_C N}{k_{Nm} + N} Q_{10Um}^{T/10}$
15	$G_C = (n_V + g_V - \varepsilon_V (T - T_0)) V / 10000$	16	$G_N = G_C / q_V$
17	$R_V = r_V (G_C - n_V V / 10000)$	18	$V_{UN} = m_{NV} V / 10000$
19	$L_{VC} = G_C - R_V$	20	$L_{VN} = G_N - V_{UN}$
21	$R_h = r_D D_C \Phi Q_{10Rh}^{T/10}$	22	$N_{min} = \frac{m_{Nm} D_N}{\Phi} Q_{10m}^{T/10}$
23	$Q_{CR} = q_{DOM} Q_{NR}$	24	$Q_{NR} = \beta_{NR} D_N$
		25	$Q_{DIN} = \beta_N N$

699

700

701

702 **Table 1:** Model variables and parameters. Variable values are for the initial steady state with the
 703 aggregated representation of vole effects. Ψ and Φ are assumed to equal 1 under this steady state.
 704 Q_{10} values are as reported in the main text. Other values are from Pearce et al. (2015) or are fit
 705 to analogous functions in Pearce et al. (2015). Parameters are listed to four significant digits.

	Symbol	Value	Units
C and N stocks			
Vegetation C	B_C	878	g C m^{-2}
Detritus and soil organic C	D_C	19452	g C m^{-2}
Vegetation N	B_N	20.6	g N m^{-2}
Detritus and soil organic N	D_N	831	g N m^{-2}
Inorganic N	N	0.27	g N m^{-2}
Processes and constraints			
Allometric constraint	S	243.75	g C m^{-2}
Vegetation stoichiometric constraint	Ψ	1	none
Soil stoichiometric constraint	Φ	1	none
Photosynthesis	P_s	430	$\text{g C m}^{-2} \text{ yr}^{-1}$
Autotrophic respiration	R_a	215	$\text{g C m}^{-2} \text{ yr}^{-1}$
Litter-fall C	L_{itC}	215	$\text{g C m}^{-2} \text{ yr}^{-1}$
Heterotrophic respiration (excluding voles)	R_h	213.07	$\text{g C m}^{-2} \text{ yr}^{-1}$
Vegetation N uptake	U_N	5.3800	$\text{g N m}^{-2} \text{ yr}^{-1}$
Litter-fall N	L_{itN}	5.3800	$\text{g N m}^{-2} \text{ yr}^{-1}$
Gross N mineralization	N_{min}	19.7310	$\text{g N m}^{-2} \text{ yr}^{-1}$
N immobilization	U_{Nm}	14.4824	$\text{g N m}^{-2} \text{ yr}^{-1}$
Inorganic N losses	Q_{DIN}	0.0016	$\text{g N m}^{-2} \text{ yr}^{-1}$

Refractory N losses	Q_{NR}	0.1314	$\text{g N m}^{-2} \text{ yr}^{-1}$
Refractory C losses	Q_{CR}	1.93	$\text{g C m}^{-2} \text{ yr}^{-1}$
C removed from vegetation by voles	G_C	0	$\text{g C m}^{-2} \text{ yr}^{-1}$
Vole respiration	R_V	0	$\text{g C m}^{-2} \text{ yr}^{-1}$
C added to soil organic matter by voles	L_{VC}	0	$\text{g C m}^{-2} \text{ yr}^{-1}$
N removed from vegetation by voles	G_N	0	$\text{g N m}^{-2} \text{ yr}^{-1}$
C added to soil organic matter by voles	L_{VN}	0	$\text{g N m}^{-2} \text{ yr}^{-1}$
Vole N transfer vegetation to inorganic soil	V_{UN}	0	$\text{g N m}^{-2} \text{ yr}^{-1}$
Driver variables			
Atmospheric CO ₂	C_a	400	$\mu\text{mol mol}^{-1}$
Temperature	T	10	°C
N inputs	N_{in}	0.1330	$\text{g N m}^{-2} \text{ yr}^{-1}$
Voiles	V	0	voles ha ⁻¹
Parameters			
Allometric parameter 1	α	0.002231	$\text{m}^2 \text{ g}^{-1} \text{ C}$
Allometric parameter 2	γ	0.01100	$\text{m}^2 \text{ g}^{-1} \text{ C}$
Optimum vegetation C:N	q_B	42.62	$\text{g C g}^{-1} \text{ N}$
Optimum soil C:N	q_D	23.41	$\text{g C g}^{-1} \text{ N}$
Photosynthesis rate parameter	g_C	1.423	yr^{-1}
CO ₂ half-saturation constant	k_C	100.0	$\mu\text{mol mol}^{-1}$
Photosynthesis Q-10	Q_{10Ps}	1.550	none
Autotrophic respiration constant	r_B	0.09069	yr^{-1}
Autotrophic respiration Q-10	Q_{10Ra}	2.700	none
Vegetation C turnover rate constant	m_{CB}	0.2449	yr^{-1}

Vegetation N-uptake rate parameter	g_N	0.05191	$\text{g N g}^{-1} \text{C yr}^{-1}$
Vegetation N half-saturation constant	k_N	1.000	g N m^{-2}
Vegetation N-uptake Q-10	Q_{10U}	2.000	none
Vegetation N turnover rate constant	m_{NB}	0.2612	yr^{-1}
Heterotrophic respiration constant	r_D	0.003651	yr^{-1}
Heterotrophic respiration Q-10	Q_{10Rh}	3.000	none
Microbial N-uptake rate parameter	g_{Nm}	0.001796	$\text{g N g}^{-1} \text{C yr}^{-1}$
Microbial N half-saturation constant	k_{Nm}	1.000	g N m^{-2}
Microbial N-uptake Q-10	Q_{10Um}	1.950	none
Vole nesting material	n_V	22	$\text{g C vole}^{-1} \text{yr}^{-1}$
Vole C ingestion rate	g_V	3512	$\text{g C vole}^{-1} \text{yr}^{-1}$
Temperature slope vole metabolism	ε_V	52	$\text{g C vole}^{-1} \text{C}^{-1} \text{yr}^{-1}$
Summer to annual temperature correction	T_0	10	$^{\circ}\text{C}$
C:N of vole forage and nest material	q_V	19.15	$\text{g C g}^{-1} \text{N}$
Vole base respiration rate	r_V	0.3	none
Vole urine N production rate	m_{NV}	11.00	$\text{g N vole}^{-1} \text{yr}^{-1}$
Soil organic N turnover constant	m_{Nm}	0.01099	yr^{-1}
Soil organic N turnover Q-10	Q_{10m}	2.160	none
C:N of DOM loss	q_{DOM}	14.69	$\text{g C g}^{-1} \text{N}$
N loss-rate parameter	β_N	0.005926	yr^{-1}
Refractory N loss parameter	β_{NR}	0.0001581	yr^{-1}

706

707

708 **Table 2:** Variable and parameter changes to accommodate the effect of explicit representation of
 709 voles. Values in parentheses are the percent change from the values used in the implicit-vole
 710 representation with vole effects aggregated in with parallel ecosystem processes. "Total" is the
 711 total of the vole-mediated and the parallel ecosystem process in the two preceding rows. "PAR"
 712 is the parameter in the equation for the parallel process in the preceding rows that was modified
 713 to accommodate explicit representation of voles.

		vole effects aggregated in with other processes	explicit vole representation with 40 voles ha⁻¹	explicit vole representation with 100 voles ha⁻¹	
	Symbol				units
	L_{itC}	215	200.864 (-6.6%)	179.66 (-16.4%)	$g C m^{-2} yr^{-1}$
	G_C	0	14.136	35.34	$g C m^{-2} yr^{-1}$
Total		215	215	215	$g C m^{-2} yr^{-1}$
PAR	m_{CB}	0.2449	0.2288 (-6.6%)	0.2046 (-16.4%)	yr^{-1}
	R_h	213.07	208.8556 (-2.0%)	202.534 (-4.9%)	$g C m^{-2} yr^{-1}$
	R_v	0	4.2144	10.536	$g C m^{-2} yr^{-1}$
Total		213.07	213.07	213.07	$g C m^{-2} yr^{-1}$
PAR	r_D	0.003651	0.003658 (-2.0%)	0.003471 (-4.9%)	yr^{-1}
	L_{itN}	5.38	4.6418 (-13.7%)	3.5346 (-34.3%)	$g N m^{-2} yr^{-1}$

	G_N	0	0.7382	1.8454	$\text{g N m}^{-2} \text{ yr}^{-1}$
Total		5.38	5.38	5.38	$\text{g N m}^{-2} \text{ yr}^{-1}$
PAR	m_{NB}	0.2612	0.2253 (-13.7%)	0.1716 (-34.3%)	yr^{-1}
	V_{UN}	0	0.044	0.110	$\text{g N m}^{-2} \text{ yr}^{-1}$
	N_{min}	19.731	19.687 (-0.2%)	19.621 (-0.6%)	$\text{g N m}^{-2} \text{ yr}^{-1}$
Total		19.731	19.731	19.731	$\text{g N m}^{-2} \text{ yr}^{-1}$
PAR	m_{Nm}	0.01099	0.01097 (-0.2%)	0.01093 (-0.6%)	yr^{-1}

714

715

716 **Table 3:** Calibrations

Calibration	Vole representation	Vole density
I	vole effects aggregated in with other processes	Unspecified vole density, but vole effects subsumed into litter fall C and N, heterotrophic respiration, and N mineralization in the calibration (Table 2).
II	explicit vole representation	40 voles ha^{-1}
III	explicit vole representation	$100 \text{ voles ha}^{-1}$

717

718

719 **Table 4:** Simulations

Simu- lation	Calib- ration	Description	Figure
Set 1:			
1	II	constant 40 voles ha^{-1}	Fig. 2 dotted black lines
2	II	voles cycling as in Fig. 1	Fig. 2 cycling black solid lines
3	II	voles cycling as in Fig. 1 for 10 years then held constant at 100 voles ha^{-1}	Fig. 2 dashed red lines
4	II	voles cycling as in Fig. 1 for 10 years then held constant at 0 voles ha^{-1}	Fig. 2 dash-dotted blue lines
Set 2:			
5	I	vole density unspecified, linear increase of CO_2 from 400 to 800 $\mu\text{mol mol}^{-1}$ over 100 years	Figs. 4, 5, & 6 dotted line, left column
6	I	vole density unspecified, linear increase in temperature from 10 to 15 $^{\circ}\text{C}$ over 100 years	Figs. 4, 5, & 6 dotted line, middle column
7	I	vole density unspecified, linear increase of CO_2 from 400 to 800 $\mu\text{mol mol}^{-1}$ and temperature from 10 to 15 $^{\circ}\text{C}$ over 100 years	Figs. 4, 5, & 6 dotted line, right column
8	II	vole density cycling as in Fig. 1, linear increase of CO_2 from 400 to 800 $\mu\text{mol mol}^{-1}$ over 100 years	Figs. 4, 5, & 6 blue solid line, left column

9	II	vole density cycling as in Fig. 1, linear increase in temperature from 10 to 15 °C over 100 years	Figs. 4, 5, & 6 blue solid line, middle column
10	II	vole density cycling as in Fig. 1, linear increase of CO ₂ from 400 to 800 μmol mol ⁻¹ and temperature from 10 to 15 °C over 100 years	Figs. 4, 5, & 6 blue solid line, right column
11	III	constant 100 voles ha ⁻¹ , linear increase of CO ₂ from 400 to 800 μmol mol ⁻¹ over 100 years	Figs. 4, 5, & 6 dashed red line, left column
12	III	constant 100 voles ha ⁻¹ , linear increase in temperature from 10 to 15 °C over 100 years	Figs. 4, 5, & 6 dashed red line, middle column
13	III	constant 100 voles ha ⁻¹ , linear increase of CO ₂ from 400 to 800 μmol mol ⁻¹ and temperature from 10 to 15 °C over 100 years	Figs. 4, 5, & 6 dashed red line, right column

720

721

722 **FIGURE CAPTIONS**

723

724 **Figure 1:** Vole cycle used to simulate ecosystem response to grazing. Vole abundance is
725 randomly generated with peaks every three or four years, with abundances at the peak ranging
726 from 90 to 110 voles ha^{-1} , minimum abundances ranging from 8 to 12 voles ha^{-1} , and a mean
727 vole abundance of 40 voles ha^{-1} . Upper panel shows the first 30 years of the time series. Bottom
728 panel is the full 200-year time series.

729

730 **Figure 2:** Simulated changes in plant and soil organic carbon (C) and nitrogen (N) in response to
731 constant vole abundance, vole cycling, vole density maintained at 100 voles ha^{-1} , and vole
732 removal (see Table 4). The thin dotted black lines are the steady state values if vole density is
733 held at 40 voles ha^{-1} (simulation 1). Solid black lines are the responses to the vole cycle depicted
734 in figure 1 (simulation 2). Dashed red lines are the responses to the same vole cycle and then
735 vole density maintained at 100 voles ha^{-1} after year 10 (simulation 3). Dashed-dotted blue lines
736 are the responses to the same vole cycle and then removal of voles after year 10 (simulation 4).

737

738 **Figure 3:** Plant carbon (C) and nitrogen (N) recovery following peak vole abundance in
739 simulation 2. The plant C and N of 875 g C m^{-2} and 20.2 g N m^{-2} were selected to partition the
740 recovery time series into two approximately equal-sized groups based on their values at the time
741 of the previous vole peak (time 0 on x axis). The levels of C and N during this recovery depend
742 not only on peak vole abundance, but also on the degree of recovery following the previous vole
743 cycle. Because the biomass consumed is proportional to vole abundance and not to plant
744 biomass, if plants recover to a higher level following the previous cycle (white dots), then they

745 begin and maintain recovery in the current cycle at a higher level relative to plants that recovered
746 to a lower level in the previous cycle (black dots). This autocorrelation results in the longer-term
747 dynamics in Fig. 2 for simulation 2 in which vole abundance cycled. The recovery in any cycle
748 also depends on vole abundance and the duration of the vole cycle (higher plant recovery in a 4-
749 year cycle than a 3-year cycle).

750

751 **Figure 4:** Simulated changes in plant, soil, and total ecosystem C with a linear increase in CO₂
752 from 400 to 800 $\mu\text{mol mol}^{-1}$ over 100 years, a linear warming from 10 to 15 °C over 100 years,
753 and both a linear increase in CO₂ from 400 to 800 $\mu\text{mol mol}^{-1}$ and a linear warming from 10 to
754 15 °C over 100 years (see Table 4). Different trajectories indicate responses with vole effects
755 aggregated with other biogeochemical processes (dotted black lines; simulations 5, 6, & 7), voles
756 cycling between 8 and 110 voles ha^{-1} on a three-to-four-year cycle (solid blue lines; simulations
757 8, 9, & 10), and a constant 100 voles ha^{-1} (dashed red lines; simulations 11, 12, & 13).

758

759 **Figure 5:** Simulated changes in plant, soil, and total ecosystem N with a linear increase in CO₂
760 from 400 to 800 $\mu\text{mol mol}^{-1}$ over 100 years, a linear warming from 10 to 15 °C over 100 years,
761 and both a linear increase in CO₂ from 400 to 800 $\mu\text{mol mol}^{-1}$ and a linear warming from 10 to
762 15 °C over 100 years (see Table 4). Different trajectories indicate responses with vole effects
763 aggregated with other biogeochemical processes (dotted black lines; simulations 5, 6, & 7), voles
764 cycling between 8 and 110 voles ha^{-1} on a three-to-four-year cycle (solid blue lines; simulations
765 8, 9, & 10), and a constant 100 voles ha^{-1} (dashed red lines; simulations 11, 12, & 13).

766

767 **Figure 6:** Simulated changes in gross primary (GPP), net primary (NPP), and net ecosystem
768 production (NEP) with a linear increase in CO₂ from 400 to 800 $\mu\text{mol mol}^{-1}$ over 100 years, a
769 linear warming from 10 to 15 °C over 100 years, and both a linear increase in CO₂ from 400 to
770 800 $\mu\text{mol mol}^{-1}$ and a linear warming from 10 to 15 °C over 100 years (see Table 4). Different
771 trajectories indicate responses with vole effects aggregated with other biogeochemical processes
772 (dotted black lines; simulations 5, 6, & 7), voles cycling between 8 and 110 voles ha^{-1} on a three-
773 to-four-year cycle (solid blue lines; simulations 8, 9, & 10), and a constant 100 voles ha^{-1}
774 (dashed red lines; simulations 11, 12, & 13).

775

776 **Figure 7:** Causal-chain diagram for the model in Box 1. Arrows indicate causal links: a red
777 arrow marked with a “+” indicates that an increase in the variable at the tail of the arrow will
778 cause an increase in the variable at the head of the arrow; a blue arrow marked with a “-”
779 indicates that an increase in the variable at the tail of the arrow will cause a decrease in the
780 variable at the head of the arrow. Symbols are defined in Table 1. Symbols in boxes are C and
781 N stocks, symbols in circles are driver variables, and other symbols are either processes or
782 allometric and stoichiometric constraints. The four causal links shown as dashed arrows are the
783 links that were weakened in the calibration to accommodate vole-mediated processes in the
784 simulations with explicit representation of vole density (see Table 2). The temperature (T) and
785 vole (V) drivers are shown three times to avoid over complicating the diagram.

786

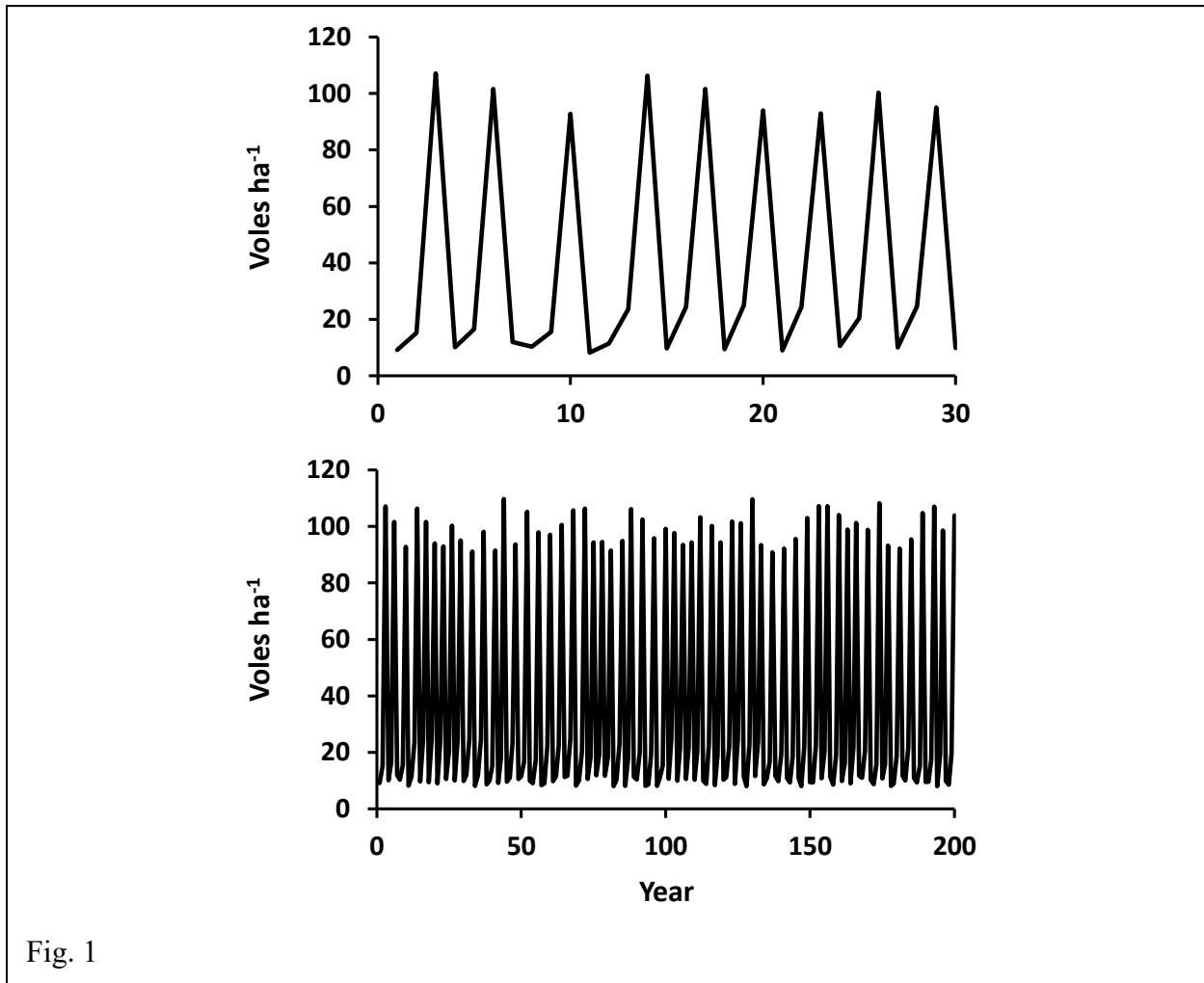


Fig. 1

787

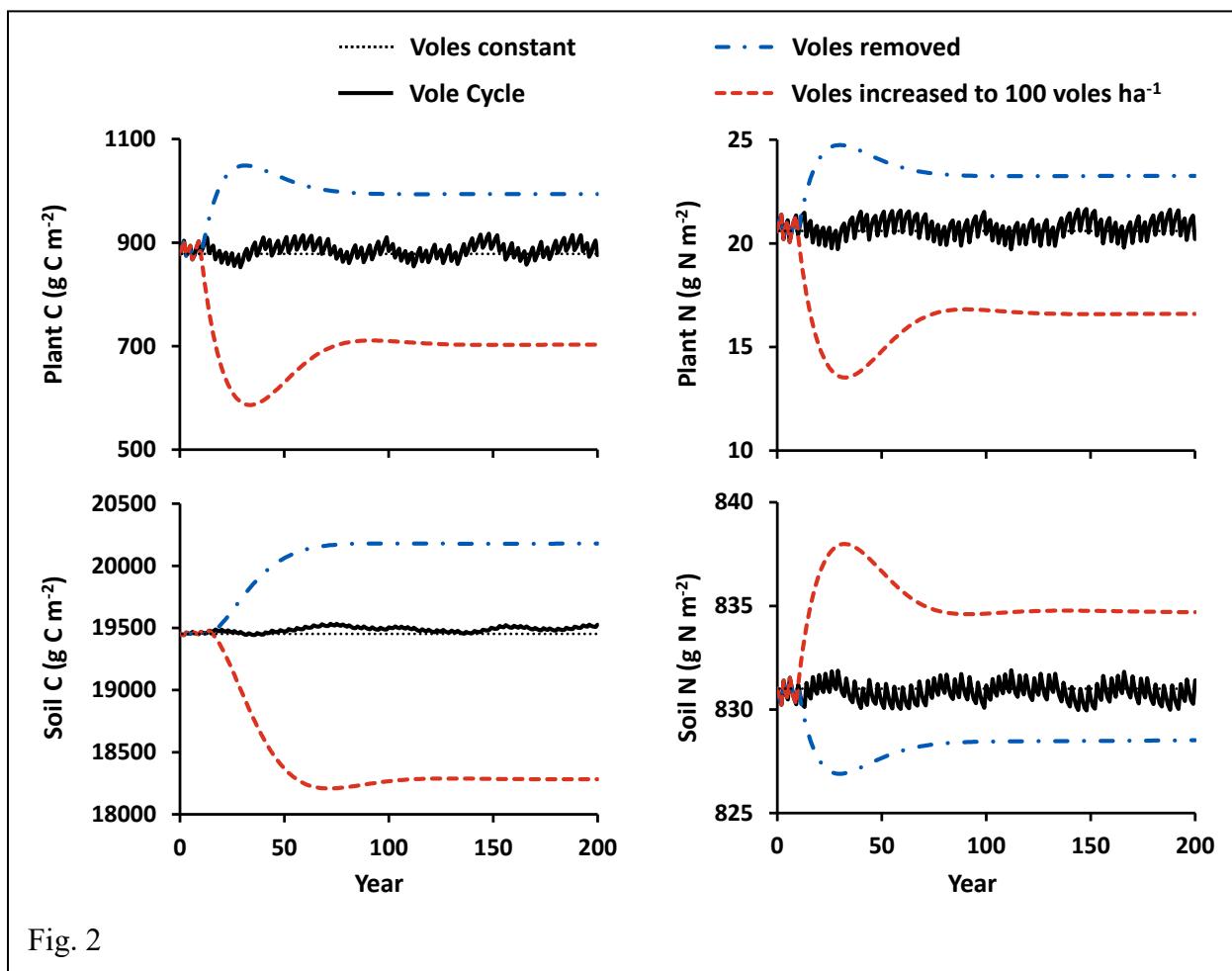


Fig. 2

788
789

790

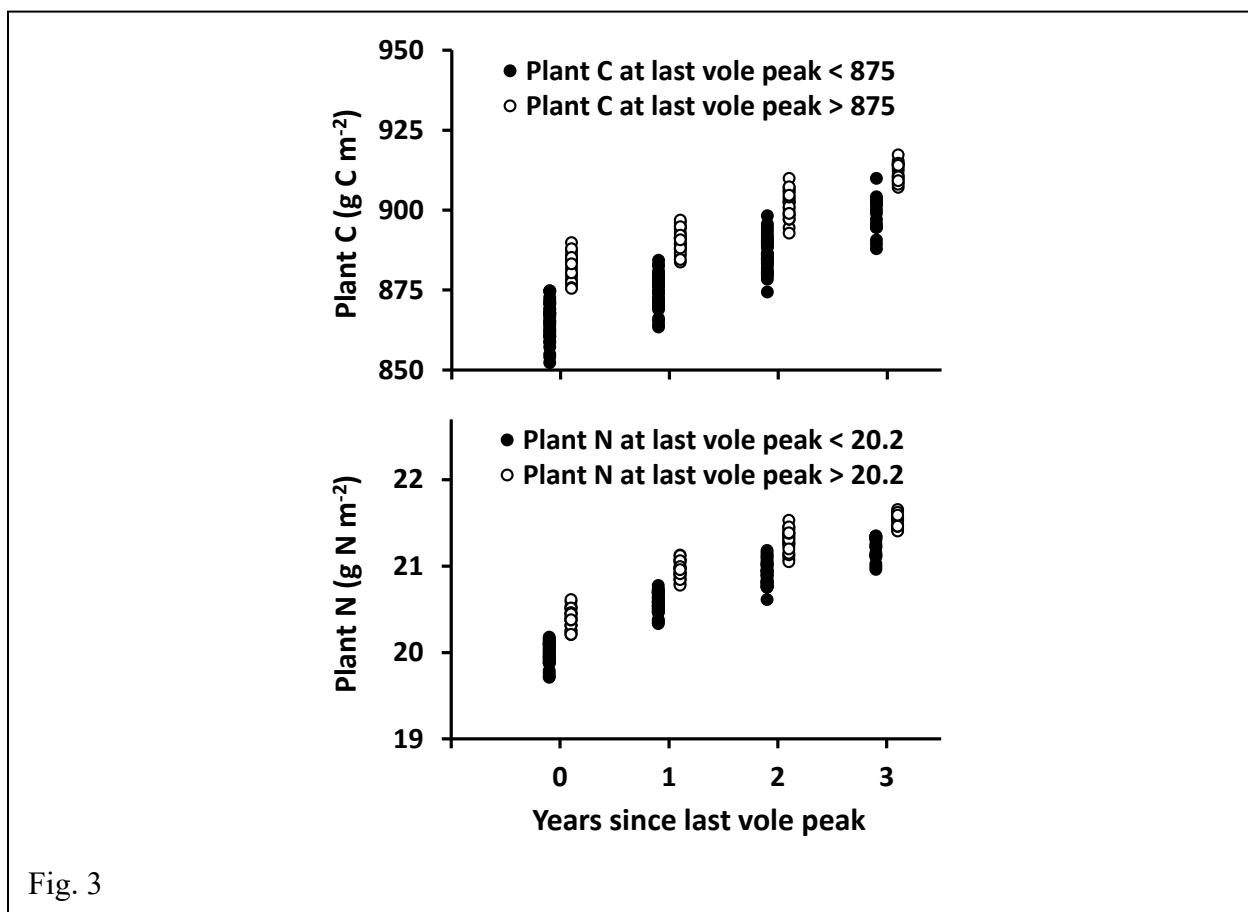


Fig. 3

791

792

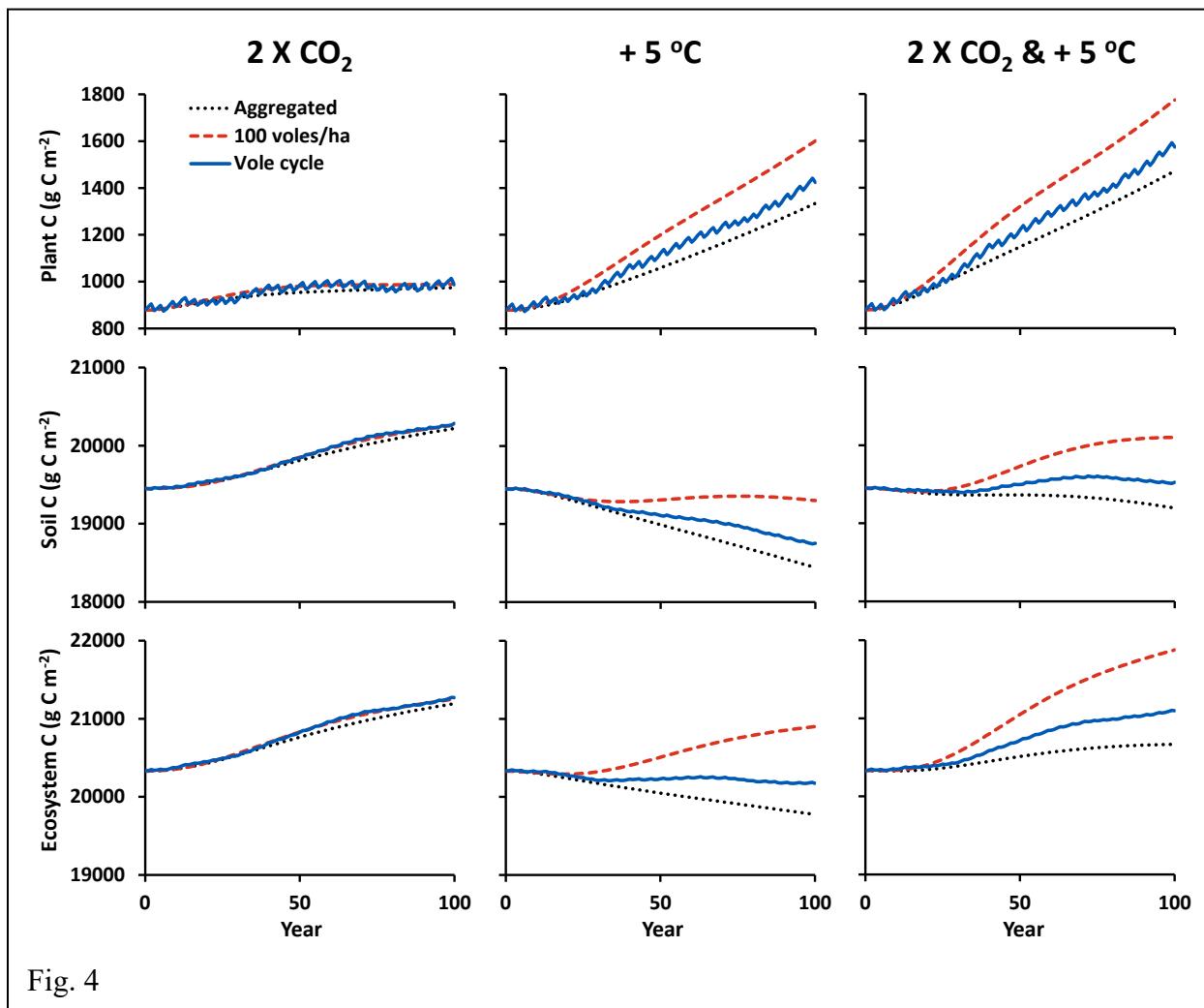


Fig. 4

796
797

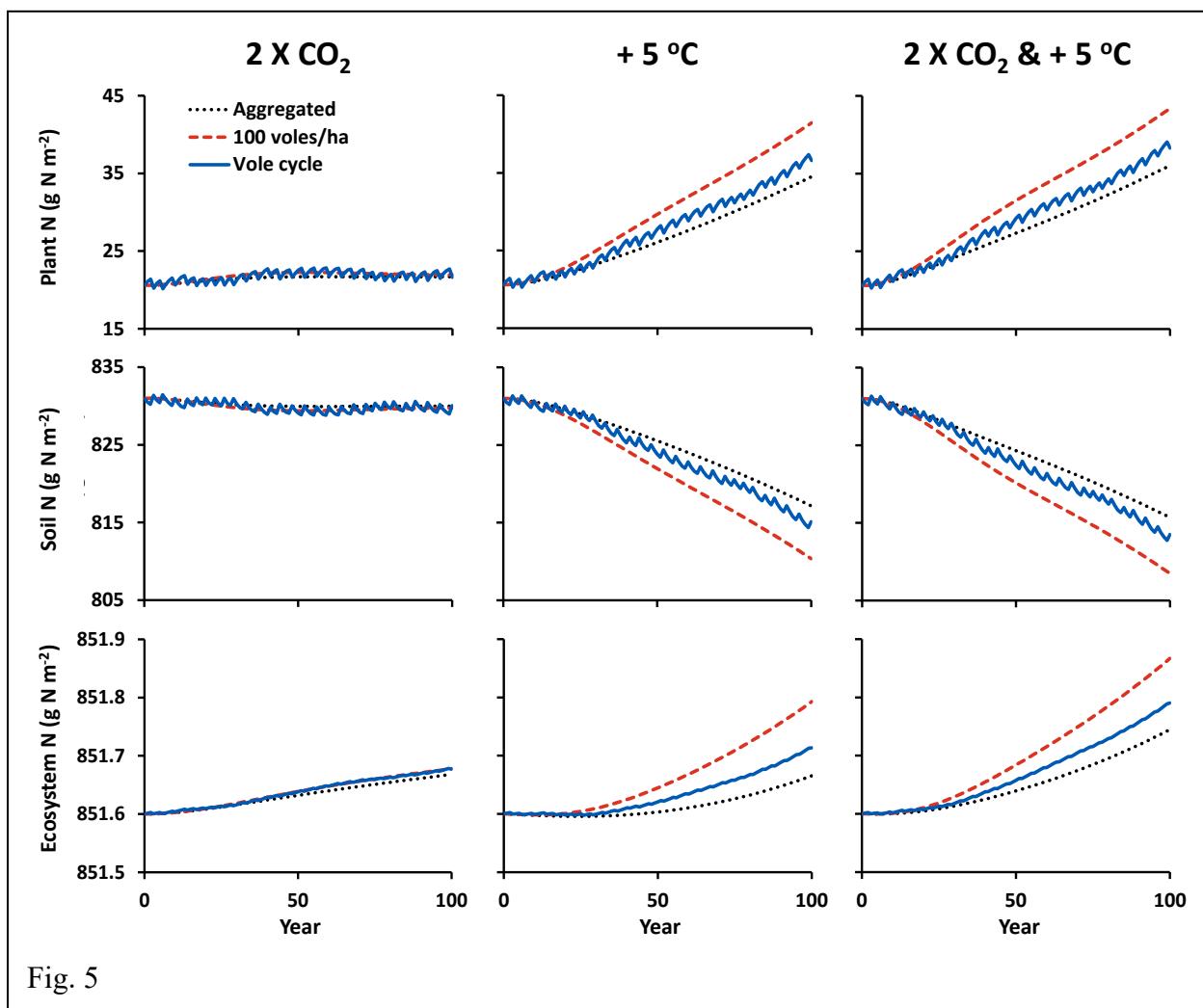


Fig. 5

798
799

800
801

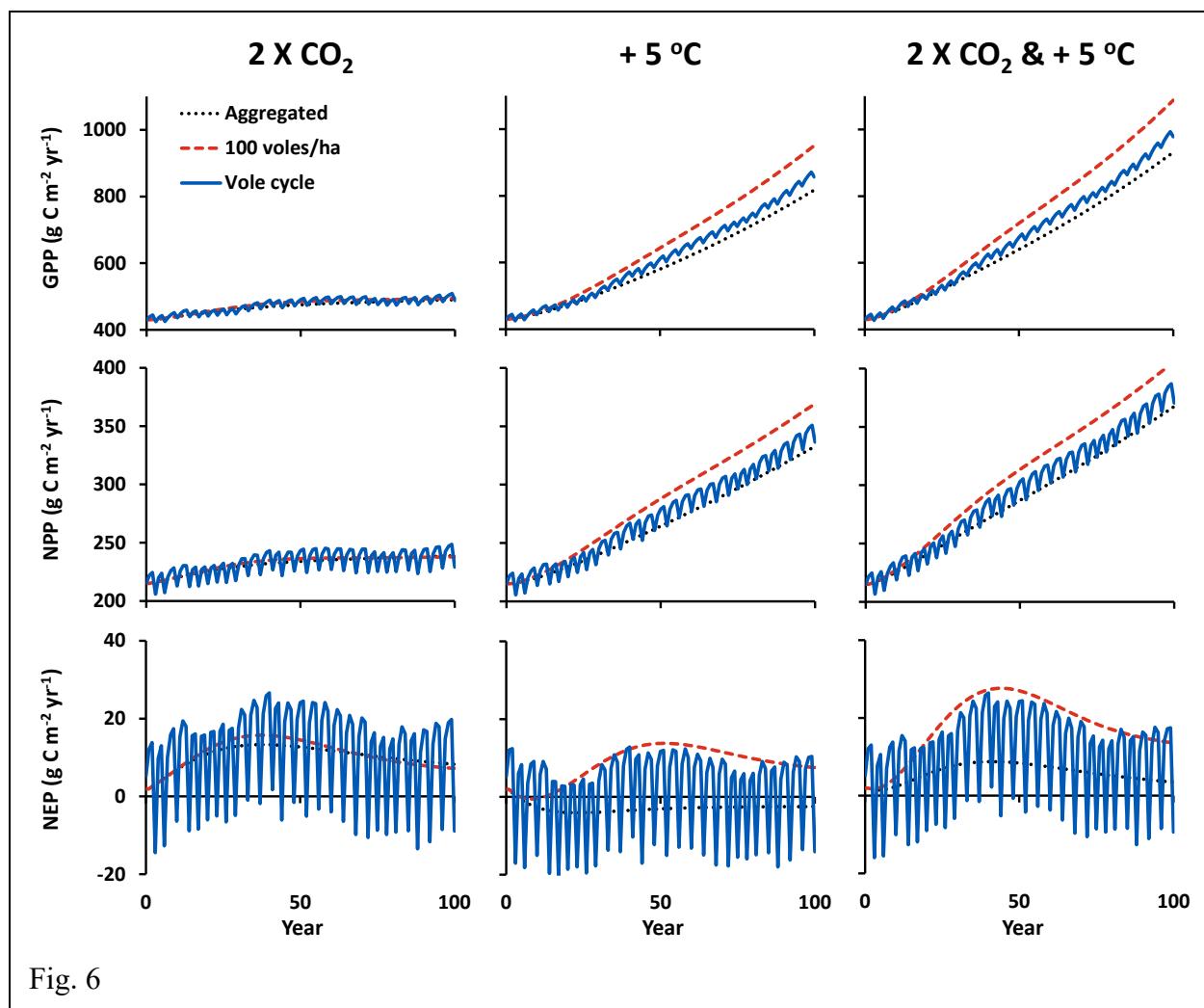


Fig. 6

802
803

804
805

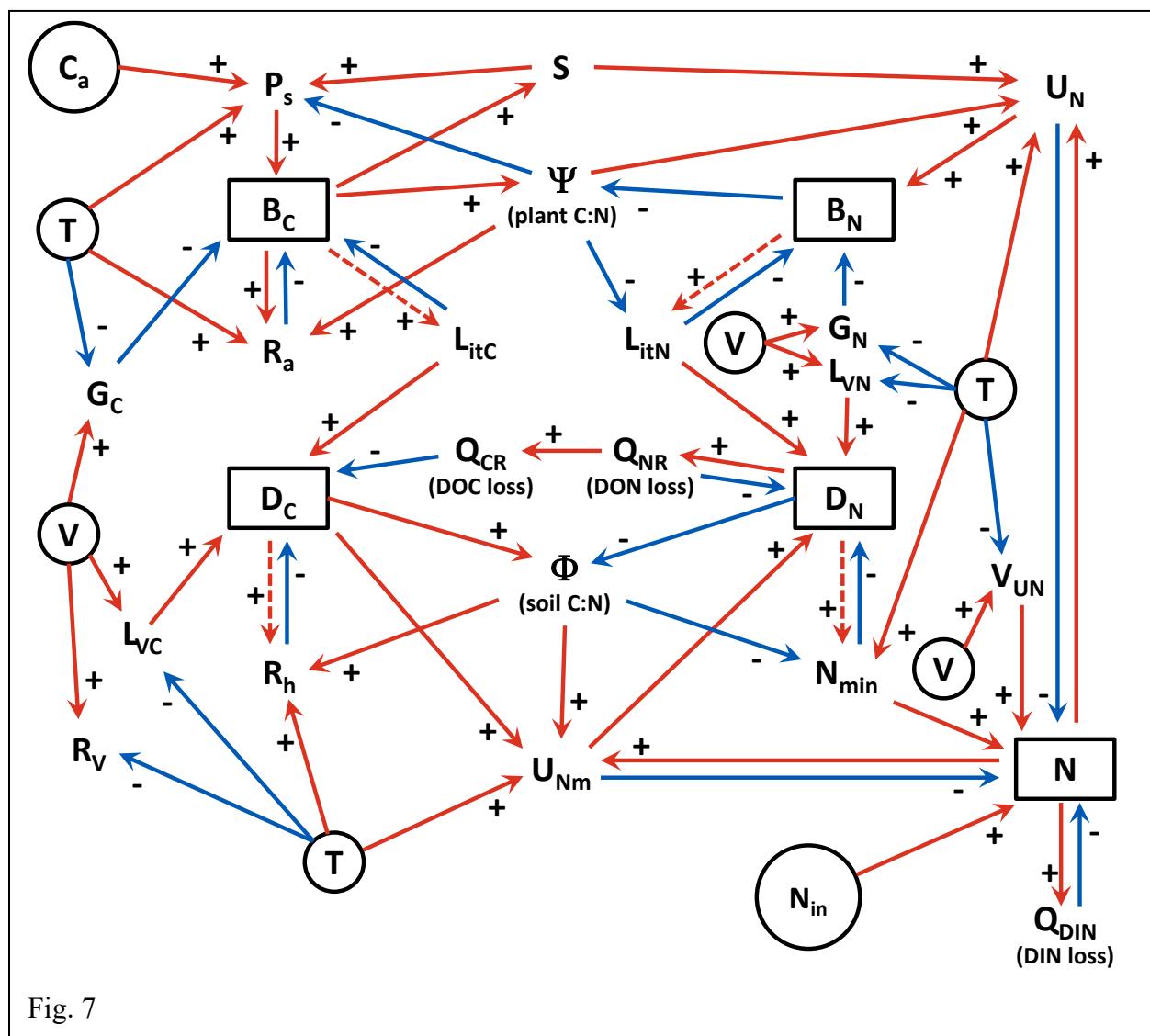


Fig. 7

806
807
808

809 **Appendix S1: Derivation of stocks, fluxes and parameter values.**

810

811 **Section S1: Calibration for the aggregated model (vole activity not explicitly represented)**

812 We set C and N stocks and fluxes to be consistent with data collated by Pearce et al.
813 (2015) for the Multiple Element Limitation (MEL) model applied to tussock tundra (Table 2 in
814 main text). Our detritus C and N are the aggregated value of the three detritus stocks the MEL
815 model. To compensate for differences in model structures, we calculated litter-fall C and N (L_{itC}
816 and L_{itN}), heterotrophic respiration (R_h), N immobilization (U_{Nm}), and N inputs (N_{in}) by
817 difference assuming the ecosystem was in steady state.

818 We derived parameter values from various sources. We fit our allometric parameters (α
819 and γ) to the MEL allometric equation for tundra from Pearce et al. (2015). We assume a
820 stoichiometric balance for calibration and therefore set the optimum vegetation and detritus C:N
821 ratios (q_B and q_D) to the C:N ratios of the respective stocks from Pearce et al. (2015). Similarly,
822 we set the C:N of dissolved organic matter losses (q_{DOM}) to the ratio of the respective fluxes
823 estimated from Pearce et al. (2015). To mimic the CO₂ response reported in Tissue and Oechell
824 (1987), we set the CO₂ half-saturation constant for photosynthesis (k_C) to 100 $\mu\text{mol mol}^{-1}$. To
825 impose strong N limitation (Shaver et al. 2014), we set both the half saturation constants for
826 plant (k_N) and microbial (k_{Nm}) N uptake to 1 g N m⁻² as in Rastetter et al. (2020).

827 We also set the temperature responses based on data from various sources. For
828 photosynthesis we use a Q_{10} value of 1.55, which is a median of values derived from data in
829 Tieszen (1973) and Rogers et al. (2019). For autotrophic respiration we use a Q_{10} of 2.7 based
830 on a fit between 10 and 15 °C to the model for tundra species in Heskell et al. (2016). For
831 heterotrophic respiration we use a Q_{10} of 3 again based on a fit between 10 and 15 °C to the

832 model for Boreal forest soils in Carey et al. (2016). Atkin and Cummins (1994) report ^{15}N -based
833 uptake rates for arctic plants consistent with Q_{10} values ranging from 1.16 to 3.17. Dong et al.
834 (2001) and Yan et al. (2012) report plant N uptake rates in an agricultural setting consistent with
835 Q_{10} values of 3.99 and 1.67. Based on these studies, we assume a Q_{10} of 2 for N uptake by
836 plants. For microbial N uptake (immobilization), we use a Q_{10} value of 1.95 as reported by
837 Roberts and Jones (2012) for microbial uptake of amino sugars. Finally, for N mineralization,
838 Roberts and Jones (2012) report a Q_{10} value of 2.32 and Vinolas et al. (2001) report a value of 2;
839 we use a Q_{10} value of 2.16.

840 Except for parameters associated with vole activity, the only parameters remaining are
841 the rate parameters for each of the C and N fluxes. We calibrate these rate parameters to the
842 process rates reported in Pearce et al. (2015) for the MEL model applied to tussock tundra (Table
843 2 in main text).

844

845 **Section S2:Calibration of the distributed model (explicit representation of vole activity)**

846 We assume generic small mammals (voles and lemmings) weighing 50 g, but will refer to
847 them as a "voles." We estimate C removal from vegetation by voles from two processes,
848 consumption and nest building. The consumption rates depend on an allometric relation to body
849 weight minus a correction for temperature to compensate for the energy needed to maintain body
850 temperature (Batzli et al. 1980). We modify this function to account for the difference between
851 the summer temperature we use to drive the model and subnivean temperature during the winter.
852 We assume that the average annual temperature experienced by the voles is ten degrees cooler
853 than the average summer temperature:

854

855
$$E = 26.82 + 5.36 W^{0.75} - 1.89 (T - 10)$$

856

857 where E is daily energy expenditure (kJ/vole/day), W is body weight (g fresh weight/vole), T is
858 mean summer temperature ($^{\circ}$ C). For a 50 g vole, this equation simplifies to

859

860
$$E = 127.6 - 1.89 (T - 10)$$

861

862 Total food assimilation must meet this energy expenditure, but only about 33% of ingested
863 forage gets assimilated (Batzli et al. 1980). Thus, total ingestion must contain about three times
864 this amount of energy. To convert this ingestion to g C vole $^{-1}$ yr $^{-1}$, we assume a forage energy
865 density of 18.9 kJ/g dry weight (Batzli et al. 1980) and a C density of forage of 0.475 g C/g dry
866 weight (Schlesinger 1991):

867

868
$$I = 3512 - 52 (T - 10)$$

869

870 where I is ingestion (g C vole $^{-1}$ yr $^{-1}$). Thus, for the ingestion part of Eq. 15 (Table 1 in main text)

871

872
$$g_V = 3512 \text{ g C vole}^{-1} \text{ yr}^{-1}, \quad \varepsilon_V = 52 \text{ g C } ^{\circ}\text{C}^{-1} \text{ vole}^{-1} \text{ yr}^{-1}, \text{ and } \quad T_0 = 10 \text{ } ^{\circ}\text{C}$$

873

874 Voles and lemmings also remove plant material to build winter nests. Vole nests contain
875 about 20 g C nest $^{-1}$ (Rowe unpub. data). Krebs et al. (2012) estimate approximately 2.2 nests per
876 lemming in the spring. Data from Maguire and Rowe (2017) indicate that singing vole density in
877 spring is about half the average annual density. We therefore estimate that in addition to

878 ingestion, our generic small mammal (vole) grazer removes 22 g C vole⁻¹ yr⁻¹ from the vegetation
879 for nests. We add this nest C to the ingestion equation to get the final parameter for Eq. 15:

880

881 $n_V = 22 \text{ g C vole}^{-1} \text{ yr}^{-1}$

882

883 Respiration is about 30% of ingestion (Batzli et al. 1980):

884

885 $r_V = 0.3 \text{ g C g}^{-1} \text{ C}$

886

887 Forage contains about 25 mg N/g dry weight (Batzli et al. 1980), which is equivalent to a
888 C:N ratio of 19 g C g⁻¹ N. We assume the C:N ratio of the nest material is the same as that of
889 the vegetation (42.62 g C/g N). We calculate the C:N of material removed from vegetation by
890 voles as the weighted mean of these two C:N ratios:

891

892 $q_V = \frac{3512 \times 19 + 22 \times 42.62}{3534} = 19.15 \text{ g C g}^{-1} \text{ N}$

893

894 We set the per capita urine N production based on data for small mammals reported by Clark et
895 al. (2005):

896

897 $m_{NV} = 11 \text{ g N vole}^{-1} \text{ yr}^{-1}$

898

899

900 **Section S3: LITERATURE CITED**

901 Atkin, O. K., and W. R. Cummins. 1994. The effect of root temperature on the induction of
902 nitrate reductase activities and nitrogen uptake rates in arctic plant species. *Plant and Soil*
903 159:187-197.

904 Batzli, G. O., R. G. White, S. F. MacLean Jr, F. A. Pitelka, and B. D. Collier. 1980. The
905 herbivore-based trophic system. pp 335-410 in Brown, J., Miller, P.C., Tieszen, L.L., and
906 Brunnell, F.L. eds.. *An Arctic Ecosystem: the Coastal Tundra at Barrow, Alaska.*
907 Dowden, Hutchinson, and Ross Inc, Stroudsburg, PA, USA

908 Carey, J. C., J. Tang, P. H. Templar, K. D. Kroger, T. W. Crowther, A. J. Burton, J. S. Dukes, B.
909 Emmett, S. D. Frey, M. A. Heskel, L. Jiang, M. B. Machmuller, J. Mohan, A. M.
910 Panetta, P. B. Reich, S. Reinsch, X. Wang, S. D. Allison, C. Bamminger, S. Bridgman, S.
911 L. Collins, G. de Dato, W. C. Eddy, B. J. Enquist, M. Estiarte, J. Harte, A. Henderson, B.
912 R. Johnson, K. S. Larsen, Y. Luo, S. Marhan, J. M. Melillo, J. Peñuelas, L. Pfeifer-
913 Meister, C. Poll, E. Rastetter, A. B. Reinmann, L. L. Reynolds, I. K. Schmidt, G. R.
914 Shaver, A. L. Strong, V. Suseela, and A. Tietema. 2016. Temperature response of soil
915 respiration largely unaltered with experimental warming. *Proc Natl Acad Sci* 113:13797-
916 13802.

917 Clark, J. E., E. C. Hellgren, J. L. Parsons, E. E. Jorgensen, D. M. Engle, and D. M. Lesli Jr.
918 2005. Nitrogen outputs from fecal and urine deposition of small mammals: implications
919 for nitrogen cycling. *Oecologia* 144:447-455.

920 Dong, S., C. F. Scagel, L. Cheng, L. H. Fuchigami, and P. T. Rygiewicz. 2001. Soil temperature
921 and plant growth stage influence nitrogen uptake and amino acid concentration of apple
922 during early spring growth. *Tree Phys.* 21:541-547.

923 Heskel, M. A., O. S. O'Sullivan, P. B. Reich, M. G. Tjoelker, L. K. Weerasinghe, A. Penillard, J.
924 J. G. Egerton, D. Creek, K. J. Bloomfield, J. Xiang, F. Sinca, Z. R. Stangl, A. Martinez-
925 de la Torre, K. L. Greffin, C. Huntingford, V. Hurry, P. Meir, M. H. Turnbull, and O. K.
926 Atkin. 2016. Convergence in the temperature response of leaf respiration across biomes
927 and plant functional types. *Proc Nat Accad Sci* 113: 3832-3837.

928 Krebs, C. J., F. Bilodeau, D. Reid, G. Gauthier, A. J. Kenney, S. Gilbert, D. Duchesne, and D. J.
929 Wilson. 2012. Are lemming winter nest counts a good index of population density? *J
930 Mammalogy* 93:87-92.

931 Maguire, A. J., and R. J. Rowe. 2017. Home range and habitat affinity of the singing vole on the
932 North Slope of Alaska. *Arctic, Antarctic, and Alpine Research* 492.:243–257.

933 Pearce, A. R., E. B. Rastetter, W. B. Bowden, M. C. Mack, Y. Jiang, Y., and B. L. Kwiatkowski,
934 B.L. 2015. Recovery of arctic tundra from thermal erosion disturbance is constrained by
935 nutrient accumulation: a modeling analysis. *Ecological Applications* 25:1271-1289.

936 Rastetter, E. B., G. W. Kling, G. R. Shaver, B. C. Crump, L. Gough, and K. L. Griffin. 2020.
937 Ecosystem recovery from disturbance is constrained by N cycle openness, vegetation-soil
938 N distribution, form of N losses, and the balance between vegetation and soil-microbial
939 processes. *Ecosystems* <https://doi.org/10.1007/s10021-020-00542-3>

940 Roberts. P., and D. L. Jones. 2012. Microbial and plant uptake of free amino sugars in grassland
941 soil. *Soil Biology Biochemistry* 49:139-149.

942 Rogers, A., S. P. Serbin, K. S. Ely, and S. D. Wullschleger. 2019. Terrestrial biosphere models
943 may overestimate arctic CO₂ assimilation if they do not account for decreased quantum
944 yield and convexity at low temperature. *New Phytologist* 223:167-179.

945 Schlesinger, W. H. 1991. Biogeochemistry: An Analysis of Global Change. Academic Press, San
946 Diego, CA, USA.

947 Shaver, G. R., J. A. Laundre, M. S. Bret-Harte, F. S. Chapin, III, J. A. Mercado- Diaz, A. E.
948 Giblin, L. Gough, W. A. Gould, S. E. Hobbie, G. W. Kling, M. C. Mack, J. C. Moore, K.
949 J. Nadelhoffer, E. B. Rastetter, and J. P. Schimel, J.P. 2014. Terrestrial Ecosystems at
950 Toolik Lake, Alaska. In Hobbie, J.E., and G. W. Kling (eds.). A Changing Arctic:
951 Ecological Consequences for Tundra, Streams and Lakes. Oxford University Press, New
952 York, NY, USA.

953 Tieszen, L. L. 1973. Photosynthesis and respiration in arctic tundra grasses: field light intensity
954 and temperature responses. Arctic Alpine Res 5:239-251.

955 Tissue, D. T., and W. C. Oechell. 1987. Response of *Eriophorum vaginatum* to elevated CO₂
956 and temperature in the Alaskan tussock tundra. Ecology 68:401-410.

957 Vinolas, L. C., V. R. Vallejo, and D. L. Jones. 2001. Control of aminoacid mineralization and
958 microbial metabolism by temperature. Soil Biology Biochemistry 33:1137-1140.

959 Yan, Q., Z. Duan, J. Mao, X. Li, and F. Dong. 2012. Effects of root-zone temperature and N, P,
960 and K supplies on nutrient uptake of cucumber *Cucumis sativus L.* seedlings in
961 hydroponics. Soil Science and Plant Nutrition 58:707-717.

962

963