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ABSTRACT: We present a general theory of ionic conductivity in polymeric materials
consisting of percolated ionic pathways. Identifying two key length scales corresponding to
interpath permeation distance £ and one-dimensional hopping conduction path length m4,
we have derived closed-form formulas in terms of the energy U required to unbind a
conductive ion from its bound state and the partition ratio /mAd between the three- e
dimensional permeation and one-dimensional hopping pathways. The results provide
design strategies to significantly enhance ionic conductivity in single-ion conductors. For
large barriers to dissociate an ion, corrections to the Arrhenius law are presented. The
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predicted dependence of ionic conductivity on the unbinding time is in agreement with
results in the literature based on simulations and experiments. This theory is generally applicable to conductive systems where the
two mechanisms of permeation and hopping occur concurrently.

he subject of ionic conductivity in polymeric materials with

heterogeneous structures is of intense current interest,
primarily due to the societal need for better battery
alternatives.' " Significant progress has recently been made
toward formulating polymeric materials with enhanced ionic
conductivities and at the same time not compromising on their
mechanical stability. The procedures that have been imple-
mented in this endeavor are primarily experiments and
simulations.' ™ Generally speaking, the investigated systems
include solid polymer electrolytes such as salt-doped poly-
(ethylene oxide), polymeric single-ion conductors, polymerized
ionic liquids, and polyelectrolyte solutions in nanocapilla-
ries.' ™ The combined approach of precise synthesis of ion-
containing polymers, characterization of their assembled
structures using a variety of experimental techniques, and
molecular modeling has revealed exquisite details on several
specific systems and their consequence on the temperature
dependence of ionic conductivity. Nevertheless, it is desirable to
develop fundamental relations between the heterogeneous
structures and the consequent ionic conductivity that are
universal instead of treating each system as unique. Such
relations would enable design principles to achieve desirable
ionic conductivities by tuning the morphology of heterogeneous
polymeric materials. With this goal in mind, we present in this
Letter a theory for ionic conductivity in polymeric materials with
heterogeneous structures.

For illustrative purposes, let us consider three scenarios of
general context (Figure 1). The first is pertinent to ion transport
in nanoporous media (Figure la), where the surface of
interconnected pores carry immobile charges and the interior
of the pores permit conduction of oppositely charged counter-
ions. In general, the counterions are bound to the charged
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groups on the interface and the extent of binding depends on the
specificity of the ionic species and local dielectric environment.
The movement of bound counterions under an external electric
field can occur either by hopping (sliding) to its neighboring
charged group on the interface or by permeation (conduction)
through the interior medium of the pores. These two pathways
are indicated by the solid and broken arrows in Figure la. In
addition to the rigid inorganic porous materials, hydrated
Nafion-like organic materials (where interconnected network of
hydrophilic domains allow movement of water and cations, but
the nonpolar matrix not conducting anions) belong to this
general context.

The second scenario is ion conduction in polyelectrolyte
solutions. As cartooned in Figure 1b, let us consider semidilute
solutions of uniformly charged polyelectrolyte chains where the
charge separation along the chain backbone is 4y and the
correlation length for monomer concentration (mesh size) is £.
As in the first scenario, ion conduction occurs via the two
mechanisms of counterion-hopping along the chain backbone
and permeation through the solvent. A typical trajectory of a
counterion under an external electric field is a combination of
hopping to neighboring sites with spacing 4, and permeation
through an average mesh size & (Figure 1b). Such a situation is
also relevant to solutions of polymerized ionic liquids.
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Figure 1. (a) Cartoon of two pathways for ion conduction in nanoporous materials. (b) Sketch of counterion conduction pathways in a semidilute
polyelectrolyte solution of mesh size £ A chemical example of two adjacent repeat units with charge separation 4 is illustrated in the expanded scale.
(c) Cartoon of percolating aggregates from ionic clusters constituting the skeletons, where the matrix is permeable to the conducting ion with an
intrinsic ionic conductivity a,. The average distance between two adjacent ion clusters is 4 and the mesh size for the percolating aggregate is £. (d) The
free energy profile F,,,, corresponding to sequential unbinding and binding of the conducting ion is periodic, with a free energy barrier U and period 4.
The electric energy gain due to externally imposed electric field E is Fy,;c = —QEx, where Q is the charge of the ion and x is the location of the ion in

the direction of the electric field.

The third scenario is in the context of single-ion conductive
ionomers, where many clusters of ion pairs (dipoles) exist as
percolated aggregates in a conductive polymer matrix. Examples
of the matrix are poly(ethylene oxide) and polycarboxylates and
their chemical modifications, and gel polymer electrolytes,
which are intrinsically permeable to the conducting ion with ion
conductivity ;. The percolated aggregates are composed of
clusters of ion-pairs formed by multiple chains. Unlike the
situation of polyelectrolyte chains, where the ion binding is
typically a single ion-pair formation, there are many ion pairs
(arising from both intrachain and interchain interactions) in
each of the ion clusters. Let the average distance between
adjacent ionic clusters along a skeleton of the percolating
aggregate be A and the average mesh size in the background
conductive polymer matrix be & (Figure Ic). The distance 4
between ion clusters constituting a skeleton is related in a
complex manner to the spacing of charged groups on the parent
polymer chain (analogous to A, but now the spacer moiety is
also conductive).

In the context of the above examples, we address ion
conduction due to a combination of ion-hopping along a chain
or surface (Figures 1a,b) or skeleton of ion clusters (Figure 1c),
and permeation through a conductive matrix. There are two
length scales that characterize the morphology of the above
conducting systems: the average hopping distance 4 and the
average permeation length £. In addition to the these variables
characterizing the morphology of the system, the energy U to
unbind X" (Figure 1b) or its analog in an ion cluster from its
corresponding anion is an important variable that controls ionic
conductivity due to X". In the simplest situation, U for
monovalent charges is U = ¢*/(4mepe.qr), where e is the
electronic charge, ¢, is the permittivity of vacuum, ¢ is the
effective dielectric constant in the local environment around the
bound X7, and r is the interion distance in an ion pair. In the case
of ionic clusters, U arises from collective interactions among all
ion pairs inside a cluster and we absorb this important effect
through the local effective dielectric constant, which is different
from that in the matrix.
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Following the law for rates of activated processes, the time 7
required to unbind the conducting ion from the ion pairis 7 =17,
exp(U/kgT), where 7, is the characteristic time for a free
conducting ion to diffuse a distance comparable to its linear size,
and kyT is the Boltzmann constant times the absolute
temperature. For the purpose of quoting later, the above
expressions for U and 7 are repeated as

2
€

U
—_— T = T X
A7E € 7 bE p{k T] (1)

In general, the value of 7 can be additionally influenced by
local segmental dynamics of the polymer as well as collective
phonon dynamics of the system.

Consider a one-dimensional ionic conductor where the
binding sites for the drifting ion are uniformly present with a
period A. When the applied electric field is not too strong, the
moving ion undergoes a series of binding and unbinding at every
binding site. This process continues periodically until the ion
reaches its favored eclectrode. Let us denote the free energy
profile associated with unbinding of an ion at one location and
binding back at the next neighboring binding site at a distance 4
as a symmetric triangular free energy barrier of height U (Figure
1d). Therefore, the free energy landscape Fy,(x) due to binding
and unbinding along the direction x of the constant electric field
E is as depicted in Figure 1d with a period A. The electric
contribution to the free energy profile of the ion is Fy.q.(x) =
—QEx, where Q = z,¢ (2, is the valency of the conducting ion).
The net free energy profile is

F(x) = Eo,(x) + (@)

In addition to the one-dimensional hopping pathway for ion
conduction (Figure 1d), we allow a second pathway of ion
permeation from one linear assembly of binding sites to another
linear assembly of binding sites as cartooned in Figure 2a. In the
case of polyelectrolyte solutions, these two pathways can also be
labeled as “intrachain” and “interchain” conduction pathways,
respectively; for ionic aggregates, these are, respectively,
intraskeleton and interskeleton pathways. Assessment of the

U=

Eleclric(x)

https://dol.org/10.1021/acsmacrolett.1¢00245
ACS Macro Lertt. 2021, 10, 958-964



ACS Macro Letters

pubs.acs.org/macroletters

(a)

(b)

Fion

Felaclﬁ

Figure 2. (a) Sketch of the permeation mechanism over a distance &
through the matrix that occurs in parallel to one-dimensional hopping
conduction over a distance mA. (b) The corresponding free energy
landscape, where L is the period, 4 is the subperiod, U is the barrier
height, and £ is the permeation distance.

relative contributions from the intra- and interconduction
pathways is of considerable interest in the general contexts
mentioned in Figure 1.

In view of the above considerations, we present an analytically
tractable theory for the model sketched in Figure 2a, where the
curved lines represent hopping pathways and empty space
represent permeation pathways. Let there be an infinite number
of periods of length L, where each period is labeled by the index
N > 1. In each period, there are m subperiods for one-
dimensional conduction, followed by a three-dimensional
hopping over a distance £ through the matrix. Let the regular
subperiod for one-dimensional unbinding—binding process be
A. Since ion hopping occurs along the curvilinear contour, we
take 4 as the average distance between adjacent binding sites
projected on the direction of the external electric field. Let n
denote the label of the subperiod, 1 < n < m. In each subperiod,
we take the free energy profile as triangular with barrier height U,
as shown in Figure 2a. The periodic free energy profile in the
absence of the external electric field is given as

Eoo(NL + x) = E,,(x), N21 (3)
and foreach N > 1,
E . (nmd+x)=F, (x), 1<n<m 0<x<4i (4)

In addition to the periodic profile, the applied electric field
gives the down hill free energy contribution —QEx. Adding
Fon(x) and Fyji.(x), the free energy profile for the first period
follows as

- 2—;—{[;:— (m=1)A1 - QEx, (n— 1A <x< [u - é-}a\

F=1_,u4 %[.\’ - (n = 1)1] — QEx, [n = %)z <x<ul

—QExmA<x<L=ml+¢&
(s)
The same result is applicable to other periods as well, with x in
the electric field contribution taken as the distance from the
origin.
The Langevin equation for the dynamics of the ion at position
x and time ¢ is given as
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N ()

dt (6)

where { is the friction coefficient of the ion in the matrix and
(1) is the random noise taken to be white noise satisfying the
fluctuation—dissipation theorem,

(L(6)) =0, (COI(¥)) = 28(t - t) ()

where the angular brackets denote the averaging over the
probability distribution function P(x, t) of finding the ion at
position x and time t. Identifying the diffusion coefficient D of
the ion in the matrix as D = kg T/{, eq 6 becomes

dx __OF@)/T JBr)

dt ox (8)

Performing the average over P(x, t), the above equation gives
the average velocity v as

(dx
V=
©)

a
— ) = =D{ —(F(x)/kgT
&) = D (k= 1))
where (I'(t)) = 0 from eq 7 is used. Note that, if there are no
barriers and there is only electrophoretic drift, F(x) = —QEx,

thenv = TE so that the ionic conductivity g, = Quv/E is given
B

by Q*D/kyT.In the presence of barriers, the ionic conductivity &
is modified from this result and can generally be represented in
terms of an effective diffusion coefficient D(U, E) which
depends on the barrier height U and E,

QD
kT

—2D4(U, E)

Oy = =
DD

(10)

Note that D corresponds to ion diffusion in the matrix and it
depends on the various ion hopping processes involving the
barriers in the matrix, that are responsible for ion conduction in
the matrix.

The derivation of & is as follows. We calculate the average
velocity v of the ion from eq 9 using P(x, t) and get ¢ from the
relation & = Qu/E. The probability distribution function P(x, t)
follows from the Fokker—Planck formalism of the Langevin
equation (eq 8) as™***

oP(x,t) _ d
T - axj(x? t) an
}(x; f) = =D [dp(x)—/kBT}P(x' t) + M

dx 6x (12)

In the steady state where the flux ] is constant, integration of

eq 12 from x = 0 gives
0) - _f dx’ F(.w)."LaT]
(13)

P(x = 0) is determined from P(NL + x) given by the above
equation, Using eq 5, the integral on the right-hand side of eq 13
becomes

P(x) = e_F(’)"L’BT{P(x

¢~NQEL/AST)

f’““ d P heT {1
0 (1

+ ¢~NQEL/kgT f d’ P kaT
0

QLT
(14)
where

https://doi.org/10.1021/acsmacrolett.1c00245
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Figure 3. (a) Plot of 6/6, given by eq 28 vs U/kyT for different values of the partition ratio &/mA. (b) Nonmonotonic dependence of a/5, on the
partition ratio for U = 20k, T. Beyond the critical value (£/m4),, ionic conductivity is enhanced compared to the case of no permeation pathway.

L
o= f dxeF(-\')fkaT
* Jo (15)

Combining egs 13 and 14, we get

3 —F(x ] I
P(NL + x)=c" /BT F /T p(y = 0) — 5(1_‘.—#@)]
R at| L 1 _ L[ g Fs0ngT
K D (1 - ¢ /kT) Dj; ‘ (16)
Since P(NL + x) must be finite for N — oo,

L I,

Px=0)= ———M——
D (1 —QEL/I:BT) (17)

and, hence, we get from eqs 13 and 16
P(NL + x) = P(x) (18)

Because of periodicity, P(x) is normalized in every period so
that

L
j; dxP(x) = L -

Substituting eq 17 into eq 13 and performing the integration
from x = 0 to x = L, we get

(l _ C—QEL;'kBT)

J=DL :
[LI_ = (1 = e B/RN)y] (20)
where
i
_ e~ F /KT
fo * (21)
and
Y= j'L dxe—mx)/x.-grfx E . COV
0 o {22}
The velocity of the ion follows from eqs 9 and 12 as
__f [I+D5P(x)l ;
(23)

where the periodicity property P(L) = P(0) is used. The general
expression for the ionic conductivity, ¢ = Qu/E, is given by eqgs
20 and 23 as

QDL (1 — e EL/ksT)

E [I+I._ _ (i _ e—QEL/I:BT)Y]

where I, I_, and Y are given in eqs 15, 21, and 22, respectively.
Focusing on the linear response regime (Ohm’s regime),
namely, QEA < kT, the ionic conductivity is given by

_ @’ol’ 1
kT I(E0)I_(E0) (25)
where I,(E — 0) and I_(E — 0) follow from eqs 15 and 21 as

L(E0) = —ml{kBTT]fE_WkBT -1)+¢

(24)

(26)
I_(E0) = —mi{ ](1 eU/Ty 4 ¢
(27)
The substitution of egs 26 and 27 into eq 25 yields a general
expression for ionic conductivity in the linear regime as
o (U/k,{r)z

% N (1 & ’_51]2 [cun-nr ][

VT UT (ﬁ)]
(28)
Note that the right-hand side can be interpreted as D gin units
of D, as defined in eq 10. As is evident from eq 28, the ratio 6/a,
of ionic conductivity at T to that at T — co depends on two key
parameters, namely, U/kpT and &/mA. As already noted, U/kyT
is dictated by the specificity of the ion pairs. The second factor
&/md is the partition ratio of the permeation length £ through
the matrix to the hopping distance along a one-dimensional
trajectory. This partition ratio is a measure of structural
heterogeneity in the material. For large barriers U/kyT > 1,
eq 28 reduces to the limiting laws

2

3 . U
[_I;j_..] c_U'”‘BTi =0, — > 1
(2

kpT ma kgT
% [i) 1 e_U’,kBTi > 1 L > 1
mi kBT mi D'CBT (29)

Evidently, the temperature dependence of ionic conductivity
is not simply the Arrhenius behavior due to the presence of the
prefactors that depend on the barrier height. :

The dependence of 3/6, on U and the partition ratio £/m4
given by eq 28 is presented in Figure 3a. The extent of decrease

https://doi.org/10.1021/acsmacrolett. 100245
ACS Macro Lett. 2021, 10, 958-964



ACS Macro Letters

pubs.acs.org/macroletters

(a)

£
m |
! Enhanced
'T conductivity
- Lowered
@;@c_f“A‘“ conductivity
[ s " I}’ BT
kgT

(b)

poison

Figure 4. (a) Plot of the threshold value (&/mA), vs U/ksT. For partition ratios larger than the threshold value ionic conductivity is enhanced, and for
partition ratios below the threshold value, conductivity is lowered. (b) Enhancement of ionic conductivity by designing chemical routes to interrupt
one-dimensional conduction at mA by creating a poison and to force the ion into permeation mechanism.

in 6/ 6, with an increase in U/ky T depends on the partition ratio.
As seen in Figure 3a, 6/6; first decreases with £/md and then
increases for higher values of &/md. This nonmonotonic
behavior is illustrated in Figure 3b for U = 20k,T. The initial
decrease is due to the inefficiency of the permeation pathway for
such short £, namely, the loosened ion from its binding site
immediately returns back to the same binding site. For larger
permeation distances, the ion escapes from the binding traps
along its original path. The minimum value of 6/, occurs at (£/
mi)* given by

(%) -

(a + b)(U/kyT) — 2ab

" (a + b)(U/kT) = 2(U/kgT)? (30)
where a and b are defined as
— (l e e—U,’i:aT)’ [ (CU/L-BT o 1) (3[)

For large barriers as illustrated in Figure 3b, (%) - 1.

P
As the partition ratio is increased from (;ﬁ;) , there exists a

threshold value (%) beyond which the conductivity is above
the value when the permeation mechanism is absent. This is
shown in Figure 3b for U = 20k, T. In general, the dependence of

(%)L on U/kyT is given by

[i] _ 2ab — (a + b)U/kyT
mi),  (U/kgT)? — ab

(32)

where a and b are given in eq 31. This result is plotted in Figure
4a, which delineates the regime of enhanced conductivity (£/m4
> (&/mAd).) and lowered conductivity (&/md < (&/md).) due to
access to the permeation mechanism. For large barriers, (£/md),
= U/kgT, consistent with the crossover behavior between the
two limits given in eq 29,

The prediction from eq 28 and Figure 4a provides a design
strategy to significantly enhance ionic conductivity in heteroge-
neous structures. For example, if the one-dimensional
conductive pathway is blocked at mA by doping the polymer
chain with a nonconductive segment which functions as a poison
(Figure 4b), then the permeation mechanism is forced on the
conducting ion resulting in enhanced conduction for £/m4 > (£/
mi)..

In summary, a general theory for ionic conductivity in
heterogeneous polymer structures is derived in terms of the
energy U to unbind a conductive ion from the polymer
backbone and the partition ratio £/md between three-dimen-
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sional permeation and one-dimensional conduction. For large
barriers, the conductivity is pseudo-Arrhenius, with the prefactor
of the exponential Arrhenius term depending on U and &/m4, as
given in eq 29. The prefactor can significantly affect the
deduction of the activation barrier based on the standard
practice of using the Arrhenius form. For example, according to
the Arrhenius form, the temperature dependence of log ,4(6/0;)
versus 1/ Tis given by the bottom line in Figure 5 for U= 100k]/

Op

log1o(—)

30

26

103/T

22 24 28

Figure 5. Plot of a/6y vs 1/T for U = 100 kJ/mol. Bottom line:
Arrhenius plot; middle and top curves are from eq 28 with £/mA =0 and
100, respectively.

mol and £/mA = 0. On the other hand, the use of eq 28 gives the
intermediate curve for the same values of U and £/mA as for the
bottom line. The conductivity is higher by more than an order of
magnitude. If &/md > (£/md),, then the conductivity is even
higher, as illustrated by the top curve for &/md = 100. If the
middle curve were to be fitted with the Arrhenius form, the
inferred U is approximately 75 kJ/mol. Therefore, the true free
energy barrier is actually higher than the value obtained from
direct implementation of the Arrhenius form.

The limits given in eq 29 can be equivalently represented in
terms of the unbinding time 7 (eq 1) as

2[4
% T To (33)

where y = 1 and 2 for &/mA > 1 and £/m4 = 0, respectively. The
value of the exponent y can be slightly different if the free energy
profile in every subperiod is smoother than the triangular profile
used here. Ignoring the weak logarithmic corrections, we get

-1

c~T (34)

https://doi.org/10.1021/acsmacrolett.1c00245
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This general prediction valid for large barriers is consistent
with prior simulation and experimental results in the
literature.'*”*" If the bartier is weak, the full expression given
in eq 28 needs to be used in conjunction with eq 1 to obtain the
7-dependence of the ionic conductivity.

Although the theory is presently couched in the context of
single-ion conductors in dense heterogeneous polymer systems,
it is applicable to polyelectrolyte solutions and polymerized
ionic liquids as well where interchain hopping mechanism is
prevalent in addition to intrachain ion conduction. The present
general theory addressing simultaneous occurrence of hopping
and permeation pathways is applicable to systems such as
nanoporous materials, polyelectrolyte solutions, hydrated
ionomers, polymerized ionic liquids, and ion-containing
polymers with ion-containing matrices (either due to added
solvent or highly polar polymer backbone like poly(ethylene
oxide)). Obviously, the permeation pathway is absent if the
matrix is not conductive; now, g, denotes the conductivity in the
infinite temperature limit. Additional features to the present
model such as local segmental dynamics and collective phonon
modes can be of importance. Assessment of contributions from
these effects to ionic conductivity is relegated to future work.

B AUTHOR INFORMATION

Corresponding Author
Murugappan Muthukumar — Department of Polymer Science
and Engineering, University of Massachusetts, Amherst,
Massachusetts 01003, United States; © orcid.org/0000-
0001-7872-4883; Email: muthu@polysci.umass.edu

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsmacrolett.1c00245

Notes
The author declares no competing financial interest.

B ACKNOWLEDGMENTS

The author is grateful to his colleague Bryan Coughlin for
stimulating discussions. Acknowledgement is made to the
National Institutes of Health (Grant No. SROIHGO002776-
16), National Science Foundation (Grant No. DMR 2004493),
and AFOSR (Grant No. FA9550-20-1-0142).

B REFERENCES

(1) Bordi, F.; Cametti, C; Colby, R. H. Dielectric spectroscopy and
conductivity of polyelectrolyte solutions. J. Phys.: Condens. Matter 2004,
16, R1423—R1463.

(2) Beers, K. M.; Balsara, N. P. Design of Cluster-free Polymer
Electrolyte Membranes and Implications on Proton Conductivity. ACS
Macro Lett. 2012, 1, 1155—1160.

(3) Hall, L. M.; Stevens, M. J.; Frischknecht, A. L. Dynamics of Model
Ionomer Melts of Various Architectures. Macromolecules 2012, 45,
8097-8108.

(4) Choi, J.-H,; Ye, Y.; Elabd, Y. A.; Winey, K. I. Network Structure
and Strong Microphase Separation for High Ien Conductivity in
Polymerized Ionic Liquid Block Copolymers. Macromolecules 2013, 46,
5290-5300.

(5) Buitrago, C. F.; Jenkins, J. E.; Opper, K. L,; Aitken, B. $.; Wagener,
K. B.; Alam, T. M.; Winey, K. I. Room Temperature Morphologies of
Precise Acid-and Ion-Containing Polyethylenes. Macromolecules 2013,
46, 9003—9012.

(6) Bolintineanu, D. §.; Stevens, M. J.; Frischknecht, A. L. Influence of
Cation Type on Ionic Aggregates in Precise lonomers. Macromolecules
2013, 46, 5381-5392.

963

(7) Bolintineanu, D. S.; Stevens, M. ].; Frischknecht, A. L. Atomistic
Simulations Predict a Surprising Variety of Morphologies in Precise
Ionomers. ACS Macro Lett. 2013, 2, 206—210.

(8) Mohd Noor, S. A.; Gunzelmann, D.; Sun, J.; MacFarlane, D. R.;
Forsyth, M. Ion Conduction and Phase Morphology in Sulfonate
Copolymer lonomers Based on Ionic Liquid-Sodium Cation Mixtures.
J. Mater, Chem. A 2014, 2, 365—374.

(9) Noor, S. A. M; Sun, J; Macfarlane, D. R; Armand, M,;
Gunzelmann, D.; Forsyth, M. Decoupled Ion Conduction in Poly(2-
Acrylamido-2-Methyl-1-Propane-Sulfonic Acid) Homopolymers. J.
Mater. Chem. A 2014, 2, 17934—17943.

(10) Singh, S. P,; Muthukumar, M. Electrophoretic Mobilities of
Counterions and a Polymer in Cylindrical Pores. J. Cliem. Phys. 2014,
141, 114901.

(11) Fan, F.; Wang, Y.; Hong, T.; Heres, M. F.; Saito, T.; Sokolov, A.
P. Ion Conduction in Polymerized Ionic Liquids with Different
Pendant Groups. Macromolecules 2015, 48, 4461—4470.

(12) Mogurampelly, S.; Keith, J. R; Ganesan, V. Mechanisms
Underlying Ion Transport in Polymerized Ionic Liquids. J. Am. Chem.
Soc. 2017, 139, 9511-9514.

(13) Tacob, C.; Matsumoto, A.; Brennan, M.; Liu, H.; Paddison, S. J.;
Urakawa, O.; Inoue, T.; Sangoro, J.; Runt, J. Polymerized Ionic Liquids:
Correlation of Ionic Conductivity with Nanoscale Morphology and
Counterion Volume. ACS Macro Lett. 2017, 6, 941—946.

(14) Delhorbe, V.; Bresser, D,; Mendil-Jakani, H; Rannou, P.;
Bernard, L.; Gutel, T.; Lyonnard, $.; Picard, L. Unveiling the lon
Conduction Mechanism in Imidazolium-Based Poly(lonic Liquids): A
Comprehensive Investigation of the Structure-to-Transport Interplay.
Macromolecules 2017, 50, 4309—4321.

(15) Kusoglu, A,; Weber, A. Z. New Insight into Perfluorinated
Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117, 987—1104.

(16) Wang, S.-W.; Colby, R. H. Linear Viscoelasticity and Cation
Conduction in Polyurethane Sulfonate lonomers with Ions in the Soft
Segment-Single Phase Systems. Macromolecules 2018, 51, 2757—2766.

(17) Stacy, E. W,; Gainaru, C. P; Gobet, M.; Wojnarowska, Z.;
Bocharova, V.; Greenbaum, S. G.; Sokolov, A. P. Fundamental
Limitations of Ionic Conductivity in Polymerized Ionic Liquids.
Macromolecules 2018, 51, 8637—8645.

(18) Cheng, Y; Yang, J.; Hung, J.-H,; Patra, T. K; Simmons, D. S.
Design Rules for Highly Conductive Polymeric Ionic Liquids from
Molecular Dynamics Simulations. Macromolecules 2018, 51, 6630—
6644.

(19) Enokida, J. S; Tanna, V. A;; Winter, H. H.; Coughlin, E. B.
Progression of the Morphology in Random Ionomers Containing Bulky
Ammonium Counterions. Macromolecules 2018, 51, 7377—7385.

(20) Rank, C,; Yan, L.; Mecking, S.; Winey, K. . Periodic Polyethylene
Sulfonates from Polyesterification: Bulk and Nanoparticle Morpholo-
gies and Ionic Conductivities. Macromolecules 2019, 52, 8466—8475.

(21) Frischknecht, A. L.; Winey, K. L. The Evolution of Acidic and
Tonic Aggregates in Ionomers during Microsecond Simulations. J.
Chem. Phys. 2019, 150, 064901.

(22) Frischknecht, A. L.; Paren, B. A.; Middleton, L. R.; Koski, J. P.;
Tarver, J. D.; Tyagi, M,; Soles, C. L.; Winey, K. 1. Chain and Ion
Dynamics in Precise Polyethylene lonomers. Macromolecules 2019, 52,
7939-7950.

(23) Paren, B. A; Thurston, B. A; Neary, W. J,; Kendrick, A;
Kennemur, J. G.; Stevens, M. J.; Frischknecht, A. L.; Winey, K. L
Percolated Ionic Aggregate Morphologies and Decoupled Ion Trans-
port in Precise Sulfonated Polymers Synthesized by Ring-Opening
Metathesis Polymerization. Macromolecules 2020, 53, 8960—8973.

(24) Bostwick, J. E.; Zanelotti, C. J.; Tacob, C,; Korovich, A. G;
Madsen, L. A; Colby, R. H. Ion Transport and Mechanical Properties
of Non-Crystallizable Molecular Ionic Composite Electrolytes. Macro-
molecules 2020, 53, 1405—1414.

(25) Schauser, N. S.; Grzetic, D. J.; Tabassum, T.; Kliegle, G. A; Le,
M. L;; Susca, E. M,; Antoing, S.; Keller, T. J.; Delaney, K. T.; Han, S.;
Seshadri, R.; Fredrickson, G. H.; Segalman, R. A. The Role of Backbone
Polarity on Aggregation and Conduction of Ions in Polymer
Electrolytes. J. Am. Chem. Soc. 2020, 142, 7055—7065.

https://doi.org/10.1021/acsmacrolett.1c00245
ACS Macro Lett. 2021, 10, 958-964



ACS Macro Letters pubs.acs.org/macroletters

(26) Bocharova, V.; Sokolov, A. P. Perspectives for Polymer
Electrolytes: A View from Fundamentals of lonic Conductivity.
Macromolecules 2020, 53, 4141—4157.

(27) Jones, . D.; Schauser, N. S.; Fredrickson, G. H.; Segalman, R. A.
The Role of Polymer-lon Interaction Strength on the Viscoelasticity
and Conductivity of Solvent-Free Polymer Electrolytes. Macromolecules
2020, 53, 10574—10581.

(28) Liu, J; Pickett, P. D.; Park, B; Upadhyay, $. P; Orski, S. V;
Schaefer, J. L. Non-Solvating, Side-Chain Polymer Electrolytes as
Lithium Single-Ton Conductors: Synthesis and Ion Transport
Characterization. Polym. Clhem. 2020, 11, 461—471.

(29) Yan, L.; Hoang, L.; Winey, K. L. Ionomers from Step-Growth
Polymerization: Highly Ordered Ionic Aggregates and Ion Conduction.
Macromolecules 2020, 53, 1777—1784.

(30) Yan, L,; Rank, C.; Mecking, S.; Winey, K. L. Gyroid and Other
Ordered Morphologies in Single-lon Conducting Polymers and Their
Impact on Ion Conductivity. J. Am. Chem. Soc. 2020, 142, 857—866.

(31) Bollinger, J. A; Stevens, M. J; Frischknecht, A. L. Quantifying
Single-lon Transport in Percolated Ionic Aggregates of Polymer Melts.
ACS Macro Lett. 2020, 9, 583—587.

(32) Zhang, Z.; Wheatle, B. K; Krajniak, J.; Keith, J. R; Ganesan, V.
lon Mobilities, Transference Numbers, and Inverse Haven Ratios of
Polymeric Ionic Liquids. ACS Macro Lett. 2020, 9, 84—89.

(33) Schauser, N. S,; Nikolaev, A.; Richardson, P. M.; Xie, S.; Johnson,
K; Susca, E. M.; Wang, H.; Seshadri, R;; Clement, R. ].; de Alaniz, J. R;;
Segalman, R. A. Glass Transition Temperature and Ion Binding
Determine Conductivity and Lithium-lIon Transport in Polymer
Electrolytes. ACS Macro Lett. 2021, 10, 104—109.

(34) Muthukumar, M. Charge, Diffusion, and Mobility of Proteins
Through Nanopores. . Chem. Phys. 2014, 141, 081104.

(35) Risken, H. The Fokker-Planck Equation; Springer: Berlin,
Germany, 1989.

964

https://doi.org/10.1021/acsmacrolett.1c00245
ACS Macro Lert. 2021, 10, 958-964



