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Abstract
This paper is concerned with the approximation of matrix functionals of the form
wT f (A)v, where A ∈ R

n×n is a large nonsymmetric matrix, w, v ∈ R
n, and f

is a function such that f (A) is well defined. We derive Gauss–Laurent quadrature
rules for the approximation of these functionals, and also develop associated anti-
Gauss–Laurent quadrature rules that allow us to estimate the quadrature error of the
Gauss–Laurent rule. Computed examples illustrate the performance of the quadrature
rules described.
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1 Introduction

We are concerned with the approximation of matrix functionals of the form

F(A) := wT f (A)v (1)

by quadrature rules. Here, v, w ∈ R
n with vT w = 1, the superscript T denotes trans-

position, and A ∈ R
n×n is a large nonsingular matrix, which may be nonsymmetric.

Assume for the moment that the matrix A has the spectral factorization

A = SΛS−1, (2)

where S ∈ C
n×n is nonsingular and Λ = diag[λ1, λ2, . . . , λn] ∈ C

n×n. We remark
that the computation of the quadrature rules does not require this factorization, but it
simplifies their derivation. Substituting (2) into (1) gives

F(A) = wT Sf (Λ)S−1v =
n∑

j=1

f (λj )νj ν
′
j , (3)

where [ν1, ν2, . . . , νn] := wT S and [ν′
1, ν

′
2, . . . , ν

′
n] := (S−1v)T . The right-hand

side of (3) can be expressed as a Stieltjes integral

If :=
∫

f (z)dw(z), (4)

where dw is a complex-valued measure with support at the eigenvalues
λ1, λ2, . . . , λn in the complex plane. It follows from wT v = 1 that

∫
dw(z) = 1. A

discussion on the situation when A does not have n linearly independent eigenvectors
is provided by Pozza et al. [22, 23].

It is the purpose of the present paper to derive Gauss–Laurent-type quadrature
rules for the approximation of the integral (4) or, equivalently, of the functional (1).
These rules are exact for certain Laurent polynomials, which are polynomials in z

and 1/z. Gauss–Laurent quadrature rules for the approximation of (1) can be com-
puted by applying a few steps of the nonsymmetric rational Lanczos process to the
matrix A with initial vectors v and w. Associated anti-Gauss-Laurent rules also are
developed. The latter rules allow us to compute estimates for the quadrature error
in Gauss–Laurent rules. Specifically, pairs of Gauss–Laurent and associated anti-
Gauss–Laurent quadrature rules allow the computation of estimates of upper and
lower bounds for the quadrature error in Gauss–Laurent rules. With this we mean that
a pair of a Gauss–Laurent rule and an associated anti-Gauss–Laurent rule for many
integrands f , matrices A, and vectors v and w, provide upper and lower bounds for
the integral (4), and therefore for the functional (1). However, they do not provide
upper and lower bounds for all integrands and it is difficult to assess a priori if the
computed quantities are upper and lower bounds. We therefore refer to the computed
quantities as estimates of upper and lower bounds.

Anti-Gauss rules for the estimation of the error in (standard) Gauss quadrature
rules for the approximation of integrals with a nonnegative measure with support on
(part of) the real axis were proposed in a seminal paper by Laurie [18]. An extension
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to the estimation of functionals of the form (1) by Gauss-type quadrature rules
is described in [5]. Further extensions and modifications of Gauss and anti-Gauss
rules are described in [1, 2, 7, 25]. However, none of these extensions and modifi-
cations is concerned with Gauss–Laurent and anti-Gauss–Laurent quadrature rules.
The reason for our interest in Gauss–Laurent-type quadrature rules is that they may
provide much higher accuracy than Gauss rules with the same number of nodes
if the integrand has a singularity close to the support of the measure that deter-
mines the quadrature rules. Applications of Gauss–Laurent quadrature rules to the
approximation of functionals (1) with a symmetric matrix A are described in [4,
13]. However, Gauss–Laurent quadrature rules and associated anti-Gauss–Laurent
quadrature rules for the approximation of functionals (1) with a nonsymmetric
matrix A have not been developed until now. We remark that the present paper,
as well as the references mentioned in this paragraph, generalizes and modifies an
approach described by Golub and Meurant [10] for computing upper and lower
bounds for functionals (1) with a symmetric matrix A ∈ R

n×n and an integrand
f with derivatives that do not change sign on the convex hull of the spectrum
of A.

This paper is organized as follows. Section 2 reviews the approach described
in [7] for approximating the functional (1) by first carrying out a few steps of
the nonsymmetric Lanczos process to the matrix A with initial vectors v and w,
and then using the computed quantities to define a Gauss quadrature rule for the
approximation of (4). Associated Krylov subspaces are defined. These spaces are
determined by the matrix A, its transpose, and the vectors v and w. Section 3 intro-
duces extended Krylov subspaces, i.e., Krylov subspaces that are determined by
the matrix A, its transpose, their inverses, as well as by the vectors v and w. We
remark that recursion formulas for extended Krylov subspaces that are determined
by a symmetric matrix are discussed by Mach et al. [19] and recursion formulas
for rational Krylov subspaces that are determined by a symmetric matrix A and
inverses of shifted matrices, (A − σj I )−1, for suitable scalars σj , are considered by
Mach et al. [20]. Applications and recursion formulas for rational Krylov subspaces
of the latter kind also can be found in [14, 26]. Recently, Van Buggenhout et al.
[28] discussed the recursion relations for biorthogonal bases for rational Krylov sub-
spaces determined by A, AT , as well as by inverses of shifted matrices (A − σj I )−1

and (AT − σ ′
j I )−1 for suitable scalars σj and σ ′

j . Section 3 presents an alternate
derivation of these recursion formulas for the case when σj = σ ′

j = 0 for all j .
Our derivation extends the approach described in [16] to nonsymmetric matrices.
Section 4 discusses the application of the recursions of Section 3 to the computa-
tion of Gauss–Laurent and anti-Gauss–Laurent quadrature rules. The former rules
are Gauss-type quadrature rules that are exact for specified positive and negative
powers of z.

A nice introduction to rational Gauss rules is provided by Gautschi [9, Section
3.1.4]. More recent discussion of rational Gauss rules can be found in [6, 24]. Appli-
cations of rational Gauss quadrature to model reduction are described by Barkouki
et al. [3] and Gallivan et al. [8].
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2 Gauss quadrature rules

This section describes the application of the nonsymmetric Lanczos process to the
nonsymmetric matrix A ∈ R

n×n to compute Gauss quadrature rules for the approx-
imation of the functional (1). Further details and extensions can be found in [2, 5,
7]. Let the vectors v, w ∈ R

n satisfy wT v = 1. Then, application of 1 ≤ m � n

steps of the nonsymmetric Lanczos process to A with initial vectors v and w gives
the Lanczos decompositions

AVm = VmTm + tm+1,mvm+1e
T
m,

AT Wm = WmT T
m + tm,m+1wm+1e

T
m,

(5)

where the matrices Vm = [v1, v2, . . . , vm] ∈ R
n×m and Wm = [w1, w2, . . . , wm] ∈

R
n×m with v1 := v and w1 := w satisfy

WT
mVm = Im, (6)

and the columns of Vm and Wm form bases for the Krylov subspaces

K
m(A, v) = span{v, Av, . . . , Am−1v},

K
m(AT , w) = span{w, AT w, . . . , (AT )m−1w}.

(7)

Moreover, the vectors vm+1, wm+1 ∈ R
n satisfy V T

m wm+1 = 0, WT
mvm+1 = 0, and

wT
m+1vm+1 = 1, and the matrix Tm = WT

mAVm is nonsymmetric and tridiagonal.
Here and below, ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes the j th axis vector and Im ∈
R

m×m stands for the identity matrix. We assume that m is chosen small enough so
that the decompositions (5) with the stated properties exist.

It follows from the recursion relations (5) that the j th columns of Vm and Wm can
be expressed as

vj = pj−1(A)v, wj = qj−1(A
T )w, j = 1, 2, . . . , m, (8)

where pj−1 and qj−1 are polynomials of degree j − 1.
Introduce the bilinear form

(q, p) := (q(AT )w)T (p(A)v) = wT Sq(Λ)p(Λ)S−1v =
∫

q(z)p(z)dw(z), (9)

where dw is the measure in (4). It follows from (6) that the families of polynomials
{p0, p1, p2, . . . } and {q0, q1, q2, . . . } defined by (8) are biorthogonal with respect
to the bilinear form (9). We have

(qk−1, pj−1) = (qk−1(A
T )w)T (pj−1(A)v) = wT

k vj =
{

1 k = j,

0 k �= j,

where the last equality follows from (6). Using the biorthogonality, we can show that

Gm(f ) := eT
1 f (Tm)e1 (10)

is a Gauss quadrature rule for the approximation of (1), i.e.,

Gm(f ) = wT f (A)v ∀f ∈ P2m−1,
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where P2m−1 denotes the set of all polynomials of degree at most 2m − 1; see, e.g.,
[2, 5, 7] for proofs.

Assume for the moment that the matrix Tm has m distinct eigenvalues. Then, sub-
stituting the spectral factorization of Tm into (10) shows that Gm(f ) is a quadrature
rule with m nodes, which may be complex-valued. The situation when Tm does not
have a spectral factorization with m linearly independent eigenvectors is discussed
by Pozza et al. [22, 23].

The application of a Gauss rule (10) to approximate the functional (1) is appro-
priate when the function f can be approximated well by a polynomial of small to
moderate degree. However, if this is not the case, then Gauss rules (10) with a mod-
erate number of nodes, m, may yield poor approximations of the functional (1). It
sometimes is possible to circumvent this difficulty by using rational Gauss rules. The
following section discusses rational Gauss rules with one pole in the finite complex
plane for the approximation of (1).

3 Recursion relations for extended Krylov subspaces

When the function f in (1) has a singularity close to the support of the measure dw

in (4), rational Gauss quadrature rules with a pole at or close to the singularity may
yield approximations of (1) of higher accuracy than a Gauss rule (10) with the same
number of nodes. This is illustrated in Section 5.

We will assume that the singularity of f close to the support of the measure is
at the origin. Rational Gauss rules that are exact for as many positive and negative
powers of z as possible are commonly referred to as Gauss–Laurent quadrature rules.
Similarly as Gauss rules are related to the Krylov subspaces (7), Gauss–Laurent
quadrature rules are related to extended Krylov subspaces

K
�,m(A, v) = span{A−�+1v, . . . , A−1v, v, Av, . . . , Am−1v}, (11)

K
�,m(AT , w) = span{(AT )−�+1w, . . . , (AT )−1w, w, AT w, . . . , (AT )m−1w}.

Generically, the subspaces K�,m(A, v) and K
�,m(AT , w) are of dimension m+�−1;

if � = 1, then the spaces (11) simplify to the standard Krylov subspaces (7).
The computation of Gauss–Laurent quadrature rules for the approximation of (1)

in the case when the matrix A is symmetric is discussed in [4, 13, 16], and several
other applications of extended Krylov subspaces are described by Heyouni, Jbilou,
Knizhnerman, and Simoncini [12, 17]. Our contribution differs from these works
in that we use the pair of extended Krylov subspaces (11) and develop short recur-
sion relations for biorthogonal bases. A different approach to the derivation of such
recursion relations has recently been proposed by Van Buggenout et al. [28].

The remainder of this section discusses the generation of biorthogonal bases for
pairs of nested Krylov subspaces

K
1,i+1(A, v) ⊂ K

2,2i+1(A, v) ⊂ . . . ⊂ K
m,mi+1(A, v) ⊂ R

n,

K
1,i+1(AT , w) ⊂ K

2,2i+1(AT , w) ⊂ . . . ⊂ K
m,mi+1(AT , w) ⊂ R

n,

(12)
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where i is a positive integer. These recursions generalize those reported in [16] for
a symmetric matrix A. Schweitzer [27] recently described recursion relations for the
situation when i = 1. Each increase in the denominator degree requires the solution
of linear systems of equations with the matrices A and AT , while each increase in the
numerator degree demands the evaluation of matrix-vector products with the matrices
A or AT , which typically is cheaper than the solution of systems of equations. This
makes it possible to compute rational Gauss–Laurent rules corresponding to i > 1
faster than Gauss–Laurent rules with the same number of nodes corresponding to
i = 1. Illustrative examples are presented in Section 5. Computed examples for the
situation when A is symmetric can be found in [15, 16].

3.1 Recursion relations for extended Krylov subspaces

In this subsection, we will use biorthogonal sequences of Laurent polynomials to
generate bases for the extended Krylov subspaces (12) corresponding to the orderings

v, Av, . . . , Aiv, A−1v, Ai+1v, . . . , A2iv, A−2v, A2i+1v, . . . ,

w, AT w, . . . , (AT )iw, (AT )−1w, (AT )i+1w, . . . , (AT )2i

w, (AT )−2w, (AT )2i+1w, . . . ,

where the last powers of A and AT are required to be positive.
Introduce the space of Laurent polynomials

Lm,im := span{z−m, z−m+1, . . . , 1, . . . , zim−1, zim} z ∈ R\{0}.
There are two sequences of monic biorthogonal Laurent polynomials

φ0, φ1, . . . φi, φ−1, φi+1, . . . , φ2i , φ−2, φ2i+1, . . . , φ−m+1, . . . , φim,

ψ0, ψ1, . . . ψi, ψ−1, ψi+1, . . . , ψ2i , ψ−2, ψ2i+1, . . . , ψ−m+1, . . . , ψim,
(13)

of the forms

φj (z) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

zj +
j−1∑

�=−	(j−1)/i

cj,�z

�, j = 1, 2, 3, . . . ,

zj +
−ij∑

�=j+1

cj,�z
�, j = −1, −2, −3, . . . ,

and

ψk(z) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

zk +
k−1∑

�=−	(k−1)/i

dk,�z

�, k = 1, 2, 3, . . . ,

zk +
−ik∑

�=k+1

dk,�z
�, k = −1, −2, −3, . . . ,

with φ0(z) = ψ0(z) = 1. Thus,

(φj , ψk) = 0, j �= k,
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where the bilinear form is given by (9). We assume here that i and m are small enough
so that the Laurent polynomials (13) indeed form biorthogonal bases for the space
Lm,im.

The vectors

vj = φj (A)v, j = −m + 1, −m + 2, . . . , im, (14)

and

wj = ψj(A
T )w, j = −m + 1, −m + 2, . . . , im, (15)

form biorthogonal bases for the extended Krylov subspaces K
m,im+1(A, v) and

K
m,im+1(AT , w), respectively, with v0 = v and w0 = w. Hence, the determina-

tion of biorthogonal bases for these extended Krylov subspaces is equivalent to the
generation of biorthogonal bases for the space Lm−1,im of Laurent polynomials.

Define for the nonsingular matrix M ∈ R
n×n the bilinear form

[x, y]M = xT My, x, y ∈ R
n,

which is needed in the following proposition. The proposition specifies some condi-
tions that are required to compute the trailing and leading coefficients of {φim, ψim}
and {φ−m, ψ−m}.

Proposition 1 Let the matrix A be such that

[wim, vim]A−1 �= 0, [w−m, v−m]A �= 0.

Then, the trailing coefficients cim,−m+1, dim,−m+1 of φim, ψim, respectively, and the
leading coefficients c−m,im, d−m,im of φ−m, ψ−m, respectively, are nonvanishing.

Proof We first show that the coefficient cim,−m+1 is nonzero. Consider the Laurent
polynomials z−1φim and ψim. By the properties of the inner product (9), we obtain

(z−1φim, ψim) = [wim, vim]A−1 �= 0.

On the other hand,

(z−1φim, ψim) = (cim,−m+1z
−m + ϕ, ψim),

where ϕ ∈ Lm−1,im−1. Hence,

(z−1φim, ψim) = cim,−m+1(z
−m, ψim).

It follows that cim,−m+1 �= 0. In the same manner, we can show that dim,−m+1 �= 0.
We now apply this argument again to show that c−m,im is a nonvanishing. Consider

the Laurent polynomials zφ−m and ψ−m. Using the definition of the bilinear form
(9), we have

(zφ−m, ψ−m) = [w−m, v−m]A �= 0.

Furthermore,

(zφ−m, ψ−m) = (c−m,imzim+1 + ϕ, ψ−m),
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where ϕ ∈ Lm−1,im. Hence,

(zφ−m, ψ−m) = c−m,im(zim+1, ψ−m),

and therefore c−m,im �= 0. Analogously, we can show that d−m,im �= 0.

Suppose that biorthogonal bases of Laurent polynomials

{φ0, φ1, . . . , φi, φ−1, φi+1, . . . , φ2i , φ−2, φ2i+1, . . . , φim}
{ψ0, ψ1, . . . , ψi, ψ−1, ψi+1, . . . , ψ2i , ψ−2, ψ2i+1, . . . , ψim}

for Lm−1,im are available. The next subsections describe how to extend these bases
to biorthogonal bases for the space Lm,i(m+1).

3.2 Computation of φ−m andψ−m

The evaluations of φ−m and ψ−m correspond to determining biorthogonal bases for
Lm,im+j for j = 0. Consider the Laurent polynomials

cim,−m+1φ−m(z) − z−1φim(z), dim,−m+1ψ−m(z) − z−1ψim(z) ∈ Lm−1,im. (16)

By Proposition 1, the coefficients cim,−m+1 and dim,−m+1 of φim and ψim, respec-
tively, are nonvanishing. Therefore,

cim,−m+1φ−m(z) − z−1φim(z) = −
im∑

k=−m+1

aim,kφk(z),

dim,−m+1ψ−m(z) − z−1ψim(z) = −
im∑

k=−m+1

bim,kψk(z),

with the Fourier coefficients given by

aim,k = (z−1φim, ψk)

(φk, ψk)
, bim,k = (z−1ψim, φk)

(φk, ψk)
, k = −m + 1, . . . , im.

Since φim, ψim ⊥ Lm−1,im−1 and

z−1φk(z), z
−1ψk(z) ∈ Lm−1,im−1, k = −m + 2, . . . , i(m − 1),

it follows that the only nonvanishing Fourier coefficients are related to the previous
sets of i + 1 Laurent polynomials, {φ−m+1, . . . , φim} and {ψ−m+1, . . . , ψim}. We
therefore obtain

cim,−m+1φ−m(z) = z−1φim(z) − aim,imφim(z) − aim,im−1φim−1(z) − . . .

−aim,i(m−1)+1φi(m−1)+1(z) − aim,−m+1φ−m+1(z),

dim,−m+1ψ−m(z) = z−1ψim(z) − bim,imψim(z) − bim,im−1ψim−1(z) − . . .

−bim,i(m−1)+1ψi(m−1)+1(z) − bim,−m+1ψ−m+1(z).
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This yields the (i + 2)-term recursion formulas

δ−mv−m = (A−1 − ζim,imIn)vim − ζim,im−1vim−1 − . . .

−ζim,i(m−1)+1vi(m−1)+1 − ζim,−m+1v−m+1,

γ−mw−m = ((AT )−1 − ηim,imIn)wim − ηim,im−1wim−1 − . . .

−ηim,i(m−1)+1wi(m−1)+1 − ηim,−m+1w−m+1

(17)

with ζj,k := wT
k A−1vj and ηj,k := vT

k (A−T )wj .

3.3 Computation of φim+1 andψim+1

We determine biorthogonal bases for Lm,im+j for j = 1. Regard the Laurent
polynomials

c−m,imφim+1(z) − zφ−m(z), d−m,imψim+1(z) − zψ−m(z) ∈ Lm,im.

Analogously to the case j = 0, we express the Laurent polynomials (16) in terms of
their Fourier expansions with Fourier coefficients

a−m,k = (zφ−m, ψk)

(φk, ψk)
, b−m,k = (zψ−m, φk)

(φk, ψk)
, k = −m, . . . , im.

Note that φ−m, ψ−m ⊥ Lm−1,im and

zφk(z), zψk(z) ∈ Lm−1,im, k = −m + 1, . . . , im − 1.

Therefore, φim+1 and ψim+1 satisfy

c−m,imφim+1(z) = zφ−m(z) − a−m,−mφ−m(z) − a−m,imφim(z),

d−m,imψim+1(z) = zψ−m(z) − b−m,−mψ−m(z) − b−m,imψim(z).

This gives the three-term recursion formulas

δim+1vim+1 = (A − α−m,−mIn)v−m − α−m,imvim,

γim+1wim+1 = (AT − β−m,−mIn)w−m − β−m,imwim,
(18)

with αj,k := wT
k Avj and βj,k := vT

k AT wj .

3.4 Computation of φim+2 andψim+2

We would like to determine biorthogonal bases for Lm,im+2. Consider the functions

φim+2(z) − zφim+1(z), ψim+2(z) − zψim+1(z) ∈ Lm,im+1.

The Fourier expansion of φim+2(z) − zφim+1(z) has the coefficients

aim+1,k = (zφim+1, ψk)

(φk, ψk)
, k = −m, . . . , im + 1,

and the Fourier coefficients of ψim+2(z) − zψim+1(z) are given by

bim+1,k = (zψim+1, φk)

(φk, ψk)
, k = −m, . . . , im + 1.
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In view of that φim+1, ψim+1 ⊥ Lm,im and

zφk(z), zψk(z) ∈ Lm,im, k = −m + 1, . . . , im − 1,

it follows that φim+2 and ψim+2 satisfy

φim+2(z) = zφim+1(z) − aim+1,im+1φim+1(z)

−aim+1,−mφ−m(z) − aim+1,imφim(z),

ψim+2(z) = zψim+1(z) − bim+1,im+1ψim+1(z)

−bim+1,−mψ−m(z) − bim+1,imψim(z),

which yields the four-term recursion formulas

δim+2vim+2 = (A − αim+1,im+1In)vim+1
−αim+1,−mv−m − αim+1,imvim,

γim+2wim+2 = (AT − βim+1,im+1In)wim+1
−βim+1,−mw−m − βim+1,imwim.

(19)

3.5 Computation of φim+j andψim+j for j = 3, 4, . . . , i

We describe how to determine the remaining basis elements for the subspace Lm,im+j

for 3 ≤ j ≤ i. They can be computed with the aid of the nonsymmetric Lanczos
recursions. We have

δim+jvim+j = (A − αim+j−1,im+j−1In)vim+j−1
−αim+j−1,im+j−2vim+j−2,

γim+jwim+j = (AT − βim+j−1,im+j−1In)wim+j−1
−βim+j−1,im+j−2wim+j−2.

(20)

This completes the computation of the basis for Lm,i(m+1).

3.6 Algorithm and biorthogonal projection

The following algorithm summarizes the computation of the biorthogonal bases for
the extended Krylov subspaces Km+1,im+1(A, v) and K

m+1,im+1(AT , w). The algo-
rithm is based on the recurrence relations for the biorthogonal bases for Lm−1,im

derived in the previous subsections. Further details on the correspondence of the
biorthogonal bases for Km+1,im+1(A, v) and K

m+1,im+1(AT , w), and for Lm−1,im

can be found after the algorithm.
It is known that the nonsymmetric Lanczos algorithm may suffer from breakdown.

This occurs when the inner products rT s or r̂
T
ŝ in Algorithm 1 vanish, so that a

coefficient δi or γi become zero. We will assume that m is small enough so that
breakdown does not occur.
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The biorthogonal bases for the subspaces K
m,im+1(A, v) and K

m,im+1(AT , w)

determine the matrices

Vm(i+1)+1 = [v0, v1, . . . , vi , v−1, . . . , v−m+1, . . . , vim, v−m] ∈ R
n×m(i+1)+1,

Vm(i+1)+2 = [Vm(i+1)+1, vim+1] ∈ R
n×(m(i+1)+2),

Wm(i+1)+1 = [w0, w1, . . . , wi , w−1, . . . , w−m+1, . . . , wim, w−m] ∈ R
n×m(i+1)+1,

Wm(i+1)+2 = [Wm(i+1)+1, wim+1] ∈ R
n×(m(i+1)+2).

Equations (17), (18), (19), and (20) can be used to construct the matrix
Ĥm(i+1)+1 = [hj,k] ∈ R

(m(i+1)+2)×m(i+1)+1 such that

AVm(i+1)+1 = Vm(i+1)+2Ĥm(i+1)+1,

AT Wm(i+1)+1 = Wm(i+1)+2Ĥ
T
m(i+1)+1.

The leading submatrix Hm(i+1)+1 ∈ R
(m(i+1)+1)×(m(i+1)+1) of Ĥm(i+1)+1 satisfies

Hm(i+1)+1 = WT
m(i+1)+1AVm(i+1)+1. (21)

This matrix is analogous to the matrix Tm in the nonsymmetric Lanczos decompo-
sition (5). It is pentadiagonal and its non-zero entries can be computed column-wise
for the columns (i + 1)k + j , 0 ≤ j ≤ i, 0 ≤ k ≤ m − 1. We examine the columns
corresponding to different values of j .

3.6.1 The case j = 1

The columns of AVm(i+1)+1 and AT Wm(i+1)+1 in this case correspond to Av−k and
AT w−k , respectively. Equation (18) yields

Av−k = α−k,ikvik + α−k,−kv−k + δik+1vik+1,

AT w−k = β−k,ikwik + β−k,−kw−k + γik+1wik+1.

Hence, the only nontrivial entries of the ((i + 1)k + 1)th column of Hm(i+1)+1 are

h(i+1)k,(i+1)k+1 = α−k,ik, h(i+1)k+1,(i+1)k+1 = α−k,−k,

h(i+1)k+2,(i+1)k+1 = δik+1.

3.6.2 The case j = 2

The columns of AVm(i+1)+2 and AT Wm(i+1)+2 in this case correspond to Avik+1 and
AT wik+1, respectively. Equation (19) gives

Avik+1 = αik+1,ikvik + αik+1,−kv−k + αik+1,ik+1vik+1 + δik+2vik+2.

AT wik+1 = βik+1,ikwik + βik+1,−kw−k + βik+1,ik+1wik+1 + γik+2wik+2.

It follows that the only nontrivial entries of the ((i + 1)k + 2)th column of Hm(i+1)+1
are

h(i+1)k,(i+1)k+2 = αik+1,ik, h(i+1)k+1,(i+1)k+2 = αik+1,−k,

h(i+1)k+2,(i+1)k+2 = αik+1,ik+1, h(i+1)k+3,(i+1)k+2 = δik+2,
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where

αik+1,−k = (Avik+1, w−k)

= (vik+1, A
T w−k)

= (vik+1, β−k,ikwik + β−k,−kw−k + γik+1wik+1)

= γik+1.

3.6.3 The cases j = 3, 4, . . . , i

The columns of AVm(i+1)+j and AT Wm(i+1)+j in these cases correspond to
Avik+j−1 and AT wik+j−1, respectively. Equation (20) yields

Avik+j−1 = αik+j−1,ik+j−2vik+j−2 + αik+j−1,ik+j−1vik+j−1 + δik+jvik+j ,

AT wik+j−1 = βik+j−1,ik+j−2wik+j−2 + βik+j−1,ik+j−1wik+j−1 + γik+jwik+j .

The only nontrivial entries of the ((i + 1)k + j)th columns, for j = 3, . . . , i, are

h(i+1)k+j−1,(i+1)k+j = γik+j−1, h(i+1)k+j,(i+1)k+j = αik+j−1,ik+j−1,

h(i+1)k+1,(i+1)k+j = δik+j .

3.6.4 The case j = 0

The ((i + 1)k)th columns of AVm(i+1)+1 and AT Wm(i+1)+1 correspond to Avik and
AT wik , respectively. The expressions for Avik and AT wik can be obtained by multi-
plying the first and second equations in (17) by A and AT , respectively, and making
the appropriate substitutions for Av−m+1, . . . , Av−m and AT w−m+1, . . . , A

T w−m.
Then, we simplify the resulting expressions using the facts that i) ζik,ik �= 0 and ii)
wT

ikA
−1vr = 0, r = −k + 1, . . . , 0, . . . , ik − 2. Hence,

Avik = h(i+1)k−1,(i+1)kvik−1 + h(i+1)k,(i+1)kvik +
h(i+1)k+1,(i+1)kv−k + h(i+1)k+2,(i+1)kvik+1,

AT wik = h(i+1)k−1,(i+1)kwik−1 + h(i+1)k,(i+1)kwik +
h(i+1)k+1,(i+1)kw−k + h(i+1)k+2,(i+1)kvik+1,

where

h(i+1)k−1,(i+1)k = γik,

h(i+1)k+1,(i+1)k = −δ−kα−k,−k

ζik,ik
,

h(i+1)k+2,(i+1)k = −δ−kδik+1
ζik,ik

.
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The diagonal element is given by

h(i+1)k,(i+1)k = 1 − ζik,ik−1δik − α−k,ikδ−k

ζik,ik

.

Example 3.1 Let m = 3 and i = 3. Then the matrix H13 is of the form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0,0 γ1 0 0 0 0 0 0 0 0 0 0 0
δ1 α1,1 γ2 0 0 0 0 0 0 0 0 0 0
0 δ2 α2,2 γ3 0 0 0 0 0 0 0 0 0
0 0 δ3 h4,4 α−1,3 α4,3 0 0 0 0 0 0 0
0 0 0 h5,4 α−1,−1 γ4 0 0 0 0 0 0 0
0 0 0 h6,4 δ4 α4,4 γ5 0 0 0 0 0 0
0 0 0 0 0 δ5 α5,5 γ6 0 0 0 0 0
0 0 0 0 0 0 δ6 h8,8 α−2,6 α7,6 0 0 0
0 0 0 0 0 0 0 h9,8 α−2,−2 γ7 0 0 0
0 0 0 0 0 0 0 h10,8 δ7 α7,7 γ8 0 0
0 0 0 0 0 0 0 0 0 δ8 α8,8 γ9 0
0 0 0 0 0 0 0 0 0 0 δ9 h12,12 α−3,9
0 0 0 0 0 0 0 0 0 0 0 h13,12 α−3,−3

.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let Gm(i+1)+1 ∈ R
(m(i+1)+1)×(m(i+1)+1) denote the projection of A−1 onto

K
m+1,im+1(A, v) to K

m+1,im+1(AT , w), that is

Gm(i+1)+1 = WT
m(i+1)+1A

−1Vm(i+1)+1. (22)

The matrix Gm(i+1)+1 is a rank-one modification of H−1
m(i+1)+1 and banded. Its non-

vanishing entries form (i + 2) × (i + 2) blocks along the diagonal such that any
two consecutive blocks overlap in one diagonal element; see [16] for a proof of this
structure in the case when A is symmetric. This proof carries over to the present
situation with obvious modifications.

4 Application to rational Gauss quadrature

This section discusses Gauss–Laurent quadrature rules for the approximation of func-
tionals (1) based on quantities computed by Algorithm 1. Rational Gauss rules were
first considered by Gonchar and López Lagomasino [11], and have subsequently
received considerable attention; see, e.g., Gautschi [9, Section 3.1.4] as well as [6,
24] for discussions and references. An application of Gauss–Laurent rules to the
computation of upper and lower bounds for certain symmetric matrix functionals is
described in [15, 16]. We consider the case i ≥ 1 in (12).
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Application of τ = m(i + 1) steps of Algorithm 1 to the matrix A with initial
vector v and w, such that vT w = 1, yields the decompositions

AVτ = VτHτ + (hτ+1,τv−m + hτ+2,τvim+1)e
T
τ , (23)

A−1Vτ = VτGτ + v−m[gτ+1,τ−ieτ−i , . . . , gτ+1,τ−1eτ−1, gτ+1,τ eτ ]T , (24)

AT Wτ = WτH
T
τ + (hτ,τ+1w−m + hτ,τ+2wim+1)e

T
τ , (25)

A−T Wτ = WτG
T
τ + w−m[gτ−i,τ+1eτ−i , . . . , gτ−1,τ+1eτ−1, gτ,τ+1eτ ]T ,

where the columns of Vτ , Wτ ∈ R
n×m(i+1) form biorthogonal bases for

K
m,im+1(A, v) and K

m,im+1(AT , w), respectively. The matrices Hτ , Gτ ∈
R

m(i+1)×m(i+1) generally are nonsymmetric and the matrix Hτ is pentadiagonal. The
following example illustrates the structure of these matrices.

Example 4.1 The matrices Hτ and Gτ in the decompositions (23) and (24) for i = 3,
m = 3, and τ = 12 may have nonvanishing entries in the positions marked by “∗”:

H12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We would like to establish that

wT f (A)v = eT
1 f (Hτ )e1 ∀f ∈ L2m−2,2im+1, (26)

where A ∈ R
n×n is nonsingular and w, v ∈ R

n satisfy wT v = 1. The right-hand
side expression is a Gauss–Laurent quadrature rule for the approximation of the left-
hand side. The quadrature rule on the right-hand side has τ nodes, which are the
eigenvalues of Hτ . In order to show (26), we first need some auxiliary results on
the properties of the matrices Hτ and Gτ . Analogous results for different spaces
of Laurent polynomials have been shown by Schweitzer [27]. Related results for
symmetric matrices can be found in [16].

Lemma 1 LetA ∈ R
n×n be positive or negative real, letw, v ∈ R

n satisfywT v = 1,
and let the matrices Hτ and Gτ be defined by (21) and (22), respectively, with the
matrices Vτ , Wτ computed by Algorithm 1. Assume that τ := m(i + 1) > 1. Then

wT p(A)v = eT
1 p(Hτ )e1, p ∈ P2im+1, (27)

wT q(A−1)v = eT
1 q(Gτ )e1, q ∈ P2m−1. (28)
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Proof We first show (27) and note that it suffices to prove (27) for monomials p(z) =
zj , j = 0, 1, . . . , 2im + 1. For j = 1, we obtain from (23), using Vτ e1 = v, that

Av = AVτ e1 = VτHτ e1,

where the second term vanishes because eT
τ e1 = 0. For increasing values of j , we

obtain
Ajv = AjVτ e1 = VτH

j
τ e1 + zτ e

T
τ Hj−1

τ e1, (29)

where
zτ = hτ+1,τv−m + hτ+2,τvim+1.

Due to the structure of Hτ , the second term on the right-hand side of (29) vanishes,
and for j ≤ im we get

Ajv = VτH
j
τ e1, j = 0, 1, . . . , im. (30)

Similarly, from (25) we have

(AT )jw = Wτ(H
T
τ )je1, j = 0, 1, . . . , im. (31)

Combining (30) and (31) gives

wT A2im+1v = ((AT )imw)T A(Aimv)

= (Wτ (H
T
τ )ime1)

T A(VτH
im
τ e1)

= eT
1 H 2im+1

τ e1.

The same conclusion can be drawn for lower powers of A. This shows (27). We can
prove (28) in the same manner.

Next we will show a relation between positive powers of Gτ and negative powers
of Hτ .

Lemma 2 Let the assumptions of Lemma 1 be satisfied, and suppose that Hτ is
nonsingular. Then

eT
1 p(Gτ )e1 = eT

1 p(H−1
τ )e1, p ∈ P2m−2. (32)

Proof Multiplying (24) by WT
τ A from the left, we get

I = HτGτ + WT
τ Av−m[gτ+1,τ−ieτ−i , . . . , gτ+1,τ−1eτ−1, gτ+1,τ eτ ]T .

This implies that
HτGτ e1 = e1.

We obtain by induction that

Hj
τ Gj

τ e1 = Hj−1
τ (I − WT

τ Av−m[gτ+1,τ−ieτ−i , . . . , gτ+1,τ eτ ]T )Gj−1
τ e1

for j = 0, 1, . . . , m − 1. Observing that only the first (2j − 2) + i entries of G
j−1
τ e1

may be nonzero, the above equation gives

Hj
τ Gj

τ e1 = Hj−1
τ Gj−1

τ e1 = e1, j = 0, 1, . . . , m − 1.
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Multiplying by H
−j
τ from the left shows that

Gj
τ e1 = H−j

τ e1, j = 0, 1, . . . , m − 1. (33)

Similarly, we obtain

(GT
τ )

j
e1 = (HT

τ )
−j

e1, j = 0, 1, . . . , m − 1. (34)

Using (33) and (34) together gives

eT
1 G2m−2

τ e1 = eT
1 H−(2m−2)

τ e1.

A similar argument holds for lower powers of Gτ . This shows (32). �

We are now in a position to show that (26) holds.

Theorem 1 The right-hand side of (26) is a Gauss–Laurent quadrature rule for the
expression on the left-hand side.

Proof Let f ∈ L2m−2,2im+1. Then f (A) = p(A) + q(A−1) for some polynomials
p ∈ P2im+1 and q ∈ P2m−2. We obtain from Lemma 1 that

wT f (A)v = wT p(A)v + wT q(A−1)v = eT
1 p(Hτ )e1 + eT

1 q(Gτ )e1.

Applying Lemma 2 gives

wT f (A)v = eT
1 p(Hτ )e1 + eT

1 q(H−1
τ )e1 = eT

1 f (Hτ )e1.

This shows (26).

It is shown in [16] that for suitable integrands, appropriate pairs of Gauss–Laurent
and Gauss–Laurent–Radau quadrature rules can be applied to determine upper and
lower bounds for the functional (1) when the matrix A is symmetric. However, this
approach is not guaranteed to furnish upper and lower bounds when the matrix A

is nonsymmetric. We will show that in this situation, estimates of error bounds can
be determined by evaluating appropriate pairs of Gauss–Laurent and anti-Gauss–
Laurent quadrature rules.

Laurie [18] introduced the (standard) (m+1)-point anti-Gauss quadrature rule that
gives an error of the same magnitude and of opposite sign as the (standard) m-point
Gauss quadrature rule. The evaluation of the (standard) (m + 1)-point anti-Gauss
quadrature rule requires the computation of m + 1 steps of the (standard) Lanczos
process; see, e.g., [1, 2, 5] for details. We will show that anti-Gauss–Laurent rules
can be computed in an analogous fashion.

Let

G̃τ+1f :=
τ+1∑

j=1

f (λ̃j )ν̃j ν̃
′
j

be the (τ + 1)-point anti-Gauss–Laurent rule associated with the Gauss–Laurent rule
Gτ f for the measure dω in (4). This anti-Gauss–Laurent rule is determined by the
requirement that

(I − G̃τ+1)f = −(I − Gτ )f ∀f ∈ L2m−2,2im+3, (35)
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where Gτ f is characterized by

Gτ f = If ∀f ∈ L2m−2,2im+1. (36)

Relation (35) shows that G̃τ+1 is the (τ + 1)-point Gauss–Laurent rule for the
functional

J f := (2I − Gτ )f .

Introduce, analogously to (14) and (15), the vectors

ṽj = φ̃j (A)v,

w̃j = ψ̃j (A
T )w,

j = −m + 1, −m + 2, . . . , im + 1,

where φ̃j and ψ̃j are two families of biorthogonal Laurent polynomials with respect
to the bilinear form

{p, q} := J (pq),

i.e., {φ̃i , ψ̃j } = 0 for all i �= j and {φ̃j , ψ̃j } = 1 for all j . The biorthogonal bases
Ṽτ+1 = [ṽj ]im+1

j=−m+1 ∈ R
n×(τ+1) and W̃τ+1 = [w̃j ]im+1

j=−m+1 ∈ R
n×(τ+1) for the

extended Krylov subspaces Km,im+2(A, v) and K
m,im+2(AT , w), respectively, with

ṽ0 = v and w̃0 = w satisfy the decompositions

AṼτ+1 = Ṽτ+1H̃τ+1 + h̃τ+2,τ+1ṽim+2e
T
τ+1,

AT W̃τ+1 = W̃τ+1H̃
T
τ+1 + h̃τ+1,τ+2w̃im+2e

T
τ+1,

where τ = m(i+1) and the matrix H̃τ+1 = [h̃j,k] ∈ R
(τ+1)×(τ+1) is a nonsymmetric

and pentadiagonal. It follows from (35) and (36) that

{φ, ψ} = [φ, ψ] = I(φψ), ∀φψ ∈ L2m−2,2im+1.

These equalities show that

h̃j,k = hj,k, j, k = 1, 2, . . . , τ

Therefore, φ̃j = φj and ψ̃j = ψj for j = −m + 1, −m + 2, . . . , im.
It follows from the structure of Hτ and relations (23) and (25), in view of (14) and

(15), that the Laurent polynomials

φ̆τ (z) = hτ+1,τ φ−m(z) + hτ+2,τ φim+1(z),

ψ̆τ (z) = hτ,τ+1ψ−m(z) + hτ,τ+2ψim+1(z),

for i = 1 can be computed with four-term recursion formulas

φ̆τ (z) = (z − hτ,τ )φim(z) − hτ−1,τ φ−m+1(z) − hτ−2,τ φim−1(z),

ψ̆τ (z) = (z − hτ,τ )ψim(z) − hτ,τ−1ψ−m+1(z) − hτ,τ−2ψim−1(z),

which can be written as

φ̆τ (z) = (z − h̃τ,τ )φ̃im(z) − h̃τ−1,τ φ̃−m+1(z) − h̃τ−2,τ φ̃im−1(z),

ψ̆τ (z) = (z − h̃τ,τ )ψ̃im(z) − h̃τ,τ−1ψ̃−m+1(z) − h̃τ,τ−2ψ̃im−1(z).

For i > 1, φ̆τ and ψ̆τ can be determined with three-term recursion formulas

φ̆τ (z) = (z − hτ,τ )φim(z) − hτ−1,τ φim−1(z),

ψ̆τ (z) = (z − hτ,τ )ψim(z) − hτ,τ−1ψim−1(z),
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which can be expressed as

φ̆τ (z) = (z − h̃τ,τ )φ̃im(z) − h̃τ−1,τ φ̃im−1(z),

ψ̆τ (z) = (z − h̃τ,τ )ψ̃im(z) − h̃τ,τ−1ψ̃im−1(z).

For all i ≥ 1, we can determine Laurent polynomials φ̆τ+1 and ψ̆τ+1 ∈ Lm−1,im+2
that are biorthogonal to Lm−1,im+1 with three-term recursion formulas

φ̆τ+1(z) = (z − α)φ̆τ (z) − γ̃τ φim(z),

ψ̆τ+1(z) = (z − α)ψ̆τ (z) − δ̃τψim(z),

where

δ̃τ γ̃τ = {φ̆τ , ψ̆τ } = 2I(φ̆τ ψ̆τ ) − Gτ (φ̆τ ψ̆τ ) = 2I(φ̆τ ψ̆τ ) = 2[φ̆τ , ψ̆τ ] = 2δτ γτ .

We may choose δ̃τ = √
2δτ and γ̃τ = √

2γτ . It follows that the nonsymmetric
pentadiagonal matrix associated with the anti-Gauss–Laurent rule G̃τ+1 is given by

H̃τ+1 =
[

Hτ

√
2γτ√

2δτ α

]
∈ R

(τ+1)×(τ+1),

where the last diagonal coefficient can be determined from α = (zφ̆τ , ψ̆τ ). For i > 1,
this coefficient can be evaluated by carrying out one additional “standard step” of
Algorithm 1 that uses the three-term recurrence relation, i.e., we evaluate

r := Avim − hτ,τvim − γimvim−1;
s := AT wim − hτ,τwim − δimwim−1;

and then compute

δim+1 := |rT s|1/2; γim+1 := rT s/δim+1; vim+1 := r/δim+1; wim+1 := s/γim+1.

Finally,

hτ+1,τ+1 = α := wT
im+1Avim+1;

Analogously to formula (26), the anti-Gauss–Laurent quadrature rule can be
evaluated according to

G̃τ+1f = eT
1 f (H̃τ+1)e1 ∀f ∈ L2m−2,2im+3.

We are now in a position to provide sufficient conditions for Gτ f and G̃τ+1f to
bracket If . Assume that we can carry out n steps of Algorithm 1 without breakdown.
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This yields biorthogonal bases {vj }n−1
j=0 and {wj }n−1

j=0 of Rn and associated sequences

of Laurent polynomials {φj , ψj }n−1
j=0 defined by (14) and (15) that satisfy (9).

Theorem 2 Let λ(A) denote the spectrum of the matrix A. Consider the expansion
of the integrand

f (z) =
n−1∑

j=0

μjφj (z), z ∈ λ(A), (37)

in terms of the Laurent polynomials φj , and assume that the coefficients μj in (37)
are such that

∣∣∣∣∣∣

2im+3∑

j=2im+2

μjGτ φj

∣∣∣∣∣∣
≥ max

⎧
⎨

⎩

∣∣∣∣∣∣

n−1∑

j=2im+4

μjGτ φj

∣∣∣∣∣∣
,

∣∣∣∣∣∣

n−1∑

j=2im+4

μj G̃τ+1φj

∣∣∣∣∣∣

⎫
⎬

⎭ . (38)

Then, the quadrature rules Gτ f and G̃τ+1f bracket If .

Proof Since

If = μ0Iφ0, Iφj = 0 ∀j > 0

we have, in view of (35) and (36), that

Gτ f =
n−1∑

j=0

μjGτ φj =
2im+1∑

j=0

μjGτ φj +
n−1∑

j=2im+2

μjGτ φj

= If + μ2im+2Gτ φ2im+2 + μ2im+3Gτ φ2im+3 +
n−1∑

j=2im+4

μjGτ φj . (39)

G̃τ+1f =
n−1∑

j=0

μj G̃τ+1φj =
2im+3∑

j=0

μj (2I − Gτ )φj +
n−1∑

j=2im+4

μj G̃τ+1φj

= If − μ2im+2Gτ φ−μ2im+3Gτ φ2im+3 +
n−1∑

j=2im+4

μj G̃τ+1φj . (40)

combining (39) and (40) shows (38).

Theorem 2 shows that if the coefficients μj decay sufficiently rapidly with
increasing j , then rational Gauss and anti-Gauss rules provide quadrature errors that
are of opposite sign and of roughly the same magnitude. The following example
illustrates the structure of the matrix H̃τ+1 for the cases i = 1, 2, 3.



Numerical Algorithms

Example 4.2. The matrix H̃τ+1 may have nonvanishing entries in the positions
marked by “∗” below. For instance, we have

H̃7 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

for i = 1, m = 3, τ = 6,

H̃7 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

for i = 2, m = 2, τ = 6,

and

H̃13 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for i = 3, m = 3, τ = 12.

5 Computed examples

In this section, we illustrate the performance of the Gauss–Laurent and associated
anti-Gauss–Laurent rules when applied to several functionals (1). All computa-
tions were carried out using MATLAB R2017b on a 64-bit MacBook Pro personal
computer with about 15 significant decimal digits.

The purpose of these examples is to compare the performance of the standard
Gauss and Gauss–Laurent rules for the case i = 3. The last example illustrates the
performance of these quadrature rules for i = 1, 2, and 3. Also, we show that pairs
of Gauss–Laurent and anti-Gauss–Laurent quadrature rules provide upper and lower
bounds for certain functionals (1). We compare the approximations obtained by the
quadrature rules and the values computed by explicitly evaluating the functional (1).
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Fig. 1 Example 5.1: Spectrum of matrix A in C. The eigenvalues are marked by “o.” The horizontal axis
shows the real parts of the eigenvalues, the vertical axis the imaginary parts

We choose τ = 0 mod 4 and τ = 0 mod 3 to ensure that the matrix Hτ defined
by (23) is of the appropriate dimensions for i = 1, 2, 3. The table column headings
eT

1 f (T )e1, eT
1 f (H)e1, and eT

1 f (H̃ )e1 refer to standard Gauss, Gauss–Laurent, and
anti-Gauss–Laurent quadrature rules, respectively.

Example 5.1. We would like to determine approximations of the functional

F(A) := wT exp(−A)A−1/2v,

where A ∈ R
200×200 is a real nonsymmetric Toeplitz matrix with first row and

column [1, 1/2, . . . , 1/200] and [1, 1, . . . , 1]T , respectively. The vectors v and w

have normally distributed random entries with zero mean and are scaled so that
wT v = 1. Figure 1 shows the eigenvalues of A. The eigenvalue of largest magnitude
is real-valued and about 45.8; the eigenvalues with the largest imaginary parts (in
magnitude) are approximately 17.8 ± 16.8i, where i = √−1 is the imaginary unit.
The eigenvalue of smallest magnitude is real and about 0.195.

Table 1 Example 5.1: Errors for computed approximations of F(A) = wT exp(−A)A−1/2v with A a
nonsymmetric Toeplitz matrix

τ eT
1 f (T )e1 eT

1 f (Hi=3)e1 eT
1 f (H̃i=3)e1

12 1.08 · 10−1 9.69 · 10−4 −8.69 · 10−4

16 3.15 · 10−2 2.69 · 10−5 −2.26 · 10−5

20 8.80 · 10−3 1.28 · 10−6 −1.48 · 10−6
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Table 2 Example 5.2: Errors for computed approximations of F(A) = wT ln(A)v with A a nonsymmetric
Toeplitz matrix

τ eT
1 f (T )e1 eT

1 f (Hi=3)e1 eT
1 f (H̃i=3)e1

8 −1.10 · 10−3 −1.78 · 10−5 1.75 · 10−5

12 −9.71 · 10−5 −4.61 · 10−8 4.36 · 10−8

16 −7.58 · 10−6 −1.19 · 10−10 1.14 · 10−10

We evaluate (1) as wT exp(−A)A−1/2v, where the vector A−1/2v is calculated by
first computing the matrix square root and then solving a linear system of equations.
The exact value of F(A) is approximately 0.9990. We report this value to allow a
reader to estimate the relative approximation error from Table 1.

The Gauss–Laurent rule is evaluated as

eT
1 exp(−Hτ )G

1/2e1,

where G1/2e1 is the first column of the inverse of the square root of the matrix H .
It is determined by first computing the matrix square root and then solving a linear
system of equations. The exponential is computed with the MATLAB function expm.
The standard Gauss rule

eT
1 exp(−Tτ )T

−1/2
τ e1

is determined by first computing the matrix square root of Tτ and then solving a
linear system of equations for the vector T

−1/2
τ e1.

Columns 2 and 3 of Table 1 display the errors in approximations determined by
standard Gauss and Gauss–Laurent rules for i = 3. We observe that the Gauss–
Laurent rules yield higher accuracy than the standard Gauss rules when using the
same number, τ , of quadrature nodes. Columns 3 and 4 of Table 1 show the errors in
approximations obtained by Gauss–Laurent and associated anti-Gauss–Laurent rules
to have opposite sign and to be of about the same magnitude for each value of τ .
Therefore, the average rules

1

2
(eT

1 f (Hi=3)e1 + eT
1 f (H̃i=3)e1) (41)

for the different τ -values determine more accurate approximations of F(A) than the
corresponding Gauss–Laurent rules. In applications, we use pairs of Gauss–Laurent
and associated anti-Gauss–Laurent rules to determine estimates of upper and lower
bounds for the functional F(A), and use the averages rule as an approximation of
F(A).

Table 3 Example 5.3: Errors for computed approximations of F(A) = wT A−1/2v with A a nonsymmetric
tridiagonal Toeplitz matrix

τ eT
1 f (T )e1 eT

1 f (Hi=3)e1 eT
1 f (H̃i=3)e1

8 1.22 · 10−7 3.17 · 10−10 −3.13 · 10−10

12 9.41 · 10−11 1.22 · 10−15 −1.99 · 10−15
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Table 4 Example 5.4: Errors for computed approximations of F(A) = wT (A5 + A−6)v with A a
nonsymmetric tridiagonal Toeplitz matrix

τ eT
1 f (T )e1 eT

1 f (Hi=3)e1 eT
1 f (H̃i=3)e1

8 1.60 · 10−5 5.77 · 10−7 −5.77 · 10−7

12 8.75 · 10−8 1.08 · 10−11 −1.09 · 10−11

Example 5.2. This example determines approximations of the functional

F(A) := wT ln(A)v,

with A the same matrix as in Example 5.1. We let v = [1, 1, . . . , 1]T ∈ R
200 and

w = [1/200, 1/200, . . . , 1/200]T ∈ R
200 so that wT v = 1. The exact value of

F(A) is approximately 2.924 · 10−4. Columns 2 and 3 of Table 2 show the difference
between the exact value and the approximations determined by the standard Gauss
and Gauss–Laurent rules for i = 3 and the same number of nodes, τ . It can be seen
that the quadrature error for the Gauss–Laurent rules is the smallest for all values
of τ . Column 4 of Table 2 displays the errors achieved with the anti-Gauss–Laurent
rules. We observe that the errors of these quadrature rules are of opposite sign and
of about the same magnitude as the error in the corresponding Gauss–Laurent rules.
Similarly as above, this indicates that the average rules (41) are more accurate than
the corresponding Gauss–Laurent and anti-Gauss–Laurent rules.

Example 5.3. In this example, we approximate the value

F(A) := wT A−1/2v,

where A ∈ R
1000×1000 is the nonsymmetric tridiagonal Toeplitz matrix [−1, 2, 1].

The vectors v and w have normally distributed random entries with zero mean; they
are scaled so that wT v = 1. The eigenvalues of A all have real part 2 and their
imaginary parts are zeros of a Chebyshev polynomial of the first kind of degree 1000
for the interval [−2, 2]. The exact value F(A) is approximately 0.6201. Columns
2 and 3 of Table 3 display the errors in approximations obtained by the standard
Gauss and Gauss–Laurent rules for i = 3. We find that Gauss–Laurent rules give
significantly smaller approximations errors than the standard Gauss rules. Columns

Table 5 Example 5.5: Errors for computed approximations of F(A) = wT ln(A)v for i = 1, 2, 3 when A

is a discretization of a differential operator

τ eT
1 f (T )e1 eT

1 f (Hi=1)e1 eT
1 f (Hi=2)e1 eT

1 f (Hi=3)e1

6 −3.40 · 10−3 − −4.47 · 10−4 −
8 −1.10 · 10−3 −1.84 · 10−5 − −9.11 · 10−5

12 −1.56 · 10−4 −9.59 · 10−8 −3.40 · 10−7 −1.08 · 10−6

15 −4.16 · 10−5 − −8.66 · 10−9 −
16 −2.72 · 10−5 −3.50 · 10−10 − −1.33 · 10−8
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Table 6 Example 5.5: Errors for computed approximations of F(A) = wT ln(A)v for i = 1, when A is a
discretization of a differential operator

τ eT
1 f (Hi=1)e1 eT

1 f (H̃i=1)e1

8 −1.84 · 10−5 1.82 · 10−5

12 −9.59 · 10−8 9.55 · 10−8

16 −3.50 · 10−10 3.49 · 10−10

4 of Table 3 shows the Gauss–Laurent and anti-Gauss–Laurent rules to bracket the
exact value. This implies that the average (41) will be quite accurate.

Example 5.4. In this example, we determine approximations of the functional

F(A) := wT (A5 + A−6)v,

where A ∈ R
1000×1000 is the same matrix as in Example 5.3, v = [1, 1, . . . , 1]T , and

w = [1, 0, . . . , 0]T . Thus, wT v = 1. The value of F(A) is approximately 7.340 ·101.
Columns 2 and 3 of Table 4 display the errors in approximations determine by the
standard Gauss and Gauss–Laurent rules for i = 3. Column 4 of Table 4 shows
the approximations determine anti-Gauss-Laurent rules and illustrates that Gauss–
Laurent and anti-Gauss–Laurent rules bracket the exact value.

Example 5.5. In our last example, we approximate the value

F(A) := wT ln(A)v,

where v = [1, 1, . . . , 1]T , w = [1, 0, . . . , 0]T , and the matrix A is obtained by
discretizing the differential operator −Δ + ρ1

∂
∂x

+ ρ2
∂
∂y

. Here, Δ denotes the two-
dimensional Laplacian, which is discretized on the unit square by the standard 5-point
stencil on a uniform mesh with grid size h = 1

41 . The discretization error is O(h2)

as h ↘ 0. The partial first derivatives are discretized by the standard symmetric
2-point stencil with discretization error O(h2). Dirichlet boundary conditions are
imposed. The coefficients ρi are defined below. This gives a nonsymmetric matrix
A ∈ R

1600×1600 that can be represented as follows

A := − 1

h2
(I40 ⊗ C1 + C2 ⊗ I40),

Table 7 Example 5.5: Errors for computed approximations of F(A) = wT ln(A)v for i = 2, when A is a
discretization of a differential operator

τ eT
1 f (Hi=2)e1 eT

1 f (H̃i=2)e1

6 −4.47 · 10−4 4.42 · 10−4

12 −3.40 · 10−7 3.39 · 10−7

15 −8.66 · 10−9 8.67 · 10−9
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Table 8 Example 5.5: Errors for computed approximations of F(A) = wT ln(A)v for i = 3, when A is a
discretization of a differential operator

τ eT
1 f (Hi=3)e1 eT

1 f (H̃i=3)e1

8 −9.11 · 10−5 9.06 · 10−5

12 −1.08 · 10−6 1.08 · 10−6

16 −1.33 · 10−8 1.34 · 10−8

where I40 ∈ R
40×40 is the identity matrix and

Ci =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 − ρi
h
2 0 · · · 0

1 + ρi
h
2 −2 1 − ρi

h
2 0

...

0
. . .

. . .
. . . 0

... 1 + ρi
h
2 −2 1 − ρi

h
2

0 · · · 0 1 + ρi
h
2 −2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
40×40.

see, e.g., [21, 27]. The convection coefficients ρi are chosen such that the Péclet
numbers Pei = ρih

2 are equal to Pe1 = 0.2 and Pe2 = 0.1, respectively. All eigen-
values of A are real and positive; the extreme eigenvalues are λ1 = 1.04 · 102 and
λ1600 = 1.33 · 104.

Table 5 displays the difference between the exact value, F(A) ≈ 8.019, and some
approximations determined by the standard Gauss and Gauss–Laurent quadrature
rules for i = 1, 2, 3. Since τ = m(i + 1), only certain combinations of i and m give
quadrature rules with τ nodes. The entrries “−” mark combinations of m and i that do
not correspond to quadrature rules with τ nodes. We note that Gauss–Laurent rules
give the most accurate approximations of F(A). Furthermore, the results achieved
with Gauss–Laurent rules are fairly insensitive to the choice of i ≥ 1. Therefore, it
might be beneficial to use a value of i larger than one and in this manner reduce the
computational cost. The Tables 6, 7, and 8 show the Gauss–Laurent and associated
anti-Gauss–Laurent quadrature rules to give errors of about the same magnitude and
of opposite sign.

6 Conclusion

It is known that Gauss–Laurent quadrature rules associated with a real nonnegative
measure with support on the real axis are determined by symmetric pentadiagonal
matrices. This paper extends the methods described in [16] to complex-valued mea-
sures with support in the complex plane. We investigate the structure of the matrices
for Gauss–Laurent and associated anti-Gauss–Laurent quadrature rules and discuss
properties of these quadrature rules. Computed examples show that Gauss–Laurent
rules may give higher accuracy than standard Gauss rules with the same number of
nodes. Moreover, they illustrate that pairs of Gauss–Laurent and anti-Gauss–Laurent
rules provide upper and lower bounds for certain matrix functionals.
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11. Gonchar, A.A., López Lagomasino, G.: On Markov’s theorem for multipoint Padé approximants.
Math. USSR Sb. 34, 449–459 (1978)

12. Heyouni, M., Jbilou, K.: An extended block Arnoldi algorithm for large-scale solutions of the
continuous-time algebraic Riccati equation. Electron. Trans. Numer. Anal. 33, 53–62 (2009)

13. Jagels, C., Jbilou, K., Reichel, L.: The extended global Lanczos method, Gauss–Radau quadrature,
and matrix function approximation. J. Comput. Appl. Math. 381, Art.113027 (2021)

14. Jagels, C., Mach, T., Reichel, L., Vandebril, R.: Convergence rates for inverse-free rational approxi-
mation of matrix functions. Linear Algebra Appl. 510, 291–310 (2016)

15. Jagels, C., Reichel, L.: Recursion relations for the extended Krylov subspace method. Linear Algebra
Appl. 434, 1716–1732 (2011)

16. Jagels, C., Reichel, L.: The structure of matrices in rational Gauss quadrature. Math. Comp. 82, 2035–
2060 (2013)

17. Knizhnerman, L., Simoncini, V.: A new investigation of the extended Krylov subspace method for
matrix function evaluations. Numer. Linear Algebra Appl. 17, 615–638 (2010)

18. Laurie, D.P.: Anti-Gaussian quadrature formulas. Math. Comp. 65, 739–747 (1996)
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