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Abstract

This paper is concerned with the approximation of matrix functionals of the form
w’ f(A)v, where A € R" " is a large nonsymmetric matrix, w,v € R”, and f
is a function such that f(A) is well defined. We derive Gauss—Laurent quadrature
rules for the approximation of these functionals, and also develop associated anti-
Gauss—Laurent quadrature rules that allow us to estimate the quadrature error of the
Gauss—Laurent rule. Computed examples illustrate the performance of the quadrature
rules described.
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Numerical Algorithms

1 Introduction

We are concerned with the approximation of matrix functionals of the form
F(A) =w" f(Aw (1)

by quadrature rules. Here, v, w € R” with v7 w = 1, the superscript  denotes trans-
position, and A € R"*" is a large nonsingular matrix, which may be nonsymmetric.
Assume for the moment that the matrix A has the spectral factorization

A=SAS!, )

where S € C"*" is nonsingular and A = diag[A, A2, ..., A,] € C"*"". We remark
that the computation of the quadrature rules does not require this factorization, but it
simplifies their derivation. Substituting (2) into (1) gives

n
F(A) =w'SFMS™ v =" fO)v), 3)
j=I
where [vi, v2, ..., v,] := wTS and .05, .. ] = (S~'v)T. The right-hand

side of (3) can be expressed as a Stieltjes integral

If = / F@dw (), @)

where dw is a complex-valued measure with support at the eigenvalues
Al, A2, ..., A, in the complex plane. It follows from wlv = 1 that fdw(z) =1A
discussion on the situation when A does not have n linearly independent eigenvectors
is provided by Pozza et al. [22, 23].

It is the purpose of the present paper to derive Gauss—Laurent-type quadrature
rules for the approximation of the integral (4) or, equivalently, of the functional (1).
These rules are exact for certain Laurent polynomials, which are polynomials in z
and 1/z. Gauss—Laurent quadrature rules for the approximation of (1) can be com-
puted by applying a few steps of the nonsymmetric rational Lanczos process to the
matrix A with initial vectors v and w. Associated anti-Gauss-Laurent rules also are
developed. The latter rules allow us to compute estimates for the quadrature error
in Gauss—Laurent rules. Specifically, pairs of Gauss—Laurent and associated anti-
Gauss—Laurent quadrature rules allow the computation of estimates of upper and
lower bounds for the quadrature error in Gauss—Laurent rules. With this we mean that
a pair of a Gauss—Laurent rule and an associated anti-Gauss—Laurent rule for many
integrands f, matrices A, and vectors v and w, provide upper and lower bounds for
the integral (4), and therefore for the functional (1). However, they do not provide
upper and lower bounds for all integrands and it is difficult to assess a priori if the
computed quantities are upper and lower bounds. We therefore refer to the computed
quantities as estimates of upper and lower bounds.

Anti-Gauss rules for the estimation of the error in (standard) Gauss quadrature
rules for the approximation of integrals with a nonnegative measure with support on
(part of) the real axis were proposed in a seminal paper by Laurie [18]. An extension

@ Springer



Numerical Algorithms

to the estimation of functionals of the form (1) by Gauss-type quadrature rules
is described in [5]. Further extensions and modifications of Gauss and anti-Gauss
rules are described in [1, 2, 7, 25]. However, none of these extensions and modifi-
cations is concerned with Gauss—Laurent and anti-Gauss—Laurent quadrature rules.
The reason for our interest in Gauss—Laurent-type quadrature rules is that they may
provide much higher accuracy than Gauss rules with the same number of nodes
if the integrand has a singularity close to the support of the measure that deter-
mines the quadrature rules. Applications of Gauss—Laurent quadrature rules to the
approximation of functionals (1) with a symmetric matrix A are described in [4,
13]. However, Gauss—Laurent quadrature rules and associated anti-Gauss—Laurent
quadrature rules for the approximation of functionals (1) with a nonsymmetric
matrix A have not been developed until now. We remark that the present paper,
as well as the references mentioned in this paragraph, generalizes and modifies an
approach described by Golub and Meurant [10] for computing upper and lower
bounds for functionals (1) with a symmetric matrix A € R"*" and an integrand
f with derivatives that do not change sign on the convex hull of the spectrum
of A.

This paper is organized as follows. Section 2 reviews the approach described
in [7] for approximating the functional (1) by first carrying out a few steps of
the nonsymmetric Lanczos process to the matrix A with initial vectors v and w,
and then using the computed quantities to define a Gauss quadrature rule for the
approximation of (4). Associated Krylov subspaces are defined. These spaces are
determined by the matrix A, its transpose, and the vectors v and w. Section 3 intro-
duces extended Krylov subspaces, i.e., Krylov subspaces that are determined by
the matrix A, its transpose, their inverses, as well as by the vectors v and w. We
remark that recursion formulas for extended Krylov subspaces that are determined
by a symmetric matrix are discussed by Mach et al. [19] and recursion formulas
for rational Krylov subspaces that are determined by a symmetric matrix A and
inverses of shifted matrices, (A — o/ )_1, for suitable scalars o, are considered by
Mach et al. [20]. Applications and recursion formulas for rational Krylov subspaces
of the latter kind also can be found in [14, 26]. Recently, Van Buggenhout et al.
[28] discussed the recursion relations for biorthogonal bases for rational Krylov sub-
spaces determined by A, AT, as well as by inverses of shifted matrices (A — ojl )~ !
and (AT — ol )~! for suitable scalars o; and o/’.. Section 3 presents an alternate
derivation of these recursion formulas for the case when o j = ot = 0forall j.
Our derivation extends the approach described in [16] to nonsymmetric matrices.
Section 4 discusses the application of the recursions of Section 3 to the computa-
tion of Gauss—Laurent and anti-Gauss—Laurent quadrature rules. The former rules
are Gauss-type quadrature rules that are exact for specified positive and negative
powers of z.

A nice introduction to rational Gauss rules is provided by Gautschi [9, Section
3.1.4]. More recent discussion of rational Gauss rules can be found in [6, 24]. Appli-
cations of rational Gauss quadrature to model reduction are described by Barkouki
et al. [3] and Gallivan et al. [8].
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2 Gauss quadrature rules

This section describes the application of the nonsymmetric Lanczos process to the
nonsymmetric matrix A € R"*”" to compute Gauss quadrature rules for the approx-
imation of the functional (1). Further details and extensions can be found in [2, 5,
7]. Let the vectors v, w € R” satisfy w’v = 1. Then, applicationof | <m K n
steps of the nonsymmetric Lanczos process to A with initial vectors v and w gives
the Lanczos decompositions

AVm = Vme +tm+l,mvm+le,,€,a

ATW, = Wy TI + ty my 1wyl %)
where the matrices V,,, = [vq, v2,...,v,] € R and W,,, = [w, wy, ..., w,] €
R™™ with v) := v and w; := w satisfy

WV = Ly, (6)
and the columns of V,,, and W,,, form bases for the Krylov subspaces
K™(A, v) = span{v, Av,..., Am_lv},
(7

K™ (AT, w) = span{w, ATw, ..., (AT)" lw).

Moreover, the vectors v, 41, Wy+1 € R satisfy V”{wmﬂ =0, anvmﬂ = 0, and
wrfl +1Ym+1 = 1, and the matrix 7, = W,Z AV, is nonsymmetric and tridiagonal.
Here and below, e¢; = [0,...,0,1,0,..., 017 denotes the jth axis vector and [,,, €
R™*™ stands for the identity matrix. We assume that m is chosen small enough so
that the decompositions (5) with the stated properties exist.

It follows from the recursion relations (5) that the jth columns of V,, and W, can
be expressed as

vi=pi-1(Av, wj=qgi1(ADw,  j=1,2,...,m, ®)

where p;_1 and g are polynomials of degree j — 1.
Introduce the bilinear form

(@, p) = (@AY (p(A)v) = w’ Sq(A) p(A)S™'v = / (@) p@)dw(z), (9)

where dw is the measure in (4). It follows from (6) that the families of polynomials
{po, p1, P2, ... } and {qo, q1, g2, . .. } defined by (8) are biorthogonal with respect
to the bilinear form (9). We have

lk=j

1 pi—1) = (gr—1(ADw)T ‘_szlerz{ ;

Grk—1,pj—1) = (qr—1(AD)w)" (pj—1(A)v) KV 0k £J,
where the last equality follows from (6). Using the biorthogonality, we can show that
G () = e f(Twer (10)

is a Gauss quadrature rule for the approximation of (1), i.e.,

Gn(f) =wl f(Av  Vf € Py,
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where P,,—1 denotes the set of all polynomials of degree at most 2m — 1; see, e.g.,
[2, 5, 7] for proofs.

Assume for the moment that the matrix 7}, has m distinct eigenvalues. Then, sub-
stituting the spectral factorization of T, into (10) shows that G, (f) is a quadrature
rule with m nodes, which may be complex-valued. The situation when 7;, does not
have a spectral factorization with m linearly independent eigenvectors is discussed
by Pozza et al. [22, 23].

The application of a Gauss rule (10) to approximate the functional (1) is appro-
priate when the function f can be approximated well by a polynomial of small to
moderate degree. However, if this is not the case, then Gauss rules (10) with a mod-
erate number of nodes, m, may yield poor approximations of the functional (1). It
sometimes is possible to circumvent this difficulty by using rational Gauss rules. The
following section discusses rational Gauss rules with one pole in the finite complex
plane for the approximation of (1).

3 Recursion relations for extended Krylov subspaces

When the function f in (1) has a singularity close to the support of the measure dw
in (4), rational Gauss quadrature rules with a pole at or close to the singularity may
yield approximations of (1) of higher accuracy than a Gauss rule (10) with the same
number of nodes. This is illustrated in Section 5.

We will assume that the singularity of f close to the support of the measure is
at the origin. Rational Gauss rules that are exact for as many positive and negative
powers of z as possible are commonly referred to as Gauss—Laurent quadrature rules.
Similarly as Gauss rules are related to the Krylov subspaces (7), Gauss—Laurent
quadrature rules are related to extended Krylov subspaces

K™ (A, v) = span{A™Tlv, ..., A7 v, v, Av, ..., A" 1o}, (11)
K™ (AT, w) = span{(AT) " w, ..., (AT 'w,w, ATw, ..., (AT)" 1w}

Generically, the subspaces K™ (A, v) and K& (AT, w) are of dimension m +£ — 1;
if £ = 1, then the spaces (11) simplify to the standard Krylov subspaces (7).

The computation of Gauss—Laurent quadrature rules for the approximation of (1)
in the case when the matrix A is symmetric is discussed in [4, 13, 16], and several
other applications of extended Krylov subspaces are described by Heyouni, Jbilou,
Knizhnerman, and Simoncini [12, 17]. Our contribution differs from these works
in that we use the pair of extended Krylov subspaces (11) and develop short recur-
sion relations for biorthogonal bases. A different approach to the derivation of such
recursion relations has recently been proposed by Van Buggenout et al. [28].

The remainder of this section discusses the generation of biorthogonal bases for
pairs of nested Krylov subspaces

KVHL(A, v) c K22H(A,v) ... c K™+ (A v) C R”,

(12)
KI’H_I(AT, w) C K2’2i+1(AT, w) c...C Km,mi-‘rl(AT’ lU) C Rn’
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where i is a positive integer. These recursions generalize those reported in [16] for
a symmetric matrix A. Schweitzer [27] recently described recursion relations for the
situation when i = 1. Each increase in the denominator degree requires the solution
of linear systems of equations with the matrices A and A7, while each increase in the
numerator degree demands the evaluation of matrix-vector products with the matrices
A or AT, which typically is cheaper than the solution of systems of equations. This
makes it possible to compute rational Gauss—Laurent rules corresponding to i > 1
faster than Gauss—Laurent rules with the same number of nodes corresponding to
i = 1. Illustrative examples are presented in Section 5. Computed examples for the
situation when A is symmetric can be found in [15, 16].

3.1 Recursion relations for extended Krylov subspaces

In this subsection, we will use biorthogonal sequences of Laurent polynomials to
generate bases for the extended Krylov subspaces (12) corresponding to the orderings

v, Av, ..., Alv, A", ATy, L A%y, A2y, ATy
w, ATw, ..., (AD)'w, (AT 'w, (AT w, ..., AT
w, (A7) 2w, (AT w, ...,

where the last powers of A and A7 are required to be positive.
Introduce the space of Laurent polynomials

Lyim = span{z ™™,z 1, 2" My 2 e R\(O).
There are two sequences of monic biorthogonal Laurent polynomials

G0, P1, - Pis 1, Dit1s s D2, P2, P21y s Pty s Pims
Yo, Ui, Vi, Yo, Vit ts o Vi Voo, Wi s oo Ve 1 - Wi,

of the forms

13)

Jj—1

d+ Y ot i=123...,

=—|(j—-1)/i

9;(2) = /A

d+ Y s j=-1-2,-3.
Z:j-i—l

and
k—1

F Y et k=123,

o t=—(k-1)/i]

1//k(Z) M 7l'k

4+ Z deezt,  k=-1,-2,-3,...,
£=k+1

with ¢o(z) = Wo(z) = 1. Thus,
(@), ¥i) =0, Jj#k,
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where the bilinear form is given by (9). We assume here that i and m are small enough
so that the Laurent polynomials (13) indeed form biorthogonal bases for the space
Lm,im-
The vectors
v, =¢;(A)v, j=—-m4+1,—-m+2,...,im, (14)
and
w; =y;(ADw, j=—m+1,—-m+2,...,im, (15)

form biorthogonal bases for the extended Krylov subspaces K™ "*1(A, v) and

K im+1 (AT w), respectively, with vg = v and wg = w. Hence, the determina-

tion of biorthogonal bases for these extended Krylov subspaces is equivalent to the

generation of biorthogonal bases for the space £,,_1 ;» of Laurent polynomials.
Define for the nonsingular matrix M € R"*" the bilinear form

[x, ylu = xTMy, x,y e R",

which is needed in the following proposition. The proposition specifies some condi-
tions that are required to compute the trailing and leading coefficients of {¢;,;, Vim}

and {¢—m, Y—m}.

Proposition 1 Let the matrix A be such that

(Wi, vim]A*I #0, [w_m, v_pnla #0.

Then, the trailing coefficients cim,—m+1, dim,—m+1 Of Gim, Vim, respectively, and the
leading coefficients c_y, im, d—m im Of O—m, Y—m, respectively, are nonvanishing.

Proof We first show that the coefficient ¢;,,—,+1 is nonzero. Consider the Laurent
polynomials z~'¢;,, and v;,,,. By the properties of the inner product (9), we obtain

(Zilqbim, Yim) = [Wim, vim]A—l # 0.
On the other hand,

@ Bimy Yim) = Cim—m412™ + @, Vim),

where ¢ € £,,—1,im—1. Hence,

@ Bims Yim) = Cim—m+1Z™, Yim).

It follows that c¢;;,;, —n+1 7 0. In the same manner, we can show that d;;;,, —pm41 7# 0.

‘We now apply this argument again to show that c_,, ;,; is a nonvanishing. Consider
the Laurent polynomials z¢_,, and ¥ _,,. Using the definition of the bilinear form
(9), we have

@By U—m) = [W_p, V_p]a #O.
Furthermore,
@Zp—m, V—p) = (cfm‘imzim-H + o, Y_m),
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where ¢ € £,,_1,im. Hence,

@D Vom) = Comim @™ W),

and therefore c_,, i # 0. Analogously, we can show that d_,, i, # 0. O]

Suppose that biorthogonal bases of Laurent polynomials

{90, D1, ... i d—1, Pig1s .. P2is P2, P2it 1, -+, Dim)
Vo, Vi, .. s i, U, Vi ts - W20, W2, Y2ig 1 - o5 Wim )

for L£,,_1,im are available. The next subsections describe how to extend these bases
to biorthogonal bases for the space L, ; m+1)-

3.2 Computation of ¢_,, and ¥_,

The evaluations of ¢_,, and ¥ _,, correspond to determining biorthogonal bases for
Lm,im+j for j = 0. Consider the Laurent polynomials

Cim,—m1D-m(2) — 2 im(@)s  dim—m1V-m (@) — 2 Yim (@) € Ln—1,im. (16)

By Proposition 1, the coefficients ¢y, —m+1 and dim,—m+1 of @i and Yy, respec-
tively, are nonvanishing. Therefore,

Cim-m19-m(@) = 27 Gim(@D) = = Y aimadi(2),
k=—m+1

dim,—mt1¥-m(@) =2 Vim@ == Y bimavr(2),
k=—m+1

with the Fourier coefficients given by

Clim Vo) @ Wi )
@e v (x: Yi)

Since ¢im, Yim L Lin—1,im—1 and

Aim,k = , k=—-m+1,...,im.

k@), Wk (@) € Lon—timo1,  k=-m+2,...,i(m—1),

it follows that the only nonvanishing Fourier coefficients are related to the previous
sets of i/ + 1 Laurent polynomials, {¢ 1, ..., ¢im} and (Y1, ..., Yim}. We
therefore obtain

Cim,—m1D-m(2) = 2 Gim(2) — Qim,imPim (2) — Qim,im—1Pim—1(2) — ...
—Qim,i(m—1)+1Pim—1)+1(2) — Aim,—m+1P—m+1(2),

dim,—m1¥-m (@) = 2 Yim (@) = bim,im¥im (@) — bim im—1¥im—1(2) — ...
—Dim,im—1)+1¥im-1+1@) — bim,—m+1¥—m+1(2).
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This yields the (i + 2)-term recursion formulas

-1
S_pmv_m = (A7 — é‘im,imln)vim — Cim,im—1Vim—1 — - -
—&im,im—1)+1Vign—1)+1 — Cim,—m+1V—m+1,

(17)
V—mW—_m = ((AT)_l - nim,imln)wim — Nim,im—1Wim—1 — - ..
“Nim,im—D)+1Wim—1)4+1 — Nim,—m+1W—m+1
with ¢ ¢ := w/ A7 v and ;== v] (A" Dw;.
3.3 Computation of ¢ +1 and ¥im 41
We determine biorthogonal bases for L, ;.4 for j = 1. Regard the Laurent

polynomials

Cfm,im¢im+1(z) — 2¢_m(2), dfm,imllfim+l(z) —2Y_n(z) € £m,im'

Analogously to the case j = 0, we express the Laurent polynomials (16) in terms of
their Fourier expansions with Fourier coefficients

_ GOV Ym0

ks C T T kv

(&x, Yi)
Note that ¢_p,, Y—m L Lyy—1.im and

2¢k(2), 2 (2) € Lin—1,im> k=-m+1,...,im— 1.
Therefore, ¢;;,+1 and ¥, 41 satisfy

C—m,im¢im+l(z) = 2¢_n(2) — a—m,—m¢—m (z) — a—m,im¢im (2),
d—m,imwim+l(z) = 2Y_m(2) — b—m,—mW—m(Z) - b—m,iml//im(z)-

This gives the three-term recursion formulas

8im+1vim+1 =(A- a—m,—mln)v—m —U—m,imVim, 18
Vim+1Wimt+1 = ( ,Bfm,fm W)W ﬂfm‘tmwzmv

with o g = w,{Avj and B 1= vZAij.
3.4 Computation of ¢ 2 and ¥y 12

We would like to determine biorthogonal bases for £, ;m+2. Consider the functions

¢im+2(z) - Z¢im+l(z)v 1/fier2(Z) - ZV/im+l(Z) € Em,im+l~

The Fourier expansion of ¢i;,;12(2) — 2¢im+1(z) has the coefficients

aim+1’k=w’ k=—m,...,im+l,
%k, Vi)
and the Fourier coefficients of ¥;,,,42(z) — z¥im+1(2) are given by
bim+l‘k=M, k=-m,...,im+ 1.
(T

@ Springer



Numerical Algorithms

In view of that ¢ipm+1, Yim+1 L Lm.im and
2Pk (2), 2¥k(2) € Ln,im, k=-m+1,...,im—1,
it follows that ¢;,,,12 and V¥, 4> satisfy

Gim+2(2) = 20im+1(2) — Gim+1,im+1Pim+1(2)
—im+1,-mP—m (2) — Qim+1,imPim (2),

Vim+2(2) = 2V¥im+1(2) = Dim+1,im-+1Vim+1(2)
_bim-i-l,—m‘/f—m (2) — bim-‘rl,imI/fim(Z),

which yields the four-term recursion formulas

Sim2Vim+2 = (A — Qima1,im+1 1) Vim+1
—Uim+1,—mV—m — %m+1,imVim,

(19)

(AT = Bimst,im+1In) Wim1
_IBim+1,fmwfm - ﬂim+l,imwim~

Yim+2Wim+2

3.5 Computation of ¢jyj and Yy forj =3,4,...,i

We describe how to determine the remaining basis elements for the subspace L, jm+
for 3 < j < i. They can be computed with the aid of the nonsymmetric Lanczos
recursions. We have

5im+jvim+j =(A _aim+j—l,im+j—lln)vim+j—1
—Uim+j—1,im+j—2Vim+j—2,
(20)
Vimt jWim+j = (AT = Bimtj—1im+j—1 L) Wimj—1
—Bim+j—1im+j—2Wim+j—2-

This completes the computation of the basis for L, ;(m+1)-
3.6 Algorithm and biorthogonal projection

The following algorithm summarizes the computation of the biorthogonal bases for
the extended Krylov subspaces K" +1Lim+1 (A p) and K" +1im+1(AT ). The algo-
rithm is based on the recurrence relations for the biorthogonal bases for L1 im
derived in the previous subsections. Further details on the correspondence of the
biorthogonal bases for K”+1im+1(A p) and K" +H1im+1(AT ‘w), and for L, _1.im
can be found after the algorithm.

It is known that the nonsymmetric Lanczos algorithm may suffer from breakdown.
This occurs when the inner products r”s or #1§ in Algorithm 1 vanish, so that a
coefficient §; or y; become zero. We will assume that m is small enough so that
breakdown does not occur.
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Algorithm 1 Computation of biorthogonal bases for K”t1.im+1(4A v) and
Km+1,im+1(AT 1U).

Input: integers m, i, v, w € R"*" such that (v, w) = 1, functions for evaluating matrix-vector
products and solve linear systems of equations with A, AT € R"*";
Output: biorthogonal bases {vi}i" | for K" T1m+1(A v) and {wi )i for K" +HHim+1(AT w);
v_;:=0;
w_;:=0;
vy = v;
wo :=w/(w v);
fork=0,1,...,m —1do
r.=Av_g;
s = ATw,k;
O fik = WP i= 1 — o ik Vik
Bkik = VL8 8 =5 — Py ikwix;
O_f —f ‘= wfkr; Fr=r —0_f —kV_f;
§ =8 — 0 kW,
Sike1 = T sV viqr = r/Sins:
YVike1 = TS /8ika1s Wiks1 = S/Vikt1:
ri= Avigi1;
s = ATwign;
ikt 1 ik = WHFLF =T = Qiky ik Vik
Bik+1,ik = V858 =8 — Bikg1,ik Wik
ik, —k = WP T =T — Qg1 —kV—k5
Biks1,—k = 018,85 =5 — Biks1,—kW—k;
ik ik 7= Wi (T3 T 3= T = Gk 1 ik 1 Vik 1
§ =8 — Wik 1,ik+1Wik+15
Sikaz = IrT sV vigin = r/Sik42;
YViks2 = rTS/8ikq2; Wiks2 = §/Vik+2;
for j=3,...,ido
ri=Avigyj-1;
s=ATwiyyj_1;
Qiktj—1,ik+j—2 = w,-Tkﬂ-,zr; r =T — Qiktj—1,ik+j—2Vik+j—2}
Bikj—1ik+j—2 7= Vg ;5838 =8 = ik j—Lik+j-2Wik+j -2
Qiktj—1,ik+j—1 = w,-Tkﬂ-,lr; T =T — Qi j—1,ik+j—1Vik+j—15
§1=8 = Qiktj—1,ik+j—1 Wikt j—1}
ik = IrTs|V2 vy j =1 /8ing s
Viktj =178 /Sikt 3 Wik j =S/ Vik+ )3
end
Fi= A vy
§ = AT wigy);
FyF o= F = Cith1)—kV—k5

Citkany—k = wl,
D808 =8 = migern),—ew—i;

Nitk+1),—k = V1,8

@ N

5
>

Cikr )ik 1) —j = wiT(kH),jf; Pi=F = k)it 1) Vit D— )5
it .Gt D)—j = Vg8 8§ 1= 8 = Mithet ). (et ) j Wi )3

end
AT ~ ~
Sty = P18V v gy = P /Sty
AT ~ N
Y=ot ) =T 8/8(kt1)s W—(kt1) 7= 8/V—k+1);

end
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The biorthogonal bases for the subspaces K" "+1(A, v) and K™ "+1(AT  w)
determine the matrices
Vini+n+1 = 0o, V1, ..., 05, V1, ..., Vg 1y oo v, Ui, V] € Rnxm(H'l)'H,
Vini+)+2 = [VinG+1)+1, Vims1] € RPOEFEDFD
Win+n+1 = [wo, Wi, ..., Wi, W_p, ..., Wi, ..., Wiy, W_p] € Rnxm(i+1)+l7
Winii+1)+2 = [Win(i41)+1, Wimg1] € RPOEEDHD,

. Equations (17), (18), (19.)’ and (20)'can be used to construct the matrix
Hu(i+1)+1 = [hjx] € RMEFDFDxmGHDHL quch that

AVini+1)+1 = Ving+n+2Hmi+1)+1,
7T
AT Wi en41 = WanGsn+2H b 141

The leading submatrix Hy, 1)+ € REHDEDXGEEDED of A0y 4 satisfies

Huni1 = Wiy AV 1. 1)

This matrix is analogous to the matrix 7, in the nonsymmetric Lanczos decompo-
sition (5). It is pentadiagonal and its non-zero entries can be computed column-wise
for the columns (i + 1)k + j,0 < j <i,0 <k < m — 1. We examine the columns
corresponding to different values of ;.

3.6.1 Thecasej =1

The columns of AV,,(i+1)+1 and ATWm(iH)_H in this case correspond to Av_; and
ATw_y, respectively. Equation (18) yields

Av_j = Qg ikVik + O, —kV—k + Oik+1Vik+1,
T
AT w_p = Bk ikWik + Bk, —kW—k + Vikt1Wik41-

Hence, the only nontrivial entries of the ((i + 1)k + 1)th column of Hy,y1)+1 are

BG40k, +Dk+1 = O—k ik,  RG+Dk+1,G+Dk+1 = O—k —k>
G D)k+2, i+ Dk+1 = Oik+1-

3.6.2 Thecasej =2

The columns of AV, (;4+1)+2 and AT Win(i+1)+2 in this case correspond to Av;x41 and
ATwj 41, respectively. Equation (19) gives
AVig41 = Qi 1,ikVik + Qik+1,—kV—k + Xik+1,ik+1Vik+1 + Sik+2Vik+2-
T
A" Wiky1 = Bik+1,ikWik + Bik+1,—kW—k + Bik+1,ik-+1Wik-+1 + Vik+2Wik+2-
It follows that the only nontrivial entries of the ((i + 1)k + 2)t column of Hpi+1)+1
are

RV, G+ 1Dk4+2 = Cikt1,iks R+ D41, G+ Dk4+2 = Qik+1,—k>
R D)k+2, G+ D42 = Qik+1,ik+1> AG+DE+3,G+Dk+2 = Sik+2,
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where

Qik+1,—k = (AVjjy1, W)
= Wikt+1, ATw_y)
= (Vik+1, B—k,ik Wik + B—k,—kW— + Vik+1Wik+1)
= Vik+1-

3.6.3 Thecasesj =3,4,...,i

The columns of AV y1)+; and ATWm(i+1)+ j in these cases correspond to
Avjryj—1 and ATwikJrj_], respectively. Equation (20) yields

AVifaj 1 = ks j—1,ik+j—2Vik+j—2 + ikt j—1,ik+j—1Vik+j—1 T Okt jViktj

T
A" Wikyj—1 = Biktj—1,ik+j—2Wik+j—2 + Biktj—1ik+j—1 Wikt j—1 + Vik+j Wik+j-

The only nontrivial entries of the ((i + 1)k + j )th columns, for j = 3,...,1, are

R Dk j—1,G+Dk+j = Vik+j—1> BG+0k+j,G+Dk+) = Lik+j—1ik+j—15
R+ 0)k+1,G+D)k+j = Sik+j-

3.6.4 Thecasej =0

The ((i + 1)k)th columns of AV,,+1)+1 and ATWm(l-_H)_H correspond to Av;; and
ATw;, respectively. The expressions for Av;; and AT w;; can be obtained by multi-
plying the first and second equations in (17) by A and A7, respectively, and making
the appropriate substitutions for Av_,,+1,..., Av_,, and ATw,mH, L ATw .
Then, we simplify the resulting expressions using the facts that 1) £ ;x 7 0 and ii)
w/ A, =0, r=—k+1,...,0,...,ik — 2. Hence,

Avik = hG4+1)k=1,G4+DkVik=1 + AGi+Dk, G+ Dk Vik +
Bt 1)1, G4+ Dk V—k F R+ D42, G+ Dk Vik+15
AT Wik = hggik—1,G+DkWik—1 + AG+Dk, (+ Dk Wik +
R+ Dk +1,G+DEW—k T G+ Dk+2, G+ DkVik+1

where

NG+ 1)k=1,G+1k = Yik

- oy = Okkk

(+Dk+1,G+Dk = T 50
_ =8 kBikt1
hi+Dk+2,G+Dk = Ck—k+
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The diagonal element is given by

1 — Cikik—18ik — 0k ixO—k
Cik,ik

h(i+1)k,(i+l)k =

Example 3.1 Letm = 3 and i = 3. Then the matrix H,3 is of the form

[0 1 0 0 0 0 0 0 0 0 0 0 0
8 a1 2 O 0 0 0 0 0 0 0 0 0
0 & o2 ¥3 0 0 O 0 0 0 0 0 0
0 O 63 hag a—13 as3 O 0 0 0 0 0 0
0 0 0 h5,4 O_1,—-1 V4 0 0 0 0 0 0 0
0 0 O hea 84 osa ys O 0 0 O 0 0
O 0 0 O 0 85 as55 Ve 0 0 0 0 0
0 0 0 0 0 O & hgg ane a6 O O 0
0O 0 0 O 0 0 0 hog aop—2 y7 O 0 0
0 0 0 0 0 0 0 /’llo,g 87 o477 V8 0 0
O 0O 0 O 0 0O O 0 0 08 agsg Y9 0
0 0 00 0 0 0 0 0 0 8 hip aso

000 00 0 0 0 0 0 0 0 hjspas—s |

Let Gpiiny1 € ROWEHDEDXmGEEDED denote the projection of A~! onto
KmrLimtl(A vy to KM HLimT1(AT ), that is

Gmii+1)+1 = Wiy 114~ Vi1 (22)

The matrix G, (i+1)+1 is a rank-one modification of H};(li )4 and banded. Its non-
vanishing entries form (i + 2) x (i 4+ 2) blocks along the diagonal such that any
two consecutive blocks overlap in one diagonal element; see [16] for a proof of this
structure in the case when A is symmetric. This proof carries over to the present

situation with obvious modifications.

4 Application to rational Gauss quadrature

This section discusses Gauss—Laurent quadrature rules for the approximation of func-
tionals (1) based on quantities computed by Algorithm 1. Rational Gauss rules were
first considered by Gonchar and Lopez Lagomasino [11], and have subsequently
received considerable attention; see, e.g., Gautschi [9, Section 3.1.4] as well as [6,
24] for discussions and references. An application of Gauss—Laurent rules to the
computation of upper and lower bounds for certain symmetric matrix functionals is
described in [15, 16]. We consider the case i > 1 in (12).
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Application of t = m(i 4+ 1) steps of Algorithm 1 to the matrix A with initial
vector v and w, such that v7 w = 1, yields the decompositions

AVy = VoHr + (hei1,c0—m + hryo tVimi1)er (23)
ATWe = VeGr 4+ v plgettr—i€c—iv -\ Grilio—1€r—1, Grt1cc]’ . (24)
ATWy = WeH] + (he o1 + he cp2wimi1)el (25)

AW, = WeGl + w_plgr—ir+1€c—iv ... §o—l,c1€r—1, gr.r+1€c]"

where the columns of Vi, W, € R»™+D form biorthogonal bases for
K™im+l(A v) and K™"+t1(AT w), respectively. The matrices Hy, G, €
RmU+Dxm+1) generally are nonsymmetric and the matrix H, is pentadiagonal. The
following example illustrates the structure of these matrices.

Example 4.1 The matrices H; and G in the decompositions (23) and (24) fori = 3,

w9,

m = 3, and T = 12 may have nonvanishing entries in the positions marked by “x:

* % * % k% k %k
* ok ok * % ok k%
* % % * % k kK
* % ok ok * % k ok %
* % % * % k k % k k % %
* % ok ok * % ok k ok
Hiz = * % ok ’ G = * % ok k ok
* ok ok ok * %k ok ok ok
* % %k k %k ok ok ok ok ok ok
* % ok ok * % ok ok
* % % R
k sk k okokok

‘We would like to establish that

wl f(Av=el f(H)er  Vf € Lomrimil, (26)

where A € R"*" is nonsingular and w, v € R” satisfy w’ v = 1. The right-hand
side expression is a Gauss—Laurent quadrature rule for the approximation of the left-
hand side. The quadrature rule on the right-hand side has t nodes, which are the
eigenvalues of H;. In order to show (26), we first need some auxiliary results on
the properties of the matrices H; and G;. Analogous results for different spaces
of Laurent polynomials have been shown by Schweitzer [27]. Related results for
symmetric matrices can be found in [16].

Lemmal Let A € R" " be positive or negative real, let w, v € R" satisfy wiv=1,
and let the matrices H; and G be defined by (21) and (22), respectively, with the
matrices Vi, Wy computed by Algorithm 1. Assume that T == m(i + 1) > 1. Then

w'p(A)v = e] p(Ho)er,  p € Poimar, 27)
wig(A™ v = el q(Grer, g ePay. (28)
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Proof We first show (27) and note that it suffices to prove (27) for monomials p(z) =
z/,j=0,1,...,2im + 1. For j = 1, we obtain from (23), using V;e; = v, that

Av = Aerl = VrH‘L’elv

where the second term vanishes because eTT e; = 0. For increasing values of j, we
obtain

Alv=AV,e; = VHle| + z.el HI ey, (29)
where

Zr = hr+1,rv—m + ht+2,rvim+l~

Due to the structure of H;, the second term on the right-hand side of (29) vanishes,
and for j < im we get

Alv=V.Hley, j=0,1,...,im. (30)
Similarly, from (25) we have
AT w=w,(HI') e, j=0,1,...,im. (31)
Combining (30) and (31) gives
wl AZm+ly — ((AT)im )T A(AIM )
= (We(H)™en)" A(V H"e1)
= el H?m T e,

The same conclusion can be drawn for lower powers of A. This shows (27). We can
prove (28) in the same manner. O

Next we will show a relation between positive powers of G, and negative powers
of H;.

Lemma 2 Let the assumptions of Lemma 1 be satisfied, and suppose that H; is
nonsingular. Then

el p(Goer =el p(H; Yer,  pePya. (32)

Proof Multiplying (24) by W A from the left, we get

I =H.G;+ WtTAv—m[gr+1,t—iet—i7 e 8r+l,r—1€7—1, gt+l,tet]T-
This implies that
H,Grel =e].
We obtain by induction that
HiiGiel = Htj_l(l — W-[TAv—m[gt-‘rl,r—iet—i, RN gr+1,rer]T)Gi_lel

for j =0,1,...,m— 1. Observing that only the first (2j — 2) 4 i entries of Gi_lel
may be nonzero, the above equation gives

H/Gley=H/7'GI7lej=e;, j=0,1,....,m—1.
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Multiplying by H; “ from the left shows that
Gley=H 7e;, j=0,1,....m—1. (33)
Similarly, we obtain
GTY ey =H) e, j=0.1.....m—1 (34)
Using (33) and (34) together gives
elTG%m_2e1 = elTHT_(zm_2)el.
A similar argument holds for lower powers of G;. This shows (32). [J O]

We are now in a position to show that (26) holds.

Theorem 1 The right-hand side of (26) is a Gauss—Laurent quadrature rule for the
expression on the left-hand side.

Proof Let f € Lon—22im+1. Then f(A) = p(A) + g(A™1) for some polynomials
p € Pripyy1 and g € Poy—2. We obtain from Lemma 1 that

w’ f(A)v =w' p(A)v+wq(A™ v = e p(Ho)e1 + ] 9(Go)e.
Applying Lemma 2 gives
w’ f(A)v =e] p(H)ei +e{ q(H ey = e] f(H)ey.
This shows (26). O

It is shown in [16] that for suitable integrands, appropriate pairs of Gauss—Laurent
and Gauss—Laurent—Radau quadrature rules can be applied to determine upper and
lower bounds for the functional (1) when the matrix A is symmetric. However, this
approach is not guaranteed to furnish upper and lower bounds when the matrix A
is nonsymmetric. We will show that in this situation, estimates of error bounds can
be determined by evaluating appropriate pairs of Gauss—Laurent and anti-Gauss—
Laurent quadrature rules.

Laurie [18] introduced the (standard) (4 1)-point anti-Gauss quadrature rule that
gives an error of the same magnitude and of opposite sign as the (standard) m-point
Gauss quadrature rule. The evaluation of the (standard) (m + 1)-point anti-Gauss
quadrature rule requires the computation of m + 1 steps of the (standard) Lanczos
process; see, e.g., [1, 2, 5] for details. We will show that anti-Gauss—Laurent rules
can be computed in an analogous fashion.

Let
7+1

Geif =) fON;P]
j=l1
be the (T 4 1)-point anti-Gauss—Laurent rule associated with the Gauss—Laurent rule
G, f for the measure dw in (4). This anti-Gauss—Laurent rule is determined by the
requirement that

C =GV f=—T =G f  Yf € Lomimiss (35)
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where G; f is characterized by
grf ZIf Vf € £2m—2,2im+1- (36)

Relation (35) shows that QN,H is the (r + 1)-point Gauss—Laurent rule for the
functional

Jf=QL-G)f.
Introduce, analogously to (14) and (15), the vectors
v = ¢;(A)v,
- < =-m+1,-m+2,...,im+1,
w; = y;j(ADw,

where ¢ ; and 1},- are two families of biorthogonal Laurent polynomials with respect
to the bilinear form

{p.q}:=T(pq).
ie., {¢i, w/} = 0foralli # j and {qu wl} = 1 for all j. The biorthogonal bases
Vel = [v]]’j’itlm+1 e R™X(+D and W,y = [w]]’j'ﬁtlm+l e R™+D for the

extended Krylov subspaces K" "+2(A, v) and K" +2(AT  w), respectively, with
v9 = v and wo = w satisfy the decompositions
y N 7 = T
AVigr = Veg Heqg + heg o1 Vimv2€; s
Ty 5 5T > - T
A" Wiy = WepiHy o + hegt ci2Wimt2€, s

where 7 = m(i 4 1) and the matrix H, | = [fzj,k] e RT+DX(+D i 3 nonsymmetric
and pentadiagonal. It follows from (35) and (36) that

{6, v} =19, v]=TL(y), Yoy € Lom—22im+1-
These equalities show that
hjx=hjx, jk=1,2,...,t

Therefore, <¢;j = ¢; and Ip/’ =vyjforj=-m+1,-m+2,...,im
It follows from the structure of H; and relations (23) and (25), in view of (14) and
(15), that the Laurent polynomials
$(2) = hey1chm(@) + hei2cPimi1(2),
Ye (z) = hr,r—&-lw—m (z) + hT,T+21/fim+l(Z)v
fori = 1 can be computed with four-term recursion formulas
$c(2) = (@ = he)Pim(@) = hro1 2 G-mi1(2) = he—2 e him—1(2),
Ye(z) = (2 — ht,r)‘/fim (z) — ht,rfl I/fferl (z) — ht,r72l/fim71 (2),
which can be written as
q;r (z) = (z— ﬁf,f)d;iin(z) - Ijlr—l,rd;—m+1 (2) — ﬁr—2,r¢3im—l(z)v
Ye(2) = (z— hr,r)wim (z) — hf,r—lw—m—i-l(z) - hf,r—ﬂﬁim—l(z)-
Fori > 1, ér and &T can be determined with three-term recursion formulas
$c(2) = (@ = he)pim(2) = heo1 cPim—1(2),
Y (z) = (2 — hr,r)‘ﬁim(z) - hr,rflwimfl(z),
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which can be expressed as

¢ (2) = (z — {z,,m?im(z) - fif_l,f&m_uz),
Ue(2) = (2= he)Vim(@) = her—1¥im—1(2).

For all i > 1, we can determine Laurent polynomials qvﬁf+ 1 and &H 1 € Lm—1,im+2
that are biorthogonal to £,,—1 i;m+1 With three-term recursion formulas

br1(2) = (2 — @) (2) — Prim(2),
Ves1(2) = (2 — Ve (2) — e ¥im (2),

where
8: 7 = {be, Yo} = 2L(Pe Vo) — Ge(Pe Vo) = 2L (e V) = 2[r, Vel = 28 r.

We may choose 8, = \/EST and y; = \/Ey,. It follows that t@e nonsymmetric
pentadiagonal matrix associated with the anti-Gauss—Laurent rule G; 4 is given by

5 H: 2y 1 1
H — T T | e REFDx(T+ )’
T+1 |:\/§5r o ]

where the last diagonal coefficient can be determined from o = (zd;f, 1/;t). Fori > 1,
this coefficient can be evaluated by carrying out one additional “standard step” of
Algorithm 1 that uses the three-term recurrence relation, i.e., we evaluate

r = Aviy — ht,rvim — YimVim—1;
. AT .
s = A wi, — hr,rwim — SimWim—1;

and then compute
Simr1 = 1T SI" Yimar =178 Simats Vima1 1= T/ Simt1s Wimt1 =S/ Vim+1-
Finally,

hetlorl = = w,‘Tm+1Avim+1§

Analogously to formula (26), the anti-Gauss—Laurent quadrature rule can be
evaluated according to

Ges1 f = €] f(Her1)er Vf e Lom2ims3

We are now in a position to provide sufficient conditions for G; f and Q~r+1 fto
bracket Z f. Assume that we can carry out n steps of Algorithm 1 without breakdown.
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e
j=
of Laurent polynomials {¢;, ¥ j}';;é defined by (14) and (15) that satisfy (9).

This yields biorthogonal bases {v j};';(l) and {w;} (1) of R" and associated sequences

Theorem 2 Let A(A) denote the spectrum of the matrix A. Consider the expansion
of the integrand

n—1
f@) =) njgi), ze€rA), (37)
j=0

in terms of the Laurent polynomials ¢, and assume that the coefficients (v j in (37)
are such that

2im+3 n—1 n—1
3 wiGey| =max 3| > wiGegilL| Y wiGengilp. (38)
j=2im+2 j=2im+4 j=2im+4

Then, the quadrature rules G, f and Q~r+1 f bracket Zf.

Proof Since
Zf = noZeo, Ip; =0 Vj>0
we have, in view of (35) and (36), that

n—1 2im+1 n—1
G f = Zﬂjgt‘Pj = Z Mjgrd’j + Z Mjgt¢j
j=0 j=0 Jj=2im+2
n—1

= Zf + w2im+29cP2im+2 + m2im+39c P2im+3 + Z Mjgr‘f’j- (39
j=2im-+4

n—1 2im—+3 n—1
Ger1 f = ZM/’QI+1¢,/’ = Z wiRL —Ge; + Z wiGri1;
J=0 j=0 j=2im—+4
n—1

= 1f — waim+29cP—2im+3Gr P2im+3 + Z 1iGer1j.  (40)
j=2im+4

combining (39) and (40) shows (38). L]

Theorem 2 shows that if the coefficients u; decay sufficiently rapidly with
increasing j, then rational Gauss and anti-Gauss rules provide quadrature errors that
are of opposite sign and of roughly the same magnitude. The following example
illustrates the structure of the matrix I:ITH for the casesi =1, 2, 3.
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Example 4.2. The matrix H;,; may have nonvanishing entries in the positions
marked by “x” below. For instance, we have

* ok
* % k %
% % ok
I:I7= * % k k % fori=1,m=3,7=6,
* ok %
* ok %
o _
* ok %
* ok % %
I-I7= * % % for i =2,m=2,7=6,
* ok %
* % %
and
oy _
* ok %
* ok %
* ok ok %
* % %
* ok ok %
1:1132 * % % for i =3, m=3,7t=12.
* ok ok %
* ok %
* ok ok %
* ok %
* ok %
* ok

5 Computed examples

In this section, we illustrate the performance of the Gauss—Laurent and associated
anti-Gauss—Laurent rules when applied to several functionals (1). All computa-
tions were carried out using MATLAB R2017b on a 64-bit MacBook Pro personal
computer with about 15 significant decimal digits.

The purpose of these examples is to compare the performance of the standard
Gauss and Gauss—Laurent rules for the case i = 3. The last example illustrates the
performance of these quadrature rules for i = 1,2, and 3. Also, we show that pairs
of Gauss—Laurent and anti-Gauss—Laurent quadrature rules provide upper and lower
bounds for certain functionals (1). We compare the approximations obtained by the
quadrature rules and the values computed by explicitly evaluating the functional (1).
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Fig. 1 Example 5.1: Spectrum of matrix A in C. The eigenvalues are marked by “0.” The horizontal axis
shows the real parts of the eigenvalues, the vertical axis the imaginary parts

We choose T = 0 mod 4 and T = 0 mod 3 to ensure that the matrix H; defined
by (23) is of the appropriate dimensions for i = 1, 2, 3. The table column headings
ele(T)el, ele(H)el, and ele(H)el refer to standard Gauss, Gauss—Laurent, and
anti-Gauss—Laurent quadrature rules, respectively.

Example 5.1. We would like to determine approximations of the functional

F(A) == w! exp(—A)A™ /v,

where A € R?90%200 jg a real nonsymmetric Toeplitz matrix with first row and
column [1,1/2,...,1/200] and [1,1,..., 117, respectively. The vectors v and w
have normally distributed random entries with zero mean and are scaled so that
w’ v = 1. Figure 1 shows the eigenvalues of A. The eigenvalue of largest magnitude
is real-valued and about 45.8; the eigenvalues with the largest imaginary parts (in
magnitude) are approximately 17.8 4 16.8i, where i = +/—1 is the imaginary unit.

The eigenvalue of smallest magnitude is real and about 0.195.

Table 1 Example 5.1: Errors for computed approximations of F(A) = w” exp(—A)A~1/2v with A a
nonsymmetric Toeplitz matrix

T el f(Dey el f(Hi=3)e el f(Hiz3)e
12 1.08 - 1071 9.69-10~* —8.69-10*
16 3.15-1072 2.69-1073 —2.26-107
20 8.80- 1073 1.28-107° —1.48-107°
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Table2 Example 5.2: Errors for computed approximations of F(A) = w’ In(A)v with A a nonsymmetric
Toeplitz matrix

T el f(Te el f(Hi=3)e el f(Hi=3)e
8 -1.10-1073 —1.78-107° 1.75- 107
12 -9.71-107° —4.61-10"8 436-1078
16 —7.58-107° —1.19-10710 1.14- 10710

We evaluate (1) as w’ exp(—A)A’l/zv, where the vector A~1/2v is calculated by
first computing the matrix square root and then solving a linear system of equations.
The exact value of F(A) is approximately 0.9990. We report this value to allow a
reader to estimate the relative approximation error from Table 1.

The Gauss—Laurent rule is evaluated as

el exp(—H;)G' ey,

where G/ 2e1 is the first column of the inverse of the square root of the matrix H.
It is determined by first computing the matrix square root and then solving a linear
system of equations. The exponential is computed with the MATLAB function expm.
The standard Gauss rule

elT exp(—T,)Tr_l/zel
is determined by first computing the matrix square root of 7; and then solving a
. . -1/2
linear system of equations for the vector 77 el.

Columns 2 and 3 of Table 1 display the errors in approximations determined by
standard Gauss and Gauss—Laurent rules for i = 3. We observe that the Gauss—
Laurent rules yield higher accuracy than the standard Gauss rules when using the
same number, 7, of quadrature nodes. Columns 3 and 4 of Table 1 show the errors in
approximations obtained by Gauss—Laurent and associated anti-Gauss—Laurent rules
to have opposite sign and to be of about the same magnitude for each value of t.
Therefore, the average rules

1 r T r(F7
S(e1 f(Hiz)er + ey f(Hi=3)e1) (41)

for the different 7-values determine more accurate approximations of F'(A) than the
corresponding Gauss—Laurent rules. In applications, we use pairs of Gauss—Laurent
and associated anti-Gauss—Laurent rules to determine estimates of upper and lower
bounds for the functional F'(A), and use the averages rule as an approximation of
F(A).

Table3 Example 5.3: Errors for computed approximations of F(A) = wT A~!/2y with A a nonsymmetric
tridiagonal Toeplitz matrix

T el f(Te el f(Hi=3)e el f(Hi=3)e
8 1221077 3.17- 10710 —3.13-10710
12 9.41.-10~1 12210715 -1.99.10"15
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Table 4 Example 5.4: Errors for computed approximations of F(A) = w’ (A> + A=) with A a
nonsymmetric tridiagonal Toeplitz matrix

T el f(Te el f(Hi—3)e el f(Hi=3)e
8 1.60- 1073 5.77-1077 —5.77-1077
12 8.75-1078 1.08 - 107! —1.09-10~H1

Example 5.2. This example determines approximations of the functional
F(A) := w’ In(A)v,

with A the same matrix as in Example 5.1. We let v = [1, 1, ..., 17 € R290 and
w = [1/200,1/200,...,1/200]7 € R?% 5o that w’v = 1. The exact value of
F(A) is approximately 2.924 - 10~*. Columns 2 and 3 of Table 2 show the difference
between the exact value and the approximations determined by the standard Gauss
and Gauss—Laurent rules for i = 3 and the same number of nodes, 7. It can be seen
that the quadrature error for the Gauss—Laurent rules is the smallest for all values
of 7. Column 4 of Table 2 displays the errors achieved with the anti-Gauss—Laurent
rules. We observe that the errors of these quadrature rules are of opposite sign and
of about the same magnitude as the error in the corresponding Gauss—Laurent rules.
Similarly as above, this indicates that the average rules (41) are more accurate than
the corresponding Gauss—Laurent and anti-Gauss—Laurent rules.
Example 5.3. In this example, we approximate the value

F(A) :=wl A7y,

where A e R!000x1000 g the nonsymmetric tridiagonal Toeplitz matrix [—1, 2, 1].
The vectors v and w have normally distributed random entries with zero mean; they
are scaled so that w’ v = 1. The eigenvalues of A all have real part 2 and their
imaginary parts are zeros of a Chebyshev polynomial of the first kind of degree 1000
for the interval [—2, 2]. The exact value F'(A) is approximately 0.6201. Columns
2 and 3 of Table 3 display the errors in approximations obtained by the standard
Gauss and Gauss—Laurent rules for i = 3. We find that Gauss—Laurent rules give
significantly smaller approximations errors than the standard Gauss rules. Columns

Table 5 Example 5.5: Errors for computed approximations of F(A) = w” In(A)v fori = 1,2, 3 when A
is a discretization of a differential operator

T el f(T)e el f(Hi=1)e el f(Hi=)e el f(Hi=3)e
6 —3.40-1073 - —4.47-107* -
8 —1.10-1073 —1.84-107 - —9.11-107
12 —1.56-10~* —9.59. 1078 —3.40- 1077 —1.08-107°
15 —4.16-107° - —8.66-107° -
16 —2.72.107° —3.50- 10710 - —1.33.1078
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Table 6 Example 5.5: Errors for computed approximations of F(A) = w” In(A)v fori = 1, when A is a
discretization of a differential operator

T el f(Hi=nei el f(Hi=p)e
8 —1.84-107° 1.82-1073
12 —9.59.1078 9.55.1078
16 —3.50- 10710 3.49.10710

4 of Table 3 shows the Gauss—Laurent and anti-Gauss—Laurent rules to bracket the
exact value. This implies that the average (41) will be quite accurate.
Example 5.4. In this example, we determine approximations of the functional

F(A) := wl(A> + A 5w,

where A € R1000x1000 i the same matrix as in Example 5.3, v =1[1,1, ..., 117, and
w=[1,0,...,0]7. Thus, w” v = 1. The value of F(A) is approximately 7.340-10".
Columns 2 and 3 of Table 4 display the errors in approximations determine by the
standard Gauss and Gauss—Laurent rules for i = 3. Column 4 of Table 4 shows
the approximations determine anti-Gauss-Laurent rules and illustrates that Gauss—
Laurent and anti-Gauss—Laurent rules bracket the exact value.

Example 5.5. In our last example, we approximate the value

F(A) := w! In(A)v,

where v = [1,1,..., 117, w = [1,0,...,0]7, and the matrix A is obtained by
discretizing the differential operator —A + pg % + ,02%. Here, A denotes the two-
dimensional Laplacian, which is discretized on the unit square by the standard 5-point
stencil on a uniform mesh with grid size h = Aﬁ. The discretization error is O (h?)
as h N\, 0. The partial first derivatives are discretized by the standard symmetric
2-point stencil with discretization error O (h?). Dirichlet boundary conditions are
imposed. The coefficients p; are defined below. This gives a nonsymmetric matrix
A € R1600x1600 that can be represented as follows

1
A = —ﬁ([40 ® Cl + C2 ® 140)7

Table 7 Example 5.5: Errors for computed approximations of F(A) = w” In(A)v fori = 2, when A is a
discretization of a differential operator

T el f(Hi=)e el f(Hizp)e
6 —4.47-107% 442.1074
12 —3.40-1077 3.39-1077
15 —8.66- 1077 8.67- 1077
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Table 8 Example 5.5: Errors for computed approximations of F(A) = w” In(A)v fori = 3, when A is a

discretization of a differential operator

T el f(Hiz3)e el f(Hi=3)e
8 -9.11-107° 9.06 - 1072
12 —1.08-10°° 1.08 - 1076
16 —1.33.10°8 1.34-1078
where 149 € R*0*40 i the identity matrix and

[ 2 1-pkt 0 0

l+p% -2 1-p2 0
C; = 0 ) . 0 c RA0x40.
: I+ph -2 1-p}
| o 0 I+ps -2 |

see, e.g., [21, 27]. The convection coefficients p; are chosen such that the Péclet
numbers Pe; = % are equal to Pe; = 0.2 and Pey = 0.1, respectively. All eigen-
values of A are real and positive; the extreme eigenvalues are A; = 1.04 - 10% and
Moo = 1.33 - 10%.

Table 5 displays the difference between the exact value, F(A) ~ 8.019, and some
approximations determined by the standard Gauss and Gauss—Laurent quadrature
rules for i = 1, 2, 3. Since T = m(i + 1), only certain combinations of i and m give
quadrature rules with 7 nodes. The entrries “—” mark combinations of m and i that do
not correspond to quadrature rules with T nodes. We note that Gauss—Laurent rules
give the most accurate approximations of F(A). Furthermore, the results achieved
with Gauss—Laurent rules are fairly insensitive to the choice of i > 1. Therefore, it
might be beneficial to use a value of i larger than one and in this manner reduce the
computational cost. The Tables 6, 7, and 8 show the Gauss—Laurent and associated
anti-Gauss—Laurent quadrature rules to give errors of about the same magnitude and
of opposite sign.

6 Conclusion

It is known that Gauss—Laurent quadrature rules associated with a real nonnegative
measure with support on the real axis are determined by symmetric pentadiagonal
matrices. This paper extends the methods described in [16] to complex-valued mea-
sures with support in the complex plane. We investigate the structure of the matrices
for Gauss—Laurent and associated anti-Gauss—Laurent quadrature rules and discuss
properties of these quadrature rules. Computed examples show that Gauss—Laurent
rules may give higher accuracy than standard Gauss rules with the same number of
nodes. Moreover, they illustrate that pairs of Gauss—Laurent and anti-Gauss—Laurent
rules provide upper and lower bounds for certain matrix functionals.

@ Springer



Numerical Algorithms

Acknowledgements The authors would like to thank a referee for carefully reading the manuscript and
for comments that lead an improved presentation. This work was begun while L.R. visited the University
of Banja Luka. He would like to thank M.P. for making this visit possible and enjoyable.

Funding H.A. was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah, under grant no. G-111-665-1441. L.R. was supported by NSF grant DMS-1729509.

References

10.

11.

12.

13.

16.

17.

18.
19.

20.

21.

22.

. Alqahtani, H., Reichel, L.: Simplified anti-Gauss quadrature rules with applications in linear algebra.

Numer. Algorithms 77, 577-602 (2018)

. Algahtani, H., Reichel, L.: Generalized block anti-Gauss quadrature rules. Numer. Math. 143, 605—

648 (2019)

. Barkouki, H., Bentbib, A .H., Jbilou, K.: A matrix rational Lanczos method for model reduction in

large-scale first- and second-order dynamical systems. Numer. Linear Algebra Appl. 24, Art.e2077
(2017)

. Bentbib, A.H., El Ghomari, M., Jagels, C., Jbilou, K., Reichel, L.: The extended global Lanczos

method for matrix function approximation. Electron. Trans. Numer. Anal. 50, 144-163 (2018)

. Calvetti, D., Reichel, L., Sgallari, F.: Application of anti-Gauss quadrature rules in linear alge-

bra. In: Gautschi, W., Golub, G.H., Opfer, G. (eds.) Applications and Computation of Orthogonal
Polynomials, pp. 41-56. Birkhduser, Basel (1999)

. Deckers, K., Bultheel, A.: The existence and construction of rational Gauss-type quadrature rules.

Appl. Math. Comput. 218, 10299-10320 (2012)

. Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Block Gauss and anti-Gauss quadrature with

application to networks. SIAM J. Matrix Anal. Appl. 34, 1655-1684 (2013)

. Gallivan, K., Grimme, E., Van Dooren, P.: A rational Lanczos algorithm for model reduction. Numer.

Algorithms 12, 33-66 (1996)

. Gautschi, W., Polynomials, O.rthogonal.: Computation and approximation, Oxford University Press

Oxford (2004)

Golub, G.H., Meurant, G.: Matrices, moments and quadrature with applications. Princeton University
Press, Princeton (2010)

Gonchar, A.A., Lépez Lagomasino, G.: On Markov’s theorem for multipoint Padé approximants.
Math. USSR Sb. 34, 449-459 (1978)

Heyouni, M., Jbilou, K.: An extended block Arnoldi algorithm for large-scale solutions of the
continuous-time algebraic Riccati equation. Electron. Trans. Numer. Anal. 33, 53-62 (2009)

Jagels, C., Jbilou, K., Reichel, L.: The extended global Lanczos method, Gauss—Radau quadrature,
and matrix function approximation. J. Comput. Appl. Math. 381, Art.113027 (2021)

. Jagels, C., Mach, T., Reichel, L., Vandebril, R.: Convergence rates for inverse-free rational approxi-

mation of matrix functions. Linear Algebra Appl. 510, 291-310 (2016)

. Jagels, C., Reichel, L.: Recursion relations for the extended Krylov subspace method. Linear Algebra

Appl. 434, 1716-1732 (2011)

Jagels, C., Reichel, L.: The structure of matrices in rational Gauss quadrature. Math. Comp. 82, 2035—
2060 (2013)

Knizhnerman, L., Simoncini, V.: A new investigation of the extended Krylov subspace method for
matrix function evaluations. Numer. Linear Algebra Appl. 17, 615-638 (2010)

Laurie, D.P.: Anti-Gaussian quadrature formulas. Math. Comp. 65, 739-747 (1996)

Mach, T., Prani¢, M.S., Vandebril, R.: Computing approximate extended Krylov subspaces without
explicit inversion. Electron. Trans. Numer. Anal. 40, 414435 (2013)

Mach, T., Prani¢, M.S., Vandebril, R.: Computing approximate (block) rational Krylov subspaces
without explicit inversion with extensions to symmetric matrices. Electron. Trans. Numer. Anal. 43,
100-124 (2014)

Moret, I., Novati, P.: RD-rational approximations of the matrix exponential. BIT Numer. Math. 44,
595-615 (2004)

Pozza, S., Prani¢, M.S., Strakos, Z.: Gauss quadrature for quasi-definite linear functionals. IMA J.
Numer. Anal. 37, 1468-1495 (2017)

@ Springer



Numerical Algorithms

23.

24.
25.

26.

217.

28.

Pozza, S., Prani¢, M.S., Strakos, Z.: The Lanczos algorithm and computing complex Gauss quadra-
ture. Electron. Trans. Numer. Anal. 50, 1-18 (2018)

Prani¢, M.S., Reichel, L.: Rational Gauss quadrature. SIAM J. Numer. Anal. 52, 832-851 (2014)
Prani¢, M.S., Reichel, L.: Generalized anti-Gauss quadrature rules. J. Comput. Appl. Math. 284, 235-
243 (2015)

Pranié, M., Reichel, L., Rodriguez, G., Wang, Z., Yu, X.: A rational Arnoldi process with applications.
Numer. Linear Algebra Appl. 23, 1007-1022 (2016)

Schweitzer, M.: A two-sided short-recurrence extended Krylov subspace method for nonsymmetric
matrices and its relation to rational moment matching. Numer. Algorithms 76, 1-31 (2016)

Van Buggenhout, N., Van Barel, M., Vandebril, R.: Biorthogonal rational Krylov subspace methods.
Electron. Trans. Numer. Anal. 51, 451-468 (2019)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer



	Gauss–Laurent-type quadrature rules
	Abstract
	Introduction
	Gauss quadrature rules
	Recursion relations for extended Krylov subspaces
	Recursion relations for extended Krylov subspaces
	Computation of -m and -m
	Computation of im+1 and im+1
	Computation of im+2 and im+2
	Computation of im+j and im+j for j=3,4,…,i
	Algorithm and biorthogonal projection
	The case j=1
	The case j=2
	The cases j=3,4,…,i
	The case j=0


	Application to rational Gauss quadrature
	Computed examples
	Conclusion
	References


