
https://doi.org/10.1007/s11075-020-01050-0

ORIGINAL PAPER

Centrality measures for node-weighted networks via
line graphs and the matrix exponential

Omar De la Cruz Cabrera1 ·MonaMatar1 · Lothar Reichel1

Received: 26 July 2020 / Accepted: 25 November 2020 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
This paper is concerned with the identification of important nodes in node-weighted
graphs by applying matrix functions, in particular the matrix exponential. Many tools
that use an adjacency matrix for a graph have been developed to study the importance
of the nodes in unweighted or edge-weighted networks. However, adjacency matri-
ces for node-weighted graphs have not received much attention. The present paper
proposes using a line graph associated with a node-weighted graph to construct an
edge-weighted graph that can be analyzed with available methods. Both undirected
and directed graphs with positive node weights are considered. We show that when
the weight of a node increases, the importance of this node in the graph increases as
well, provided that the adjacency matrix is suitably scaled. Applications to real-life
problems are presented.

Keywords Network analysis · Node weight · Node importance · Line graph ·
Matrix exponential

1 Introduction

A network is a set of entities, commonly referred to as vertices or nodes, that are
connected by edges. Mathematically, networks can be represented by graphs. The
mathematical and computational analysis of a graph can give valuable information

� Lothar Reichel
reichel@math.kent.edu

Omar De la Cruz Cabrera
odelacru@kent.edu

Mona Matar
mmatar2@kent.edu

1 Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

Published online: 7 January 2021

Numerical Algorithms (2021) 88:583–614

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-020-01050-0&domain=pdf
mailto: reichel@math.kent.edu
mailto: odelacru@kent.edu
mailto: mmatar2@kent.edu

about the network it models, even though most of the particular attributes of the indi-
vidual vertices and edges are ignored. A few examples of the many phenomena that
can be modeled by graphs are interactions among people or animals in a group (social
networks), gene regulatory interactions, telecommunication, power and transporta-
tion infrastructure, and scientific collaboration; see, e.g., [1–8] for these and other
applications.

A major concern in network analysis is determining which nodes are “important”
in some sense. The importance of a node depends not only on how many neighboring
nodes it has, but also on the importance of the neighboring nodes. For instance, con-
sider a graph in which the nodes represent scientific papers and the edges represent
citations. A paper is important if it is cited by many important papers; at the same
time, an important paper conveys importance to papers that it cites and, to a lesser
extent, papers that cite an important paper also may be of interest. Network analy-
sis can help determine which nodes (papers) contribute the most to broadcasting or
receiving information through the network.

A popular approach to determine the importance of a node in a graph is to use
the exponential of the adjacency matrix A for the graph and compute the subgraph
centrality of the nodes. The subgraph centrality of node i is defined as the ith diagonal
entry of exp(A). Node i is considered important if [exp(A)]ii ≥ [exp(A)]jj for all j ;
see Estrada and Hatano [9] for a discussion on this importance measure for undirected
graphs. The related importance measures [exp(A)1]i and [exp(AT)1]i for node i

as a broadcaster or receiver of information, respectively, for directed graphs, where
1 denotes the vector with all entries 1, are discussed, e.g., in [10, 11]. Here, the
importance of node i as a broadcaster increases with the relative size of [exp(A)1]i .
Thus, node i is a most important broadcaster if

[exp(A)1]i ≥ [exp(A)1]j ∀j . (1.1)

Analogously, node i is a most important receiver of information if

[exp(AT)1]i ≥ [exp(AT)1]j ∀j . (1.2)

The subgraph centrality as well as the importance measures (1.1) and (1.2) take into
account both the number of nodes that node i is connected to and the importance
of these nodes. Further discussions on these measures and additional references are
provided in Sections 2 and 3. For additional discussions on importance measures, we
refer to [3, 5, 12–14]. These notions of importance are not equivalent, in general, and
tend to capture different aspects of the idea of importance.

Measures of node importance are sometimes referred to as centrality measures.
In this manuscript, since we consider directed networks, we prefer to use the term
importance. For example, in a directed network with a universal source and a uni-
versal sink, those two nodes would fit the informal notion of “important,” but not so
much the informal notion of “central.”

It is often meaningful to assign weights to edges or nodes. For example, if each
node represents a city and each edge represents a road, an edge weight may represent
the capacity of transportation of the road. Edge-weighted networks have received

584 Numerical Algorithms (2021) 88:583–614

considerable attention in the literature; see, e.g., [15–19]. It can also be useful to
assign weights to nodes. The interpretation of node weights depends on the con-
text of the model. For instance, in a network that models a part of the brain, where
each node corresponds to a region of the brain, node weights may be chosen pro-
portional to the size of the region of interest [20]. In networks, in which each node
corresponds to a city and the edges are roads between cities, a node weight may be
chosen proportional to the number of restaurants in a city [21]. Node weights also
maymeasure precipitation in a geographical region in a climate network [22].We will
in Section 7.1 analyze genotype mutations with the aid of node-weighted networks.
However, despite many applications of node-weighted networks, the construction of
suitable adjacency matrices for their graphs has, to the best of our knowledge, not
received much attention in the literature.

This paper is concerned with the identification of the most important nodes of
a node-weighted network by using matrix functions, in particular the matrix expo-
nential. A main challenge is the construction of a suitable adjacency matrix. Our
approach is to transform a given node-weighted graph to an edge-weighted graph
by applying a line graph associated with the given graph. We describe several ways
to construct line graphs, and apply the exponential to adjacency matrices associated
with the line graph to determine the most important nodes in the line graph by using
analogues of the formulas (1.1) and (1.2) with the adjacency matrix A for the graph
replaced by an adjacency matrix E for the line graph. The entries of the analogues of
the vectors (1.1) or (1.2) so obtained provide edge weights that take into account not
only to how many edges an edge is connected, but also to their importance. These
edge weights define an edge-weighted adjacency matrix ˜A for the original graph. The
importance of the nodes of the original graph is computed by formulas analogous
to (1.1) and (1.2) with the A replaced by ˜A. This approach allows us to incorpo-
rate node weights for the original graphs. Both undirected and directed graphs are
considered. We also discuss how increasing an edge weight affects the importance
of the node.

The organization of this paper is as follows. Section 2 introduces graphs and
associated adjacency matrices. The use of the matrix exponential function for
edge-weighted graphs is reviewed in Section 3. We discuss ways to transform a node-
weighted graph into an edge-weighted graph in Section 4, and Section 5 shows results
on how node importance (according to our definitions) changes when the weight of
an edge is modified. Section 6 is concerned with the identification of the most impor-
tant node(s) and edge(s) of a node-weighted graph, and Section 7 presents real-life
applications of our methods. Computed illustrations are provided in most sections. A
discussion on numerical approaches for large networks is provided in Section 8, and
concluding remarks can be found in Section 9.

2 Graphs

This section reviews definitions and well-known properties of graphs and the
associated adjacency matrices. For more thorough discussions, see, e.g., [3, 5].

585Numerical Algorithms (2021) 88:583–614

2.1 Notation

Mathematically, a network is represented by a graph G = (V, E), consisting of a set
V = {vi}ni=1 of vertices or nodes, and a set E = {ek}mk=1 of edges, which are the links
between the nodes. A graph is said to be directed if at least one of the edges has a
direction; otherwise, the graph is undirected. For directed graphs, each element of E
corresponds to an ordered pair ek = (vi, vj) of elements of V , and we say that ek

incides on vj , exsurges from vi , and connects vi and vj . In the undirected case, each
element of E corresponds to an unordered pair ek = {vi, vj } of elements of V , and
we say that ek incides on both vi and vj , and connects vi and vj (and also vj and
vi). In some cases, we will require that “self-loops,” the case when ek connects vi

to itself, do not exist. We assume that there are no multiple edges between any pair
of vertices. The underlying undirected graph of a directed graph has the same set of
vertices, with all directed edges replaced by undirected ones (eliminating duplicate
edges, if any).

Whether directed or not, a network is said to be edge-weighted (or node-weighted),
if there is a number assigned to each edge (or node, respectively). We refer to these
numbers as “weights.” Graphs may be both edge-weighted and node-weighted, but
this case is beyond the scope of the present paper. The interpretation of the weights
depends on the application. In general, node weights correspond to the “size” of a
node, while edge weights indicate a capacity or speed of transportation, or the recip-
rocal of a transfer or communication cost. In this paper, we only consider positive
weights, although negative weights may be meaningful in some contexts.

For undirected unweighted graphs, the degree of a node is defined as the number
of edges inciding on it; for directed unweighted graphs, we identify the indegree of a
node as the number edges inciding on at it, and the outdegree of a node as the number
of edges exsurging from it.

This paper is concerned with node-weighted graphs, for which each node is
assigned a positive weight. All edges have weight 1. When constructing an associated
edge-weighted graph, its nodes will have weight 1, and its edges will have weights
as described in Section 4.

2.2 Matrix representation of graphs

Algebraic graph theory is a powerful approach for the analysis of graphs. It is based
on linear algebra, and uses matrices to represent graphs; see, e.g., [3, 5, 23, 24] for
more details. This section reviews a few concepts needed for this paper.

2.2.1 Adjacency and incidence matrices of unweighted graphs

For an unweighted graph G = (V, E) with node set V = {vi}ni=1 and edge set E =
{ek}mk=1, and without multiple edges, the adjacency matrix of G is an n × n matrix
A = [Aij] with Aij = 1 if there exists an edge that points from node vi to node vj ,
and Aij = 0 otherwise. The matrix A is symmetric if the graph is undirected; for
directed graphs, A is generally nonsymmetric. If a directed unweighted graph has a

586 Numerical Algorithms (2021) 88:583–614

symmetric adjacency matrix, then the directed graph can be replaced by its undirected
underlying graph.

While the adjacency matrix of a graph gives a representation of node-to-node
connections, the incidence matrix is determined by node-to-edge connections. If the
network is undirected, the incidence matrix of G is an n × m matrix B = [Bik] with
Bik = 1 if ek incides on vi , andBik = 0 otherwise. Each column ofB has exactly two
nonzero entries, which are equal to 1, unless the corresponding edge is a self-loop,
in which case exactly one entry is 1. If there are no self-loops, then BBT = A + D,
where D = [Dij] is a diagonal matrix with the diagonal entry Dii equal to the degree
of vi . Throughout this paper, the superscript T denotes transposition.

For directed networks, there are various ways to define an incidence matrix; see,
e.g., [24, 25]. In this paper, we will adopt the definition used in [26]. Thus, for a
directed and unweighted graph G, the incidence matrix and exsurgence matrix of G
are the n × m matrices B i = [B i

ik] and Be = [Be
ik], respectively, with B i

ik = 1 if ek

incides on vi , Be
ik = 1 if ek exsurges from vi , and all other entries vanish. We say

that the head of an edge ek is at vi if ek incides on vi , and that the tail of ek is at vj

if ek exsurges from vj . Informally, an edge ek is said to transmit information from
node vj to node vi , if the head of ek is at vi and its tail is at vj . Each column of B i

and Be has exactly one nonzero entry, equal to unity. We have that

A = BeB iT . (2.1)

2.2.2 Adjacency and incidence matrices of edge-weighted graphs

Let the edges of the graph G have positive weights and denote the associated weighted
adjacency matrix by ˜A. Thus, the (ij)th entry of ˜A is the weight of the edge from
node vi to node vj . We refer to the adjacency matrix ˜A as edge-weighted. The
“unweighted” adjacency matrixA that is associated with ˜A has all edge weights equal
to 1. Thus, the entries of A belong to {0, 1}.

Consider the unweighted adjacency matrix (2.1) associated with the edge-
weighted graph G, and let the matrix Z = diag(z1, z2, . . . , zm) hold the edge weights
z1, z2, . . . , zm of the graph. Then, the weighted adjacency matrix for the graph G can
be written as:

˜A = BeZB iT . (2.2)

2.3 Line graphs

2.3.1 Line graph of an undirected graph

The line graph of an undirected unweighted graph G = (V, E) is an undirected graph
G∗ = (E,F), in which an edge f ∈ F connects the nodes e, e′ ∈ E if and only if
there is a node v ∈ V such that both e and e′ incide on v in G. Line graphs are used
to analyze networks in various contexts; see, e.g., [27–30].

It is easy to show that if B is the incidence matrix of G, then E = BT B − 2Im

is the adjacency matrix of G∗. Here and below, Im stands for the identity matrix of
order m. We will refer to E as the line graph adjacency matrix.

587Numerical Algorithms (2021) 88:583–614

2.3.2 Line graphs of a directed graph

While there is only one natural notion of line graph for undirected graphs, several
different line graphs can be associated with a directed unweighted graph G = (V, E);
see [26]. We will use the line graph G∗ = (E,F) described by Thulasiraman and
Swamy [31], where each edge in G corresponds to a node in G∗, and an edge exists
from node ei to node ej in G∗ only if edge ej in G emerges from the node that edge
ei points to. The line graph adjacency matrix of G is E→ = B iT Be; this is shown
in [26].

3 Identifying themost important edges and nodes in edge-weighted
graphs

3.1 Importance of nodes for undirected and directed graphs

Many methods have been proposed to assess the importance or centrality of nodes
in a graph. We will focus on methods that use matrix functions, in particular the
matrix exponential; see, e.g., [11, 12, 32, 33] for discussions on this approach. Let
˜A ∈ R

n×n be the adjacency matrix of an edge-weighted graph, and let p be a positive
integer. Then, the matrix entry [˜Ap]ij is a sum with one term for each walk of length
p starting at vi and ending at vj (following edge directions, if the graph is directed),
and each term being the product of the weights of the edges in the corresponding
walk. Hence, the (ij)th entry of the matrix function f evaluated at ˜A,

f (˜A) =
∞
∑

p=0

cp
˜Ap, (3.1)

is a weighted sum with terms corresponding to walks of various lengths from node
vi to node vj . The coefficients cp are chosen to penalize walks that traverse many
edges because such walks are typically considered less important than walks that
traverse few edges. The coefficients generally are chosen to be nonnegative and to
eventually decrease as functions of p. A common choice is cp = 1/p!, in which case
f (˜A) = exp(˜A); see, e.g., [12] for a discussion on this matrix function. The term
c0In in (3.1) does not affect the ordering of the diagonal entries and, therefore, is of
no importance.

A popular centrality measure for node vi of a network is the subgraph centrality,
which is given by [f (˜A)]ii ; see, e.g., [9, 11, 12, 32, 33]. Another commonly used
measure is

[f (˜A)1]i , i = 1, 2, . . . , n, 1 = [1, 1, . . . , 1]T ; (3.2)

see, e.g., [3, 10, 12, 14, 26]. For undirected graphs, ˜A is symmetric, and a relatively
large value of [f (˜A)]ii or [f (˜A)1]i indicates that node vi is important. For directed
graphs, the relative size of [f (˜A)1]i shows the importance of node vi as a broadcaster,
and the relative size of [f (ÃT)1]i shows its importance as a receiver; see [11] for a

588 Numerical Algorithms (2021) 88:583–614

thorough discussion of the case when f is the exponential function. In this paper, we
will use the measures aggregate downstream reachability:

ADR = exp(˜A)1 (3.3)

and aggregate upstream reachability:

AUR = exp(˜AT)1. (3.4)

The ordering of the ADR entries provides a ranking of all nodes in the network in
their role as broadcasters, and the ordering of the AUR entries determines a ranking
of the nodes in their role as receivers. The largest values correspond to the most
important nodes. For undirected graphs, the ADR and AUR values are the same.

3.2 Importance of edges in undirected networks

Let E ∈ R
m×m be the line graph adjacency matrix associated with an undi-

rected graph G. The edges of G may be ranked by comparing the edge line graph
centralities:

[exp(E)]kk =
∞
∑

p=0

1

p! [E
p]kk, k = 1, 2, . . . , m. (3.5)

The largest entries are associated with the most important edges; see [26]. Alterna-
tively, one may compare the relative size of the quantities:

eLCk = [exp(E)1]k, (3.6)

which are analogous to (3.2). Again, the largest quantities are associated with the
most important edges. These centrality measures also can be applied to line graphs
with weighted edges. We will refer to the adjacency matrix associated with a
weighted line graph as ˜E.

3.3 Importance of edges in directed graphs

The line graph adjacency matrix E→ of a directed unweighted graph has an entry
1 in position (k, j) if edge ek passes information to edge ej through a node, i.e.,
if the head of edge ek coincides with the tail of edge ej . The entries of the matrix
(E→)2 tell us whether information is passed from an edge to another edge through
two nodes. In other words, [(E→)2]kj = 1 if there exists an edge pointing from the
target node of ek to the source node of ej . Similarly, the element [(E→)p]kj counts
the number of ways that information is transferred from edge ek to edge ej through
p nodes. The matrix exponential, exp(E→), is a weighted sum of positive powers
of E→, with transfers of information via many nodes having a smaller weight than
transfers via few nodes; cf. (3.5). The matrix E→ generally is nonsymmetric.

Row k of exp(E→) expresses the edge ek in its broadcaster role, while column k

of exp(E→) expresses the role of edge ek as a receiver. Specifically, a relatively large
edge line graph outcentrality,

eLCoutk = [exp(E→)1]k, (3.7)

589Numerical Algorithms (2021) 88:583–614

indicates that edge ek is an important transmitter of information through the network,
and a relatively large edge line graph incentrality,

eLCink = [exp(E→T)1]k, (3.8)

suggests that edge ek is an important receiver of information.

4 Transformation of node-weighted to edge-weighted graphs

In this section, we consider ways of incorporating node weights into an adjacency
matrix. Differently from edge weights, there is not a single natural approach that
always can be used to encode node weights into an adjacency matrix. As will be
seen below, different approaches may be useful in various circumstances. Section 4.1
describes available approaches, Section 4.2 discusses factorizable node weight func-
tions, and Section 4.3 is concerned with the application of node weights via a line
graph. The latter approach will be used in the node weighting method of this paper.

As shown in Section 2.2.2, the weighted adjacency matrix ˜A of an edge-weighted
graph can be defined in a natural way (2.2). We may rewrite this factorization as
˜A = ˜Be

˜B iT by using the weighted incidence and exsurgence matrices ˜B i = B iZ1
and ˜Be = BeZ2, where the matrices Z1 and Z2 are diagonal with positive diagonal
entries, and Z = Z2Z1 in the definition (2.2) of ˜A. Clearly, given the diagonal matrix
Z, the choice of the diagonal matrices Z1 and Z2 is not unique.

Let the node weights w1, w2, . . . , wn be given, and define the matrix W =
diag(w1, w2, . . . , wn). We would like to encode these weights into an edge-weighted
adjacency matrix ˜A. Hence, our goal is to determine edge weights:

Z = diag(z1, z2, . . . , zm) = H(W) (4.1)

that depend only on W . In principle, each edge weight zk may depend on all node
weights, but in Subsections 4.1 and 4.2 we only consider “local” dependencies, i.e.,
each zk is a function of the weights of the nodes at the endpoints of the edge only.
We will consider “global” dependencies in Section 4.3.

Below, we discuss various ways of defining the function H in (4.1) and, for each
approach, we describe a setting in which it is meaningful to use this approach. Often,
methods already discussed in the literature turn out to be particular cases of weighting
schemes of type (4.1). The graphs considered include the small node-weighted graphs
in Fig. 1. These graphs are well suited for comparison of the discussed modeling
approaches. The node weights are displayed in parenthesis.

4.1 Edge weights from endpoint node weights

Let the nodes vi and vj be the endpoints of the edge ek , and let zk = h(wi, wj)

for some function h. If the network is undirected, then h should be symmetric, i.e.,
h(x, y) = h(y, x) for all x, y ∈ R.

590 Numerical Algorithms (2021) 88:583–614

Fig. 1 Node-weighted sample graphs. Node weights are displayed in parentheses

4.1.1 Sum of endpoint node weights

Consider a network consisting of buildings as nodes, and each street linking two
buildings as an edge. Each edge should be built large enough to accommodate all
occupants from both buildings in case they have to escape a fire in the building they
live in. If this network is node-weighted, with a node’s weight proportional to the
building capacity, then it is natural to convert the graph into an edge-weighted graph
with each edge weight equal to the sum of its endpoint node weights. This weight-
ing is most meaningful for undirected graphs. Thus, we determine Z from W by
calculating the sum node weights (snw):

Z = snw(W) or zk = h(wi, wj) = wi + wj . (4.2)

This defines the function H in (4.1).
Figure 2 shows the edge-weighted graphs obtained by assigning each edge the

sum of the weights from Fig. 1 of the nodes it connects. Zou et al. [34] assigned to
each edge half the sum of its endpoint node weights. This is simply a scaling by 1

2 of
the adjacency matrix that we obtain.

4.1.2 Product of endpoint node weights

Another approach to assign node weights is to make the edge weight proportional to
each one of the two endpoint node weights. By symmetry considerations, the constant
of proportionality should be the same for all edges. This yields the product node
weights (pnw):

Z = pnw(W) or zk = h(wi, wj) = wiwj . (4.3)

591Numerical Algorithms (2021) 88:583–614

Fig. 2 Edge-weighted graphs obtained from the graphs in Fig. 1 using (4.2)

A situation when this approach to define the functions h and H in (4.1) is meaning-
ful arises, for instance, when the nodes represent cities, the edges represent roads that
connect the cities, and the traffic between the cities is assumed to be proportional to
the populations of the cities. The node weight assignment (4.3) also is appropriate
when the node weight corresponds to the probability of the node becoming “acti-
vated” at a given time. If different nodes get activated independently of each other,
and an edge is activated when both its endpoint nodes are activated, then the product
node weight provides the probability of activation of each edge.

4.1.3 Inheriting the weight of an endpoint node

When the network is directed, it may be meaningful for the function h to be non-
symmetric. Examples include:

h(wi, wj) = wi and h(wi, wj) = wj . (4.4)

These functions correspond to inheriting the weight of the source node, and inherit-
ing the weight of the target node, respectively. These weight assignment approaches
are considered in [35] and [36], respectively. These approaches make the edge weight
proportional to the weight of the source or target nodes. In the edge activation sce-
nario described above, the weightings (4.4) correspond to that an edge is activated
whenever its source or target is activated.

4.2 Factorizable node weight functions

When the function h can be factored:

h(wi, wj) = h1(wi)h2(wj), (4.5)

592 Numerical Algorithms (2021) 88:583–614

the relation (4.1) can be expressed with matrices in a simple manner. Assume that
(4.5) holds, and let H1(W) be the diagonal matrix with the kth diagonal entry equal to
h1(wi), where vi is the source node of edge ek , for k = 1, 2, . . . , m. Define the diag-
onal matrix H2(W) analogously for target nodes. Then, H(W) = H1(W)H2(W),
and we obtain from (2.2) that

˜A = BeZB iT = BeH(W)B iT = BeH1(W)H2(W)B iT .

It is natural to introduce the weighted incidence matrices ˜Be = BeH1(W) and ˜B i =
B iH2(W). Then, ˜A = ˜Be(˜B i)T .

We may let h(x, y) = xαyβ for fixed α, β ∈ R. This weighting scheme includes
some of the schemes described above as special cases. For instance, α = β = 1
corresponds to (4.3), and α = 1, β = 0, and α = 0, β = 1 correspond to (4.4).
Negative values of α or β may make sense in some modeling situations. For example,
α = 1 and β = −1 corresponds to the case when each edge weight is proportional to
the weight of the source node and inversely proportional to the weight of the target
node. An example of this could be a network in which the nodes are countries, edges
are military attacks, and the node weights measure military strength; edge weights
can be obtained that correspond to the effectiveness of the attack, which would be
proportional to the strength of the attacker and inversely proportional to the strength
of the defender.

4.3 Graph node weights to line graph edge weights

Roughly, the roles of nodes and edges of a graph G are interchanged in the associated
line graph G∗; see Section 2.3. It is therefore natural to consider how node weights
of G can be incorporated as edge weights in an adjacency matrix for G∗.

4.3.1 Simple weighting

By using the expressions that relate the adjacency matrix of G∗ to the incidence
matrix (or incidence matrices) for G (see Section 2.3), we obtain expressions for
incorporating node weights W for G as edge weights into the adjacency matrix for G∗.

Consider first the directed case. Here, we have that E→ = B iT Be. Similarly to
the expression for the weighted adjacency matrix ˜A in (2.2), we define the simply
weighted adjacency matrix of the line graph as

˜E→
SW = B iT WBe.

For undirected graphs, the unweighted adjacency matrix of the undirected line
graph isE = BT B−2Im, where B is the incidence matrix described in Section 2.2.1.
We define the simply weighted adjacency matrix of the line graph as

˜ESW = BT WB − C,

where C is the diagonal matrix with ckk = wi + wj , whenever vi and vj are end-
points of the edge ek , k = 1, 2, . . . , m. Figure 3 shows edge-weighted line graphs
corresponding to the graphs in Fig. 1. In Fig. 3c, all connections in the left-hand
side cluster have weight 1, and those in the right hand-side cluster have weight 4.

593Numerical Algorithms (2021) 88:583–614

Fig. 3 Edge-weighted line graphs of the node-weighted graphs in Fig. 1 sample networks

We remark that this weighting method does not capture the weights of nodes that are
only in direct contact with one edge in the original graph. In order to accommodate
for these weights without changing the network topology, we add a self-loop to each
node of the graphs in Fig. 1, and then determine the associated line graph. We only
illustrate this approach in Fig. 4 for the graph in Fig. 1a, but we perform it on all
graphs from this point onward. Note that, while these self-loops add nodes and edges
in the line graph, we are not concerned with their ranking.

4.3.2 Scaling by node degree

A node vi in G does not necessarily correspond to a single edge in G∗. In fact, in undi-
rected graphs, each node vi produces a complete subgraph (a clique) in G∗, containing
(dvi
2

)

edges in G∗, where dvi
denotes the degree of vi in G. The simple weighting

approach described above assigns the weight wi to all those
(dvi
2

)

edges in G∗.

Fig. 4 Added self-loops to the graph in Fig. 1a and the corresponding line graph. The effect of these
additions is displayed in gray

594 Numerical Algorithms (2021) 88:583–614

For example, in Fig. 3c, we notice that all edges of the cluster on the left-hand
side have weight 1, which is the weight of node v4 connecting these edges in Fig. 1c.
From a modeling point of view, one may argue that in some applications, v4 should
distribute its weights to the surrounding edges, i.e., each edge should have the weight
1
4 . This suggests scaling the weights of those edges by the degree of v4.

For an undirected graph, where D is the diagonal matrix holding the degree of its
nodes, we define the degree scaled weighted adjacency matrix of the line graph as

˜EDS = BT WD−1B − CDS, (4.6)

where CDS = [diag(ckk)] is the diagonal matrix with ckk = wi/dvi
+wj/dvj

, and the
nodes vi and vj , of degrees dvi

and dvj
, respectively, are the endpoints of the edge ek

in G.
For directed networks, each node vi in G results in indegree(vi) × outdegree(vi)

edges in G∗ (connecting each of the G-edges inciding on vi to each of the G-edges
exsurging from vi). The number of edges in the line graph depends on the number of
edges exsurging from the nodes in the original graph. Let Dout be the diagonal matrix
holding the out-degrees of the nodes of G and define the out-degree scaled weighted
adjacency matrix of the line graph as

˜E→
ODS = B iT WD−1

outB
e. (4.7)

The in-degree scaled version, ˜E→
IDS, is defined similarly.

4.3.3 Strong degree scaling

Rather than scaling node vi by its degree dvi
, it may in some situations be meaningful

to divide by the number of the corresponding edges in G∗. For undirected graphs, this
means dividing by

(dvi
2

)

. The algebra is similar to the scaling above, using a diagonal

matrix Ds that contains the values
(dvi
2

)

, i = 1, 2, . . . , n, instead of the matrix D in

(4.6). This gives the strongly out-degree scaled adjacency matrix ẼSDS.
For directed networks, we similarly define the strongly degree scaled weighted

adjacency matrix of the line graph as

˜E→
SDS = B iT WD−1

s Be, (4.8)

which is analogous to (4.7). To avoid division by zero when a node is a source (and
therefore has zero indegree) or a sink (and then has zero outdegree), we add self-
loops to each node of G before deriving G∗. This gives the strongly in-degree scaled
weighted adjacency matrix of the line graph, ˜E→

SIDS.
We will illustrate the performance of several of the weighted adjacency matrices

of line graphs in computed examples in Section 6.

5 The sensitivity of node centrality to weight change

This section is concerned with how the importance of a node changes when its
weight is modified. In particular, we show that the rank of a node as broadcaster will

595Numerical Algorithms (2021) 88:583–614

increase, or at least remain the same, if its weight is increased. Related issues have
been discussed by Bini et al. [37] for ranking methods based on the relative size of
the entries of the left Perron vector of a row stochastic adjacency matrix of a graph.

To simplify notation, we denote the edge-weighted adjacency matrix by A in this
section (this matrix is referred to as ˜A elsewhere in this paper). Let the weight of node
vs increase. Thus, the edge(s) exsurging from node vs increases in weight, while no
edge exsurging from vs decreases in weight. With each increment δ in the weight Ast

of the edge pointing from node vs to node vt , the adjacency matrix associated with
the perturbed graph can be expressed as

̂A = A + δ1s1T
t ,

where 1t = [0, . . . , 0, 1, 0, . . . , 0]T ∈ R
n denotes the t th axis vector. We show

in Section 5.2 that the ADR measure increases the most for node vs (compared to
all other nodes), under certain conditions on the graph. Therefore, its ranking as
broadcaster either increases or remains the same.

5.1 Preliminaries

Lemma 1 Let the nonnegative matrix A ∈ R
n×n satisfy

A1 ≤ 1,

where the inequality is component-wise. Thus, A is substochastic. Then for any
integer p ≥ 1,

Ap1 ≤ 1 (5.1)

and

exp(A)1 ≤ e1. (5.2)

These inequalities are sharp.

Proof The result is easily shown by induction. The inequality (5.1) holds for p = 1
by assumption. Assume that (5.1) holds for p > 1. Then

Ap+11 = A(Ap1) ≤ A1 ≤ 1,

where we have used that all entries of A are nonnegative. For the exponential, we
have

exp(A)1 =
∞
∑

p=0

Ap1
p! ≤

∞
∑

p=0

1
p! = e1.

The inequalities (5.1) and (5.2) become equalities for certain matrices, including the
identity matrix and the cyclic shift matrix. The latter corresponds to an unweighted
cyclic graph.

Results analogous to those of Lemma 1 also hold for AT .

596 Numerical Algorithms (2021) 88:583–614

Lemma 2 Let the matrix A satisfy the conditions of Lemma 1. Then for any
nonnegative integer n2,

∞
∑

n1=1

(n2 + 1)!
(n2 + n1 + 1)!A

n11 < 1, (5.3)

where the inequality holds component-wise.

Proof We first bound the coefficients in (5.3) by induction over n1. For n1 = 1, we
have

(n2 + 1)!
(n2 + 2)! = 1

n2 + 2
≤ 1

2n1! .

Let n1 ≥ 1 be an arbitrary integer and assume that

(n2 + 1)!
(n2 + n1 + 1)! <

1

2n1! .

We would like to show that the above inequality holds for n1 replaced by n1 + 1.
Using the above inequality, we obtain:

(n2 + 1)!
(n2 + n1 + 2)! = (n2 + 1)!

(n2 + n1 + 1)!(n2 + n1 + 2)
<

1

2n1!(n2 + n1 + 2)

<
1

2n1!(n1 + 1)
= 1

2(n1 + 1)! .

It follows that

∞
∑

n1=1

(n2 + 1)!
(n2 + n1 + 1)!A

n11 <

∞
∑

n1=1

1

2(n1 + 1)!A
n11 <

1

2
(exp(A)1−1) ≤ e − 1

2
1 < 1,

where the penultimate inequality is a consequence of (5.2). This shows (5.3).

5.2 Matrix perturbation results

This section considers adjacency matrices that satisfy the conditions of Lemma
1. As usual, 1 = [1, 1, . . . , 1]T ∈ R

n is the vector of only ones, and 1j =
[0, . . . , 0, 1, 0, . . . , 0]T ∈ R

n denotes the j th axis vector for j = 1, 2, . . . , n. We
will perturb the entry Ast of the adjacency matrix A ∈ R

n×n by δ. This perturbation
is denoted by δA = δ1s1T

t . We will use the formulas:

(δA)1 = δ1s , A(δA) = δ(A1s1T
t), (δA)A = δ1s1T

t A.

When s
= t , we have (δA)2 = 0.

Theorem 1 Let the adjacency matrix A = [Aij] ∈ R
n×n for the graph G satisfy the

conditions of Lemma 1. Add δ > 0 to the matrix entry Ast for some s
= t , without
changing any of the other entries of A. If δ is small enough, then the ADR value of

597Numerical Algorithms (2021) 88:583–614

the vertex vs increases more than the ADR value of any other vertex. It follows that
the rank of the vertex vs as a broadcaster either increases or stays the same. More
precisely, let δA = δ1s1T

t and ̂A = A + δA. Then

[exp(̂A)1]s − [exp(A)1]s > [exp(̂A)1]q − [exp(A)1]q ∀q
= s. (5.4)

Proof The binomial expansion gives

exp(̂A) − exp(A) =
∞
∑

p=0

1

p!
(

(A + δA)p − Ap
) + δA (5.5)

+
∞
∑

p=2

1

p!
(

Ap−1(δA) + Ap−2(δA)A + . . . + A(δA)Ap−2+(δA)Ap−1
)

+O(δ2).

Multiplying the terms in the above sum by 1 from the right-hand side gives:

for p = 2,
1

2! (A(δA) + (δA)A)1 = δ

2! (A1s + 1s1T
t A1),

for p = 3,
1

3! (A
2(δA) + A(δA)A + (δA)A2)1

= δ

3! (A
21s + A1s1T

t A1 + 1s1T
t A21),

for p = 4,
1

4! (A
3(δA) + A2(δA)A + A(δA)A2 + (δA)A3)1

= δ

4! (A
31s + A21s1T

t A1

+A1s1T
t A21 + 1s1T

t A31),

. . . .

Adding all the above terms “column-wise” and substituting into (5.5) multiplied by
1 from the right-hand side, we get:

(

exp(̂A) − exp(A)
)

1 = δ

(

1s + 1

2!A1s + 1

3!A
21s + 1

4!A
31s + . . .

+
(1

2!1s + 1

3!A1s + 1

4!A
21s + 1

5!A
31s + . . .

)

(1T
t A1)

+
(1

3!1s + 1

4!A1s + 1

5!A
21s + 1

6!A
31s + . . .

)

(1T
t A21)

+
(1

4!1s + 1

5!A1s + 1

6!A
21s + . . .

)

(1T
t A31) + . . .

)

+O(δ2)

= δ

∞
∑

n1=0

⎛

⎝

∞
∑

n2=0

An11s

(n1 + n2 + 1)! (1
T
t An21)

⎞

⎠ + O(δ2).

598 Numerical Algorithms (2021) 88:583–614

It follows that

[exp(̂A)1]s −[exp(A)1]s = 1T
s

(

exp(̂A) − exp(A)
)

1

= δ

∞
∑

n1=0

⎛

⎝

∞
∑

n2=0

1T
s An11s

(n1+n2+1)! (1
T
t An21)

⎞

⎠+O(δ2) (5.6)

≥ δ

∞
∑

n2=0

1

(n2 + 1)! (1
T
t An21) + O(δ2),

where the inequality is obtained by ignoring all terms with n1 > 0. Now applying
Lemma 2, and using the inequality 1qAn11s ≤ 1qAn11, and the fact that 1qA01s = 0
for q
= s, gives

∞
∑

n2=0

1

(n2+1)! (1
T
t An21) >

∞
∑

n2=0

⎛

⎝

∞
∑

n1=1

1q

(n2 + 1)!
(n2 + n1 + 1)!A

n11

⎞

⎠

1

(n2 + 1)! (1
T
t An21)

≥
∞
∑

n2=0

∞
∑

n1=1

1qAn11s

(n2 + n1 + 1)! (1
T
t An21).

Comparing this expression and (5.6) shows that

[exp(̂A)1]s − [exp(A)1]s > [exp(̂A)1]q − [exp(A)1]q + O(δ2).

This concludes the proof.

Corollary 1 Let the conditions of Theorem 1 hold. Assume in addition that the net-
work consists of two clusters that are only connected by one directed edge from node
vs in the first cluster to node vt in the second one. Then (5.4) holds for any δ > 0.

Proof Let G1 be the graph of the first cluster of n1 nodes, including the node vs ,
and denote the associated adjacency matrix by A1 ∈ R

n1×n1 . Similarly, let G2 be the
graph of the second cluster of n2 nodes, including the node vt , and let A2 ∈ R

n2×n2

be the adjacency matrix of G2. We can arrange the rows and columns of A to have
the form

A =
[

A1 B1
0 A2

]

, (5.7)

where B1 is an n1 × n2 matrix with all entries 0 except for the entry (s, t), which
holds the weight of the edge going from node vs to node vt . The lower left block of
A is an n2 ×n1 matrix with all entries 0 because no edge goes from G2 to G1. We can
show by induction that all powers of A have the structure

Ap =
[

A
p

1 Bp

0 A
p

2

]

,

599Numerical Algorithms (2021) 88:583–614

where Bp is some n1 × n2 matrix. Indeed, by (5.7), the matrix Ap has the desired
structure for p = 1. Suppose that Ap has the desired structure. Then

Ap+1 = ApA

=
[

A
p

1 Bp

0 A
p

2

] [

A1 B1
0 A2

]

=
[

A
p+1
1 A

p

1B1 + BpA2

0 A
p+1
2

]

=
[

A
p+1
1 Bp+1

0 A
p+1
2

]

.

It follows that [Ap]ts = 0 for all p = 1, 2, 3,
Let δA = δ1s1T

t with s
= t . Then (δA)p = 0 for all p > 1. In addition,

(δA)Ap(δA) = δ1s1T
t Apδ1s1T

t = δ21s[Ap]ts1T
t = 0.

Therefore, all terms of orderO(δ2) in (5.5) vanish. This eliminates the need to require
that 0 < δ � 1 in the proof of Theorem 1.

Corollary 2 Let the conditions of Theorem 1 hold. Assume in addition that the graph
G is such that there is no walk from node vt to node vs . Then, (5.4) holds for any
δ > 0.

Proof Since there is no walk from node vt to node vs , we have [Ap]ts = 0 for all
p = 1, 2, 3, Hence,

(δA)Ap(δA) = δ1s1T
t Apδ1s1T

t = δ21s[Ap]ts1T
t = 0.

Similarly to the proof of Corollary 1, we conclude that all terms of order O(δ2) in
(5.5) vanish and the desired result follows.

Corollary 3 Let the transpose of the adjacency matrix A = [Aij] ∈ R
n×n for the

graph G satisfy the conditions of Lemma 1. Add δ > 0 to the matrix entry Ast for
some s
= t , without changing any of the other entries of A. If δ is small enough,
then the AUR value of the vertex vt increases more than the AUR value of any other
vertex. It follows that the rank of the vertex vt as a receiver either increases or stays
the same. More precisely, let δA = δ1s1T

t and ̂A = A + δA. Then

[exp(̂AT)1]t − [exp(AT)1]t > [exp(̂AT)1]q − [exp(AT)1]q ∀q
= t .

Proof The result follows by applying Theorem 1 to the matrix AT .

5.3 Example of sensitivity to weight change

Consider the weighted network in Fig. 5. The numbers in parentheses are edge
weights. To satisfy the condition of Theorem 1, we scale the adjacency matrix A for

600 Numerical Algorithms (2021) 88:583–614

Fig. 5 Graph for the example in Section 5.3

the graph by the maximum of the largest column sum and the largest row sum, i.e.,
we divide all the entries of the adjacency matrix by 11.

We increase the weight of the edge pointing from node v1 to node v3 by δ = 0.01.
The new adjacency matrix is ̂A = A+ δ111T

3 . According to Theorem 1, node v1 gets
the highest ADR increase, which is in agreement with values reported in Table 1.
By Corollary 3, no node should get a larger increase in its AUR value than node v3,
which also is illustrated by Table 1.

In the computed examples of the following sections, we scale the adjacency
matrices A to be substochastic.

6 Computing node importance in node-weighted graphs

Based on the several ways of incorporating node weights into adjacency matrices
described in Section 4, we can use aggregate downstream and upstream reachability
measures (described in Section 3) to find the most important nodes and edges in
the graph. To rank the edges, we apply (3.6) (if the graph is undirected) and (3.7)
and (3.8) (if the graph is directed). Which one of the line graphs from Section 4.3
(˜E→

SW, ˜E→
ODS,

˜E→
SDS, or their counterparts for undirected networks) is most appropriate

depends on the application. Recall that we add self-loops before deriving the line
graph. In analogy with (3.3) and (3.4), we refer to the edge ranking determined by
(3.7) as the ability of edges to broadcast information, and the edge ranking obtained

Table 1 Ranking the top 4 nodes of the graph in Fig. 5 showing the ADR and AUR values before and after
perturbation of the edge pointing from node v1 to node v3

Broadcasting nodes (ADR) Receiving nodes (AUR)

Node vq [exp(Â)1]q − [exp(A)1]q Node vq [exp(ÂT)1]q − [exp(AT)1]q

v1 2.395 v3 2.168

v7 0.299 v2 0.280

v10 0.100 v5 0.280

v8 0.008 v6 0.074

The graph G is scaled to satisfy the conditions of Lemma 1

601Numerical Algorithms (2021) 88:583–614

with (3.8) as the ability of edges to receive information. Thus, we rank edges as
broadcasters and receivers, just like we rank nodes.

We apply (3.3) and (3.4) to rank the nodes and have to decide which edge-weighted
adjacency matrix to use. The edge weights may be defined by the methods considered
in Section 4. These methods were dictated by particular application. We now will
describe two approaches that are independent of the application. They will be used
in subsequent computed examples.

After ranking the edges of the graph via the line graph, we can substitute these
values as edge weights (without the self-loops) into the original graph, i.e.,

Z = {eLC}k from (3.6), if the graph is undirected,

Z = {eLCout}k + {eLCin}k from (3.7) and (3.8), if the graph is directed. (6.1)

We define the edge-weighted adjacency matrix by (2.2). An advantage of these meth-
ods is that they determine the weight of each edge by taking into consideration not
only the weights of both its source and target nodes, but also of all other nodes in the
graph.

We first illustrate this procedure for the graphs in Fig. 1. Tables 2, 3, 4, and 6 show
the calculated measures for the components of the graphs in Fig. 1a, b, and d. The top
part displays the values of {eLCout}k and {eLCin}k for each edge ek , using the SW,
ODS, and SDS adjacency matrix options of the line graph as described in Section 4.3.

To turn the original network into an edge-weighted one, we assign each edge a
weight equal to the sum of its in and out values as in (6.1). The corresponding weighted
adjacency matrix becomes ˜A = BeZB iT . The bottom parts of Tables 2, 4, 5, and

Table 2 Top part: Ranking of edges of example (a) in Fig. 1 as broadcasters and receivers through the
network using (3.7) and (3.8), for the adjacency matrix options of the line graph described in Section 4.3

Broadcasting edges (eLCout) Receiving edges (eLCin)

Edge ek [e˜E→
SW1]k [e˜E→

ODS1]k [e˜E→
SDS1]k [(e˜E→

SW)T 1]k [(e˜E→
ODS)T 1]k [(e˜E→

SDS)T 1]k

e1 1.378 1.379 1.379 1.286 1.286 1.286

e2 2.146 2.167 1.317 1.317 1.317 1.339

e3 1.071 1.143 1.143 2.214 2.214 2.218

Broadcasting nodes (ADR) Receiving nodes (AUR)

Node vi SW ODS SDS SW ODS SDS

v1 2.275 2.270 2.270 1.000 1.000 1.000

v2 2.474 2.482 2.482 1.769 1.765 1.765

v3 1.949 1.964 1.959 2.385 2.382 2.382

v4 1.000 1.000 1.000 2.545 2.568 2.568

The options are simply weighted (SW): ˜E→
SW = B iT WBe, out-degree scaled (ODS): ˜E→

ODS =
B iT WD−1

outB
e, and strongly degree scaled (SDS): ˜E→

SDS = B iT WD−1
io Be. Bottom part: For the options

above, the edges in Fig. 1 are given the weight as the sum of broadcasting and receiving values, then ADR
and AUR are calculated to rank nodes. Highest values are italicized

602 Numerical Algorithms (2021) 88:583–614

Table 3 Top part: Ranking of edges of example (a) in Fig. 1 as broadcasters and receivers through the
network using (3.7) and (3.8), for the adjacency matrix options of the line graph described in Section 4.3

Broadcasting edges (eLCout) Receiving edges (eLCin)

Edge ek [e˜E→
SW1]k [e˜E→

ODS1]k [e˜E→
SDS1]k [(e˜E→

SW)T 1]k [(e˜E→
ODS)T 1]k [(e˜E→

SDS)T 1]k

e1 1.173 1.173 1.173 1.181 1.181 1.181

e2 1.073 1.070 1.070 1.179 1.179 1.179

e3 1.205 1.197 1.197 1.066 1.066 1.066

Broadcasting nodes com. dist. Receiving nodes com. dist.

Node vi SW ODS SDS SW ODS SDS

v1 2.275 2.270 2.270 1.000 1.000 1.000

v2 2.474 2.482 2.482 1.769 1.765 1.765

v3 1.949 1.964 1.959 2.385 2.382 2.382

v4 1.000 1.000 1.000 2.545 2.568 2.568

The options are simply weighted (SW): ˜E→
SW = B iT WBe, out-degree scaled (ODS): ˜E→

ODS =
B iT WD−1

outB
e, and strongly degree scaled (SDS): ˜E→

SDS = B iT WD−1
io Be. Bottom part: For the options

above, the edges in Fig. 1 are given the weight as the sum of broadcasting and receiving values, then ADR
and AUR are calculated to rank nodes. Highest values are italicized

6 give the ADR and AUR values for each node vi using the matrix ˜A. We have
found that the rankings obtained are quite similar for all methods of Table 2. The
computations are summarized by Algorithm 1.

The edge-weighted adjacency matrix ˜A in step 8 of Algorithm 1 is defined by (2.2)
with Z = diag(wnode ranking), i.e., the j th diagonal entry of the diagonal matrix Z is
the j th component of the vector wedge weights. We remark that it is straightforward to

603Numerical Algorithms (2021) 88:583–614

Table 4 Top part: Ranking of edges of example (b) in Fig. 1 as broadcasters and receivers through the
network using (3.7) and (3.8), for the simply weighted (SW), out-degree scaled (ODS), and strongly degree
scaled (SDS) adjacency matrix options of the line graph as described in Section 4.3

Broadcasting edges (eLCout) Receiving edges (eLCin)

Edge ek [e˜E→
SW1]k [e˜E→

ODS1]k [e˜E→
SDS1]k [(e˜E→

SW)T 1]k [(e˜E→
ODS)T 1]k [(e˜E→

SDS)T 1]k

e1 1.3791 1.3791 1.3791 1.6389 1.6389 1.6389

e2 2.1713 2.1713 2.1713 1.3419 1.3419 1.3419

e3 1.1685 1.1685 1.1685 2.2186 2.2186 2.2186

e4 1.6662 1.6662 1.6662 1.1871 1.1871 1.1871

Broadcasting nodes (ADR) Receiving nodes (AUR)

Node vi SW ODS SDS SW ODS SDS

v1 2.460 2.460 2.460 2.368 2.368 2.368

v2 2.647 2.647 2.647 2.354 2.354 2.354

v3 2.502 2.502 2.502 2.580 2.580 2.580

v4 2.310 2.310 2.310 2.619 2.619 2.619

Bottom part: For the options above, the edges in Fig. 1 are given the weight as the sum of broadcasting
and receiving values, then ADR and AUR are calculated to rank nodes. Highest values are italicized

replace the approaches of step 6 to determine edge weights wedge weight by another
measure, such as the subgraph centrality wedge weight = diag(exp(˜E)). The approach
used in step 6 has the advantage of being cheaper to evaluate; see Section 8 for

Table 5 Left part: Ranking of edges of example (c) in Fig. 1 using (3.7) and (3.8), for the adjacency matrix
options of the line graph described in Section 4.3

Edge centrality Node centrality (ADR = AUR)

Edge ek [e˜ESW1]k [e˜EDS1]k [e˜ESDS1]k Node vi SW DS SDS

e1 2.379 1.974 1.190 v1 2.335 2.215 1.919

e2 2.437 2.360 2.199 v2 1.325 1.323 1.322

e3 2.173 1.897 1.327 v3 1.411 1.483 1.649

e4 1.439 1.389 1.339 v4 2.305 2.280 2.250

e5 1.821 2.078 2.705 v5 1.325 1.323 1.322

e6 1.439 1.389 1.339 v6 1.552 1.536 1.476

v7 1.492 1.431 1.287

The options are simply weighted (SW): ˜ESW = BT WB −C, degree scaled (ODS): ˜EDS = BT WD−1B −
CDS , and strongly degree scaled (SDS): ˜ESDS = BT WD−1

s B − CSDS . Right-hand side: For the given
options, the edges in Fig. 1 are given the weight as the centrality value from the left-hand side of this
table, then ADR is calculated to rank nodes. Highest values are italicized. Note that SW values for node
centrality are calculated after subtracting μI from ˜A, where μ is the spectral radius of ˜A, to avoid overflow

604 Numerical Algorithms (2021) 88:583–614

Table 6 Top part: Ranking of edges of example (d) in Fig. 1 according to their importance as broadcasters
and receivers using (3.7) and (3.8), for the simply weighted (SW), out-degree scaled (ODS), and strongly
degree scaled (SDS) adjacency matrix options of the line graph as described in Section 4.3

Dissipating edges (eLCout) Absorbing edges (eLCin)

Edge ek [e˜E→
SW1]k [e˜E→

ODS1]k [e˜E→
SDS1]k [(e˜E→

SW)T 1]k [(e˜E→
ODS)T 1]k [(e˜E→

SDS)T 1]k

e1 1.308 1.341 1.341 1.728 1.474 1.232

e2 1.237 1.159 1.078 1.728 1.474 1.232

e3 1.467 1.933 1.933 1.321 1.306 1.290

e4 1.133 1.267 1.267 1.158 1.100 1.047

e5 1.888 1.830 1.775 1.158 1.100 1.047

e6 1.946 1.609 1.292 2.151 2.141 2.132

e7 1.888 1.830 1.775 1.067 1.067 1.067

Dissipating nodes (ADR) Absorbing nodes (AUR)

Node vi SW ODS SDS SW ODS SDS

v1 2.374 2.306 2.202 2.058 1.995 1.931

v2 1.465 1.556 1.569 1.740 1.694 1.640

v3 1.000 1.000 1.000 1.616 1.727 1.731

v4 2.131 2.131 2.109 1.723 1.649 1.575

v5 1.000 1.000 1.000 1.503 1.523 1.513

v6 2.107 2.022 1.932 2.161 2.144 2.128

v7 1.726 1.717 1.705 1.000 1.000 1.000

Bottom part: For the options above, the edges in Fig. 1 are given the weight as the sum of broadcasting
and receiving values, then ADR and AUR are calculated to rank nodes. Highest values are italicized

a discussion on the evaluation of the expressions in step 6. Also the node ranking
wnode ranking in step 9 can be determined as described in Section 8.

Table 5 shows the calculated measures for the components of the graph in Fig. 1c,
and Table 6 is analogous for Fig. 1d.

7 Real-life examples

7.1 Genotypemutation

This section discusses a biological example to illustrate some of the methods
described above. To study the resistance of bacteria to an antibiotic, Nichol et al.
[38] use an example that involves genotypes of 3 bits; see Fig. 6a. Each genotype
is assigned a fitness level according to the fitness landscape in Fig. 6c. A genotype
can only mutate to other genotypes if they have a higher fitness level. The authors
present possible scenarios for the probability of these transitions, such as the proba-
bility being proportional to the fitness level increase, or the probability being that of

605Numerical Algorithms (2021) 88:583–614

Fig. 6 The genotype network for a bit of strings of length 3 and the corresponding stochastic transitions
according to the fitness levels and equations presented in [38]

a random walk as shown in Fig. 6b. In this paper, we suggest a probability transition
based on edge weights calculated using (6.1).

We display the network’s node-weighted graph in Fig. 7 with the node weights
equal to the corresponding fitness levels. Note that we do not add self-loops to the
nodes v1 and v8 as in [38], since we allow each genotype to remain the same, and not
mutate, by adding self-loops to all nodes of the graph as described in Section 4.3.

We construct ˜E→
SW, ˜E→

ODS, and
˜E→
SDS from Section 4.3 to get the edge-weighted

adjacency matrix of the line graph. We then calculate eLCoutk and eLCink from
(3.7) and (3.8), respectively, and report them at the top of Table 7. The ODS method
resulted in the edges e3, e4, and e8 having the highest eLCout value. Both the SW and
SDS methods favor the edges e5 and e10. All methods ranked edge e4 representing
the transition from “010” to “000” to have the highest eLCin value.

We use the sum (6.1) as the weight of edge ek , for k = 1, 2, . . . , 12, in the edge-
weighted version of the graph in Fig. 7. The importance of nodes as broadcasters
is identified by calculating their ADR values, and their importance as receivers by
computing their AUR values. These values are reported at the bottom of Table 7.

We conclude from the ADR values of all methods considered that the genotypes
“110,” i.e., node v6, and “001,” i.e., node v1, are the least stable genotype states, or

Fig. 7 The genotype directed graph of Fig. 6. The node weights are from Fig. 6c

606 Numerical Algorithms (2021) 88:583–614

Table 7 Ranking edges and nodes of the genotype mutation graph in Fig. 7 in dissipating and receiving
through the network using (3.7) and (3.8), for the simply weighted (SW), out-degree scaled (ODS), and
strongly degree scaled (SDS) adjacency matrix options of the line graph as described in Section 4.3

Dissipating edges (eLCout) Absorbing edges (eLCin)

Edge ek [e˜E→
SW1]k [e˜E→

ODS1]k [e˜E→
SDS1]k [(e˜E→

SW)T 1]k [(e˜E→
ODS)T 1]k [(e˜E→

SDS)T 1]k
e1 1.221 1.070 1.035 1.146 1.037 1.006

e2 1.351 1.172 1.172 1.146 1.037 1.006

e3 1.333 1.333 1.333 1.146 1.037 1.006

e4 1.333 1.333 1.333 1.824 1.389 1.387

e5 1.568 1.276 1.276 1.135 1.043 1.021

e6 1.224 1.224 1.224 1.135 1.043 1.021

e7 1.351 1.172 1.172 1.228 1.074 1.037

e8 1.333 1.333 1.333 1.228 1.074 1.037

e9 1.224 1.224 1.224 1.536 1.251 1.248

e10 1.568 1.276 1.276 1.046 1.011 1.002

e11 1.379 1.120 1.060 1.046 1.011 1.002

e12 1.224 1.224 1.224 1.046 1.011 1.002

Dissipating nodes (ADR) Absorbing nodes (AUR)

Node vi SW ODS SDS SW ODS SDS

v1 2.042 2.031 2.021 1.000 1.000 1.000

v2 1.385 1.363 1.366 1.696 1.658 1.658

v3 1.681 1.668 1.668 1.289 1.281 1.275

v4 1.680 1.670 1.666 1.296 1.284 1.278

v5 1.337 1.330 1.333 1.666 1.637 1.632

v6 2.051 2.036 2.030 1.000 1.000 1.000

v7 1.000 1.000 1.000 2.052 2.076 2.079

v8 1.000 1.000 1.000 2.177 2.162 2.162

Bottom part: For the options above, the edges in Fig. 1 are given the weight as the sum of dissipating and
receiving values, then ADR and AUR are calculated to rank nodes. Highest values are italicized

the most likely to transition into another state. This is regardless of the choice of SW,
ODS, or SDS. On the other hand, Table 7 also shows that genotype “111,” i.e., node
v7, is most likely to eventually be the last genotype reached by mutation, followed
by “000,” i.e., node v8. Note that the genotypes “111” and “000” have ADR value 1
because, according to the fitness landscape in this example, they have higher fitness
scores than the states that differ from them by one digit. Therefore, “111” and “000”
do not mutate. Similarly, “110” and “001” have AUR value 1 because they have lower
fitness scores than the genotypes that differ from them by one digit, so the latter ones
do not mutate to “110” or “001.” The specific value of 1 comes from the identity
matrix in the Taylor expansion of the exponential function.

607Numerical Algorithms (2021) 88:583–614

7.2 Social networks: Medium and Twitter

In this example, we investigate who are the most influential users in the Medium
social network, based on their connectivity in Medium, and the influence of their
Twitter accounts. We use a dataset collected in 2016 that describes 1,075,983 users,
who are identified by numerical IDs to protect their privacy [39]. The dataset con-
tains information about the users whom they follow and those they are followed by
in Medium, along with information whether their account is linked to their Twit-
ter account, and some information about the Twitter account, if available. The data
were collected to argue that linking Medium with Twitter is helpful to attract a large
number of new users. We use the data provided publicly, and construct the network
adjacency matrix from the edge list showing how accounts follow each other on
Medium. We only take into account users who have a linked Twitter account, and use
the number of followers they have on Twitter as node weights in the graph.

For computational purposes, we reduce our dataset to users, who have more than
5000 Twitter followers. Our network consists of 10,077 users represented by nodes
and of 992,539 directed connections expressed by edges. Because of the large net-
work size, the MATLAB function expm cannot be be used to compute the matrix
exponential. In the computations for this section, we use iterative Krylov subspace
methods described in Section 8 to approximate the matrix exponential.

For each one of the options ˜E→
SW, ˜E→

ODS, and
˜E→
SDS from Section 4.3, we calcu-

late approximations of eLCout = exp(˜E→)1 and eLCin = 1T exp(˜E→) using the
techniques described in Section 8. We use the sum (6.1) as the weight of edges in
the edge-weighted version of the graph representing the Medium network. The top
15 ranked users for Medium are reported in Table 8. The three methods give almost
identical rankings. We observe a redundancy in IDs between influencing accounts
and those influenced. A likely explanation is that high-impacting social media users
have high impact on each other, as well.

8 Computational aspects

This section discusses some computational aspects of how to evaluate exp(E→)1
and related matrix functions for large networks. For small to medium-sized (square)
matrices M , we can first evaluate exp(M) with the MATLAB function expm (pro-
vided that overflow does not occur), and then multiply the matrix exp(M) by the
vector 1. Methods for evaluating exp(M) for small to medium-sized matrices are
described by Higham [40]. However, when the matrix M is large, the evaluation of
exp(M) is difficult for several reasons:

1. Adjacency matrices M that represent networks typically are sparse, but the
matrix exp(M) generally is not. The memory requirement for computing and
subsequently storing exp(M) may be substantial.

2. The computational effort required for evaluating exp(M) for a large matrix M

may be prohibitive.

608 Numerical Algorithms (2021) 88:583–614

Table 8 Top 15 ranked accounts in theMedium social network based on the associated accounts’ influence
on Twitter using the simply weighted (SW), out-degree scaled (ODS), and strongly degree scaled (SDS)
adjacency matrix options of the line graph as described in Section 4.3

Dissipating nodes (ADR) Absorbing nodes (AUR)

SW ODS SDS SW ODS SDS

14,745 14,486 14,486 722 722 722

14,486 14,745 14,745 45 45 45

6602 6602 6602 2265 553 553

553 553 553 553 2265 2265

2639 2639 2639 540 579 579

2631 2631 2631 6385 540 540

6385 6385 6385 579 6385 6385

722 722 722 2681 2681 2681

540 540 540 297 297 297

2265 2265 2265 2631 2631 2631

2681 2681 2681 2326 2326 2326

2187 2187 2187 2187 2690 2690

17,956 17,956 17,956 2690 2187 2187

2210 2210 2210 4566 4566 4566

21,398 21,398 21,398 2806 2806 2806

2326 2784 2784 7650 7650 7650

2784 2326 2326 8340 8340 8340

8839 3670 3670 2255 2255 2255

3670 8839 8839 8058 8058 8058

14,965 14,965 14,965 2264 2264 2264

3. Overflow is more likely to take place when M is a large adjacency matrix, than
when M is small.

Our models require that we first evaluate exp(E→)1 and 1T exp(E→) to form
the edge-weighted graph. This defines the adjacency matrix ˜A. Subsequently, we
compute exp(˜A)1 and 1T exp(˜A) to rank nodes. To simplify the discussion, we will
let M denote either one of the matrices E→ and ˜A.

To avoid overflow, we can evaluate (an approximation of) the spectral radius μ of
M and compute exp(M −μI) instead of exp(M). The replacement of M by M −μI

does not affect the relative importance of edges and nodes in the graph. This rescaling
has also been used in [13].

Large memory requirements make it impossible to evaluate the exponential of
the matrices from the Medium-Twitter example in Section 7.2 on a standard lap-
top computer. This difficulty can be circumvented by approximating exp(M) by a
low-rank matrix that is determined by application of a few steps of the Arnoldi or
nonsymmetric Lanczos processes. We will compare these methods.

609Numerical Algorithms (2021) 88:583–614

8.1 The Arnoldi process

Let M ∈ R
n×n and 1 = [1, . . . , 1]T ∈ R

n. Application of � � n steps of the Arnoldi
process to the matrix A with initial vector 1 gives the Arnoldi decomposition:

MW� = W�H� + g�1T
� , (8.1)

where the columns of the matrix w� = [w1,w2, . . . ,w�] ∈ R
n×� form an orthonor-

mal basis for the Krylov subspace K�(M, 1) = span{w1, Mw1, . . . , M
�−1w1} and

w1 = 1/‖1‖. Here, ‖ · ‖ denotes the Euclidean vector norm. The matrix H� ∈ R
�×�

is of upper Hessenberg form and g� ∈ R
n satisfies WT

� g� = 0; details on the Arnoldi
process can be found, e.g., in Meurant [41] and Saad [42, Chapter 6]. We assume that
� is small enough so that the decomposition (8.1) with the stated properties exists.
This is the generic situation. The computation of this decomposition requires the
evaluation of � matrix-vector products with the matrix M . We approximate exp(M)1
by the right-hand side of

exp(M)1 ≈ W� exp(H�)11‖1‖; (8.2)

see, e.g., [43, 44] for properties of this approximation method. For many adjacency
matrices M , it suffices to let � in the decomposition (8.1) be fairly small to obtain a
good enough approximation of exp(M)1. This is illustrated below. When the matrix
M is large and � is fairly small, the dominating computational effort required to
compute the left-hand side of (8.1) is the evaluation of � matrix-vector products with
M . In applications of interest to us, the matrix M generally is nonsymmetric. Then,
the computations have to be repeated withM replaced byMT when an approximation
of exp(MT)1 also is desired.

8.2 The nonsymmetric Lanczos process

Application of � steps of the nonsymmetric Lanczos process to the matrix M ∈ R
n×n

with initial vector 1 = [1, 1, . . . , 1]T ∈ R
n gives the Lanczos decompositions:

MV� = V�T� + δ�+1v�+11T
� ,

MT W� = W�T
T
� + β�+1w�+11T

� ,
(8.3)

where the columns of the matrix V� = [v1, v2, . . . , v�] ∈ R
n×� span the Krylov

subspace K�(M, v1) = span{v1, Mv1, . . . , M�−1v1} with v1 = 1/‖1‖, and the
columns of the matrix W� = [w1,w2, . . . ,w�] ∈ R

n×� span the Krylov subspace
K�(M

T ,w1) = span{w1, Mw1, . . . , M
�−1w1} with w1 = 1/‖1‖. The columns of

the matrices V� and W� are biorthogonal, i.e., V T
� W� = I�. Moreover, V T

� w�+1 = 0
and WT

� v�+1 = 0. It follows from (8.3) that

W�MV� = T�.

The matrix T� ∈ R
�×� is tridiagonal. For details on the nonsymmetric Lanczos

method, see, e.g., Saad [42, Chapter 7]. We assume that � is small enough so that the
decompositions (8.3) with the stated properties exist. How to proceed when this is
not the case is discussed in [45]. The computation of the decomposition (8.3) requires

610 Numerical Algorithms (2021) 88:583–614

� matrix-vector product evaluations with M and with MT . Analogously to (8.2), we
use the approximation:

exp(M)1 ≈ V� exp(T�)11‖1‖.
In our experience with large-scale real-world networks, we found that a small number
of steps, �, with the nonsymmetric Lanczos algorithms, typically were sufficient to
render a quite accurate approximation of exp(M)1.

8.3 Approximations for theMedium-Twitter example

This section discusses in detail applications of the Arnoldi and nonsymmetric
Lanczos processes to the ranking of the nodes of the Medium-Twitter example
of Section 7.2. We first apply � steps of the Arnoldi or nonsymmetric Lanczos
processes to one of the three matrices ˜E→

SW, ˜E→
ODS, and

˜E→
SDS, with initial vector

1 = [1, . . . , 1]T . The purpose of these computations is to determine edge weights
and form the weighted adjacency matrix ˜A following (6.1). Subsequently, we apply
the Arnoldi and nonsymmetric Lanczos processes to approximate exp(˜A)1 and
1T exp(˜A) to rank the nodes of the original graph.

Since we are interested in the node ranking, we show the smallest number of itera-
tions with the Arnoldi and nonsymmetric Lanczos processes, when applied to one of
the matrices ˜E→

SW, ˜E→
ODS, and

˜E→
SDS and to ˜A, required so that the ranking of the top

20 nodes does not change when carrying out more steps. While this “stopping cri-
terion” is not practical to use for the Arnoldi and nonsymmetric Lanczos processes,
it illustrates that only a fairly small number of steps are required to gain insight into
the node ordering. We found this to be true for other real-world large-scale networks
as well. Hence, the computations required for many real-world large-scale network
problems are not very expensive. Table 9 reports results for the matrices ˜E→

SW, ˜E→
ODS,

and ˜E→
SDS in the top row of each “window.” Of course, identical ranking does not

imply identical ADR and AUR values. The table therefore also displays the error in
these values as well as the errors achieved when the number of iterations is increased.
The “exact values” are determined by carrying out 100 iterations with the Arnoldi
and nonsymmetric Lanczos processes.

The computations were carried out on a Lenovo Ideapad 510 laptop computer with
a 2.5-GHz Intel Core i7 processor and 6-GB 2133 MHz DDR4 memory using MAT-
LAB. Each time reported in Table 9 is the average of 10 runs. The adjacency matrix
˜E→
SW has the largest number of nonvanishing entries, and the adjacency matrix ˜E→

SDS
the least. We observe that the former matrix requires the largest number of itera-
tions and the longest computing time to satisfy our “stopping criterion,” and the latter
matrix requires the smallest number of iterations and the shortest computing time.
In this example, the Arnoldi process requires more iterations to satisfy the “stopping
criterion” than the nonsymmetric Lanczos process, but the fact that each iteration
with the latter requires two matrix-vector product evaluations, while the former only
demands the evaluation of one matrix-vector product evaluation per iteration, results
in that application of the Lanczos process does not always require less computing
time than the Arnoldi process.

611Numerical Algorithms (2021) 88:583–614

Table 9 Comparison of the performance of Arnoldi and nonsymmetric Lanczos approximations when
applied to the Medium social network using simply weighted (SW), out-degree scaled (ODS), and strongly
degree scaled (SDS) adjacency matrices for the line graph

Arnoldi Nonsymmetric Lanczos

Number of Time ADR rel. AUR rel. Number of Time ADR rel. AUR rel.

iterations (s) error error iterations (s) error error

16 34.5 2.2E−2 9.9E−3 8 33.5 5.8E+1 1.4E+3

SW 17 36.2 4.1E−3 2.0E−3 11 41.6 4.5E−3 8.6E−2

20 40.6 2.1E−5 3.9E−5 14 52.1 9.1E−6 1.1E−4

10 20.9 1.8E−1 2.0E−1 6 27.9 1.5E−2 1.5E−2

ODS 11 24.0 3.2E−2 1.3E−3 7 30.4 2.3E−3 2.3E−3

20 39.6 8.7E−9 3.4E−7 14 32.7 6.1E−7 6.2E−7

8 3.7 1.1E−1 3.1E−2 5 3.0 8.1E−1 8.1E−1

SDS 9 4.1 1.7E−3 9.0E−3 6 3.5 6.6E−3 6.6E−3

20 10.8 2.1E−10 3.1E−9 14 7.5 2.7E−7 1.6E−7

The matrix line graph adjacency matrices are about 106 ×106, whereas the matrix
˜A is only about 104×104. The line graph adjacency matrices are very sparse. On aver-
age, the Arnoldi and nonsymmetric Lanczos processes applied to the approximation
of exp(˜A)1 required 5 iterations each, computed in less than 0.1 s.

9 Conclusion

While the incorporation of edge weights into methods based on the adjacency matrix
is fairly direct, incorporating node weights is less straightforward. Similarly, the com-
putation of importance or centrality measures for nodes has been well studied, but the
extension of matrix function methods to compute importance measures for edges also
runs into some difficulties. In this article, we described how matrix function meth-
ods can be combined with node weights, as well as for computing edge importance
measures, by using line graphs.

We discussed several novel modeling approaches to determine the most impor-
tant nodes in a graph with positive node weights. These methods are built upon the
notions of aggregate reachability (downstream and upstream, for directed graphs),
which use the matrix exponential applied to a weighted adjacency matrix for the net-
work. We investigated several ways in which node weights can be incorporated into
an adjacency matrix. While this paper focuses on the application of the matrix expo-
nential, it is straightforward to replace this function by a resolvent. Discussions on
the use of the resolvent can be found in, e.g., [5, 12, 14].

In Section 5, we studied analytically the sensitivity of some of the measures of
importance to changes in the weight of a single edge. Those results show that the
measures of importance considered behave as expected (that is, increasing the weight

612 Numerical Algorithms (2021) 88:583–614

of a node does not decrease its importance), at least for small perturbations; we also
found some conditions under which the expected behavior holds regardless of the
magnitude of the perturbation.

As many networks of interest are large, the adjacency matrix of the network graph,
and especially the adjacency matrix of the corresponding line graph, can be very
large. In Sections 8.1 and 8.2, we discussed how to use the Arnoldi and nonsymmetric
Lanczos processes to make approximate computations feasible.

Acknowledgments The authors would like to thank a referee for comments that lead to clarifications of
the presentation.

Funding This work was supported in part by NSF grants DMS-1729509 and DMS-1720259.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. Aldous, J.M., Wilson, R.J.: Graphs and Applications: An Introductory Approach. Springer, London
(2000)

2. Baskaran, T., Blöchl, F., Brück, T., Theis, F.J.: The Heckscher–Ohlin model and the network structure
of international trade. Int. Rev. Econ. Finance 20, 135–145 (2011)

3. Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press,
Oxford (2012)

4. Liu, X., Bollen, J., Nelson, M.L., Vande Sompel, H.: Co-authorship networks in the digital library
research community. Inf. Process. Manag. 41, 1462–1480 (2005)

5. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)
6. Park, K., Lee, K., Park, S., Lee, H.: Telecommunication node clustering with node compatibility and

network survivability requirements. Manag. Sci. 46, 363–374 (2000)
7. Scott, A.J.: A programming model of an integrated transportation network. In: Papers of the Regional

Science Association, vol. 19, pp. 215–222. Springer (1967)
8. Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L.,

Chang, M.: Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004)
9. Estrada, E., Hatano, N.: Communicability in complex networks. Phys. Rev. E. 77, 036111 (2011)
10. Benzi, M., Klymko, C.: Total communicability as a centrality measure. J. Complex Netw. 1(2), 124–

149 (2013)
11. De la Cruz Cabrera, O., Matar, M., Reichel, L.: Analysis of directed networks via the matrix

exponential. J. Comput. Appl. Math. 355, 182–192 (2019)
12. Estrada, E., Higham, D.J.: Network properties revealed through matrix functions. SIAMRev. 52, 696–

714 (2010)
13. Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Network analysis via partial spectral factorization

and Gauss quadrature. SIAM J. Sci. Comput. 35, A2046–A2068 (2013)
14. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)
15. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted

networks. Proc. Natl. Acad. Sci. 101(11), 3747–3752 (2004)
16. Chu, X., Zhang, Z., Guan, J., Zhou, S.: Epidemic spreading with nonlinear infectivity in weighted

scale-free networks. Physica A: Stat. Mech. Appl. 390(3), 471–481 (2011)

613Numerical Algorithms (2021) 88:583–614

http://creativecommonshorg/licenses/by/4.0/

17. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E. 70(5), 056131 (2004)
18. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: Generalizing degree

and shortest paths. Soc. Netw. 32(3), 245–251 (2010)
19. Wei, D., Deng, X., Zhang, X., Deng, Y., Mahadevan, S.: Identifying influential nodes in weighted

networks based on evidence theory. Physica A: Stat. Mech. Appl. 392(10), 2564–2575 (2013)
20. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.D.: A resilient, low-frequency, small-

world human brain functional network with highly connected association cortical hubs. J. Neurosci.
26, 63–72 (2006)

21. Leung, I.X.Y., Chan, S.Y., Hui, P., Lio, P.: Intra-city urban network and traffic flow analysis from gps
mobility trace. arXiv:1105.5839 (2011)

22. Scarsoglio, S., Laio, F., Ridolfi, L.: Climate dynamics: a network-based approach for the analysis of
global precipitation. PLoS One 8(8), e71129 (2013)

23. Diestel, R.: Graph Theory. Springer, Berlin (2000)
24. Godsil, C., Royle, G.F.: Algebraic Graph Theory. Springer, New York (2013)
25. Chen, W.-K.: Graph theory and its engineering applications, vol. 5. World Scientific, Singapore (1997)
26. De la Cruz Cabrera, O., Matar, M., Reichel, L.: Edge importance in a network via line graphs and the

matrix exponential. Numer. Algorithm. 83, 807–832 (2020)
27. Estrada, E.: Edge adjacency relationships and a novel topological index related to molecular volume.

J. Chem. Inf. Comput. Sci. 35, 31–33 (1995)
28. Gutman, I., Estrada, E.: Topological indices based on the line graph of the molecular graph. J. Chem.

Inf. Comput. Sci. 36, 541–543 (1996)
29. Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein

interaction networks. PROTEINS: Struct. Funct. Bioinform. 54, 49–57 (2004)
30. Pizzuti, C.: Overlapped community detection in complex networks. In: Proceedings of the 11th

Annual conference on Genetic and evolutionary computation, pp. 859–866. ACM (2009)
31. Thulasiraman, K., Swamy, M.N.S.: Graphs: Theory and Algorithms. Wiley, New York (1992)
32. Crofts, J.J., Estrada, E., Higham, D.J., Taylor, A.: Mapping directed networks. Electron. Trans. Numer.

Anal. 37, 337–350 (2010)
33. Estrada, E., Silver, G.: Accounting for the role of long walks on networks via a new matrix function.

J. Math. Anal. Appl. 449, 1581–1600 (2017)
34. Zou, F., Li, X., Gao, S., Wu, W.: Node-weighted Steiner tree approximation in unit disk graphs. J.

Comb. Optim. 18(4), 342–349 (2009)
35. Pelillo, M., Siddiqi, K., Zucker, S.W.: Many-to-many matching of attributed trees using association

graphs and game dynamics. In: International Workshop on Visual Form, pp. 583–593. Springer (2001)
36. Heitzig, J., Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: Node-weighted measures for complex

networks with spatially embedded, sampled, or differently sized nodes. Eur. Phys. J. B 85(1), 38
(2012)

37. Bini, D.A., DelCorso, G.M., Romani, F.: Evaluating scientific products by means of citation-based
models: a first analysis and validation. Electron. Trans. Numer. Anal. 33, 1–16 (2008)

38. Nichol, D., Jeavons, P., Fletcher, A.G., Bonomo, R.A., Maini, P.K., Paul, J.L., Gatenby, R.A., Ander-
son, A.R.A., Scott, J.G.: Steering evolution with sequential therapy to prevent the emergence of
bacterial antibiotic resistance. PLoS Comput. Biol. 11(9), e1004493 (2015)

39. Li, F., Chen, Y., Xie, R., Abdesslem, F.B., Lindgren, A.: Understanding service integration of
online social networks: A data-driven study. In: 2018 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops), pp. 848–853. IEEE (2018)

40. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)
41. Meurant, G.: Computer Solution of Large Linear Systems. Elsevier, Amsterdam (1999)
42. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
43. Beckermann, B., Reichel, L.: Error estimation and evaluation of matrix functions via the Faber

transform. SIAM J. Numer. Anal. 47, 3849–3883 (2009)
44. Knizhnerman, L.A.: Calculation of functions of unsymmetric matrices using Arnoldi’s method. USSR

Comput. Math. Math. Phys. 31(1), 1–9 (1991)
45. Bai, Z., Day, D., Ye, Q.: ABLE: An adaptive block Lanczos method for non-hermitian eigenvalue

problems. SIAM J. Matrix Anal. Appl. 20, 1060–1082 (2009)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

614 Numerical Algorithms (2021) 88:583–614

http://arxiv.org/abs/ 1105.5839

	Centrality measures for node-weighted networks via line graphs and the matrix exponential
	Abstract
	Introduction
	Graphs
	Notation
	Matrix representation of graphs
	Adjacency and incidence matrices of unweighted graphs
	Adjacency and incidence matrices of edge-weighted graphs

	Line graphs
	Line graph of an undirected graph
	Line graphs of a directed graph

	Identifying the most important edges and nodes in edge-weighted graphs
	Importance of nodes for undirected and directed graphs
	Importance of edges in undirected networks
	Importance of edges in directed graphs

	Transformation of node-weighted to edge-weighted graphs
	Edge weights from endpoint node weights
	Sum of endpoint node weights
	Product of endpoint node weights
	Inheriting the weight of an endpoint node

	Factorizable node weight functions
	Graph node weights to line graph edge weights
	Simple weighting
	Scaling by node degree
	Strong degree scaling

	The sensitivity of node centrality to weight change
	Preliminaries
	Matrix perturbation results
	Example of sensitivity to weight change

	Computing node importance in node-weighted graphs
	Real-life examples
	Genotype mutation
	Social networks: Medium and Twitter

	Computational aspects
	The Arnoldi process
	The nonsymmetric Lanczos process
	Approximations for the Medium-Twitter example

	Conclusion
	References

