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ABSTRACT: We report a regioselective, nickel-catalyzed syn-
1,2-carboamination of non-conjugated alkenyl carbonyl com-
pounds with O-benzoyl hydroxylamine (N–O) electrophiles and 
aryl/alkylzinc nucleophiles to afford β- and γ-amino acid deriva-
tives. This method enables preparation of products containing 
structurally diverse tertiary amine motifs, including heterocycles, 
and can also be used to form quaternary carbon centers. The reac-
tion takes advantage of a tethered 8-aminoquinoline directing 
group to control the regiochemical outcome and suppress two-
component coupling between the N–O electrophile and or-
ganozinc nucleophile. KEYWORDS:  nickel catalysis, C–N cou-
pling , alkene, directing group, electrophilic nitrogen 

Nitrogen-containing small-molecules comprise a significant 
portion of all known medicines.1 Thus, novel methods for the 
formation of carbon–nitrogen (C–N) bonds have been actively 
pursued.2 1,2-Carboamination represents an appealing strategy for 
converting readily available alkene starting materials into valuable 
structurally complex amine products in an expedient manner 
(Figure 1). This transformation can be carried out using different 
modes of reactivity, including a classical-polarity approach in 
which the nitrogen-based reactant functions as a nucleophile (i.e., 
R2NH) and an umpolung approach where the nitrogen-based reac-
tant is an electrophile (i.e., R2NX, X = halide or pseudohalide), as 
depicted in Figure 1A.  Catalytic intramolecular (two-component) 
alkene carboamination involving both polarity types has been 
extensively studied.3 Intermolecular (three-component) variants, 
on the other hand, remain comparatively unexplored and have 
typically been limited to conjugated alkenes (e.g., styrenes or 
acrylates).4  

 In terms of precedents involving non-conjugated, un-
strained alkenes,5 Liu and coworkers have reported palladium-
catalyzed carbonylative 1,2-carboamination using 2-oxazolidone 
or phthalimide nucleophiles to afford terminal β-amino acids.5a 
Later, this group reported a similar net transformation involving 
an azide-containing hypervalent iodine reagent.5b These two re-
ports rely on rapid migratory insertion of CO to outcompete side 
reactions, such as β-H elimination. Our group has reported a pal-
ladium-catalyzed directed 1,2-carboamination of unactivated al-
kenes via a classical polarity approach (Figure 1D).6 In particular, 
we demonstrated regioselective anti-addition of imides, amides, 
sulfonamides, and various azaheterocycles with aryl iodides 
across alkenes. These contributions notwithstanding, 1,2-
carboamination of non-conjugated alkenes employing aliphatic 
amines and alkyl carbon coupling partners remain unexplored. 
The goal of the present study was to address this knowledge gap 

through the development of a three-component umpolung carbo-
amination of a non-conjugated alkene using a substrate directivity 
strategy. 

 

Figure 1. Umpolung Carboamination Backgroud. 

Electrophilic aminating reagents have a rich history in enabling 
C–N bond formation.7 During the past few years, examples of 
umpolung carboamination of alkenes and allenes have been de-
scribed. 4a,4c For example, building on seminal reports by Narasa-
ka,8 Bower and coworkers described an intramolecular umpolung 
carboamination of 𝛾,δ-unsaturated oxime esters with arylboronic 
ester coupling partners.9 The Zhu group later described analogous 
reactivity with 1,3,4-oxadiazole C–H nucleophiles (Figure 1B).10 
Regarding intermolecular examples, in 2013 the Zhang group 
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described an umpolung radical-based copper-catalyzed aminocya-
nation of styrenes employing N–F reagents (Figure 1C).4a Last 
year Liu and coworkers published an enantioselective aminoaryla-
tion of styrenes also catalyzed by copper using N–F reagents as 
electrophiles.4c 
Table 1. Selected Optimization of Reaction Conditionsa 

 
aReaction conditions:  1a (0.1 mmol), 2a (1.0–1.2 equiv), Me2Zn 
(1.0 M in heptane), 60 °C, 18–24 h. 1H NMR yields reported with 
CH2Br2 as internal standard. Isolated yields in parentheses. 

In contrast, analogous transformations involving the use of 
electrophilic aminating reagents in nickel-catalysis have been less 
extensively studied.7g,11 Two-component nickel-catalyzed C–N 
cross-couplings between organometallic nucleophiles and N–O 
electrophiles have been described by the Johnson,11a Jarvo,11b and 
Knochel groups.11c To the best of our knowledge, only a single 
example of nickel-catalyzed alkene carboamination with organo-
metallic nucleophiles has been reported to date, an intramolecular 
system developed by Selander and coworkers in 2017 (Figure 
1B).7g,11e Realization of an intermolecular nickel-catalyzed carbo-
amination process would present the opportunity to rapidly gener-
ate medicinally motifs with dense functionality.  

We recently described substrate-directed nickel-catalyzed 
three-component conjunctive cross-coupling reactions12 that ap-
pend differentiated alkyl/aryl fragments to β,𝛾- and 𝛾,δ-
unsaturated carbonyl compounds using aryl/alkyl halides and 
aryl/alkyl zinc reagents.13 The regioselectivity of these reactions is 
controlled by a tethered 8-aminoquinoline (AQ) directing group 
that stabilizes 5- or 6-membered metallacycles, thereby suppress-
ing undesired side reactions, such as β-hydride elimination or 
two-component cross-coupling. Given these results we wondered 
if it would be possible to employ O-benzoylhydroxylamines as 
electrophiles in lieu of aryl/alkyl halides to synthesize β- and 𝛾-
amino acid derivatives under nickel catalysis. We surmised that 
this approach would complement our previous palladium(II)-
catalyzed method (Figure 1D) in several respects.6 Namely it 
would be syn-selective, proceed with the opposite sense regiose-
lectivity, enable use of alkyl coupling partners, and potentially be 
compatible with alkenes distal from the AQ group (Figure 1E).  

To test this idea, we elected to use alkene 1a as the pilot sub-
strate given its unique effectiveness in earlier work13-14 and 2a as 
the electrophilic nitrogen source based on its success in various 

other catalytic methods. These starting materials were combined 
with commercially available dimethylzinc solution in the presence 
of catalytic nickel. With 20 mol % Ni(cod)2 we observed for-
mation of product 3a (Table 1) in 71% yield (Table 1, Entry 1). 
DMF, toluene, acetonitrile, and dioxane were also tested under 
conditions otherwise identical to those in entry  
Table 2. Scope of O-benzoylhydroxylamines and Or-
ganozinc reagents.a 

 
aReaction conditions: 1a (0.2 mmol), 2 (1.2 equiv), Me2Zn (1.0 
equiv, 1.0 M in heptane), THF (0.075 M). bEt2Zn (1.0 M in hex-
anes). cR’ZnBr (2 equiv, 0.5 M in THF). d0.1 mmol scale. eCy2Zn 
(1.0 equiv, 0.4 M in ether). fPh2Zn (1.6 equiv, solid).  

1. The reaction proceeded in toluene and dioxane, though yields 
were attenuated compared to in THF. Considering conditions 
from our previous work13b we attempted to drive the reaction to 
completion by using excess Me2Zn, but in this case we found 
significantly diminished yields when more than one equivalent 
was used. We also found that the reaction was higher yielding at 
lower concentrations, with the optimal concentration being 0.075 
M 1a in THF. Lower catalyst loadings of 10–15 mol % gave 
comparable yields, though decreasing the catalyst loading further 
(5 mol %) led to slightly diminished yield. Increasing the amount 
of 2a to 1.2 equiv provided 3a in 84% 1H NMR yield (79% isolat-
ed). We also found that the reaction performs comparably well 
using several bench-stable Ni(II) salts, enabling a glove-box free 
protocol. The product 3a was isolated in 77% yield using NiCl2 as 
the precatalyst.  

Having optimized the reaction conditions, we proceeded to ex-
plore the O-benzoylhydroxylamine electrophile scope (Table 2). 

entry cat. Ni Me2Zn (equiv) THF (M) yield 3a (%)

1 20 mol% Ni(cod)2 1.0 0.10 71

2 20 mol% Ni(cod)2 2.0 0.10 15

3 20 mol% Ni(cod)2 3.0 0.10 n.d.

4 20 mol% Ni(cod)2 1.0 0.25 60

5 20 mol% Ni(cod)2 1.0 0.50 47

6 20 mol% Ni(cod)2 1.0 1.0 10

7 15 mol% Ni(cod)2 1.0 0.10 72

8 10 mol% Ni(cod)2 1.0 0.10 62

9 10 mol% Ni(cod)2 1.0 0.075 74

10 5 mol% Ni(cod)2 1.0 0.075 68

2a (equiv)

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

11 15 mol% Ni(cod)2 1.0 1.2 0.075 84 (79)

12 15 mol% NiCl2 1.0 1.2 0.075 80 (77)

13 15 mol% Ni(acac)2 1.0 1.2 0.075 75

14 15 mol% NiBr2•glyme 1.0 1.2 0.075 60

15 15 mol% NiBr2 1.0 1.2 0.075 n.d.
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We found that several hetereocyclic motifs (3b–3g) frequently 
found in bioactive compounds were well-tolerated, including 
thiomorpholine, tert-butyoxycarbonyl-protected piperazine, 2-
(piperazin-1-yl)pyrimidine, 4,5,6,7-tetrahydrothieno[3,2-
c]pyridine, piperidine, and pyrrolidine. An array of N–O reagents 
derived from acyclic amines (2h–2l), including N- methyl-N-
benzylamine, diethylamine, dibenzylamine and diallylamin also  
Table 3. Scope of Alkene Substrates.a 

  
aReaction conditions: 1a (0.2 mmol), 2 (1.2 equiv), Me2Zn (1.0 
equiv, 1.0 M in heptane), THF (0.075 M). b0.1 mmol scale.  

reacted under optimized conditions. Sterically hindered or espe-
cially reactive N–O reagents could not be used as coupling part-
ners in this reaction; primary-amine-derived electrophiles were 
also not tolerated.  (For a more extensive list of unsuccessful ex-
amples, see SI). The product 3l was obtained in a similar yield 
using NiCl2, highlighting its efficacy as a substitute for Ni(cod)2. 

The reaction was also compatible with a variety of di-
organozinc and organozinc halide nucleophiles, though some 
reactions were found to proceed in diminished yields. In some 
cases this could be overcome by slow addition of the organozinc 
nucleophile, demonstrated in the synthesis of 3m, which was iso-
lated in 87% yield. Several other primary alkylzinc nucleophiles 
were compatible, including propyl (3n), ethyl propionate (3o) and 
benzyl (3p), providing the corresponding products in moderate 
yields. Secondary alkylzinc nucleophiles such as cyclobutyl (3q) 
and cyclohexyl (3r) could also be employed and provided moder-
ate yields. More sterically congested secondary and tertiary car-
bon nucleophiles were unsuccessful under the optimized reaction 
conditions. We observed that monoalkylzinc halides were gener-
ally lower yielding that dialkylzinc reagents, likely due to their 
well-known attenuated nucleophilicity. We hypothesize that the 
need for excess alkylzinc halide (four times more than in the case 
of dialkylzinc reagents) is due to competitive reduction of the 
electrophile 2a before it is able to react in the desired pathway, 

leading to decreased yields. In the case of secondary nucleophiles, 
we believe competing β-hydride elimination pathways generates 
reducing species in solution that facilitate electrophile decomposi-
tion. We have also isolated aminoarylated product 3s in 27% 
yield.  

We also explored the scope of alkene substrates (Table 3) and 
found that the reaction was compatible with a variety of substitut-
ed alkenes. The relative stereochemistry of 4a was determined by 
X-ray crystallography, establishing that the reaction proceeded in 
a syn-selective manner.13 The stereochemistry of other products 
derived from internal 1,2-  

 

Figure 2. Reaction Scale-Up and 8-Aminoquinoline Removal. 

disubstituted alkenes were assigned by analogy. Product 4a was 
also obtained using NiCl2 as the precatalyst and was obtained with 
similar yield. We also found that a phthalimide-protected amine 
could be tolerated under the reaction conditions to afford carbo-
aminated product 4c in moderate yield. Given the success of set-
ting quaternary carbon centers in our previously published dial-
kylation reaction,13b we wondered whether this carboamination 
reaction could also function in sterically congested environments. 
We were pleased to find tri- and 1,1-disubstituted alkenes could 
be used to synthesize compounds 4d and 4e, respectively, in good 
yields, demonstrating the ability of this method to forge quater-
nary carbons centers at either the β and 𝛾 position. The reaction 
also proceeded in moderate yields with α-methyl substituted 
alkenyl carbonyl compounds (4f), though we found the benzyl-
substituted analogue to proceed in significantly reduced yields 
(<10% isolated). A representative cyclic alkene substrate was 
unreactive. Beyond β,𝛾-unsaturated alkenyl carbonyl compounds, 
we found the reaction could be extended to 𝛾,δ-unsaturated sub-
strates to afford products 4g–4i and 2-vinylbenzamide-derived 
product 4j. 

We next performed the reaction on gram scale to demonstrate 
its synthetic utility. On 5-mmol scale, we were able to isolate 1.30 
g of 3a in 83% yield (Figure 2). We also validated two methods to 
remove the AQ directing group. Hydrolysis of 3a afforded β-
amino acid 3a’ in 76% yield. Using a method published by 
Ohshima and coworkers,15 methanolysis of 3a afforded ester 3a’’ 
in 79% yield. Furthermore, we found that a stereocenter at the 
carbon α to the carbonyl did not racemize under the reaction con-
ditions (see SI for details). Moreover, it has previously been 
demonstrated that α-stereocenters do not epimerize under the 
aforementioned methanolysis conditions.15 

Regarding the reaction mechanism, we surmised that two plau-
sible redox manifolds could be operative, namely Ni(0)/Ni(II) or 
Ni(I)/Ni(III) catalysis (depicted in general form as Ni(n)/N(n+2)). 
Moreover, the reaction could proceed via two different orders of 
events (Figure 3A).  In Pathway A, substrate-bound nickel com-
plex 6c would first undergo oxidative addition with 2 to form 
intermediate 6a. Transmetalation followed by insertion to the 
alkene would form 6b, which could reductively eliminate to form 
products 3–4 and regenerate the active catalyst. In the second 
potential mechanism, Pathway B, intermediate 6c would first 
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react via transmetalation, after which migratory insertion would 
lead to intermediate 6d. This species could then oxidatively add to 
2 to give nickel intermediate 6e. Reductive elimination would 
form the key C(sp3)–N bond and regenerate the catalytically ac-
tive low-valent nickel species. A third mechanistic scenario (see 
SI) in which C–N bond formation precedes transmetalation and 
C–C reductive elimination cannot be conclusively ruled out at this 
stage, though we consider it to be less likely because it would 
involve formation of larger nickelacycles in preference to smaller 
nickelacycles with both classes of substrates (6 versus 5 with 
products 3, and 7 versus 6 with products 4). 

Though a detailed investigation into the reaction mechanism is 
outside of the scope of the present study, we nevertheless per-
formed a series of preliminary experiments in an effort to shed 
light on the nature of the oxidative addition step. We first pre-
pared radical clock electrophile 2m (Figure 3B). Based on litera-
ture precedents, the corresponding aminyl radical that would be 
formed if SET oxidative addition were operative11c,e (as in a 
Ni(I)/Ni(III) cycle) is expected to cyclize with a first-order rate 
constant of approximately 104 s–1.16 When this electrophile was 
subjected to standard reaction conditions, only non-cyclized prod-
uct 3t was formed in 40% yield. No evidence of cyclization was 
observed  

 

Figure 3. Plausible Pathways and Preliminary Mechanistic 
Experiments. a See Ref. 18 for precedent regarding the back-
ground reaction between ZnMe2 and TEMPO. 

by 1H NMR of the crude reaction mixture. This result is consistent 
with a two-electron oxidation addition pathway or alternatively 
with an SET oxidation pathway involving a radical recombination 
step with a sufficiently large second-order rate constant (>104 M–

1s–1).17 
The effect of radical inhibitors was next studied (Figure 3C).18 

The reaction was not inhibited by the addition of BHT (1 equiv). 
On the other hand, addition of TEMPO (1 equiv) dramatically 
suppressed product formation; it should be emphasized, however, 
that interpretation of this latter result is complicated by a fast 
background reaction between TEMPO and dimethylzinc,19 as 
evidenced by formation of TEMPO–Me (1H NMR and LC-MS). 
To gain more clarity, we performed an analogous experiment with 
a representative alkylzinc bromide (cyclobutylzinc bromide). In 
this case, we again observed almost complete inhibition of the 
carboamination reaction, this time without concomitant formation 
of the alkyl–TEMPO adduct (see SI).20 Caution should be taken in 

interpreting this type of experiment due to the ability of the radi-
cal inhibitor to modify the catalyst21 among other possible side 
reactions. Nevertheless, if one assumes sufficiently clean reaction 
profiles and approximates trapping rates for N-centered radical 
based on available data for C-centered radicals,18 then these re-
sults would corroborate the radical clock experiment in terms of 
the rates that would be required for an SET pathway to be opera-
tive. Though these preliminary mechanistic studies were largely 
inconclusive, the results and the accompanying analysis will nev-
ertheless serve as a useful foundation for more detailed studies in 
the future.  

In summary, we have developed an intramolecular umpolung 
carboamination of non-conjugated alkenes that affords a variety 
of β- and 𝛾-amino acid and ester derivatives. The reaction is ena-
bled by a removable 8-aminoquinoline tethered directing group, 
which facilitates formation of stabilized 5- or 6-membered 
nickelacycles, suppresses β-hydride elimination and two-
component coupling, and determines the regiochemical outcome. 
The reaction tolerates a range of alkenes with various substitution 
patterns and proceeds in the presence of several synthetically 
important functional groups. 
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