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Abstract

The power series expansion of functions of the adjacency matrix for a network can be
interpreted in terms of walks in the network. This makes matrix functions, such as the expo-
nential or resolvent, useful for the analysis of graphs. For instance, these functions shed
light on the relative importance of the nodes of the graph and on the overall connectivity.
However, the power series expansions may converge slowly, and the coefficients of these
expansions typically are not helpful in assessing how important longer walks are in the net-
work. Expansions of matrix functions in terms of orthogonal or bi-orthogonal polynomials
make it possible to determine scaling parameters so that a given network has a specified
effective diameter (the length after which walks become essentially irrelevant for the con-
nectivity of the network). We describe several approaches for generating orthogonal and
bi-orthogonal polynomial expansions, and discuss their relative merits for network analysis.

Keywords Networks - Orthogonal polynomials - Matrix functions - Centrality

Mathematics Subject Classification (2010) 05C82 - 15A16 - 65F60

1 Introduction

Many complex systems that describe the interaction between entities can be modeled by
networks. For mathematical and statistical modeling, as well as for analysis, networks are
usually represented by a graph G = {V, E}, which consist of a set of vertices V = {v; };'.21

and a set of edges E = {ek}ﬁ= 1» the latter being the links between the vertices. A graph may
be undirected, in which case each edge e, represents a “two-way street” between a pair of
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vertices {v;, v;}, or directed, in which case at least one of the edges is a “one-way street”
between a pair of nodes. Examples of networks include:

—  Flight networks, with airports represented by vertices and flights by directed edges.

— Social networking services, such as Facebook, Twitter, and Snapchat, with members or
accounts represented by vertices, and interactions between any two accounts by edges,
which can be undirected (e.g., a “friendship”) or directed (e.g., “follow” or “like”).

—  Phone networks can be modeled by directed graphs, in which phone numbers are rep-
resented by vertices, and text messages or calls that occur in a fixed span of time by
edges from the originator to the receiver.

Numerous applications of networks and associated directed or undirected graphs are
described in [12, 14, 17, 19, 31].

We consider unweighted graphs G = {V, E} with n vertices v; and £ edges ey, with-
out self-loops or multiple edges. For a directed graph G, the associated adjacency matrix
A= [aij]ﬁjzl € R™ has the entry g;; = 1 if there is an edge emerging from vertex v; and
pointing to vertex v;; otherwise a;; = 0. Thus, A has vanishing diagonal entries and £ non-
vanishing entries. Typically, 1 < £ < n?, which makes the matrix A sparse. The adjacency
matrix for an undirected graph is symmetric and has 2¢ entries a;; = 1. Adjacency matri-
ces associated with weighted graphs can easily be defined by allowing the non-vanishing
entries to be arbitrary positive real numbers. The discussion of this paper can be extended
to weighted graphs. This is illustrated in Section 5.2.

A common task in network analysis is to determine which vertices of an associated graph
are the most important ones by measuring how well-connected a vertex is to other vertices
in the graph. This kind of importance measure, which often is referred to as a centrality
measure, ignores intrinsic properties of the vertices but often provides vital information
about the vertices just from network connections. Simple centrality measures for a vertex vy
of a directed graph are its in-degree and out-degree, which count the number of edges that
point directly to vy and the number of edges that emerge from vy, respectively. In undirected
graphs, every edge from vertex v; to vertex vy also is an edge from vertex vy to vertex
v;. The number of distinct edges that connect a vertex v to other vertices of the graph is
referred to as the degree of vy.

The in-degree, out-degree, or degree of a vertex vy are centrality measures that are eas-
ily computable. However, these measures may be unsatisfactory measures of importance of
a vertex vg, because they do not take into account the importance of the vertices that are
connected to vg. This shortcoming has spurred the introduction of several alternative cen-
trality measures. Of particular interest are centrality measures derived from the application
of matrix functions to the adjacency matrix A of G. A nice introduction to matrix functions
in network analysis is provided by Estrada and Higham [21]; see also [9-11, 15, 16, 19, 20]
for discussions and examples.

We will need the notion of a walk in a graph. A walk of length k is a sequence of k + 1
Vertices vj,, Vi, ..., Vi, and a sequence of k edges ej,, ¢j,, ..., e such that ¢j, points
from v;, to v, for j = 1,2, ..., k. The vertices in a walk do not have to be distinct.

A fundamental property of A is that for any positive integer k, the entry [A¥]; jof AK gives
the number of walks of length k that start at the vertex v; and end at the vertex v;; see, e.g.,
[21]. This suggests the use of linear combinations of powers of A to measure the centrality
of vertices of a graph. Commonly used matrix functions for measuring the centrality of
the vertices of a graph include the exponential function exp(y.A) and the resolvent (I —
v, A)~!, where ¥, and y, are positive user-chosen parameters; see, e.g., [21]. The power
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series expansions of these functions are given by

exp(yeA)
I —yA T = T+3A4+ A+ A + - (1.2)

1 1
1+yeA+5(yeA>2+g(yeAmm, (1.1)

For the resolvent, the parameter y, has to be chosen small enough so that the power series
(1.2) converges, that is, y, should be strictly smaller than 1/0(A), where p(A) denotes the
spectral radius of A.

Long walks are considered less important than short walks. Therefore, the coefficients
for high powers of A are chosen to be smaller than the coefficients for low powers. For
instance, the coefficients for A¥ are y*/(k!) for the exponential and y* for the resolvent.

The diagonal entries [exp(y.A)];; and [(/ — y,A)~11;; measure how easy it is to return
from the vertex v; back to itself via available edges. These entries are commonly referred
to as subgraph centralities of the vertex v;, and are used as centrality measures for the
vertex. Similarly, the entries [exp(y.A)];; and [(/ — yrA)’l],-j, for i # j, measure how
easy communication is between the vertices v; and v;. These entries are referred to as the
communicability between the vertices v; and vj; see, e.g., [21] for further details.

The subgraph centralities and communicabilities depend on the choice of the parameters
¥e and y, in (1.1) and (1.2). However, the choices of these parameters have not received
much attention in the literature. Insightful discussions are provided by Estrada et al. [20],
who interpret y, in (1.1) as reciprocal temperature in a system of oscillators, by Benzi and
Klymko [11], who analyze the behavior of the subgraph centrality and communicability as
the parameter y, in (1.1) goes to zero or infinity, or the parameter y, in (1.2) increases to
1/p(A) or decreases to zero, and by Aprahamian et al. [3] who examine how the parameters
¥ and Y, can be related.

We seek to shed some light on the choices of y, and y, by expanding the matrix functions
(1.1) and (1.2) in terms of orthogonal and bi-orthogonal polynomials. These expansions
help us define the effective diameter of a graph, which is the maximum length of walks that
contribute substantially to the communication within the network. The effective diameter
depends on the choices of the parameters y, and y,. In particular, these parameters can be
chosen to achieve a desired effective diameter. Our analysis complements that of Benzi and
Klymko [11].

The expansion of a matrix function as a power series, like (1.1) and (1.2), is not always
“efficient”, in the sense that many terms may be required to approximate the function to
desired accuracy. Often expansions in terms of suitably defined orthogonal polynomials
require fewer terms to approximate the matrix function to a specified accuracy. This means
that an expansion in terms of orthogonal polynomials gives a better idea of how important
long walks are in the network than a power series expansion. This paper investigates three
approaches for generating orthogonal polynomial bases, and evaluates their strengths and
weaknesses as tools for network analysis.

The three methods considered might seem quite different at first sight, but they can be
seen as particular cases of a general construction. Let A be an algebra, with an algebra prod-
uct Ax A — A, and assume that .4 also has an inner product (-, -) 4. Let P, denote the set of
polynomials of degree at most n. For ag € A, define a linear map P, — A by p — p(ayp).
Then we can pull back the inner product in A to P, by {p, g) = {p(ao), g(ap)) 4 (this is an
inner product in P, as long as p(ag) # O for all non-zero p € P, and n is sufficiently small).
Using this inner product, we can define a basis {po, p1, ..., pn} of orthogonal polynomials
for P,. As particular cases, we have:
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1. A = C(C(a,b]) (continuous functions on [a,b]), with the algebra product
given by point-wise multiplication, and the inner product given by (f, g)a =
f ab f(x)g(x)W(x)dx with an appropriate weight function W (x). We take ag to be the
identity function ap(x) = x on [a, b]. Then we obtain, for instance, the orthogonal
Chebyshev polynomials for the interval [a, b]; see Section 2.

2. A = R™ with matrix multiplication, and inner product given by (A, B4 =
trace(A” B). Here and throughout this paper the superscript 7 denotes transposition.
Let ap be the given, fixed, adjacency matrix A. Then we obtain the global Arnoldi (or
nonsymmetric Lanczos) orthogonal (or bi-orthogonal) polynomials; see Section 3.

3. A =R"™™ like above, but now with the inner product given by (A, B) 4 = 1T AT B1.
Taking ag again to be A, we obtain the standard Arnoldi (or nonsymmetric Lanczos)
orthogonal (or bi-orthogonal) polynomials; see Section 4.

This paper is organized as follows: Section 2 reviews the approximation of analytic func-
tions by expansions in terms of orthogonal polynomials. Expansions in terms of Chebyshev
polynomials, as well as in terms of orthogonal polynomials associated with inner prod-
ucts defined by the adjacency matrix A are considered. Section 3 focuses on orthogonal
and bi-orthogonal polynomials determined by the global Arnoldi and nonsymmetric Lanc-
zos methods, respectively. These are block iterative methods introduced by Jbilou et al.
[27, 28] for the solution of matrix equations and linear systems of equations with multi-
ple right-hand sides. Section 4 discusses the computation of orthogonal and bi-orthogonal
polynomials associated with the “standard” Arnoldi and nonsymmetric Lanczos methods,
respectively, and Section 5 presents a few numerical examples. Concluding remarks can be
found in Section 6.

2 Expansion of Functions in Terms of Orthogonal Polynomials

We review a few results from Trefethen [34]. Related results also can be found in, e.g., [24,
35]. Let p > 1 and i = +/—1. Following Trefethen [34, Chapter 8], we refer to the open
interior of the set

1 ) 1 .
3 (,0 exp(if) + p exp(—l@)) :0<60 <27

as a Bernstein ellipse, which we denote by E,,. This ellipse has foci at &1 and contains the
real interval [—1, 1]. The closer the interval [—1, 1] is to the boundary of E,, the closer
o > 1 1is to unity. Moreover, [E, % E,, for1 < p1 < p2.

Proposition 1 ([34, Theorem 8.1]) Let a function f, analytic on [—1, 1], be analytically
continuable to the open Bernstein ellipse E,, where it satisfies |f(x)| < My for some
constant M y independent of x in E,. Consider the expansion of f in terms of orthogonal
Chebyshev polynomials of the first kind,

T;(x) =cos(jarccos(x)), —1=<x=<1, j=0,1,..., 2.1)

with regard to the inner product

2 ! 1
(g, h) = ;/_lg(x)h(x)ﬁdx
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for sufficiently smooth functions g and h on the interval [—1, 1]. Thus,
o]
f) =) "¢iTix),  ¢j=(fT)). (2.2)
Then the expansion coefficients satisfy |co| < My and
lejl <2Mpp, j=1,2,.... (2.3)
Thus, the larger the Bernstein ellipse [E,, can be chosen, i.e., the larger p can be chosen,
the faster the bound for the coefficients c; decreases to zero with increasing j. The following

result can be shown by using the bounds of Proposition 1.

Proposition 2 ([34, Theorem 8.2]) Let f satisfy the conditions of Proposition 1. Define the
Chebyshev projection

n
Fu¥) =" ¢;Tj(x) 2.4
with the coefficients c; given by (2.2). Then
2Myp™"
_max If(x) S| = — 1 n=0,1,2,.... (2.5)

Thus, the bound for the approximation error (2.5) decreases to zero at the same rate as
the bound (2.3) for the highest order coefficient in (2.4).
The converse of Proposition 2 also holds.

Proposition 3 ([34, Theorem 8.3]) Let the function f be defined on the real interval
[—1, 1]. Suppose that there is a sequence of polynomials qo, q1, q2, . . ., with q; of degree at
most j, such that

max [f@) =@ <Cp7 =012,

for some constants C > 0 and p > 1 independent of n. Then f can be analytically
continued to an analytic function in the open Bernstein ellipse E,.

Example 1 Consider the Runge function

The power series expansion of f at the origin does not converge to f on the interval [—1, 1].
However, the expansion (2.4) converges to f on [—1, 1] according to (2.5) as n increases
with p = 1.22.

Example 2 We are particularly interested in the entire function f(x) = exp(x). The expan-
sion (2.4) of f converges to f on [—1, 1] faster than (2.5) for any p > 1 as n increases. We
therefore can expect the magnitude of the coefficients c¢; to decrease to zero quite rapidly
with increasing index j.

The fact that the magnitude of the terms of an expansion of an analytic function in terms

of suitably scaled orthogonal polynomials decays at least exponentially with the degree of
the polynomials holds for more general sets than the interval [—1, 1]. Let S be a Jordan
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946 M. Al Mugahwi et al.

domain in the complex plane C, i.e., the boundary of S is a Jordan curve. Let v denote
the conformal mapping from the exterior of the unit disc D, = {w € C : |w| > 1} to the
exterior of S with a pole at infinity. Then 1/ (w) has an expansion of the form

z=yw) =dw+dy+diw ' +dw 2+,

withd; e Cfor j =0,1,...,andd > O for |w]| sufficiently large. Let S, for some p > 1
denote the open set that is bounded by the curve

{zeC:z=vy(w), w=pexp@if), 0 <0 < 2m}, i=~—1.

Introduce the orthogonal polynomials pg, p1, p2, ... with respect to some inner product on
S, i.e., p; is of degree i and

1, i=j],
0, i#}j,
where dw is a positive measure with support on S and the bar denotes complex conjugation.
Define the finite expansion

(pi> pj) = /Spi(x)pj(x)dw(X) = { (2.6)

n
H@ =) ¢ipj@, ci={fip), Ji=01,....n 2.7)
=0
Then
limsuplcjll/j = /o*1
j—>oo
and
I/n
lim sup (max [f(@) = fa (z)|> =p (2.8)
n—00 z€S

see Gaier [24, Chapter 1] or Walsh [35, Chapter 6] for details. In particular, when S =
[—1, 1], we can choose

1
Y w) =W+ w™h,

and the set S, for some p > 1 is the Bernstein ellipse E,.

We are concerned with the expansion of the matrix functions (1.1) and (1.2) in terms of
the orthogonal polynomials py. Let A be the adjacency matrix associated with the graph G,
and consider the expansion

oo
exp(red) = Y e/ pr(A).
k=0

Since the polynomial pi(A) is a linear combination of the powers A, j=0,1,...k,
it only depends on walks of length at most k. The polynomials p; are independent of the

parameter y,, but the coefficients c,im are functions of this parameter.

Example 3 Let A € R™" be an adjacency matrix that is associated with an undirected

graph, and assume that its spectrum is contained in the interval [a, b], with —c0 < a < b <
oo. The identity

exp(yx) = Io(y) +2 ) Li(NT;), —l<x<l, 2.9)
j=1
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where the
( Y ) Jj+2¢

Lyy=) —2——  j=0.1,..., (2.10)
S0+ ))!

are modified Bessel functions of the first kind, the T; are defined by (2.1), and y is a real
constant, is a consequence of [1, Eq. (9.6.34)]. Since the spectrum of A is in [a, b], it is
appropriate to expand exp(y,A) in terms of Chebyshev polynomials for the interval [a, b].
They are given by

2 b+a .
10 =Tjx@).  x@=pT—i- . j=12..,
for a < z < b. We obtain from (2.9) that
exp(yz) = exp (%(b - a)x) exp (%(b + a)) (2.11)

exp (%(b + a)) Iy (g(b — a)) + Zi I; (%(b — a)) Tj[“’b](z)
Jj=1

Introduce the spectral factorization
A=SAST', A =diaglht, A2, ..., Al (2.12)
where the matrix S can be chosen to be real and orthogonal. Then

exp(yeA) = S diag[exp(yer1), exp(yera), - . ., €Xp(Yehn)] S
and, by (2.11),

exp(yehe) = exp (%(b + a)) I (%(b - a)) +2 Z I (—(b ) Tl (h)

This yields the expansion

o0
exp(reA) = Y ¢/ pi(A), (2.13)
where
pe(A) = TPNA), k=0,1,...,

c(()y") = exp (%(b + a)) Iy (%(b — a)) ,

o =20 (B ) 1 (Bo-0). k=12...
It is clear from (2.10) that the functions ¢t — (), j = 0, 1, ..., are increasing for t > 0
and, therefore, the coefficients c,((m for, k = 0, 1, ..., are increasing functions of y, > 0,

while the polynomials py are independent of y,. The larger y, is chosen, the more terms in
the expansion (2.13) should be included in an approximation of exp(y.A).

Assume that the first £41 terms c(ye po(A), c(y‘ p1(A),.. (VF pe(A) in the expansion
(2.13) are significant, and that the remaining terms are of comparatlvely small norm. Then
this suggests that only walks of length smaller than or equal to £ have to be considered when
analyzing the network represented by the matrix A. In particular, exp(y.A) may be approx-
imated well by a polynomial in A of degree at most £. We will say that £ is the effective
diameter of the graph G. The effective diameter depends on the parameter y,; the smaller
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948 M. Al Mugahwi et al.

¥e > 0 1is, the fewer terms are required. Thus, if we know that in our network all walks of
length larger than jo may be ignored, then y, can be chosen so that the terms c?"') pj(A) for
j > Jjo are negligible. We will provide a more precise definition of the effective diameter
below. The parameter y, in the resolvent can be chosen in a similar fashion.

Definition 1 Let the c; be coefficients in an expansion of a function of an adjacency matrix
in terms of orthogonal or bi-orthogonal polynomials. We refer to the smallest integer k > 1
such that
k1l
maxo< <k [cj| ~
as the §-effective diameter of the graph.

The intuition is that the matrix function under consideration can be well approximated,
when evaluated at A, by a polynomial of degree k, and therefore walks or multi-step con-
nections of length greater than k are mostly irrelevant for the communication within the
network. The §-effective diameter depends on the matrix function and the expansion used.

The determination of the expansion (2.13) requires that estimates of the largest and small-
est eigenvalues of A be known, so that the interval [a, b] can be chosen large enough to
contain the spectrum of A. Then the polynomials p(A) in (2.13) are of about unit norm
and the magnitude of each term in the expansion depends primarily on the size of the
coefficients c,(cy"). In this paper, we will use expansions in terms of orthogonal matrix poly-
nomials, whose computation does not require a priori knowledge of the spectrum of A.
When the matrix A is symmetric, these orthogonal matrix polynomials are generated with
the symmetric Lanczos process equipped with the matrix inner product

(My, Ma) p = trace(M[ M»), (2.14)
where My, M, € R"*", The associated matrix norm
IMllF =~/(M, M) (2.15)

is the Frobenius norm. For a nonsymmetric matrix A, orthogonal matrix polynomials py(A)
of degree k, fork =0, 1, 2, .. ., can be generated by the Arnoldi process furnished with the
inner product (2.14) and norm (2.15). Alternatively, families of bi-orthogonal polynomials
can be generated with the aid of the nonsymmetric Lanczos process. Arnoldi and Lanczos
processes using inner products of the form (2.14) have been studied in the context of solving
matrix equations and linear systems of equations with several right-hand sides, see Jbilou
et al. [27, 28], who refer to the Arnoldi and Lanczos processes so defined as global Arnoldi
and Lanczos processes, respectively. The approximation of matrix functions using this kind
of inner product has recently been discussed by Bellalij et al. [7], Bentbib et al. [8], and
Frommer et al. [23].

The approximation of the matrix functions (1.1) and (1.2) in terms of orthogonal matrix
polynomials that are determined by global Lanczos or Arnoldi processes is described in
Section 3. These expansions can be applied to determine suitable values of the parameters
Ye or y-. The computation of this kind of polynomial expansions requires the explicit eval-
uation of the matrix exponential or resolvent and, therefore, can be applied to adjacency
matrices A of small to moderate size. However, they cannot be used when the matrix A is
large. This situation is considered in Section 4, where we discuss expansions of the form

o0 o0
expeAv =Y ¢/ p(A, U=y =3 A, (216)
k=0 k=0
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for some vector v € R". These kinds of matrix functions have been discussed in, e.g.,
[10, 15, 30]. In the computed examples, we let v = [1,1,..., 117, but other choices of v
also are possible. The expansions (2.16) can be computed with the “standard” symmetric
or nonsymmetric Lanczos processes, or with the “standard” Arnoldi process. The com-
putation of these expansions does not require the evaluation of the matrix exponential or
resolvent. We note that the expansions (2.16) also are of interest when A is replaced by AT ;
see, e.g., [15].

3 The Computation of Orthogonal and Bi-Orthogonal Matrix
Polynomials

The algorithms of this section determine expansions of a matrix function in terms of
orthogonal and bi-orthogonal matrix polynomials. This allows for the computation of the §-
effective diameter of a graph without having to explicitly define a measure dw, like in (2.6).
The computation of the effective diameter in this manner provides insight into properties
of the graph, but is expensive when the adjacency matrix A is large. A cheaper approach is
described in Section 4.

Let A € R"*" be the adjacency matrix for a graph G, and let f be a function such that
f(A) is defined. It suffices that f is analytic in a simply connected region in the complex
plane that contains the spectrum of A in its interior; see, e.g., [25, 26] for details. Let P
denote the set of polynomials of degree at most &, and consider the approximation of f(A)
by a polynomial p € [P using the Frobenius norm (2.15). Thus, we would like to solve

min || f(A) — p(AllF. (3.1
PEP

The meaning of this norm is most transparent when the matrix A is normal, such as
symmetric or skew-symmetric. Then the eigenvector matrix S in (2.12) can be chosen to
be orthogonal or unitary. Substituting (2.12) into (3.1) gives the equivalent minimization
problem

;n}l,pk; |f ) = pOI. (32

Thus, the minimization problem (3.1) is a polynomial least-squares approximation problem
in the complex plane. We assume that the number of distinct eigenvalues A ; is strictly larger
than the degree k. Then problem (3.1) has a unique solution. For adjacency matrices for
“real” networks, this requirement on k generally is satisfied. In the rare events when it is
not, we can reduce k suitably.

The polynomial least squares problem (2.6)—(2.8) differs from the least-squares prob-
lem (3.2) in that the integral in (2.6) is replaced by a sum over the n eigenvalues of A. If
n is much larger than the degree k of the polynomial approximant and the eigenvalues A ;
are distributed fairly uniformly over a set S, then we can expect the solution of the discrete
approximation problem (3.2) to behave similarly as the solution of the approximation prob-
lem (2.6)—(2.8). In particular, the solutions p of (3.2) typically converge quite rapidly to f
as the degree k of the solutions increases. This is illustrated in Section 5.

When the graph G is directed, the associated adjacency matrix A € R"*" is nonsym-
metric. Assume for the moment that A has a spectral factorization (2.12) with a nonsingular
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950 M. Al Mugahwi et al.

matrix S made up of unit eigenvectors. We then obtain the bound
1/2

gg}g{ 1 (A) = p(A)IF < ISI20157 " I2 :};iﬁ 2} |F ) = pOpI? , (3.3)
]:

where ||-||2 denotes the spectral matrix norm. The derivation of the above bound uses the fact
that M1 M3 ||F < ||M1]l2]|M2| r for any pair of compatible matrices My and M,. The sum
in (3.3) is analogous to (3.2). We therefore expect fast reduction of the approximation error
when the degree k of the polynomial p increases and ||S||2||S™"||2 is not very large. In any
case, the polynomial expansion computed minimizes the left-hand side of (3.3). Computed
examples that illustrate the convergence of the left-hand side can be found in Section 5. We
remark that in the rare event that a spectral factorization of the form (2.12) does not exist,
the Jordan normal form can be used; see [26]. The sum in the right-hand side of (3.3) then
also contains terms with the magnitude of differences of derivative values of f and p at
eigenvalues of A associated with nontrivial Jordan blocks; see [26] for details.

Algorithm 1 The global Arnoldi process for approximating exp(y,A), A € R"*".

1. Let Vi = I/4/n, where I denotes the identity matrix of order n. Then ||V} | r = 1. Let
m denote the number of steps of the algorithm.
Forj=1,2,...,m Do:
cj—1 = (exp(yeA), Vj)F
W =AV;

EndDo
hj-H,j = ||[W]Fg.If hj-H,j = 0. Then Stop
Vier =W/hjy1j

EndDo

LRAANR WD
>
=
|
=X -

—
=

We turn to the computation of orthogonal matrix polynomials with respect to the inner
product (2.14) and associated norm (2.15). When A is nonsymmetric, such polynomials
can be computed with the global Arnoldi process [27, 28], described by Algorithm 1. The

matrices Vi, Vo, ..., V41 generated by the algorithm satisfy
1, j=k
(Vjavk)F_{O’ ‘]#k,

and it follows from the recursion formulas of the algorithm that V; = p;_;(A) for some
polynomial p;_y € P;_y for j =1,2,...,m + 1. Hence,

(P (A). LA F = {(1) Tk

Thus, the p; are the desired orthogonal polynomials. The scalars c; determined in line 3 of
Algorithm 1 are the expansion coefficients for

m—1
exp(veA) & Y ¢;p;(A). (3.4)
—t
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The polynomial in the right-hand side solves the minimization problem in the left-hand side
of 3.3) for k = m — 1 and f(A) = exp(y.A). The polynomials p;(A) are independent
of the parameter y,, but the coefficients c¢;_; computed in line 3 are not. The exponential
function may be replaced by the resolvent.

The main computational cost of Algorithm 1 is the evaluation of the matrix function
exp(ye.A) used in line 3 of the algorithm. The scalars h;; determined by Algorithm 1 yield
the nontrivial entries of an upper Hessenberg matrix

hig hip b3 him
ha1 hap ha3 ha,m
Hy = e R™*m, 3.5)
hm—l,m—2 hm—l,m—l hm—],m
0 hm,m—l hm,m

When the matrix A is symmetric, the recursion relations of Algorithm 1 simplify to give
the global symmetric Lanczos process for approximating exp(y, A). In particular, the matrix
(3.5) becomes symmetric and tridiagonal. We refer to [27] for details on and properties of
the global symmetric Lanczos process.

Algorithm 2 The global nonsymmetric Lanczos process for approximating exp(y,A).

1. Let V) =1I,, W = I,,/n. Choose number of steps m.
2. B1=81=0eR,Vop=Wy=0eR"™"
3. Forj=1,2,...,mDo:

4. cj—1 = (exp(y.A), W;)F

5. O’l\j:(AVj,Wj)F

6. V:AVJ‘—Ole]'—BjV]'_l

7. W:ATWj—ajo—Sjo_l

8. 8j+1 =WV, W)p|"/2.1f §;41 = 0. Then Stop
9. Bjv1 = (‘2, W)F /811

10. Witi = W/Bj+i

11. Vier=V /811

12. EndDo

When the matrix A € R"™” is nonsymmetric, approximations of functions of A also
can be determined with the aid of the global nonsymmetric Lanczos process described by
Algorithm 2. We assume that m is small enough so that the computations of the algorithm
can be carried out without breakdown. Algorithm 2 was first introduced by Jbilou et al. [28].

The recursion formulas of Algorithm 2 show that V; = p; _1(A) and W; = q;_1(A) for
some polynomials p;_1,q;—1 € P;j_j for j = 1,2,...,m + 1. The matrices V; and W;
are bi-orthogonal, i.e., they satisfy

1, j=k,
(W), Vi)r = { o G2k

It follows that the polynomials p; and gy are bi-orthogonal with respect to the bilinear form
(2.14), i.e.,
1, j=k,
(q;j(A), pr(A))F = {O, Ptk
Moreover, the polynomials p; and g; satisfy three-term recurrence relations. This follows
from the recursion relations of Algorithm 2.
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4 The Standard Arnoldi and Lanczos Processes

This section discusses the approximation of exp(y,A)v for some vector v # 0 by applica-
tion of the standard Arnoldi or Lanczos processes. In our computed examples in Section 5,
we let v = [1,1,...,1]17 e R", but other vectors also are of interest in applications;
see [15]. The methods described also can be applied to the approximation of the matrix
resolvent. As usual, we let A € R"*” be an adjacency matrix.

We would like to approximate exp(y.A)v by p(y.A)v, where p is a polynomial deter-
mined with the aid of the standard Arnoldi or Lanczos processes. The former is described
by Algorithm 3. The inner product used in the algorithm is the standard inner product in R”.

Algorithm 3 The standard Arnoldi process, A € R"*".

1. Letv; = v/|v|2. Let m denote the number of steps of the algorithm.
2, Forj=1,2,...,mDo:

3. w = Av;

4. Fori =1,2,..., jDo:

5. /’ll‘j = (w, v,')

6. w=w— h,’j Vi

7. EndDo

8. hj.;,_l'j = ||w||2.Ifhj+1,j = 0 Then Stop

9. Vjipl = w/hji1j
10. EndDo

Each iteration with Algorithm 3 generates a unit vector v that is orthogonal to the

previously computed vectors vy, v, ..., v;. It follows from the recursion formulas of the
algorithm that vj 1 = p;j(A)v, j =0, 1,2, ..., m, for certain polynomials p; € IP;. These

polynomials are orthogonal with respect to the inner product

(pj, k) = v (p; (AN pr(A)v.

We have

1, j=k
(pjapk>_{07 ‘]7+—k

The scalars h;; determined by Algorithm 3 define the nontrivial entries of an upper Hessen-
berg matrix H,, € R™*™, which is analogous to the matrix (3.5). The recursion formulas of
Algorithm 3 can be expressed as

AVy =V Hy +hj+1,jvm+le,7,;s

where e; denotes the jth axis vector of appropriate dimension and V,, = [v1, v2, ..., V] €
R™™ Tt can be verified by induction that

p(A)v = |[v]|p(Hn)er
for any polynomial p € P,,_;. This suggests the polynomial approximation
exp(Ye A)v = |[v||Vin exp(ve Him)er; 4.1

see, e.g., [6] for error bounds. Note that the right-hand side is a linear combination of
po(A)v, p1(A)v, ..., pm—1(A)v. This leads us to expect that for a general vector v, the
convergence behavior of the right-hand side (4.1) towards the left-hand side as m increases
is similar to the convergence for the problems considered in Section 2. In particular, we
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expect the coefficients of these polynomials, i.e., the coefficients of the columns v; in the
right-hand side of (4.1) to decrease in magnitude quite rapidly with increasing index number.

Similarly, as in Section 3, Algorithm 3 can be simplified to the standard Lanczos pro-
cess when the matrix A is symmetric. In this case, the Hessenberg matrix H,, in (4.1) is
symmetric and tridiagonal. Moreover, a more accurate approximation of exp(y,A)v can be
computed by using the subdiagonal element 4,1, of H),41 generated by Algorithm 3 as
described in [18].

Algorithm 4 The standard nonsymmetric Lanczos process, A € R"*".

1. Letv; = wy; = v/|lv|l2. Choose number of steps m.
2. B1=8=0eR,vg=wy=0¢eR"™
3. Forj=1,2,...,mDo:

4. a; = (Avj,wj)

5. f):Avj—ozjvj—ijj_l

6. w=A wj—orwj—c?jwj_l

7. 8j4+1 = {0, w)|'/2.1f ;41 = 0 Then Stop
8. Bjt1= (0, w)/d;41

9. Wit =W/Bj+1

10. Vj+1 :ﬁ/81+1

11. EndDo

A nonsymmetric matrix A can be reduced to a small nonsymmetric tridiagonal matrix
a1 B 0
8 a2 B3
T = e R™XM, 4.2)

‘Smfl Um—1 Bm
0 Sm Oy

whose entries are determined by Algorithm 4. It follows from the recursion formulas
of Algorithm 4 that v; = p;_1(A)v; and w; = g;j—1(A)w; for some polynomials
Pj—1,4qj—1 € IPj_1. The vectors v; are bi-orthogonal to the vectors w;, i.e.,

_ (1, j=k,
(U],wk>—{0, j#k

and therefore the polynomials p; and gy are bi-orthogonal. We have

= {5

We assume for simplicity that the computations with Algorithm 4 can be carried out without
breakdown. A recent discussion of breakdowns is provided by Pozza et al. [32].
The matrix (4.2) furnishes the following polynomial approximation

exp(ye A)v = exp(veTm)er|v].

5 Computed Examples

This section shows expansions of the functions (1.1) and (1.2) for several networks and
values of the parameters y, and y;.
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5.1 Expanding exp(y.A) for a Protein-Protein Interaction Network

We illustrate the convergence of the coefficients of the expansions (3.4) and

A VAR A?
exp(veA) = I + vellAllr TP e
: F

+-, 5.1

when applied to an undirected network that models protein-protein interaction in yeast.
Specifically, we use part of the NDyeast network. Each edge represents an interaction
between two proteins [29]. The data set is available at [5] and has 2114 nodes. There
are 74 self-loops (nodes connected only to themselves) and 268 isolated nodes. The adja-
cency matrix obtained by removing the self-loops and isolated nodes is of order n = 1846.
It has 149 connected components, which can be identified with the MATLAB function
getconcomp from the PQser toolbox [13]. Most of the connected components have very
few nodes. We will use the only connected component with more than 10 nodes. It has 1458
nodes and yields a symmetric adjacency matrix A € R1438%1438 Since the adjacency matrix
is not very large, exp(y, A) easily can be evaluated by using the MATLAB function expm.

We use the normalizationAof (5.1) because the normalized matrix A/||AllF is of unit
norm, and each coefficient y;/ ||A||f,/ j! provides the norm of the corresponding term. Note

that the coefficients y;/ ||A||]F /j! might not depend monotonically on j; this is illustrated
below.

Figure 1a displays for y, = 1 the magnitude of the coefficients in the expansion (3.4) of
the exponential function exp(y,A) in terms of orthogonal polynomials in A determined by
the global Lanczos method (blue dashed curve), as well as the coefficients yek ||A||’1‘, /(kY),
k =0,1,2,... in (5.1) (black continuous curve). The coefficients in the expansion of
orthogonal polynomials are seen to converge to zero much faster with increasing index than
the coefficients in the power series expansion. Figure 1b is analogous to Fig. 1a for y, = 0.5.
The coefficients in Fig. 1b converge to zero faster than the corresponding coefficients in
Fig. la.

Figure 1c depicts for y, = 1 the norm of the approximation errors in terms of the degree
of the approximating polynomials for expansions of orthogonal polynomials (blue dashed
curve) and for the power series expansion (black continuous curve). The error, measured
with the Frobenius norm (3.1), in the orthogonal polynomial expansion is seen to converge
to zero much faster with increasing degree than the error in the power series expansion.
Thus, the polynomial p in (3.1) is either the right-hand side of (3.4) for increasing degree,
or the first terms in the power series expansion in the right-hand side of (5.1). Figure 1d is
analogous to Fig. 1c for y, = 0.5.

Letcj, j =0, 1,2, ...denote the expansion coefficients in (3.4). Table 1a shows the ratio
of |ck| and maxo< ;< |cj| for k = 5 and several values of y,. The ratio is seen to decrease
quite rapidly when y, decreases. Table 1b is analogous to Table la for k = 10. Table 1 and
Fig. 1 suggest that one can approximate exp(y,A) quite accurately with fairly few terms
in the expansion (3.4). The number of large terms in the expansion increases with y,. The
parameter y, > 0 can be chosen so that a given graph has a desired §-effective diameter.

5.2 Expanding (I — y,.A)‘1 for a Neural Network
The neural network of the worm Caenorhabditis elegans has 306 individual neurons (ver-

tices) and 2345 edges. The edges are directed and most of them are unweighted: 14 edges
have weight 2 and the remaining edges have weight 1; see [2, 4, 22]. Thus, the adjacency
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Fig.1 Yeast: a The magnitude of the coefficients in expansions of exp(y.A) in terms of orthogonal polyno-
mials (blue dashed curve) and in a power series expansion (black continuous curve) for y, = 1, b Curves are
analogous to those in (a) for y, = 0.5, ¢ Norm of approximation error furnished by expansion in terms of
orthogonal polynomials (blue dashed curve) and by power series expansion as a function of the degree of the
approximating polynomial for y, = 1, d The curves are analogous to those in (¢) for y, = 0.5. ||A||p = 62.42

matrix associated with this graph is nonsymmetric. This example illustrates the role of the
parameter y, in expansions of the resolvent. If longer walks are important, then we should
choose a larger value of y,.. For example, if walks of length 5 and shorter are important, then
we should choose y, large enough to make the coefficients co, c1, ..., ¢5 in the expansion
in terms of orthogonal polynomials

-1
=y A7~ Y ¢jpi(A) (5.2)
j=0

significant. We require 0 < y, < 1/p(A); see the discussion following (1.2). For the present
network, p(A) = 9.15. As y, decreases, the coefficients in the expansion (5.2) decrease
faster in magnitude with increasing index j.

Figure 2 compares the coefficients in the expansion (5.2) with the coefficients in the
power series expansion

3

(I -y A =1+ ylAlr + ¥R 1A% + 1A oo (53)

IAllF A% Al
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Table 1 Yeast: The ratio of the

orthogonal expansion coefficient Ve lck]/ maxo< <k Icl
|cx| and the largest of the k + 1
first coefficients for k = 5 and k=5 k=10
k = 10 for several values of y,
1.0 7.7e-01 1.9e-02
0.9 7.0e-01 1.2e-02
0.8 6.0e-01 6.2¢-03
0.7 5.0e-01 2.9¢-03
0.6 4.0e-01 1.2e-03
0.5 2.6e-01 3.3e-04
0.4 1.1e-01 5.1e-05
0.3 3.4e-02 3.4e-06
0.2 6.5e-03 1.0e-07
0.1 4.0e-04 1.9e-10
1010 F T i 3 105 ¢ ' ' 4
10 1wl "l 1
ol Sl -~ \‘»‘_\;_\,\ -~ 1 10° \\\-\, o ]
10° : : - 10710 : : -
0 5 10 15 0 5 10 15
(@) (b)
10° === T T T 10°
0k '\‘»\\\\\\//' \.\\ 102
102 \\‘\':.\ 10
103 \:2’ 10°
10 \\\\\\\ 10®
10 S sy 10
10-5 L 10-12 L L
0 5 10 15 0 5 10 15
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Fig.2 Celegans: a The magnitude of the coefficients in expansions of (I — y,A)~! in terms of orthogonal
and bi-orthogonal polynomials determined by the global Arnoldi method (blue dashed curve) and the global
nonsymmetric Lanczos method (orange dash-dotted curve), as well as in a power series expansion (black
continuous curve) for y, = 0.1, b The curves are analogous to those in (a) for ¥, = 0.05, ¢ Norm of approx-
imation error furnished by expansions in terms of orthogonal and bi-orthogonal polynomials determined by
the global Arnoldi method (blue dashed curve) and the global nonsymmetric Lanczos method (orange dash-
dotted curve), respectively, and by power series expansion as functions of the degree of the approximating
polynomial for y, = 0.1, d The curves are analogous to those in (¢) for , = 0.05. ||A||r = 48.86
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Table2 Celegans: The ratio of

the orthogonal expansion Arnoldi Nonsymmetric Lanczos
coefficient |cs| and the largest of o, les|/ maxo<j<s lcjl les|/ maxo<j<s |l
the 6 first coefficients for several
values of y, 0.10 4.3e-01 9.3e-02

0.09 1.6e-01 2.7e-02

0.08 6.4e-02 1.0e-02

0.07 2.7e-02 4.1e-03

0.06 1.1e-02 1.6e-03

0.05 4.3e-03 6.2e-04

0.04 1.5e-03 2.0e-04

0.03 3.9¢-04 5.3e-05

0.02 6.6e-05 8.9¢-06

0.01 3.6e-06 4.8e-07

This expansion is analogous to the expansion (5.1). Clearly, the coefficients v IIA ||‘1’p
converge to zero faster as j increases, the smaller y, > 0 is.

Table 2 shows for the global Arnoldi and global Lanczos methods, the ratio of the magni-
tude of the coefficient c¢5 in the expansions (5.2) and maxo<;<s |c;| as a function of y,.. The
ratio is seen to decrease quite rapidly when y;, decreases. Table 3 is analogous to Table 2 for
the 10th coefficients. Based on the tables and Fig. 2, we may approximate (I —y, A)~! with
fairly few terms in the expansion (5.2). The number of terms depends on the size of y,.. We
remark that since the matrix A in this example is fairly small, the evaluation of (I —y, A)~!
can easily be carried out with the MATLAB function inv.

5.3 Expanding exp(y.A)v for an Air Traffic Network

Air500 is a directed network with 500 nodes and 24009 edges [22, 33]. This example
illustrates the convergence of the expansions on the left-hand side of (2.16) and of

2
expeAw = v+ yellAl ety 4 YUANE AT
IAllF 2! AN

Table 3 Celegans: The ratio of
the orthogonal expansion Arnoldi Nonsymmetric Lanczos
coefficient |cio| and the largest v lc1ol/ maxo<j<io |cj] lc10l/ maxo<j<io Icj]
of the 11 first coefficients for
several values of y, 0.10 3.4e-03 2.3e-04

0.09 6.9e-04 3.8e-05

0.08 1.3e-04 7.7e-06

0.07 2.6e-05 1.5e-06

0.06 4.6e-06 2.8e-07

0.05 6.7e-07 4.0e-08

0.04 7.0e-08 4.2¢-09

0.03 4.1e-09 2.6e-10

0.02 8.9e-11 5.3e-12

0.01 1.4e-13 9.7e-14
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We let v = [1,1,...,1]7, but other choices of v also are possible. Figure 3a compares
for y, = 1 the magnitude of the coefficients in the left-hand side expansion (2.16) of
the exponential function exp(y,A) in terms of orthogonal and bi-orthogonal polynomials
in A determined by the standard Arnoldi method (blue dashed curve) and the standard
nonsymmetric Lanczos method (orange dash-dotted curve), respectively. The magnitude of
the coefficients yek||A||’}/(k!), fork = 0,1, 2,..., in the power series expansion also is
shown (black continuous curve). The coefficients in the expansions of orthogonal and bi-
orthogonal polynomials converge to zero much faster than the coefficients in the power
series expansion. Figure 3b is analogous to Fig. 3a for y, = 0.1. The coefficients in Fig. 3b
converge to zero faster than the corresponding coefficients in Fig. 3a.

Figure 3c displays for y, = 1 the relative error when approximating the matrix function
exp(yeA)v by orthogonal and bi-orthogonal polynomial expansions determined by the stan-
dard Arnoldi method (blue dashed curve) and the standard nonsymmetric Lanczos method
(orange dash-dotted curve), respectively. The relative error of the power series expansion
also is displayed (black continuous curve). The errors in the orthogonal and bi-orthogonal
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Fig.3 Air500: a The magnitude of the coefficients in expansions of exp(y, A) in terms of orthogonal polyno-
mials determined by the standard Arnoldi method (blue dashed curve), the standard nonsymmetric Lanczos
method (orange dash-dotted curve), and in a power series expansion (black continuous curve) for y, = 1, b
The curves are analogous to those in (a) for y, = 0.1, ¢ Norms of the approximation errors in expansions
in terms of orthogonal polynomials determined by the standard Arnoldi method (blue dashed curve) and the
standard nonsymmetric Lanczos method (orange dash-dotted curve), respectively, as well as by the power
series expansion as functions of the degree of the approximating polynomial for y, = 1, d The curves are
analogous to those in (¢) for y, = 0.1. [|A||r = 154.95
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Table 4 Air500: The ratio of the ] -
orthogonal expansion coefficients Arnoldi Nonsymmetric Lanczos

ck| and maxo< < |c;| for k ek ]/ maxo<j<k lcjl |ckl/ maxo<j<k lcjl
several values of k and y, = 1
1 1.0 1.0
2 8.8e-01 8.7e-01
3 3.8e-01 3.7e-01
4 2.4e-01 2.3e-01
5 9.5e-02 9.3e-02
6 2.4e-02 2.3e-02
7 4.3e-03 4.0e-03
8 7.0e-04 6.4e-04
9 1.1e-04 9.7e-05
10 1.5e-05 1.2e-05

polynomial expansions are seen to converge to zero much faster than the error in the power
series expansion. Figure 3d is analogous to Fig. 3 for y, = 0.1.

Table 4 displays the ratio of the kth to largest coefficients in magnitude for k =
1,2,...,10and y, = 1. The ratio is seen to decrease rapidly as k increases. Table 5 is anal-
ogous for y, = 0.1. Since k represents the maximum length of walks in the network, we
can determine the length of the longest significant walks, and based on that, we can decide
how many terms are needed in our orthogonal and bi-orthogonal polynomial expansions to
approximate exp(y, Av) sufficiently accurately for some y, > 0. Conversely, we may adjust
Y. to obtain a network with significant walks of desired lengths.

5.4 Expanding (I — y,A)~"v (Airlines)

The network Airlines represents air traffic. It has 235 airports (vertices) and 2101 directed
flights (edges) between them; see [22, 33]. This example illustrates the relationship between
the parameter y, in the expansions of the resolvent and the length of the longest sig-
nificant walks. As y, gets larger, the importance of longer walks increases. We require
lvrl < 1/p(A) to make sure that the resolvent exists. In this example, p(A) = 26.54.
Therefore, we should choose 0 < y, < 0.0377

Table 5 Air500: The ratio of the ' .
orthogonal expansion coefficients Arnoldi Nonsymmetric Lanczos

|cx] and maxo<;j <k |c;| for k lckl/ maxo<;j<k lcj] lexl/ maxo<j<k lcj]
several values of k and y, = 0.1
1 1.0 1.0
2 8.7e-01 8.6e-01
3 3.4e-01 3.3e-01
4 1.9e-01 1.8e-01
5 6.1e-02 6.0e-02
6 1.3e-02 1.3e-02
7 1.8e-03 1.7e-03
8 2.2e-04 2.0e-04
9 2.4e-05 2.1e-05
10 2.3e-06 1.9e-06
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Fig.4 Airlines: a The magnitude of the coefficients in expansions of (I — y, A)~! in terms of orthogonal and
bi-orthogonal polynomials determined by the global Arnoldi method (blue dashed curve) and the global non-
symmetric Lanczos method (orange dash-dotted curve), respectively, as well as in a power series expansion
(black continuous curve) for y, = 0.03, b Norms of approximation errors in expansions in terms of orthogo-
nal polynomials determined by the global Arnoldi method (blue dashed curve) and the global nonsymmetric
Lanczos method (orange dash-dotted curve), respectively, and by the power series expansion as a function of
the degree of the approximating polynomial for y, = 0.03. ||A||r = 45.84

Figure 4 compares the coefficients in the expansion in the right-hand side of (2.16) with
the coefficients in the power series expansion

2 3

VAL
’ A1

I -y, A w=v+ylAlr v+ v 1A%

2
Il AllF 1Al

Figure 4a shows the magnitude of the coefficients in the expansions (2.16) for y,, = 0.03.
The coefficients are determined by the standard Arnoldi method (blue dashed curve) and the
standard nonsymmetric Lanczos method (orange dash-dotted curve). We also display the
coefficients y,k ||A||’1‘F fork =0,1,2,... (black continuous curve). The coefficients in the
expansions in terms of orthogonal and bi-orthogonal polynomials are seen to converge to
zero faster than the coefficients in the power series expansion. Figure 4b depicts the relative

Table 6 Airlines: The ratio of the

orthogonal expansion coefficients
|ck| and maxo< ;< |c;| for
several values of k£ and y, = 0.03

@ Springer

Arnoldi

lck]/ maxo< <k Icjl

Nonsymmetric Lanczos

|ck]/ maxo< <k Icjl

1 1.0 1.0

2 1.8e-01 1.8e-01
3 1.9¢-02 1.8e-02
4 8.4e-04 8.0e-04
5 4.5e-05 4.1e-05
6 2.2e-06 1.9¢-06
7 1.1e-07 9.7¢-08
8 5.3e-09 4.2e-09
9 2.2e-10 1.5e-10
10 8.2e-12 4.6e-12
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error when approximating the resolvent by orthogonal and bi-orthogonal polynomials deter-
mined by the standard Arnoldi method (blue dashed curve) and the standard nonsymmetric
Lanczos method (orange dash-dotted curve), respectively. Also the relative error when
approximating the resolvent by a finite power series is shown (black continuous curve).

Table 6 illustrates the decrease in magnitude of the coefficients in the expansions con-
sidered for ¥, = 0.03. The magnitude is seen to decrease rapidly as k increases. Figure 4
and the table suggest that we can approximate the resolvent (I — y,A)~! with fairly
few terms in the right-hand side expansion (2.16). The number of terms depends on the
size of ;.

6 Conclusion

This paper illustrates the fast convergence to zero of the magnitude of the coefficients of
expansions of matrix functions in terms of orthogonal and bi-orthogonal polynomials; the
convergence is much faster than the convergence to zero of the coefficients of the power
series that defines the function. The fast convergence has important implications for the
understanding of the structure of the network. Fast decay indicates that a polynomial expan-
sion of low degree suffices to approximate the desired matrix function of the adjacency
matrix, suggesting that the important interactions in the network are only those of fairly
short length. This insight can be used in at least two ways.

First, if we know a priori the value of y, in (1.1) or y, in (1.2) (through previous
theoretical or empirical work), the orthogonal and bi-orthogonal polynomial expansions
described in this article can be used to determine the §-effective diameter of the network,
at the scale implied by y,, for a suitably small § > 0, and conclude that multi-step connec-
tions of length greater than the §-effective diameter are essentially irrelevant for the global
structure of the network.

Second, and perhaps more interestingly, the effective diameter of the network might be
known through previous theoretical or empirical work (for example, a modeler might put
an upper limit on the number of connections in each itinerary for the air traffic network
example). In this case, one can use the orthogonal and bi-orthogonal polynomial expansions
in this paper to find the value of y, and y, that yields that effective diameter. This provides
an objective criterion for the choices of y, and y,, an issue that is often overlooked in the
discussion of matrix function methods for network analysis.

In any case, the observation that most important interactions in many networks have
fairly short length makes it possible to approximate functions of the adjacency matrix, such
as the exponential and the resolvent, accurately by polynomials of fairly low degree.
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