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Abstract
The power series expansion of functions of the adjacency matrix for a network can be
interpreted in terms of walks in the network. This makes matrix functions, such as the expo-
nential or resolvent, useful for the analysis of graphs. For instance, these functions shed
light on the relative importance of the nodes of the graph and on the overall connectivity.
However, the power series expansions may converge slowly, and the coefficients of these
expansions typically are not helpful in assessing how important longer walks are in the net-
work. Expansions of matrix functions in terms of orthogonal or bi-orthogonal polynomials
make it possible to determine scaling parameters so that a given network has a specified
effective diameter (the length after which walks become essentially irrelevant for the con-
nectivity of the network). We describe several approaches for generating orthogonal and
bi-orthogonal polynomial expansions, and discuss their relative merits for network analysis.

Keywords Networks · Orthogonal polynomials · Matrix functions · Centrality

Mathematics Subject Classification (2010) 05C82 · 15A16 · 65F60

1 Introduction

Many complex systems that describe the interaction between entities can be modeled by
networks. For mathematical and statistical modeling, as well as for analysis, networks are
usually represented by a graph G = {V,E}, which consist of a set of vertices V = {vj }nj=1

and a set of edges E = {ek}�k=1, the latter being the links between the vertices. A graph may
be undirected, in which case each edge ek represents a “two-way street” between a pair of
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vertices {vi, vj }, or directed, in which case at least one of the edges is a “one-way street”
between a pair of nodes. Examples of networks include:

– Flight networks, with airports represented by vertices and flights by directed edges.
– Social networking services, such as Facebook, Twitter, and Snapchat, with members or

accounts represented by vertices, and interactions between any two accounts by edges,
which can be undirected (e.g., a “friendship”) or directed (e.g., “follow” or “like”).

– Phone networks can be modeled by directed graphs, in which phone numbers are rep-
resented by vertices, and text messages or calls that occur in a fixed span of time by
edges from the originator to the receiver.

Numerous applications of networks and associated directed or undirected graphs are
described in [12, 14, 17, 19, 31].

We consider unweighted graphs G = {V,E} with n vertices vj and � edges ek , with-
out self-loops or multiple edges. For a directed graph G, the associated adjacency matrix
A = [aij ]ni,j=1 ∈ R

n×n has the entry aij = 1 if there is an edge emerging from vertex vi and
pointing to vertex vj ; otherwise aij = 0. Thus, A has vanishing diagonal entries and � non-
vanishing entries. Typically, 1 ≤ � � n2, which makes the matrix A sparse. The adjacency
matrix for an undirected graph is symmetric and has 2� entries aij = 1. Adjacency matri-
ces associated with weighted graphs can easily be defined by allowing the non-vanishing
entries to be arbitrary positive real numbers. The discussion of this paper can be extended
to weighted graphs. This is illustrated in Section 5.2.

A common task in network analysis is to determine which vertices of an associated graph
are the most important ones by measuring how well-connected a vertex is to other vertices
in the graph. This kind of importance measure, which often is referred to as a centrality
measure, ignores intrinsic properties of the vertices but often provides vital information
about the vertices just from network connections. Simple centrality measures for a vertex vk

of a directed graph are its in-degree and out-degree, which count the number of edges that
point directly to vk and the number of edges that emerge from vk , respectively. In undirected
graphs, every edge from vertex vj to vertex vk also is an edge from vertex vk to vertex
vj . The number of distinct edges that connect a vertex vk to other vertices of the graph is
referred to as the degree of vk .

The in-degree, out-degree, or degree of a vertex vk are centrality measures that are eas-
ily computable. However, these measures may be unsatisfactory measures of importance of
a vertex vk , because they do not take into account the importance of the vertices that are
connected to vk . This shortcoming has spurred the introduction of several alternative cen-
trality measures. Of particular interest are centrality measures derived from the application
of matrix functions to the adjacency matrix A of G. A nice introduction to matrix functions
in network analysis is provided by Estrada and Higham [21]; see also [9–11, 15, 16, 19, 20]
for discussions and examples.

We will need the notion of a walk in a graph. A walk of length k is a sequence of k + 1
vertices vi1 , vi2 , . . . , vik+1 and a sequence of k edges ej1 , ej2 , . . . , ejk

such that ej�
points

from vi� to vi�+1 for j = 1, 2, . . . , k. The vertices in a walk do not have to be distinct.
A fundamental property of A is that for any positive integer k, the entry [Ak]ij of Ak gives

the number of walks of length k that start at the vertex vi and end at the vertex vj ; see, e.g.,
[21]. This suggests the use of linear combinations of powers of A to measure the centrality
of vertices of a graph. Commonly used matrix functions for measuring the centrality of
the vertices of a graph include the exponential function exp(γeA) and the resolvent (I −
γrA)−1, where γe and γr are positive user-chosen parameters; see, e.g., [21]. The power
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series expansions of these functions are given by

exp(γeA) = I + γeA + 1

2! (γeA)2 + 1

3! (γeA)3 + · · · , (1.1)

(I − γrA)−1 = I + γrA + (γrA)2 + (γrA)3 + · · · . (1.2)

For the resolvent, the parameter γr has to be chosen small enough so that the power series
(1.2) converges, that is, γr should be strictly smaller than 1/ρ(A), where ρ(A) denotes the
spectral radius of A.

Long walks are considered less important than short walks. Therefore, the coefficients
for high powers of A are chosen to be smaller than the coefficients for low powers. For
instance, the coefficients for Ak are γ k

e /(k!) for the exponential and γ k
r for the resolvent.

The diagonal entries [exp(γeA)]ii and [(I − γrA)−1]ii measure how easy it is to return
from the vertex vi back to itself via available edges. These entries are commonly referred
to as subgraph centralities of the vertex vi , and are used as centrality measures for the
vertex. Similarly, the entries [exp(γeA)]ij and [(I − γrA)−1]ij , for i �= j , measure how
easy communication is between the vertices vi and vj . These entries are referred to as the
communicability between the vertices vi and vj ; see, e.g., [21] for further details.

The subgraph centralities and communicabilities depend on the choice of the parameters
γe and γr in (1.1) and (1.2). However, the choices of these parameters have not received
much attention in the literature. Insightful discussions are provided by Estrada et al. [20],
who interpret γe in (1.1) as reciprocal temperature in a system of oscillators, by Benzi and
Klymko [11], who analyze the behavior of the subgraph centrality and communicability as
the parameter γe in (1.1) goes to zero or infinity, or the parameter γr in (1.2) increases to
1/ρ(A) or decreases to zero, and by Aprahamian et al. [3] who examine how the parameters
γe and γr can be related.

We seek to shed some light on the choices of γe and γr by expanding the matrix functions
(1.1) and (1.2) in terms of orthogonal and bi-orthogonal polynomials. These expansions
help us define the effective diameter of a graph, which is the maximum length of walks that
contribute substantially to the communication within the network. The effective diameter
depends on the choices of the parameters γe and γr . In particular, these parameters can be
chosen to achieve a desired effective diameter. Our analysis complements that of Benzi and
Klymko [11].

The expansion of a matrix function as a power series, like (1.1) and (1.2), is not always
“efficient”, in the sense that many terms may be required to approximate the function to
desired accuracy. Often expansions in terms of suitably defined orthogonal polynomials
require fewer terms to approximate the matrix function to a specified accuracy. This means
that an expansion in terms of orthogonal polynomials gives a better idea of how important
long walks are in the network than a power series expansion. This paper investigates three
approaches for generating orthogonal polynomial bases, and evaluates their strengths and
weaknesses as tools for network analysis.

The three methods considered might seem quite different at first sight, but they can be
seen as particular cases of a general construction. Let A be an algebra, with an algebra prod-
uctA×A → A, and assume thatA also has an inner product 〈·, ·〉A. Let Pn denote the set of
polynomials of degree at most n. For a0 ∈ A, define a linear map Pn → A by p 	→ p(a0).
Then we can pull back the inner product in A to Pn by 〈p, q〉 = 〈p(a0), q(a0)〉A (this is an
inner product in Pn as long as p(a0) �= 0 for all non-zero p ∈ Pn and n is sufficiently small).
Using this inner product, we can define a basis {p0, p1, . . . , pn} of orthogonal polynomials
for Pn. As particular cases, we have:
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1. A = C([a, b]) (continuous functions on [a, b]), with the algebra product
given by point-wise multiplication, and the inner product given by 〈f, g〉A =∫ b

a
f (x)g(x)W(x)dx with an appropriate weight function W(x). We take a0 to be the

identity function a0(x) = x on [a, b]. Then we obtain, for instance, the orthogonal
Chebyshev polynomials for the interval [a, b]; see Section 2.

2. A = R
m×m, with matrix multiplication, and inner product given by 〈A,B〉A =

trace(AT B). Here and throughout this paper the superscript T denotes transposition.
Let a0 be the given, fixed, adjacency matrix A. Then we obtain the global Arnoldi (or
nonsymmetric Lanczos) orthogonal (or bi-orthogonal) polynomials; see Section 3.

3. A = R
m×m, like above, but now with the inner product given by 〈A, B〉A = 1T AT B1.

Taking a0 again to be A, we obtain the standard Arnoldi (or nonsymmetric Lanczos)
orthogonal (or bi-orthogonal) polynomials; see Section 4.

This paper is organized as follows: Section 2 reviews the approximation of analytic func-
tions by expansions in terms of orthogonal polynomials. Expansions in terms of Chebyshev
polynomials, as well as in terms of orthogonal polynomials associated with inner prod-
ucts defined by the adjacency matrix A are considered. Section 3 focuses on orthogonal
and bi-orthogonal polynomials determined by the global Arnoldi and nonsymmetric Lanc-
zos methods, respectively. These are block iterative methods introduced by Jbilou et al.
[27, 28] for the solution of matrix equations and linear systems of equations with multi-
ple right-hand sides. Section 4 discusses the computation of orthogonal and bi-orthogonal
polynomials associated with the “standard” Arnoldi and nonsymmetric Lanczos methods,
respectively, and Section 5 presents a few numerical examples. Concluding remarks can be
found in Section 6.

2 Expansion of Functions in Terms of Orthogonal Polynomials

We review a few results from Trefethen [34]. Related results also can be found in, e.g., [24,
35]. Let ρ > 1 and i = √−1. Following Trefethen [34, Chapter 8], we refer to the open
interior of the set

{
1

2

(
ρ exp(iθ) + ρ−1 exp(−iθ)

)
: 0 ≤ θ < 2π

}

as a Bernstein ellipse, which we denote by Eρ . This ellipse has foci at ±1 and contains the
real interval [−1, 1]. The closer the interval [−1, 1] is to the boundary of Eρ , the closer
ρ > 1 is to unity. Moreover, Eρ1 � Eρ2 for 1 < ρ1 < ρ2.

Proposition 1 ([34, Theorem 8.1]) Let a function f , analytic on [−1, 1], be analytically
continuable to the open Bernstein ellipse Eρ , where it satisfies |f (x)| ≤ Mf for some
constant Mf independent of x in Eρ . Consider the expansion of f in terms of orthogonal
Chebyshev polynomials of the first kind,

Tj (x) = cos(j arccos(x)), −1 ≤ x ≤ 1, j = 0, 1, . . . , (2.1)

with regard to the inner product

(g, h) = 2

π

∫ 1

−1
g(x)h(x)

1√
1 − x2

dx
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for sufficiently smooth functions g and h on the interval [−1, 1]. Thus,

f (x) =
∞∑

j=0

cjTj (x), cj = (f, Tj ). (2.2)

Then the expansion coefficients satisfy |c0| ≤ Mf and

|cj | ≤ 2Mf ρ−j , j = 1, 2, . . . . (2.3)

Thus, the larger the Bernstein ellipse Eρ can be chosen, i.e., the larger ρ can be chosen,
the faster the bound for the coefficients cj decreases to zero with increasing j . The following
result can be shown by using the bounds of Proposition 1.

Proposition 2 ([34, Theorem 8.2]) Let f satisfy the conditions of Proposition 1. Define the
Chebyshev projection

fn(x) =
n∑

j=0

cjTj (x) (2.4)

with the coefficients cj given by (2.2). Then

max−1≤x≤1
|f (x) − fn(x)| ≤ 2Mf ρ−n

ρ − 1
, n = 0, 1, 2, . . . . (2.5)

Thus, the bound for the approximation error (2.5) decreases to zero at the same rate as
the bound (2.3) for the highest order coefficient in (2.4).

The converse of Proposition 2 also holds.

Proposition 3 ([34, Theorem 8.3]) Let the function f be defined on the real interval
[−1, 1]. Suppose that there is a sequence of polynomials q0, q1, q2, . . ., with qj of degree at
most j , such that

max−1≤x≤1
|f (x) − qn(x)| ≤ Cρ−n, n = 0, 1, 2, . . . ,

for some constants C > 0 and ρ > 1 independent of n. Then f can be analytically
continued to an analytic function in the open Bernstein ellipse Eρ .

Example 1 Consider the Runge function

f (x) = 1

1 + 25x2
.

The power series expansion of f at the origin does not converge to f on the interval [−1, 1].
However, the expansion (2.4) converges to f on [−1, 1] according to (2.5) as n increases
with ρ = 1.22.

Example 2 We are particularly interested in the entire function f (x) = exp(x). The expan-
sion (2.4) of f converges to f on [−1, 1] faster than (2.5) for any ρ > 1 as n increases. We
therefore can expect the magnitude of the coefficients cj to decrease to zero quite rapidly
with increasing index j .

The fact that the magnitude of the terms of an expansion of an analytic function in terms
of suitably scaled orthogonal polynomials decays at least exponentially with the degree of
the polynomials holds for more general sets than the interval [−1, 1]. Let S be a Jordan
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domain in the complex plane C, i.e., the boundary of S is a Jordan curve. Let ψ denote
the conformal mapping from the exterior of the unit disc Dc = {w ∈ C : |w| > 1} to the
exterior of S with a pole at infinity. Then ψ(w) has an expansion of the form

z = ψ(w) = dw + d0 + d1w
−1 + d2w

−2 + · · · ,

with dj ∈ C for j = 0, 1, . . ., and d > 0 for |w| sufficiently large. Let Sρ for some ρ > 1
denote the open set that is bounded by the curve

{z ∈ C : z = ψ(w), w = ρ exp(iθ), 0 ≤ θ < 2π}, i = √−1.

Introduce the orthogonal polynomials p0, p1, p2, . . . with respect to some inner product on
S, i.e., pi is of degree i and

〈pi, pj 〉 =
∫

S

pi(x)pj (x)dω(x) =
{

1, i = j,

0, i �= j,
(2.6)

where dω is a positive measure with support on S and the bar denotes complex conjugation.
Define the finite expansion

fn(z) =
n∑

j=0

cjpj (z), cj = 〈f, pj 〉, j = 0, 1, . . . , n. (2.7)

Then

lim sup
j→∞

|cj |1/j = ρ−1

and

lim sup
n→∞

(

max
z∈S

|f (z) − fn(z)|
)1/n

= ρ−1; (2.8)

see Gaier [24, Chapter 1] or Walsh [35, Chapter 6] for details. In particular, when S =
[−1, 1], we can choose

ψ(w) = 1

2
(w + w−1),

and the set Sρ for some ρ > 1 is the Bernstein ellipse Eρ .
We are concerned with the expansion of the matrix functions (1.1) and (1.2) in terms of

the orthogonal polynomials pk . Let A be the adjacency matrix associated with the graph G,
and consider the expansion

exp(γeA) =
∞∑

k=0

c
(γe)

k pk(A).

Since the polynomial pk(A) is a linear combination of the powers Aj , j = 0, 1, . . . , k,
it only depends on walks of length at most k. The polynomials pk are independent of the
parameter γe, but the coefficients c

(γe)

k are functions of this parameter.

Example 3 Let A ∈ R
n×n be an adjacency matrix that is associated with an undirected

graph, and assume that its spectrum is contained in the interval [a, b], with −∞ < a < b <

∞. The identity

exp(γ x) = I0(γ ) + 2
∞∑

j=1

Ij (γ )Tj (x), −1 ≤ x ≤ 1, (2.9)

946

Author's personal copy



Orthogonal Expansion of Network Functions

where the

Ij (γ ) =
∞∑

�=0

(
γ
2 )j+2�

�!(� + j)! , j = 0, 1, . . . , (2.10)

are modified Bessel functions of the first kind, the Tj are defined by (2.1), and γ is a real
constant, is a consequence of [1, Eq. (9.6.34)]. Since the spectrum of A is in [a, b], it is
appropriate to expand exp(γeA) in terms of Chebyshev polynomials for the interval [a, b].
They are given by

T
[a,b]
j (z) = Tj (x(z)), x(z) = 2

b − a
z − b + a

b − a
, j = 1, 2, . . . ,

for a ≤ z ≤ b. We obtain from (2.9) that

exp(γ z) = exp
(γ

2
(b − a)x

)
exp

(γ

2
(b + a)

)
(2.11)

= exp
(γ

2
(b + a)

)
⎛

⎝I0

(γ

2
(b − a)

)
+ 2

∞∑

j=1

Ij

(γ

2
(b − a)

)
T

[a,b]
j (z)

⎞

⎠ .

Introduce the spectral factorization

A = S	S−1, 	 = diag[λ1, λ2, . . . , λn], (2.12)

where the matrix S can be chosen to be real and orthogonal. Then

exp(γeA) = S diag[exp(γeλ1), exp(γeλ2), . . . , exp(γeλn)] S−1

and, by (2.11),

exp(γeλk) = exp
(γe

2
(b + a)

)
⎛

⎝I0

(γe

2
(b − a)

)
+ 2

∞∑

j=1

Ij

(γe

2
(b − a)

)
T

[a,b]
j (λk)

⎞

⎠ .

This yields the expansion

exp(γeA) =
∞∑

k=0

c
(γe)

k pk(A), (2.13)

where

pk(A) = T
[a,b]
k (A), k = 0, 1, . . . ,

c
(γe)

0 = exp
(γe

2
(b + a)

)
I0

(γe

2
(b − a)

)
,

c
(γe)

k = 2 exp
(γe

2
(b + a)

)
Ik

(γe

2
(b − a)

)
, k = 1, 2, . . . .

It is clear from (2.10) that the functions t → Ij (t), j = 0, 1, . . ., are increasing for t ≥ 0

and, therefore, the coefficients c
(γe)

k for, k = 0, 1, . . ., are increasing functions of γe > 0,
while the polynomials pk are independent of γe. The larger γe is chosen, the more terms in
the expansion (2.13) should be included in an approximation of exp(γeA).

Assume that the first �+1 terms c
(γe)

0 p0(A), c
(γe)

1 p1(A), . . . , c
(γe)

� p�(A) in the expansion
(2.13) are significant, and that the remaining terms are of comparatively small norm. Then
this suggests that only walks of length smaller than or equal to � have to be considered when
analyzing the network represented by the matrix A. In particular, exp(γeA) may be approx-
imated well by a polynomial in A of degree at most �. We will say that � is the effective
diameter of the graph G. The effective diameter depends on the parameter γe; the smaller
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γe > 0 is, the fewer terms are required. Thus, if we know that in our network all walks of
length larger than j0 may be ignored, then γe can be chosen so that the terms c

(γe)

j pj (A) for
j > j0 are negligible. We will provide a more precise definition of the effective diameter
below. The parameter γr in the resolvent can be chosen in a similar fashion.

Definition 1 Let the cj be coefficients in an expansion of a function of an adjacency matrix
in terms of orthogonal or bi-orthogonal polynomials. We refer to the smallest integer k ≥ 1
such that |ck+1|

max0≤j≤k |cj | ≤ δ

as the δ-effective diameter of the graph.

The intuition is that the matrix function under consideration can be well approximated,
when evaluated at A, by a polynomial of degree k, and therefore walks or multi-step con-
nections of length greater than k are mostly irrelevant for the communication within the
network. The δ-effective diameter depends on the matrix function and the expansion used.

The determination of the expansion (2.13) requires that estimates of the largest and small-
est eigenvalues of A be known, so that the interval [a, b] can be chosen large enough to
contain the spectrum of A. Then the polynomials pk(A) in (2.13) are of about unit norm
and the magnitude of each term in the expansion depends primarily on the size of the
coefficients c

(γe)

k . In this paper, we will use expansions in terms of orthogonal matrix poly-
nomials, whose computation does not require a priori knowledge of the spectrum of A.
When the matrix A is symmetric, these orthogonal matrix polynomials are generated with
the symmetric Lanczos process equipped with the matrix inner product

〈M1,M2〉F = trace(MT
1 M2), (2.14)

where M1,M2 ∈ R
n×n. The associated matrix norm

‖M‖F = √〈M, M〉F (2.15)

is the Frobenius norm. For a nonsymmetric matrix A, orthogonal matrix polynomials pk(A)

of degree k, for k = 0, 1, 2, . . ., can be generated by the Arnoldi process furnished with the
inner product (2.14) and norm (2.15). Alternatively, families of bi-orthogonal polynomials
can be generated with the aid of the nonsymmetric Lanczos process. Arnoldi and Lanczos
processes using inner products of the form (2.14) have been studied in the context of solving
matrix equations and linear systems of equations with several right-hand sides, see Jbilou
et al. [27, 28], who refer to the Arnoldi and Lanczos processes so defined as global Arnoldi
and Lanczos processes, respectively. The approximation of matrix functions using this kind
of inner product has recently been discussed by Bellalij et al. [7], Bentbib et al. [8], and
Frommer et al. [23].

The approximation of the matrix functions (1.1) and (1.2) in terms of orthogonal matrix
polynomials that are determined by global Lanczos or Arnoldi processes is described in
Section 3. These expansions can be applied to determine suitable values of the parameters
γe or γr . The computation of this kind of polynomial expansions requires the explicit eval-
uation of the matrix exponential or resolvent and, therefore, can be applied to adjacency
matrices A of small to moderate size. However, they cannot be used when the matrix A is
large. This situation is considered in Section 4, where we discuss expansions of the form

exp(γeA)v =
∞∑

k=0

c
(γe)

k pk(A)v, (I − γrA)−1v =
∞∑

k=0

c
(γr )

k pk(A)v, (2.16)
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for some vector v ∈ R
n. These kinds of matrix functions have been discussed in, e.g.,

[10, 15, 30]. In the computed examples, we let v = [1, 1, . . . , 1]T , but other choices of v

also are possible. The expansions (2.16) can be computed with the “standard” symmetric
or nonsymmetric Lanczos processes, or with the “standard” Arnoldi process. The com-
putation of these expansions does not require the evaluation of the matrix exponential or
resolvent. We note that the expansions (2.16) also are of interest when A is replaced by AT ;
see, e.g., [15].

3 The Computation of Orthogonal and Bi-Orthogonal Matrix
Polynomials

The algorithms of this section determine expansions of a matrix function in terms of
orthogonal and bi-orthogonal matrix polynomials. This allows for the computation of the δ-
effective diameter of a graph without having to explicitly define a measure dω, like in (2.6).
The computation of the effective diameter in this manner provides insight into properties
of the graph, but is expensive when the adjacency matrix A is large. A cheaper approach is
described in Section 4.

Let A ∈ R
n×n be the adjacency matrix for a graph G, and let f be a function such that

f (A) is defined. It suffices that f is analytic in a simply connected region in the complex
plane that contains the spectrum of A in its interior; see, e.g., [25, 26] for details. Let Pk

denote the set of polynomials of degree at most k, and consider the approximation of f (A)

by a polynomial p ∈ Pk using the Frobenius norm (2.15). Thus, we would like to solve

min
p∈Pk

‖f (A) − p(A)‖F . (3.1)

The meaning of this norm is most transparent when the matrix A is normal, such as
symmetric or skew-symmetric. Then the eigenvector matrix S in (2.12) can be chosen to
be orthogonal or unitary. Substituting (2.12) into (3.1) gives the equivalent minimization
problem

min
p∈Pk

n∑

j=1

|f (λj ) − p(λj )|2. (3.2)

Thus, the minimization problem (3.1) is a polynomial least-squares approximation problem
in the complex plane. We assume that the number of distinct eigenvalues λj is strictly larger
than the degree k. Then problem (3.1) has a unique solution. For adjacency matrices for
“real” networks, this requirement on k generally is satisfied. In the rare events when it is
not, we can reduce k suitably.

The polynomial least squares problem (2.6)–(2.8) differs from the least-squares prob-
lem (3.2) in that the integral in (2.6) is replaced by a sum over the n eigenvalues of A. If
n is much larger than the degree k of the polynomial approximant and the eigenvalues λj

are distributed fairly uniformly over a set S, then we can expect the solution of the discrete
approximation problem (3.2) to behave similarly as the solution of the approximation prob-
lem (2.6)–(2.8). In particular, the solutions p of (3.2) typically converge quite rapidly to f

as the degree k of the solutions increases. This is illustrated in Section 5.
When the graph G is directed, the associated adjacency matrix A ∈ R

n×n is nonsym-
metric. Assume for the moment that A has a spectral factorization (2.12) with a nonsingular
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matrix S made up of unit eigenvectors. We then obtain the bound

min
p∈Pk

‖f (A) − p(A)‖F ≤ ‖S‖2‖S−1‖2

⎛

⎝min
p∈Pk

n∑

j=1

|f (λj ) − p(λj )|2
⎞

⎠

1/2

, (3.3)

where ‖·‖2 denotes the spectral matrix norm. The derivation of the above bound uses the fact
that ‖M1M2‖F ≤ ‖M1‖2‖M2‖F for any pair of compatible matrices M1 and M2. The sum
in (3.3) is analogous to (3.2). We therefore expect fast reduction of the approximation error
when the degree k of the polynomial p increases and ‖S‖2‖S−1‖2 is not very large. In any
case, the polynomial expansion computed minimizes the left-hand side of (3.3). Computed
examples that illustrate the convergence of the left-hand side can be found in Section 5. We
remark that in the rare event that a spectral factorization of the form (2.12) does not exist,
the Jordan normal form can be used; see [26]. The sum in the right-hand side of (3.3) then
also contains terms with the magnitude of differences of derivative values of f and p at
eigenvalues of A associated with nontrivial Jordan blocks; see [26] for details.

We turn to the computation of orthogonal matrix polynomials with respect to the inner
product (2.14) and associated norm (2.15). When A is nonsymmetric, such polynomials
can be computed with the global Arnoldi process [27, 28], described by Algorithm 1. The
matrices V1, V2, . . . , Vm+1 generated by the algorithm satisfy

〈Vj , Vk〉F =
{

1, j = k,

0, j �= k,

and it follows from the recursion formulas of the algorithm that Vj = pj−1(A) for some
polynomial pj−1 ∈ Pj−1 for j = 1, 2, . . . , m + 1. Hence,

〈pj (A), pk(A)〉F =
{

1, j = k,

0, j �= k.

Thus, the pj are the desired orthogonal polynomials. The scalars cj determined in line 3 of
Algorithm 1 are the expansion coefficients for

exp(γeA) ≈
m−1∑

j=0

cjpj (A). (3.4)
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The polynomial in the right-hand side solves the minimization problem in the left-hand side
of (3.3) for k = m − 1 and f (A) = exp(γeA). The polynomials pj (A) are independent
of the parameter γe, but the coefficients cj−1 computed in line 3 are not. The exponential
function may be replaced by the resolvent.

The main computational cost of Algorithm 1 is the evaluation of the matrix function
exp(γeA) used in line 3 of the algorithm. The scalars hij determined by Algorithm 1 yield
the nontrivial entries of an upper Hessenberg matrix

Hm :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

h1,1 h1,2 h1,3 · · · h1,m

h2,1 h2,2 h2,3 · · · h2,m

. . .
. . .

. . .
hm−1,m−2 hm−1,m−1 hm−1,m

0 hm,m−1 hm,m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
m×m. (3.5)

When the matrix A is symmetric, the recursion relations of Algorithm 1 simplify to give
the global symmetric Lanczos process for approximating exp(γeA). In particular, the matrix
(3.5) becomes symmetric and tridiagonal. We refer to [27] for details on and properties of
the global symmetric Lanczos process.

When the matrix A ∈ R
n×n is nonsymmetric, approximations of functions of A also

can be determined with the aid of the global nonsymmetric Lanczos process described by
Algorithm 2. We assume that m is small enough so that the computations of the algorithm
can be carried out without breakdown. Algorithm 2 was first introduced by Jbilou et al. [28].

The recursion formulas of Algorithm 2 show that Vj = pj−1(A) and Wj = qj−1(A) for
some polynomials pj−1, qj−1 ∈ Pj−1 for j = 1, 2, . . . , m + 1. The matrices Vj and Wj

are bi-orthogonal, i.e., they satisfy

〈Wj, Vk〉F =
{

1, j = k,

0, j �= k.

It follows that the polynomials pj and qk are bi-orthogonal with respect to the bilinear form
(2.14), i.e.,

〈qj (A), pk(A)〉F =
{

1, j = k,

0, j �= k.
Moreover, the polynomials pj and qj satisfy three-term recurrence relations. This follows
from the recursion relations of Algorithm 2.
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4 The Standard Arnoldi and Lanczos Processes

This section discusses the approximation of exp(γeA)v for some vector v �= 0 by applica-
tion of the standard Arnoldi or Lanczos processes. In our computed examples in Section 5,
we let v = [1, 1, . . . , 1]T ∈ R

n, but other vectors also are of interest in applications;
see [15]. The methods described also can be applied to the approximation of the matrix
resolvent. As usual, we let A ∈ R

n×n be an adjacency matrix.
We would like to approximate exp(γeA)v by p(γeA)v, where p is a polynomial deter-

mined with the aid of the standard Arnoldi or Lanczos processes. The former is described
by Algorithm 3. The inner product used in the algorithm is the standard inner product in R

n.

Each iteration with Algorithm 3 generates a unit vector vj+1 that is orthogonal to the
previously computed vectors v1, v2, . . . , vj . It follows from the recursion formulas of the
algorithm that vj+1 = pj (A)v, j = 0, 1, 2, . . . , m, for certain polynomials pj ∈ Pj . These
polynomials are orthogonal with respect to the inner product

〈pj , pk〉 = vT (pj (A))T pk(A)v.

We have

〈pj , pk〉 =
{

1, j = k,

0, j �= k.

The scalars hij determined by Algorithm 3 define the nontrivial entries of an upper Hessen-
berg matrix Hm ∈ R

m×m, which is analogous to the matrix (3.5). The recursion formulas of
Algorithm 3 can be expressed as

AVm = VmHm + hj+1,j vm+1e
T
m,

where ej denotes the j th axis vector of appropriate dimension and Vm = [v1, v2, . . . , vm] ∈
R

n×m. It can be verified by induction that

p(A)v = ‖v‖p(Hm)e1

for any polynomial p ∈ Pm−1. This suggests the polynomial approximation

exp(γeA)v ≈ ‖v‖Vm exp(γeHm)e1; (4.1)

see, e.g., [6] for error bounds. Note that the right-hand side is a linear combination of
p0(A)v, p1(A)v, . . . , pm−1(A)v. This leads us to expect that for a general vector v, the
convergence behavior of the right-hand side (4.1) towards the left-hand side as m increases
is similar to the convergence for the problems considered in Section 2. In particular, we
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expect the coefficients of these polynomials, i.e., the coefficients of the columns vj in the
right-hand side of (4.1) to decrease in magnitude quite rapidly with increasing index number.

Similarly, as in Section 3, Algorithm 3 can be simplified to the standard Lanczos pro-
cess when the matrix A is symmetric. In this case, the Hessenberg matrix Hm in (4.1) is
symmetric and tridiagonal. Moreover, a more accurate approximation of exp(γeA)v can be
computed by using the subdiagonal element hm+1,m of Hm+1 generated by Algorithm 3 as
described in [18].

A nonsymmetric matrix A can be reduced to a small nonsymmetric tridiagonal matrix

Tm :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1 β2 0
δ2 α2 β3

. . .
. . .

. . .
δm−1 αm−1 βm

0 δm αm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
m×m, (4.2)

whose entries are determined by Algorithm 4. It follows from the recursion formulas
of Algorithm 4 that vj = pj−1(A)v1 and wj = qj−1(A)w1 for some polynomials
pj−1, qj−1 ∈ Pj−1. The vectors vj are bi-orthogonal to the vectors wj , i.e.,

〈vj , wk〉 =
{

1, j = k,

0, j �= k

and therefore the polynomials pj and qk are bi-orthogonal. We have

〈qj (A), pk(A)〉 =
{

1, j = k,

0, j �= k.

We assume for simplicity that the computations with Algorithm 4 can be carried out without
breakdown. A recent discussion of breakdowns is provided by Pozza et al. [32].

The matrix (4.2) furnishes the following polynomial approximation

exp(γeA)v ≈ exp(γeTm)e1‖v‖.

5 Computed Examples

This section shows expansions of the functions (1.1) and (1.2) for several networks and
values of the parameters γe and γr .
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5.1 Expanding exp(γeA) for a Protein-Protein Interaction Network

We illustrate the convergence of the coefficients of the expansions (3.4) and

exp(γeA) = I + γe‖A‖F

A

‖A‖F

+ γ 2
e ‖A‖2

F

2!
A2

‖A‖2
F

+ · · · , (5.1)

when applied to an undirected network that models protein-protein interaction in yeast.
Specifically, we use part of the NDyeast network. Each edge represents an interaction
between two proteins [29]. The data set is available at [5] and has 2114 nodes. There
are 74 self-loops (nodes connected only to themselves) and 268 isolated nodes. The adja-
cency matrix obtained by removing the self-loops and isolated nodes is of order n = 1846.
It has 149 connected components, which can be identified with the MATLAB function
getconcomp from the PQser toolbox [13]. Most of the connected components have very
few nodes. We will use the only connected component with more than 10 nodes. It has 1458
nodes and yields a symmetric adjacency matrix A ∈ R

1458×1458. Since the adjacency matrix
is not very large, exp(γeA) easily can be evaluated by using the MATLAB function expm.

We use the normalization of (5.1) because the normalized matrix A/‖A‖F is of unit
norm, and each coefficient γ

j
e ‖A‖j

F /j ! provides the norm of the corresponding term. Note

that the coefficients γ
j
e ‖A‖j

F /j ! might not depend monotonically on j ; this is illustrated
below.

Figure 1a displays for γe = 1 the magnitude of the coefficients in the expansion (3.4) of
the exponential function exp(γeA) in terms of orthogonal polynomials in A determined by
the global Lanczos method (blue dashed curve), as well as the coefficients γ k

e ‖A‖k
F /(k!),

k = 0, 1, 2, . . . in (5.1) (black continuous curve). The coefficients in the expansion of
orthogonal polynomials are seen to converge to zero much faster with increasing index than
the coefficients in the power series expansion. Figure 1b is analogous to Fig. 1a for γe = 0.5.
The coefficients in Fig. 1b converge to zero faster than the corresponding coefficients in
Fig. 1a.

Figure 1c depicts for γe = 1 the norm of the approximation errors in terms of the degree
of the approximating polynomials for expansions of orthogonal polynomials (blue dashed
curve) and for the power series expansion (black continuous curve). The error, measured
with the Frobenius norm (3.1), in the orthogonal polynomial expansion is seen to converge
to zero much faster with increasing degree than the error in the power series expansion.
Thus, the polynomial p in (3.1) is either the right-hand side of (3.4) for increasing degree,
or the first terms in the power series expansion in the right-hand side of (5.1). Figure 1d is
analogous to Fig. 1c for γe = 0.5.

Let cj , j = 0, 1, 2, . . . denote the expansion coefficients in (3.4). Table 1a shows the ratio
of |ck| and max0≤j≤k |cj | for k = 5 and several values of γe. The ratio is seen to decrease
quite rapidly when γe decreases. Table 1b is analogous to Table 1a for k = 10. Table 1 and
Fig. 1 suggest that one can approximate exp(γeA) quite accurately with fairly few terms
in the expansion (3.4). The number of large terms in the expansion increases with γe. The
parameter γe > 0 can be chosen so that a given graph has a desired δ-effective diameter.

5.2 Expanding (I − γrA )−1 for a Neural Network

The neural network of the worm Caenorhabditis elegans has 306 individual neurons (ver-
tices) and 2345 edges. The edges are directed and most of them are unweighted: 14 edges
have weight 2 and the remaining edges have weight 1; see [2, 4, 22]. Thus, the adjacency
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Fig. 1 Yeast: a The magnitude of the coefficients in expansions of exp(γeA) in terms of orthogonal polyno-
mials (blue dashed curve) and in a power series expansion (black continuous curve) for γe = 1, b Curves are
analogous to those in (a) for γe = 0.5, c Norm of approximation error furnished by expansion in terms of
orthogonal polynomials (blue dashed curve) and by power series expansion as a function of the degree of the
approximating polynomial for γe = 1, d The curves are analogous to those in (c) for γe = 0.5. ‖A‖F = 62.42

matrix associated with this graph is nonsymmetric. This example illustrates the role of the
parameter γr in expansions of the resolvent. If longer walks are important, then we should
choose a larger value of γr . For example, if walks of length 5 and shorter are important, then
we should choose γr large enough to make the coefficients c0, c1, . . . , c5 in the expansion
in terms of orthogonal polynomials

(I − γrA)−1 ≈
m−1∑

j=0

cjpj (A) (5.2)

significant. We require 0 < γr < 1/ρ(A); see the discussion following (1.2). For the present
network, ρ(A) = 9.15. As γr decreases, the coefficients in the expansion (5.2) decrease
faster in magnitude with increasing index j .

Figure 2 compares the coefficients in the expansion (5.2) with the coefficients in the
power series expansion

(I − γrA)−1 = I + γr‖A‖F

A

‖A‖F

+ γ 2
r ‖A‖2

F

A2

‖A‖2
F

+ γ 3
r ‖A‖3

F

A3

‖A‖3
F

+ · · · . (5.3)
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Table 1 Yeast: The ratio of the
orthogonal expansion coefficient
|ck | and the largest of the k + 1
first coefficients for k = 5 and
k = 10 for several values of γe

γe |ck |/ max0≤j≤k |cj |

k = 5 k = 10

1.0 7.7e-01 1.9e-02

0.9 7.0e-01 1.2e-02

0.8 6.0e-01 6.2e-03

0.7 5.0e-01 2.9e-03

0.6 4.0e-01 1.2e-03

0.5 2.6e-01 3.3e-04

0.4 1.1e-01 5.1e-05

0.3 3.4e-02 3.4e-06

0.2 6.5e-03 1.0e-07

0.1 4.0e-04 1.9e-10
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Fig. 2 Celegans: a The magnitude of the coefficients in expansions of (I − γrA)−1 in terms of orthogonal
and bi-orthogonal polynomials determined by the global Arnoldi method (blue dashed curve) and the global
nonsymmetric Lanczos method (orange dash-dotted curve), as well as in a power series expansion (black
continuous curve) for γr = 0.1, b The curves are analogous to those in (a) for γr = 0.05, c Norm of approx-
imation error furnished by expansions in terms of orthogonal and bi-orthogonal polynomials determined by
the global Arnoldi method (blue dashed curve) and the global nonsymmetric Lanczos method (orange dash-
dotted curve), respectively, and by power series expansion as functions of the degree of the approximating
polynomial for γr = 0.1, d The curves are analogous to those in (c) for γr = 0.05. ‖A‖F = 48.86
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Table 2 Celegans: The ratio of
the orthogonal expansion
coefficient |c5| and the largest of
the 6 first coefficients for several
values of γe

Arnoldi Nonsymmetric Lanczos

γr |c5|/ max0≤j≤5 |cj | |c5|/ max0≤j≤5 |cj |

0.10 4.3e-01 9.3e-02

0.09 1.6e-01 2.7e-02

0.08 6.4e-02 1.0e-02

0.07 2.7e-02 4.1e-03

0.06 1.1e-02 1.6e-03

0.05 4.3e-03 6.2e-04

0.04 1.5e-03 2.0e-04

0.03 3.9e-04 5.3e-05

0.02 6.6e-05 8.9e-06

0.01 3.6e-06 4.8e-07

This expansion is analogous to the expansion (5.1). Clearly, the coefficients γ
j
r ‖A‖j

F

converge to zero faster as j increases, the smaller γr > 0 is.
Table 2 shows for the global Arnoldi and global Lanczos methods, the ratio of the magni-

tude of the coefficient c5 in the expansions (5.2) and max0≤j≤5 |cj | as a function of γr . The
ratio is seen to decrease quite rapidly when γr decreases. Table 3 is analogous to Table 2 for
the 10th coefficients. Based on the tables and Fig. 2, we may approximate (I −γrA)−1 with
fairly few terms in the expansion (5.2). The number of terms depends on the size of γr . We
remark that since the matrix A in this example is fairly small, the evaluation of (I −γrA)−1

can easily be carried out with the MATLAB function inv.

5.3 Expanding exp(γeA)v for an Air Traffic Network

Air500 is a directed network with 500 nodes and 24009 edges [22, 33]. This example
illustrates the convergence of the expansions on the left-hand side of (2.16) and of

exp(γeA)v = v + γe‖A‖F

A

‖A‖F

v + γ 2
e ‖A‖2

F

2!
A2

‖A‖2
F

v + · · · .

Table 3 Celegans: The ratio of
the orthogonal expansion
coefficient |c10| and the largest
of the 11 first coefficients for
several values of γe

Arnoldi Nonsymmetric Lanczos

γr |c10|/ max0≤j≤10 |cj | |c10|/ max0≤j≤10 |cj |

0.10 3.4e-03 2.3e-04

0.09 6.9e-04 3.8e-05

0.08 1.3e-04 7.7e-06

0.07 2.6e-05 1.5e-06

0.06 4.6e-06 2.8e-07

0.05 6.7e-07 4.0e-08

0.04 7.0e-08 4.2e-09

0.03 4.1e-09 2.6e-10

0.02 8.9e-11 5.3e-12

0.01 1.4e-13 9.7e-14
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We let v = [1, 1, . . . , 1]T , but other choices of v also are possible. Figure 3a compares
for γe = 1 the magnitude of the coefficients in the left-hand side expansion (2.16) of
the exponential function exp(γeA) in terms of orthogonal and bi-orthogonal polynomials
in A determined by the standard Arnoldi method (blue dashed curve) and the standard
nonsymmetric Lanczos method (orange dash-dotted curve), respectively. The magnitude of
the coefficients γ k

e ‖A‖k
F /(k!), for k = 0, 1, 2, . . ., in the power series expansion also is

shown (black continuous curve). The coefficients in the expansions of orthogonal and bi-
orthogonal polynomials converge to zero much faster than the coefficients in the power
series expansion. Figure 3b is analogous to Fig. 3a for γe = 0.1. The coefficients in Fig. 3b
converge to zero faster than the corresponding coefficients in Fig. 3a.

Figure 3c displays for γe = 1 the relative error when approximating the matrix function
exp(γeA)v by orthogonal and bi-orthogonal polynomial expansions determined by the stan-
dard Arnoldi method (blue dashed curve) and the standard nonsymmetric Lanczos method
(orange dash-dotted curve), respectively. The relative error of the power series expansion
also is displayed (black continuous curve). The errors in the orthogonal and bi-orthogonal
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Fig. 3 Air500: a The magnitude of the coefficients in expansions of exp(γeA) in terms of orthogonal polyno-
mials determined by the standard Arnoldi method (blue dashed curve), the standard nonsymmetric Lanczos
method (orange dash-dotted curve), and in a power series expansion (black continuous curve) for γe = 1, b
The curves are analogous to those in (a) for γe = 0.1, c Norms of the approximation errors in expansions
in terms of orthogonal polynomials determined by the standard Arnoldi method (blue dashed curve) and the
standard nonsymmetric Lanczos method (orange dash-dotted curve), respectively, as well as by the power
series expansion as functions of the degree of the approximating polynomial for γe = 1, d The curves are
analogous to those in (c) for γe = 0.1. ‖A‖F = 154.95
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Table 4 Air500: The ratio of the
orthogonal expansion coefficients
|ck | and max0≤j≤k |cj | for
several values of k and γe = 1

Arnoldi Nonsymmetric Lanczos

k |ck |/ max0≤j≤k |cj | |ck |/ max0≤j≤k |cj |

1 1.0 1.0

2 8.8e-01 8.7e-01

3 3.8e-01 3.7e-01

4 2.4e-01 2.3e-01

5 9.5e-02 9.3e-02

6 2.4e-02 2.3e-02

7 4.3e-03 4.0e-03

8 7.0e-04 6.4e-04

9 1.1e-04 9.7e-05

10 1.5e-05 1.2e-05

polynomial expansions are seen to converge to zero much faster than the error in the power
series expansion. Figure 3d is analogous to Fig. 3 for γe = 0.1.

Table 4 displays the ratio of the kth to largest coefficients in magnitude for k =
1, 2, . . . , 10 and γe = 1. The ratio is seen to decrease rapidly as k increases. Table 5 is anal-
ogous for γe = 0.1. Since k represents the maximum length of walks in the network, we
can determine the length of the longest significant walks, and based on that, we can decide
how many terms are needed in our orthogonal and bi-orthogonal polynomial expansions to
approximate exp(γeAv) sufficiently accurately for some γe > 0. Conversely, we may adjust
γe to obtain a network with significant walks of desired lengths.

5.4 Expanding (I − γrA )−1v (Airlines)

The network Airlines represents air traffic. It has 235 airports (vertices) and 2101 directed
flights (edges) between them; see [22, 33]. This example illustrates the relationship between
the parameter γr in the expansions of the resolvent and the length of the longest sig-
nificant walks. As γr gets larger, the importance of longer walks increases. We require
|γr | < 1/ρ(A) to make sure that the resolvent exists. In this example, ρ(A) = 26.54.
Therefore, we should choose 0 < γr < 0.0377

Table 5 Air500: The ratio of the
orthogonal expansion coefficients
|ck | and max0≤j≤k |cj | for
several values of k and γe = 0.1

Arnoldi Nonsymmetric Lanczos

k |ck |/ max0≤j≤k |cj | |ck |/ max0≤j≤k |cj |

1 1.0 1.0

2 8.7e-01 8.6e-01

3 3.4e-01 3.3e-01

4 1.9e-01 1.8e-01

5 6.1e-02 6.0e-02

6 1.3e-02 1.3e-02

7 1.8e-03 1.7e-03

8 2.2e-04 2.0e-04

9 2.4e-05 2.1e-05

10 2.3e-06 1.9e-06
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Fig. 4 Airlines: a The magnitude of the coefficients in expansions of (I −γrA)−1 in terms of orthogonal and
bi-orthogonal polynomials determined by the global Arnoldi method (blue dashed curve) and the global non-
symmetric Lanczos method (orange dash-dotted curve), respectively, as well as in a power series expansion
(black continuous curve) for γr = 0.03, b Norms of approximation errors in expansions in terms of orthogo-
nal polynomials determined by the global Arnoldi method (blue dashed curve) and the global nonsymmetric
Lanczos method (orange dash-dotted curve), respectively, and by the power series expansion as a function of
the degree of the approximating polynomial for γr = 0.03. ‖A‖F = 45.84

Figure 4 compares the coefficients in the expansion in the right-hand side of (2.16) with
the coefficients in the power series expansion

(I − γrA)−1v = v + γr‖A‖F

A

‖A‖F

v + γ 2
r ‖A‖2

F

A2

‖A‖2
F

v + γ 3
r ‖A‖3

F

A3

‖A‖3
F

v + · · · .

Figure 4a shows the magnitude of the coefficients in the expansions (2.16) for γr = 0.03.
The coefficients are determined by the standard Arnoldi method (blue dashed curve) and the
standard nonsymmetric Lanczos method (orange dash-dotted curve). We also display the
coefficients γ k

r ‖A‖k
F for k = 0, 1, 2, . . . (black continuous curve). The coefficients in the

expansions in terms of orthogonal and bi-orthogonal polynomials are seen to converge to
zero faster than the coefficients in the power series expansion. Figure 4b depicts the relative

Table 6 Airlines: The ratio of the
orthogonal expansion coefficients
|ck | and max0≤j≤k |cj | for
several values of k and γe = 0.03

Arnoldi Nonsymmetric Lanczos

k |ck |/ max0≤j≤k |cj | |ck |/ max0≤j≤k |cj |

1 1.0 1.0

2 1.8e-01 1.8e-01

3 1.9e-02 1.8e-02

4 8.4e-04 8.0e-04

5 4.5e-05 4.1e-05

6 2.2e-06 1.9e-06

7 1.1e-07 9.7e-08

8 5.3e-09 4.2e-09

9 2.2e-10 1.5e-10

10 8.2e-12 4.6e-12
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error when approximating the resolvent by orthogonal and bi-orthogonal polynomials deter-
mined by the standard Arnoldi method (blue dashed curve) and the standard nonsymmetric
Lanczos method (orange dash-dotted curve), respectively. Also the relative error when
approximating the resolvent by a finite power series is shown (black continuous curve).

Table 6 illustrates the decrease in magnitude of the coefficients in the expansions con-
sidered for γr = 0.03. The magnitude is seen to decrease rapidly as k increases. Figure 4
and the table suggest that we can approximate the resolvent (I − γrA)−1 with fairly
few terms in the right-hand side expansion (2.16). The number of terms depends on the
size of γr .

6 Conclusion

This paper illustrates the fast convergence to zero of the magnitude of the coefficients of
expansions of matrix functions in terms of orthogonal and bi-orthogonal polynomials; the
convergence is much faster than the convergence to zero of the coefficients of the power
series that defines the function. The fast convergence has important implications for the
understanding of the structure of the network. Fast decay indicates that a polynomial expan-
sion of low degree suffices to approximate the desired matrix function of the adjacency
matrix, suggesting that the important interactions in the network are only those of fairly
short length. This insight can be used in at least two ways.

First, if we know a priori the value of γe in (1.1) or γr in (1.2) (through previous
theoretical or empirical work), the orthogonal and bi-orthogonal polynomial expansions
described in this article can be used to determine the δ-effective diameter of the network,
at the scale implied by γe, for a suitably small δ > 0, and conclude that multi-step connec-
tions of length greater than the δ-effective diameter are essentially irrelevant for the global
structure of the network.

Second, and perhaps more interestingly, the effective diameter of the network might be
known through previous theoretical or empirical work (for example, a modeler might put
an upper limit on the number of connections in each itinerary for the air traffic network
example). In this case, one can use the orthogonal and bi-orthogonal polynomial expansions
in this paper to find the value of γe and γr that yields that effective diameter. This provides
an objective criterion for the choices of γe and γr , an issue that is often overlooked in the
discussion of matrix function methods for network analysis.

In any case, the observation that most important interactions in many networks have
fairly short length makes it possible to approximate functions of the adjacency matrix, such
as the exponential and the resolvent, accurately by polynomials of fairly low degree.
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