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Background. New York City (NYC) experienced an initial surge and gradual decline in the number of SARS-CoV-2-confirmed
cases in 2020. A change in the pattern of laboratory test results in COVID-19 patients over this time has not been reported or
correlated with patient outcome. Methods. We performed a retrospective study of routine laboratory and SARS-CoV-2 RT-PCR
test results from 5,785 patients evaluated in a NYC hospital emergency department from March to June employing machine
learning analysis. Results. A COVID-19 high-risk laboratory test result profile (COVID19-HRP), consisting of 21 routine blood
tests, was identified to characterize the SARS-CoV-2 patients. Approximately half of the SARS-CoV-2 positive patients had the
distinct COVID19-HRP that separated them from SARS-CoV-2 negative patients. SARS-CoV-2 patients with the COVID19-
HRP had higher SARS-CoV-2 viral loads, determined by cycle threshold values from the RT-PCR, and poorer clinical outcome
compared to other positive patients without the COVID12-HRP. Furthermore, the percentage of SARS-CoV-2 patients with the
COVID19-HRP has significantly decreased from March/April to May/June. Notably, viral load in the SARS-CoV-2 patients
declined, and their laboratory profile became less distinguishable from SARS-CoV-2 negative patients in the later phase.
Conclusions. Our longitudinal analysis illustrates the temporal change of laboratory test result profile in SARS-CoV-2 patients
and the COVID-19 evolvement in a US epicenter. This analysis could become an important tool in COVID-19 population
disease severity tracking and prediction. In addition, this analysis may play an important role in prioritizing high-risk patients,
assisting in patient triaging and optimizing the usage of resources.

1. Introduction

The coronavirus disease-2019 (COVID-19), caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [1], has rapidly spread across the globe resulting in
110 million confirmed cases and 2.45 million total deaths as
of February 20, 2021 [2]. The United States has more con-

firmed cases than any other country worldwide. New York,
which was the initial epicenter of the COVID-19 pandemic
and has reported the highest number of death in the US
[3], has experienced a gradual decline in the number of cases
in the months following the initial surge [4, 5]. It is unclear
if the decline in total Emergency Department (ED) visits
for COVID-19-like illnesses [6] and COVID-19-associated
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hospitalizations [7] is related to changes in virus virulence,
early preferential infection of more vulnerable populations,
effectiveness of containment measures, or treatment changes.
However, there have been only limited studies describing
trends in objective clinical data in COVID-19 patients corre-
sponding to these epidemiologic changes.

Currently in most hospital EDs, patients with symptoms
suspicious for COVID-19 undergo a SARS-CoV-2 reverse
transcription-polymerase chain reaction (RT-PCR) test and
a panel of routine laboratory tests. While the pathophysiol-
ogy of this new virus is still poorly understood, some of its
effects on the human body are reflected in abnormal labora-
tory values. Several studies [8–10] have reported a number of
abnormal routine laboratory test results in SARS-CoV-2-
infected patients upon initial evaluation, including changes
in the complete blood count (CBC), an increase in inflamma-
tory markers and alterations in albumin and globulin levels.
Whether the laboratory characteristics of SARS-CoV-2-
infected patients have also shifted with the epidemiological
changes over time, reflecting the evolution of COVID-19,
remains unknown.

Machine learning algorithms have been successfully uti-
lized in healthcare [11–13] and are powerful tools for pre-
dicting SARS-CoV-2 infection status [10, 14], disease
progression, and mortality [15]. They are particularly useful
in disentangling the hidden relationships among complex
sets of variables. As routine laboratory test results provide
objective and quantifiable characterization of the effects of
the virus on the human body, our study is aimed at elucidat-
ing the trending of COVID-19 from a laboratory testing pro-
spective. Using machine learning analysis, we identified a
distinct panel of abnormal test results (COVID-19 high-risk
laboratory test result profile; COVID19-HRP), which sepa-
rate SARS-CoV-2 positive from SARS-CoV-2 negative
patients. Our analysis visualized the temporal changes in
the laboratory characteristics of SARS-CoV-2 positive
patients from the initial outbreak in March and April to a
postapex phase in May and June 2020 which may provide
epidemiological insights to basic scientists and policy
makers.

2. Methods

2.1. Patient Cohort and Data Collection. The test results ana-
lyzed in this study were from 5,785 patients evaluated in the
ED of a New York academic hospital from March 11 to June
30, 2020 (Institute Review Board #20-03021671). SARS-
CoV-2 RT-PCR results, routine laboratory testing results,
patient demographic information (age, sex, and race,
Table 1), and clinical outcome (hospital admission, ICU
admission, mechanical intubation, and survival/death) were
obtained from the laboratory information system (Cerner
Millennium, Cerner Corporation, North Kansas City, Mis-
souri, US). Since the turn-around time (TAT) of RT-PCR is
up to 24 hours in our institution whereas the results of rou-
tine laboratory testing are usually available within 1-2 hours,
laboratory testing results performed within a 48-hour win-
dow (±24 hours) of completion of each RT-PCR test were
used in the data analysis. Exclusion criteria included patients

<18 years old, patients who had indeterminate RT-PCR
results (RT-PCR positive for the pan-Sarbecovirus target (E
gene), yet negative for the SARS-CoV-2-specific target), and
patients who did not have any laboratory test results within
the time frame (inclusion/exclusion cascade, Figure 1). In
total, our dataset included the routine laboratory test results
from 1,309 SARS-CoV-2 RT-PCR positive and 3,658 RT-
PCR negative patients (total 4,967 patients) who ranged in
age from 18 to 104 years (median = 60 years). Violin plots
of the age distribution in all patients as well as SARS-CoV-
2 positive patients during the 4 study months are shown in
Figure 2.

2.2. SARS-CoV-2 RT-PCR Testing. SARS-CoV-2 RT-PCR
testing was performed using the RealStar SARS-CoV-2 RT-
PCR Kit 1.0 reagent system (Altona, Hamburg, Germany)
which targets on the S gene and E gene, the Cobas SARS-
CoV-2 Assay (Roche Molecular Systems, Inc., Branchburg,
NJ) which targets the ORF1ab and E genes, and the Xpert
Xpress SARS-CoV-2 Assay (Cepheid, Inc., Sunnyvale, CA)
which targets the N2 and E genes [16]. The ORF1ab and
N2 genes are specific for SARS-Cov-2, while the E gene is a
pan-Sarbecovirus marker. Based on the previous data [16],
the diagnostic performance of both the Cobas 6800 and the
Xpert Xpress SARS-CoV-2 assays are considered equivalent.
SARS-CoV-2 RT-PCR cycle threshold (CT) values of the
SARS-CoV-2-specific target, which correlate inversely with
the quantitative viral load [17], were obtained using the
Cobas SARS-CoV-2 Assay and Xpert Xpress SARS-CoV-2
RT-PCR Assay, as the values for the SARS-CoV-2-specific
gene were comparable between platforms [16]. CT values
from the RealStar SARS-CoV-2 RT-PCR assay were excluded
from the analysis as the values are not directly comparable to
the other two platforms.

2.3. Routine Laboratory Testing. Routine chemistry testing
was performed on the Siemens ADVIA XPT and Centaur
XP analyzers (Siemens Healthineers Global, Erlangen, Ger-
many). Procalcitonin was performed on the Roche e411 ana-
lyzer (Roche Diagnostics, Indianapolis, IN). Blood gas
analysis was performed on the GEM Premier 4000 analyzer
(Instrumentation Laboratory, Bedford, MA). Routine hema-
tology testing was performed on the UniCel DXH 800 ana-
lyzer (Beckman Coulter, Brea, CA). Coagulation tests were
performed on the Instrumentation Laboratory ACLTM
TOP CTS Coagulation System.

2.4. The Unified Manifold Approximation and Projection
(UMAP) Analysis. Twenty-one laboratory tests were selected
from a total of 685 tests that were ordered for all patients in
the dataset based on the following criteria: (1) the test result
was available for at least 70% of the patients within a 48-
hour window around a specific SARS-CoV-2 RT-PCR test
in each month and (2) the test result was significantly differ-
ent (i.e., p value, p value after Bonferroni correction, or p
value after demographics adjustment less than 0.05) in
patients with a positive SARS-CoV-2 RT-PCR study com-
pared to persons who had a negative result (Table 1). If one
specific test was ordered multiple times within 48 hours, an
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average of the values was calculated and used for analysis.
The missing value of a specific laboratory test in a feature
vector was imputed by the median value of the available non-
missing values of that dimension over all patients. Finally, a
21-dimensional vector was constructed to represent every
SARS-CoV-2 RT-PCR testing result, which is a unique
laboratory test result profile that characterizes each patient.

We then mapped the vectors of all RT-PCR tests onto a
two-dimensional space using the UMAP approach [18], with
the goal of visualizing the geometric distributions of the RT-

PCR test profiles. UMAP is a dimensionality reduction
technique aiming at projecting the data samples in a low-
dimensional space such that the geometric sample relation-
ships in the original high-dimensional feature space are
preserved. Therefore, the geometric relationships among
the sample vectors can be visually inspected. These profiles
were first standardized with z-score scaling [19] before being
incorporated into the UMAP algorithm to eliminate the
value range discrepancies among different routine labora-
tory tests. Therefore, RT-PCR results with similar routine

Total patients
N = 5,785

N = 5,521

N = 5,484

Final dataset
N = 4,967 patients

Excluded patients age under 18 
n = 264

Excluded patients whose RT-PCR results were 
indeterminate, n = 37

Excluded patients who did not have any 
laboratory results within one day before and 

one day after the RT-PCR testing, n = 517

Figure 1: Inclusion/exclusion cascade of patients in the dataset.

Age distribution of all patients

Mean (SD) Median (25% -75%
quantile)

March 58.66 (18.76) 60.0 (44, 73)

April 60.80 (19.69) 63.0 (45, 76)

May 56.93 (20.68) 57.0 (38.75, 74)

June 57.29 (21.30) 59.0 (37, 75)

Age distribution of SARS-CoV-2
positive patients

Mean (SD) Median (25% -75%
quantile)

March 59.87 (17.29) 61.0 (48, 73)

April 65.11 (16.89) 66.0 (55, 78)

May 61.79 (18.76) 63.0 (48, 74.75)

June 58.19 (20.92) 61.0 (36, 75.25)

100

80

60A
ge

40

20

0

March April May June

Month

100

80

60

A
ge

40

20

March April May June

Month

(a) (b)

Figure 2: Distribution of age in total RT-PCR tested patients (a) and SARS-CoV-2 positive patients (b) in March, April, May, and June. Mean
(SD) and median (25%-75% quantile) are shown under each figure.
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laboratory profiles remain nearby in the embedding space
whereas those with distinct laboratory profiles are located
at a distance.

After all, RT-PCR profiles were projected onto the two-
dimensional space, we used Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [20] to identify the
high-density region of positive tests. DBSCAN is a density-
based clustering algorithm that can automatically identify
the high-density regions in the sample space without strong
assumptions or the need for specifying the optimum number
of clusters. Then we fitted a two-dimensional Gaussian distri-
bution to define a circle in the two-dimensional embedding
space. The mean vector and covariance matrix of this Gauss-
ian distribution is [7.01, 4.76] and [(0.55 0.06), (0.06 0.41)],
respectively. After having the Gaussian distribution, we plot-
ted its contour lines for probability density function (pdf).
Starting from the contour line with the largest pdf value
(0.33), which is the mean point, we gradually expanded the
contour line with a decrease of the pdf value in a step size
of 0.01. In this expanding process, if we found that the num-
ber of negative tests was larger than that of positive ones, we
would stop and regard this contour line as the circle.

2.5. Statistical Analysis. Comparison of the percentages of
RT-PCR results within versus outside the circle in each

month was performed by Fisher’s exact test and post hoc
analysis. Comparison of the CT values and length of hospital
stay within versus outside the circle was performed by t-test.
Comparison of the percentage of SARS-CoV-2 positive
patients with or without the circle for hospital admission
from ED, percentage of patients required for care in the
ICU and mechanical intubation were performed by the Fish-
er’s exact test, where the p values were obtained after age
adjustment. Statistical analysis was performed using Python
version 3.7.

3. Results

A retrospective analysis of laboratory tests was performed in
a final dataset of 1,309 SARS-CoV-2 RT-PCR-confirmed
positive patients and 3,658 negative patients (Figure 1). A
summary of the 21 laboratory tests used to construct the
21-dimensional vector representing the COVID19-HRP is
shown in Table 1. Using the UMAP analysis, we then
mapped the vectors of 5,588 RT-PCR tests onto a two-
dimensional space. As shown in Figure 3, 45% (n = 513) of
the overall SARS-CoV-2 RT-PCR-positive results clustered
in the area within the black circle which depicts the high-
density region of positive RT-PCR results. The patients who
had positive RT-PCR results within the circle showed a

Combined

(a) (b) (c)

(d) (e)

10

10 12

8

8

6

6

4

4
2

2

March April

May June
Combined March April May June

Positive RT-PCR 
in circle

513
(45%)

199
(51%)

292
(52%)

19
(16%)

3
(5%)

Positive RT-PCR 
out of circle

628
(55%)

192
(49%)

274
(48%)

100
(84%)

62
(95%)

Negative RT-
PCR in circle

116
(3%)

23 
(8%)

23 
(4%)

20 
(2%)

50 
(3%)

Negative RT-
PCR out of 
circle

3543 
(97%)

273 
(92%)

541
(96%)

1249
(98%)

1480
(97%)

Negative RT-PCR results
Positive RT-PCR results

10

10 12

8

8

6

6

4

4
2
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Figure 3: Unified Manifold Approximation and Projection (UMAP) analysis of the laboratory profiles associated with the RT-PCR SARS-
CoV-2-positive and SARS-CoV-2-negative testing results during March, April, May, and June combined (a), as well as separately in
March (b), April (c), May (d), and June (e). Blue and red dots represent positive and negative RT-PCR results, respectively. The black
circle depicts the high-density positive RT-PCR region. The singleton cluster on the right of the UMAP embedding includes 105 patients
with 90% feature values missing in their profile vectors. Those missing values are imputed as the overall mean of each feature, which
makes those profiles almost identical to each other. Since UMAP preserves the pairwise similarity during the mapping process, these
vectors are mapped to a tiny crowd, which was excluded from our next analysis. Percentage of positive RT-PCR within and outside the
circle and percentage of negative RT-PCR within and outside the circle are shown in the table, respectively.
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high-risk laboratory test result profile (COVID19-HRP) dif-
ferent from those individuals with negative RT-PCR results.
In contrast, only 3% (n = 116) of SARS-CoV-2-negative
RT-PCR results shared the COVID19-HRP and were within
the circle. We further performed the UMAP analysis for each
of the four months (March, April, May, and June) and
observed a dramatic change over time: approximately half
of the RT-PCR positive results in March (51%) and April
(52%) clustered within the circle. When transitioning into
May, while the total number of positive cases was declining,
positive RT-PCR results associated with COVID19-HRP
became significantly fewer, with only 16% of positive RT-
PCR results in the circle (p < 0:001 compared to March or
April, respectively). In June, the percentage of SARS-CoV-2
RT-PCR positive results in the circle was even less (5%, p =
0:03 compared to May) and relatively more positive RT-
PCR were indistinguishably intermixed with the negative
RT-PCR results based on the laboratory test result profile.
However, it is important to note that more than 90% of the
SARS-CoV-2 RT-PCR-negative results (97% overall, 92% in
March, 96% in April, 98% in May, and 97% in June) fell out-
side the circle throughout the initial and subsequent months
of the SARS-CoV-2 pandemic.

To characterize the COVID19-HRP, we investigated the
distribution of each laboratory test corresponding to the
positive and negative RT-PCR results within and outside
the circle, respectively. Violin plots of representative
laboratory tests (Supplemental Figure S1) showed, for
example, that COVID-19 patients presenting in the ED, as
part of the COVID19-HRP, had lower absolute lymphocyte
and monocyte counts, lower percentage of basophils,
hypocalcemia, and higher red blood cell counts as well as
higher hemoglobin levels and hematocrits compared to
the SARS-CoV-2-negative ED patients. While no single
laboratory test can accurately discriminate SARS-CoV-2

infected from uninfected patients, the combination of 21
laboratory tests formed a distinct profile that characterized
typical SARS-CoV-2-positive ED patients, separating them
from the SARS-CoV-2-negative ED patients.

As shown in Figure 4, overall, the CT values of SARS-
CoV-2 RT-PCR results demonstrated an increasing trend
(i.e., decreasing viral load) from April to June (CT values in
March were excluded from the analysis as they were gener-
ated from the Altona RealStar instrument with values that
were not directly comparable with the other RT-PCR instru-
ments [21]). The RT-PCR results within the circle had lower
CT values compared to those outside the circle (mean ± SD:
28:3 ± 5:0 vs. 32:4 ± 7:6, median: 28.7 vs. 33.0, p < 0:001).
In other words, higher viral loads were seen in SARS-CoV-
2-positive patients who had the COVID19-HRP compared
to other positive patients who did not.

Chart reviews were performed to investigate the clinical
outcome of each SARS-CoV-2 positive patient, including
whether they were discharged from the ED or admitted to
an inpatient ward, whether they required care in the ICU,
whether they developed respiratory failure and were intu-
bated, and whether they died or survived COVID-19.
Twenty-one patients who were transferred to other hospitals
were excluded due to unknown outcomes. Overall, SARS-
CoV-2 positive patients with the COVID19-HRP in our
dataset had a higher incidence of hospital admission (95.7%
vs. 78.4%, p < 0:001), ICU admission (27.2% vs. 15.2%, p <
0:001), and intubation (24.7% vs. 11.5%, p < 0:001) than
SARS-CoV-2 patients without the COVID19-HRP, where
the p values were obtained after age adjustment. For the
patients who had been admitted, the length of in-hospital
stay was significantly longer in SARS-CoV-2 patients with
the COVID19-HRP than the other positive patients without
the COVID19-HRP (mean ± SD: 16:6 ± 22:1 vs. 12:7 ± 21:0,
median 8 vs. 5 days, p < 0:001).
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Figure 4: Trend of the SARS-CoV-2 RT-PCR cycle threshold (CT) values for the SARS-CoV-2 specific target. (a) Box plot the CT values in
each week from April to June. (b) UMAP analysis of the CT value associated with the SARS-CoV-2 RT-PCR results. The black circle is the
same as in Figure 2. Color bar shows the SARS-CoV-2 RT-PCR CT value from low (black) to high (yellow).
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We further investigated the patients who had negative
RT-PCR results but had laboratory testing results that
mapped within the circle (n = 116). Among them, 48 patients
presented to the ED with COVID-19-like symptoms such as
fever, cough, dyspnea, and/or malaise, and 3 were reported to
have close contacts with persons who tested positive for
SARS-CoV-2. Nine patients (7.8% of the 116 patients) were
diagnosed with COVID-19 within two days upon repeated
RT-PCR testing (majority of patients tested negative did
not have a repeated testing) and four other patients (2.5%)
tested positive for COVID-19 antibodies one to two months
after their ED visit. Therefore, the combination of specific
laboratory testing results may identify some SARS-CoV-2-
infected patients with a false negative RT-PCR result. Three
patients were diagnosed with another respiratory virus infec-
tion such as influenza A or human rhinovirus/enterovirus.

4. Discussion

In this study, using machine learning analysis, we show that
approximately half of the SARS-CoV-2-positive ED patients
had a distinct profile of routine laboratory test results that
clearly separate them from the SARS-CoV-2-negative
patients. Notably, the SARS-CoV-2 patients with the
COVID19-HRP had an overall higher viral load and poorer
clinical outcome compared to the other positive patients
without the COVID19-HRP. The identification of COVID-
19 distinct laboratory profile could be used to prioritize
high-risk patients, assisting in ED patient triaging and opti-
mizing the usage of resources in areas where RT-PCR testing
is not accessible due to financial or supply constraints. Fur-
thermore, our temporal analysis illustrates the substantial
decrease in the percentage of patients with the COVID19-
HRP in May and June 2020, after the initial surge of
COVID-19 in March and April 2020, in NYC. The observed
trend in the laboratory result profile provides insight to the
epidemiologic and biologic evolution of the disease, which
could play an important role in COVID-19 population disease
severity tracking and prediction and may assist in directing
public health policies as COVID-19 spreads to new geographic
areas or as a resurgence occurs in previously affected areas.

Existing research has shown that the SARS-CoV-2 viral
load correlates with severity of COVID-19 presentation
[22] and is independently associated with an increased risk
of intubation and/or in-hospital mortality [23–25]. Here,
we demonstrate that SARS-CoV-2 viral load also correlates
with a panel of laboratory test result abnormalities
(COVID19-HRP). Patients who have a higher viral load
and a COVID19-HRP at presentation may have a higher risk
of adverse outcomes. Thus, our analysis provides a means of
identifying patients with more severe physiologic disturbance
and poorer outcome. Analysis of the laboratory profile at ED
presentation provides complementary information, which,
because of the rapid turn-around time (usually within a cou-
ple of hours) for routine laboratory test results, offers an
opportunity for rapid triaging and more timely intensive
monitoring of high-risk patients. In addition, this analysis
may also suggest which patients are unlikely to be SARS-
CoV-2 positive, as overall 97% of SARS-CoV-2-negative

patients were outside the circle (did not have the
COVID19-HRP). As such, this analysis could be deployed
clinically as an application integrated into the electronic
medical record (EMR) system and visually show if the dot
corresponding to an individual patient is within or outside
the circle as soon as the patient’s laboratory test results are
available. In areas where SARS-CoV-2 RT-PCR is not acces-
sible onsite, this analysis may provide a timely clue to prior-
itize high-risk patients.

Laboratory tests provide an objective and quantifiable
means to characterize the evolution of COVID-19. In addition
to an overall decrease in the number of positive cases, our
study depicts a declining trend in the viral load of SARS-
CoV-2 patients as well as a decreasing percentage of patients
showing the COVID19-HRP from April to June 2020. In our
hospital, RT-PCR tests in March and April were primarily
offered to symptomatic patients due to a limited testing capac-
ity. Testing was expanded to more patients, both symptomatic
and asymptomatic, in May and June when supplies, equip-
ment, and testing personnel were available.While more widely
available testing in May and June may contribute to the
decrease in the percentage of severe patients, it is unclear
whether there are other contributing factors such as changes
in virus virulence, modifications of population behavior by
adhering to public health directives such as wearing masks,
increased patient awareness of the disease with physician visits
sooner after symptom onset (presumably associated with
lower viral loads), and a decrease in the number of most vul-
nerable patients as they have already been infected. Our anal-
ysis, based upon a patient population in NYC during the peak
of COVID-19, provides to researchers, physicians, and public
health authorities an insightful method to better understand
the evolution of this disease from a laboratory testing perspec-
tive. In addition, our model based on laboratory test results
reflecting the physiologic effects of the virus on patients may
improve our understanding of the pathobiology of the
SARS-CoV-2, and thus, aid in devising guidance for treat-
ment, tracking, and prevention of COVID-19. Another indi-
cation of our study is the need for model updating and
retraining for risk prediction of COVID-19 patients in differ-
ent time periods of the pandemic.

Our study has a limitation that the analysis of patient
data was performed at a single large metropolitan medical
center. Therefore, the role of the COVID19-HRP in discrim-
inating between SARS-CoV-2-negative and SARS-CoV-2-
positive patients should be tested on a larger scale at other
medical centers in areas with varying degrees of COVID-19
prevalence. In addition, due to the reagent and consumable
supply shortages, our institute stopped testing for influenza
and other respiratory viruses from March to September
2020. Therefore, we were not able to analyze the laboratory
test result profiles in patients who had other respiratory
viruses. Differentiating SARS-CoV-2 from other respiratory
virus infections will be one of our future studies.

5. Conclusions

Using machine learning analysis, we have identified a typical
laboratory test result profile for SARS-CoV-2 positive

7Health Data Science



patients, which correlates with higher viral load and poorer
clinical outcome. Overall, 97% of the SARS-CoV-2 negative
patients did not have the COVID19-HRP. This analysis
could serve as an important tool to prioritize high-risk
patients and optimize the usage of resource. Furthermore,
this analysis illustrates the downtrending in the proportion
of SARS-CoV-2 patients with the COVID19-HRP from the
initial surge of COVID-19 to a later postapex phase in
NYC, the initial epicenter of the pandemic in the US. Our
findings have shed new light on the evolution and pathobiol-
ogy of COVID-19.
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