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Highlights

Deep-learning in-situ classification of HIV-1 virion morphology

Juan S. Rey, Wen Li, Alexander J. Bryer, Hagan Beatson, Christian Lantz,
Alan N. Engelman, Juan R. Perilla

e Efficient classifier capable of overcoming inherent problems of small-
data training sets.

e Automated detection and classification of HIV-1 particle morphology
from transmission electron micrographs.

e Three orders of magnitude speed increase in data processing with neg-
ligible loss in accuracy.
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Abstract

Transmission electron microscopy (TEM) has a multitude of uses in biomed-
ical imaging due to its ability to discern ultrastructure morphology at the
nanometer scale. Through its ability to directly visualize virus particles,
TEM has for several decades been an invaluable tool in the virologist’s tool-
box. As applied to HIV-1 research, TEM is critical to evaluate activities of
inhibitors that block the maturation and morphogenesis steps of the virus
lifecycle. However, both the preparation and analysis of TEM micrographs
requires time consuming manual labor. Through the dedicated use of com-
puter vision frameworks and machine learning techniques, we have developed
a convolutional neural network backbone of a two-stage Region Based Con-
volutional Neural Network (RCNN) capable of identifying, segmenting and
classifying HIV-1 virions at different stages of maturation and morphogene-
sis. Our results outperformed common RCNN backbones, achieving 80.0%
mean Average Precision on a diverse set of micrographs comprising different
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experimental samples and magnifications. We expect that this tool will be
of interest to a broad range of researchers.

Keywords: Quantitative biology, artificial intelligence, deep learning,
electron microscopy, HIV-1, virology, computer vision

1. Introduction

1.1. Electron microscopy and virus research

Transmission electron microscopy (TEM) has long been used as a diag-
nostic tool in virology. Investigations of fluid samples from patients’ skin
lesions in the 1940s enabled the variola virus, which is the poxvirus that
causes smallpox, to be discerned from the much larger varicella-zoster virus,
which is a herpesvirus that causes chickenpox [1]. The introduction of nega-
tive stain materials, such as uranyl acetate and phospholungstic acid, in the
late 1950s, significantly improved ultrastructure resolution and thus was a
springboard development for the use of TEM in modern day virology [2].

TEM has been invaluable to the discovery and diagnosis of many viral
diseases that still plague the world today. For example, TEM data was in-
strumental in the initial classification of the AIDS virus, since named HIV-1
for human immunodeficiency virus 1, as a retrovirus [3]. TEM-based tech-
niques are today used to diagnose pathologies associated with infection by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the
cause of the worldwide COVID-19 pandemic (reviewed in [4]).

HIV-1 is taxonomically a lentivirus, which is one of six genera that com-
prise the Orthoretrovirinae subfamily of Retroviridae. As such, the viral
structural proteins and replication enzymes are expressed in infected cells
as Gag and Gag-Pol polyproteins that become cleaved by the viral protease
(PR) enzyme during the process of virus maturation (reviewed in [5]). Typ-
ical mature HIV-1 particles, which are approximately 90 to 120 nm in di-
ameter, harbor an internal core that is composed of a conical shell of capsid
protein that houses the viral ribonucleoprotein complex (RNP) composed
of two copies of the viral RNA genome, the structural protein nucleocapsid
(NC), and reverse transcriptase and integrase (IN) enzymes [6] (Figure 1).
The RNP is the most electron-dense component of HIV-1 particles [7]. In
immature particles, which are non-infectious, the electron density presents
as a toroidal structure in proximity to the viral membrane [7] (Figure 1).



TEM has been invaluable to studies of HIV-1 inhibitors that interfere
with proper virion maturation. Compounds that inhibit HIV-1 PR activity
block polyprotein processing and hence arrest HIV-1 replication at the mat-
uration step (reviewed in [8]). A second class of HIV-1 maturation inhibitor,
which is typified by bevirimat, binds to the protein substrate to inhibit the
final cleavage of Gag processing between capsid and spacer peptide 1 (re-
viewed in [9]). Removal of the IN domain from the C-terminus of Gag-Pol
can also increase the frequency of immature particles in HIV-1 virion prepa-
rations [10, 11]. IN missense mutations can moreover elicit eccentric HIV-1
particle formation, where the electron-dense RNP appears outside the viral
core, often in association with the viral membrane [10, 11, 12, 13] (Figure 1).
The allosteric IN inhibitor (ALLINI) class of preclinical HIV-1 compounds
elicits eccentric particle formation (reviewed in [9]). In this way, the in-
hibitors hyper-multermerize IN to preclude its binding to RNA in the virus
particle [14, 13].

1.2. Machine Learning applied to transmission electron microscopy

Over the last five years, the application of Machine Learning (ML) in
biomedical image processing has increased significantly [15]. For instance,
image classification has enabled diagnostic prediction of Alzheimer’s disease
in patients from brain MRIs [16] and SARS-CoV-2 detection from chest X-
Ray scans [17]. For microscopy image analysis, where individual detection
and classification of substructures of images are necessary, two main frame-
works have been applied: object segmentation and object detection. While
the first aims to classify the pixels in an image predicting the probability
that they belong to a certain class, object detection uses a per-region ap-
proach for classifying object instances. These techniques have been applied
for the detection of cancer cell nuclei[18], the segmentation of neural mem-
branes [19], segmentation of feline calcivirus [20] and virus classifications [21].
So-called Convolutional Neural Networks (CNNs) have proven useful for the
semantic segmentation of small extracellular vesicles (SEVs) from TEM mi-
crographs [22, 23]. These approaches include U-Net [24], a CNN based on
the combination of downsampling and upsampling layers with connections
between the convolutional layers.

Although so-called deep learning models like Sparse Autoencoders (SAE)
and Recurrent Neural Networks (RNNs) have been applied to medical imag-
ing [25, 26], the most popular approach continues to be CNNs. The latter
class of models have proven their usefulness in classification, detection and
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Figure 1: HIV-1 virion morphologies pertinent to this study. A Schematic representation
showing the configuration of an immature virion and samples from TEM micrographs. The
color scheme cartoons the following components from exteror to interior: blue, envelope
glycoproteins; green, lipid bilayer; yellow, matrix protein; black, capsid protein; red, RNA.
B Schematic representation showing the configuration of a mature virion and samples from
TEM micrographs. C Schematic representation showing the configuration of an eccentric
virion and samples from TEM micrographs.

segmentation tasks across a broad range of fields and applications, producing
results up to par with medical experts [27, 28].

In the present manuscript, we present an end-to-end Deep Learning based
method for the automated detection and classification of HIV-1 virion mor-
phologies from input TEM micrographs. Our pipeline is composed of two
main components, an object detection pipeline based on a Faster RCNN [29]
architecture, and a stratification layer that can employ different classification
backbones. The classification backbones supported include ResNets and a
novel CNN, named TFEMNet; the latter, designed and trained from scratch
for the detection of HIV-1 virions from TEM micrographs. ResNets are pre-



trained using the ImageNet database, in our pipeline we support ResNet101,
ResNet101v2 and InceptionResNetv2. Although ResNets are pretrained with
photon-based photographs, here we show that both ResNet101, ResNet101v2
and Inception-ResNet-v2 accurately derive morphology distributions across
mutant and clinical isolate samples after fine-tuning. In addition, our novel-
classifier (TEMNet) proves to be a competitive classification backbone, trad-
ing off some accuracy (2% less accurate) for an 18% increase in speed and
a 94% decrease in memory usage. Altogether, we find that our method is
efficient and robust for in situ HIV-1 virion detection across different morpho-
types, predicting statistical distributions agreeing with results from end-user
visual inspection, while being up to three orders of magnitude faster. The
application of our method to TEM micrographs achieved a mean Average
Precision (mAP) of up to 80.0%.

Our implementation is based on the Tensorflow[30] Keras framework.
The source-code has been made available through https://github.com/
Perilla-lab/TEMNet.

2. Methods
2.1. Virus samples and TEM

All viruses analyzed in this study were generated from proviral DNA
molecular clones. HIV-1 strain NL4-3 (HIV-1np4_3) was generated from
pNL4-3 [31] or pNL43/Xmal [32] while HIV-1 YU-2 and HIV-1 JR-CSF
were generated from respective plasmids pYU-2 [33] and pYK-JRCSF [34].
Mutations in pol corresponding to IN changes D116N, N184L, and delIN, as
well as PR active site mutation D25A, were introduced into pNL43/Xmal
by site-directed mutagenesis using the primers listed below. The presence of
desired mutations and absence of unwanted secondary changes were verified
by Sanger sequencing. Previously described WT HIV-1np4_3 produced in
the presence of dimethyl sulfoxide or the ALLINI BI-D, as well as IN mutant
L241A, E96A, and N18I viral micrographs [7, 13, 35] were additionally used
for RCNN training in this study.

Viruses were generated from plasmid DNAs by transfecting HEK293T
cells, which were grown in Dulbecco’s modified Eagle’s medium supplemented
to contain 10% fetal bovine serum, 100 IU/ml penicillin, and 100 pg/ml
streptomycin at 37°C in the presence of 5% CO,. Briefly, cells grown in two
15-cm dishes (107 cells per dish) were transfected with 30 ug plasmid DNA us-
ing PolyJet DNA transfection reagent as recommended by the manufacturer
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AF6540 5-CCTTCTAAATGTGTACAA
D116N TTTAGCTGCCATATTCC-3
AF6541 5-GTAAAAACAGTACATACA
AACAATGGCAGCAATTTC-3
AE7199 5-GGCAGTATTCATCCACCTTT
N184L TTAAAAGAAAAGGGGGGATT-3
AE7200 5-CCTTTTCTTTTAAAAAGG
TGGATGAATACTGCC-3’
AFA903 5-CAGGAAAGTACTATTTTG
delIN AGATGGAATAGATAAGGC-3
AFA904 5-GCCTTATCTATTCCATCT
CAAAATAGTACTTTCCTG-3’
AE7644 5-GGAAGCTCTATTAGCTACAG
PR D25A GAGCAGATGATAC-3
AE7645 5-CTGTATCATCTGCTCCTG
TAGCTAATAGAGCTTC-3’

Table 1: Oligonucleotides used to introduce indicated changes into pNL43/Xmal DNA.

(SignaGen Laboratories). Two days after transfection, cell supernatants were
filtered through 0.22 pm filters and pelleted by ultracentrifugation using a
Beckman SW32-Ti rotor at 26,000 rpm for 2 h at 4°C. Virus pellets were fixed
with 1 mL fixative (2.5% glutaraldehyde, 1.25% paraformaldehyde, 0.03% pi-
cric acid, 0.1 M sodium cacodylate, pH 7.4) overnight at 4°C. The following
steps were conducted at the Harvard Medical School Electron Microscopy
core facility. Samples were washed with 0.1 M sodium cacodylate, pH 7.4,
and postfixed with 1% osmium tetroxide and 1.5% potassium ferrocyanide
for 1 h, washed twice with water, once with maleate buffer (MB), and in-
cubated in 1% uranyl acetate in MB for 1 h. Samples washed twice with
water were dehydrated in ethanol by subsequent 10 min incubations with
50%, 70%, 90%, and then twice with 100%. The samples were then placed
in propyleneoxide for 1 h and infiltrated overnight in a 1:1 mixture of propy-
leneoxide and TAAB Epon (Marivac Canada Inc.). The following day, the
samples were embedded in TAAB Epon and polymerized at 60°C for 48 h.
Ultrathin sections (about 60 nm) were cut on a Reichert Ultracut-S micro-
tome, transferred to copper grids stained with lead citrate, and examined in
a JEOL 1200EX transmission electron microscope with images recorded on
an AMT 2k CCD camera. Images were captured at 30,000x, 25,000x or
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20,000x magnification. Micrographs were stored on a 8-bit single-channel
TIFF lossless format. In contrast to photon-based microscopy, where each
pixel in the TIFF files encodes the wavelength of the photon, the TIFF files
used in the present study contained electron intensities.

2.2. Data preparation

In order to build a robust neural network, capable of identifying HIV-1
virions across different experimental conditions we built training and valida-
tion datasets from micrograph samples using IN and PR mutant viruses to
mimic eccentric and immature particle morphologies, respectively. In total,
59 micrographs imaged at 30,000x magnification were assigned morphology
labels. This dataset can be found freely at 10.5281/zenodo.5149062.

The raw TEM micrographs were then pre-processed. First, the TEM
micrographs were cropped, removing the image labeling information added
by the microscope and standardizing the micrograph size to 4,000 x 2,620
pixels. Additionally, since object detection tasks perform segmentation and
classification of image-based objects by passing regions of interest through a
convolutional network, bounding box coordinates (x;, y;, w;, h;) were assigned
to each of the labeled virions in each micrograph.

A reasonably sized dataset is vital for training a deep neural network,
which especially applies with CNNs, where the number of learnable param-
eters can reach millions and can quickly overfit if the number of training
samples is too small. A known paradigm to solve this issue is via transfer
learning, where a network is first pre-trained on a massive dataset like Ima-
geNet [36] and then trained on the smaller target dataset. However, it has
been shown that for object detection tasks [37], results on par with Ima-
geNet pre-trained networks can be achieved when training from a random
initialization (from scratch) with a dataset as low as 10k samples [38], given
sufficient training time.

Two approaches were implemented to effectively increase the size of our
data: First, each micrograph was cropped into overlapping regions of 1,024
x 1,024 pixels. To generate the virion classes and box coordinates inside
each cropped region, HIV-1 particles were counted as ground truth only if
at least 75% of the area spanned by their respective bounding box was in-
side the cropped region. The features of the detected particles accordingly
remained consistent across the datasets and misclassification noise, where
a small section of a virion is mistakenly classified, was downplayed. This
method generated between 1 to 48 regions where particles were present and
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increased the number of images in the dataset to 2,730. The second approach
consisted of applying offline augmentations to the cropped images as follows:
each input image was transformed applying horizontal flipping, vertical flip-
ping, 180° rotations and gaussian noise with a mean of 0 and a standard
deviation of 1. This increased the dataset by a factor of four, generating new
images and labels that were consistent with the features and morphologies of
the HIV-1 virions in the micrographs, while the modifications on the images
reduced overfitting on the training process. Together, the strategy described
above, which is represented in Figure A.9 increased our dataset to 13,650
images. The latter dataset was divided for network optimization, yielding
10,725 images for training and 2,925 images for validation.

2.3. Region-based Convolutional Neural Networks (RCNN)

-
Region Proposa

Network FC1 FC2
- S

wvBlock1 Conv MaxPool Upsample
13

3 22 22

n
3x

Figure 2: Network architecture of the deep-learning classifier developed in the present
work. The methodology is built upon a two component classifier system that is able to
segment the particles (RPN) and classify the segmented regions (CNN). A Schematic
of a two-stage Faster RCNN architecture for multiple object detection and classification
(instance segmentation). Faster RCNN uses a Region Proposal Network (RPN) to generate
Regions of Interest (Rol) for classification. Both RPN and classifier heads share the same
backbone CNN. B Our backbone CNN, TEMNet, is composed of several ConvBlocks
(Convolution, GroupNormalization and ReLU activation) and MaxPooling layers. We
used a Feature Pyramid Network (FPN) to generate multi-scale feature maps on which to
generate predictions. Network activations were funneled to three output channels, via two
fully-connected layers and soft max output. Each output channel denotes one classification
of viral particle.

Developing an algorithm to identify and classify HIV-1 virions from TEM
micrographs is in essence an object detection problem, where the goal is to

8



classify individual object instances in an image and localize each one using
a bounding box. For this task we employed the Region-based Convolutional
Neural Network [39] (RCNN) architecture.

RCNNs are based on applying a Convolutional Neural Network (CNN)
to evaluate classification on a number of candidate Regions of Interest (Rol)
delimited by bounding boxes. In this sense, RCNNs are two-stage object
detection architectures since a network proposing the candidate Rols is first
necessary before the backbone CNN can be applied for classification. To effi-
ciently generate Rols, Ren, et.al [29] proposed the Faster RCNN architecture
where, as shown in Figure 2(A), a Region Proposal Network shares the con-
volutional backbone used for classification and outputs a set of rectangular
Rols along with an objectness score indicating the probability of an object
inside the Rol belonging to a class vs the background. The RPN works by
generating anchors, i.e., sliding windows, of different sizes and scale ratios
over the last Convolutional Feature Map output of the backbone CNN. Each
anchor is mapped to an intermediate low dimension feature map and then
connected to two fully connected layers, for regression of bounding box co-
ordinates and computation of a class score that determines whether or not
there is an object in the region. The Rols proposed by the RPN are then
passed through a Rol pooling layer [40] or RolAlign layer [41] where their
features are extracted via average or max pooling and then passed to the
classifier heads. In this way, the final fully connected and softmax layers
assign a per-class probability to each of the proposed Rols.

Since the RCNN is a two-stage method that predicts both the bounding
box localization (Z;, g, w;, ﬁz) as well as the classification probabilities p; of
object instances in an image with ground truth classes u; and bounding box
localization (x;, y;, w;, h;), the error function to minimize network training is
a multi-task loss consisting of two parts [40]:

L({pi,wi}, {ts,t:}) = 1 1

Zi: Lclass (ﬁu uz)"_)\N

Rol

Z[u > 1 Lioe(ti, ;) (1)

class

where the normalizing parameters are the number of classes Ng.¢s and the
number of regions of interest proposed Ngor. The first loss

eﬁi,ui

Ljass ﬁ’i)ui = —lOg C - 2
(5. ) o @
is the cross entropy log loss that the Rol proposal ¢ belongs to the class u
with a probability p;,. While the second loss is calculated only when the
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predicted region is not classified as background (u = 0), as indicated by the
Iverson bracket function [u > 1], and it’s given by a smooth L1 loss

Lie(titi) = Y smoothy (fie — t;) (3)
ce{z,y,w,h}

with the coordinate offsets ¢. defined as

te = (& —xa)/wa,  ty=(§ = Ya)/ha,

by = log(w/w,), ty = IOg(ﬁ/ha)a (4)
te = (v — 2a)/Wa,  ty = (Y — Ya)/has

tw = log(w/w,), tp =log(h/h,),

for the coordinates z,  and x, denoting the predicted bounding box, ground
truth box and anchor box coordinates, respectively. The hyperparameter A
is a weight that controls the balance between the two tasks error. As in [40],
we use A = 1 for the training procedure.

For our purposes, the Faster RCNN architecture is incorporated for ob-
ject detection tasks which allows experimentation by letting the user imple-
ment different backbone CNNs to be used for both Rol proposal and final
object classification as shown in Figure 2 (A). In the present paper, we
implemented the Residual Convolutional Neural Network ResNet101 [42] ar-
chitecture as well as its variation ResNet101v2[43] and the residual inception
network Inception-ResNet-v2[44] along with our own compact convolutional
backbone architecture named TFEMNet.

2.4. TEMNet

As shown in Figure 2(B) TEMNet is a sequential architecture composed
of four convolutional blocks and max pooling layers. Each convolutional
block consists of a 2D convolution followed by a normalization and a ReLu
activation. Because convolutional blocks use padding to conserve the ten-
sor size of the previous feature map, the feature map size is reduced by a
factor of only 1/2, applying a max pooling layer of kernel size 2 after each
convolutional block. Convolutional blocks 1, 2, 3 and 4 use kernel sizes of
13 x 13,9 x9,7x7and 5 x 5 respectively; sequentially decreasing in order
to adapt to the reduced feature map size after max pooling on each one of
the networks stages. As a way to mitigate overfitting, we added a Gaussian
noise layer with standard deviation of 0.1 after the first max pooling layer,
to act as a regularization layer for training while being inert for inference.
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Normalization is essential for convergence of a deep network during train-
ing. However, batch normalization requires a sufficiently large batch size [45]
which is not available in object detection tasks where a small batch size is
necessary to keep a high image resolution. In this case, batch normalization
can lead to inaccurate batch statistics.

On the one hand, pretraining and transfer learning are crucial techniques
to facilitate the convergence of the network loss. In the case of ResNet back-
bones, weights trained on ImageNet [36], a massive-scale image classification
database are readily available online. These pretrained weights were used as
a starting point for training on our dataset where batch normalization lay-
ers were frozen, effectively transforming them to linear layers and the batch
statistics learned on the massive-scale dataset were transferred to the new
network. Results with and without pretraining for ResNet101 are shown in
Figure A.10.

On the other hand, normalization on a network trained from scratch
cannot benefit from transfer learning. Instead, for TEMNet we implemented
group normalization [46], which normalizes along the channel axis instead of
the batch axis.

In order to generate multi-scale feature maps on which to generate predic-
tions, we used a Feature Pyramid Network [47] (FPN) for both our TEMNet
and ResNet backbones. The ResNet implementation was done according to
the original FPN paper [47] and zero padding was added to make the layers
of Inception-ResNet-v2 compatible; while for TEMNet, in a similar manner
the output of each of the max pooling layers {C1,C2,C3,C4} was used to
generate the pyramid feature maps {P2, P3, P4}. For this procedure, every
layer was passed through a 1 x 1 convolution to standardize the number of
filters (256), this convolution is known as a lateral connection. The top-down
pathway was then built, starting with the coarsest resulting feature map P4
(generated from C4). The latter was upsampled with a 2 x 2 kernel and
added to the underlying C'3 feature map to generate P3, afterwards P3 itself
was upsampled and added to C2 to generate the feature map P2. Finally,
a 3 X 3 convolution was applied on each feature map {P2, P3, P4}. These
feature maps work as pyramid “levels” to which Rols were mapped according
to their size. Specifically, following [47] a Rol with height h and width w will
be assigned to the pyramid level P

k= {4 + 1og2(\/ﬁ/2620)J (5)
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where 2,620 is the number of pixels constituting the smaller side of a mi-
crograph and 4 is the single scale level for a Rol. Predictions on each of the
pyramid levels were then funneled to two fully connected layers with 64 neu-
rons for TEMNet and 1,024 for ResNet and Inception-ResNet, then finally
to a softmax layer where per-class probability was assigned on 341 channels:
three for our virion classifications: eccentric, mature, immature; and one for
background.

For the training procedure, ResNets were initialized from ImageNet pre-
trained weights and then fine-tuned on a dataset of 1,806 isolated HIV-1
virion samples. TEMNet was trained from scratch on the same dataset. Af-
terwards, the CNN backbones were initialized on their fine-tuned weights
and trained individually on the RPN network for Rol proposal generation
for 50 epochs on the cropped micrograph dataset consisting of 13,650 im-
ages. Finally, the RPN trained weights were used as initialization for training
the CNN backbones on the full RCNN architecture for 50 epochs using the
cropped micrograph dataset.

The input image was resized to 512 x 512 pixels allowing a batch size of 8
images on a single NVIDIA V100 GPU. Stochastic Gradient Descent (SGD)
was used to train the model with a starting learning rate of 0.01 which
decreased by a factor of 10 every time a learning plateau was encountered
on the validation loss. Weight decay was set to 0.0001, learning momentum
to 0.9 to avoid the training getting stuck on a local minimum and gradient
clipping norm to 5.0 to avoid exploding gradients. We used 50 Rols per image
for training and 20 for validation. Training Faster RCNN with TEMNet took
less than 9 hours on our cropped dataset. Training error with ResNet and
TEMNet backbones are shown in Figure 3. From this training the weight
checkpoint, which achieves the lowest validation error, was chosen to avoid
overfitting (Early stopping). The feature map activations learned by the
convolutional blocks and FPN levels of TEMNet are presented in Figure 4

3. Results

3.1. Prediction generation approach

As a result of training the network on a dataset composed of micro-
graph croppings, our Faster RCNN network can generate predictions on
1,024 x 1,024 croppings of TEM micrographs. In order to generate end-
to-end predictions on raw TEM images we devised a method to segment a
micrograph via a sliding window. As illustrated in Figure 5, we scanned an
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Figure 3: Learning error analysis of our particle classifier. A Training and validation error
for the ResNet101 backbone versus training epoch, one full cycle of our Faster RCNN
implementation.B Training and validation error for the TEMNet backbone versus training
epoch. Early stopping and learning rate reduction were used to select the best weights
avoiding overfitting. C Ground Truth labeled micrograph. All micrographs used for
training our network were evaluated by eye and manually labeled. Instance classification
of 200 HIV-1 particles required approximately 30 minutes to complete. D Automated
predictions obtained using the TEMNet backbone for the micrograph in C. The network
generated predictions on 130 micrographs in 5 minutes on one GPU. Scale bars in panels
C and D are shown in the lower left portions of the images. Bounding box colors in panels
C and D identify viral classifications: mature (yellow), immature (blue), eccentric (green).

input micrograph by translating a sliding window across the image and gener-
ating overlapping segmented regions. The segmented regions were compiled
into batches and used as input for the RCNN network, which generated Rol
(rectangular bounding box) coordinates and classification probability predic-
tions for each virion instance detected in the segmented regions (see Figure
A.11 for details). Then, the predicted Rols were shifted by the position of
the sliding window and gathered on the input full scale micrograph. Since
the sliding window generated overlapping segmented regions, the network
predicts multiple times on the virion instances localized in overlapping re-
gions, generating overlapping Rols with different classification probabilities
that describe the same virion. To glean final predictions, non-max suppres-
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Figure 4: Feature map activations corresponding to each convolutional block of the TEM-
Net backbone (C1, C2, C3, C4) and each level of the Feature Pyramid Network (P2, P3,
P4). The first convolutional block identifies borders and electron density in virion lumina
and isolates it from the background, the second block learns image processing techniques
such as watershedding. Additional layers become more abstract and escape comprehensive
description.

sion was applied to the predicted Rols to eliminate the Rols whose area
overlapped more than a 30% threshold by retaining the Rol with the highest
confidence score (i.e., prediction probability) and discarding the overlapping
regions with lower confidence. In the case of confidence score ties, final Rols
were chosen by a larger area criterion due to a larger Rol being generally
better at comprehending a viral instance in the full scale micrograph and
providing better feature extraction through the Feature Pyramid Network.
Finally, the resulting Rols and class probability scores were displayed and
a per class count was performed on the processed predictions. The default
sliding window size for 30,000 x magnification micrographs was 1,024 x 1,024
pixels (569 x 569 nm) consistent with the cropping size and magnification
used for building the training dataset.
The sliding window approach provided advantages to the prediction pipeline.

For instance, translation variance of the predicted class for a given viral
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Figure 5: Micrograph segmentation via a sliding window: A A windowed region was
translated across the image and predictions were generated on the segmented regions. B
The predictions were gathered on the full scale micrograph and C Non-max suppression
(NMS) was applied to determine classifications with highest confidence from overlapping
Regions of Interest (Rols), to glean final predictions. Numbers above each bounding box
correspond to prediction ”confidence“ or certainty, which may ultimately be used to filter
predictions (see Fig. 7). Scale bars are shown in the lower left portions of panels B and C.

instance was handled by considering predictions from different segmented
regions and keeping the predicted Rol with the highest confidence score. Fur-
thermore, this approach allowed for prediction generation on multi-magnification
micrograph sets. Image size was linear with magnification, therefore a win-
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dow size to magnification ratio r = W;/M;[pzx] can be calculated based on
the cropping size W, and magnification M, used for training the network.
This ratio was used internally by the network to calculate the appropriate
sliding window size W,,.,, for an input micrograph with a given magnification
Mnew

Whew = T Mpew[pz], (6)

the latter preserves the physical dimensions (in nm) of the segmented re-
gions by the RCNN process, allowing consistent predictions across multiple
magnifications. Samples of predicted micrographs at 30,000x and 20,000 x
magnification are presented in Figure 6. Additional predictions on 25,000 %
magnification micrographs are presented in supplemental Figure A.12.

3.2. Prediction performance on raw images

'IOEnm IOEnm wa\m

Figure 6: Virion classification on multi-magnification micrograph sets. Predictions
across different raw TEM micrographs with A The same magnification used for train-
ing (30,000x). B A magnification lower than is discernible by a trained expert (20,000 ).
Our RCNN network calculates the appropriate sliding window size to segment a micro-
graph according to its magnification. Scale bars are shown beneath the micrographs.

To evaluate the performance of our network, we measured the mean Av-

erage Precision (mAP) as is traditional for object detection models[48]. mAP
computes the average precision over all classes for a recall value from 0 to 1.
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Precision, recall and F1 scores were calculated as

True Positives
Total predicted instances’

_ True Positives
Recall = Total ground truth instances’

Precision =

F1 __ o Precision*Recall
~ “Precision+Recall

where a True Positive prediction is established if its bounding box overlaps
with a ground truth box by more than 50% Intersection over Union (IoU) [48]
and the F1 score is the harmonic mean between precision and recall. Precision
and recall pairs of values were calculated for increasing subsets of detections
such that precision vs recall curves could be built from pair plotting. The
precision vs recall curve was interpolated so dips in precision were replaced
by the maximum precision for a given recall value. The mAP was then
calculated as the area under the precision (p) vs recall (r) curve

1
mAP:/ pinterpolated(r)dra (7>
0

since mAP takes into account precision, recall and the IoU overlapping of
predicted Rols to ground truth, it is regarded as the de-facto ’gold standard’
to evaluate accuracy on Object Detection tasks across many datasets [49, 50,
51].

mAP for each of our Convolutional Neural Network backbones were mea-
sured on a validation dataset composed of 13 full scale TEM micrographs
pertaining to different experimental conditions. As presented in Table 2,
our model, TEMNet with a Batch Normalization (BN) layer in the Convolu-
tional blocks achieved a 77.8% mAP competitive with InceptionResNetv2
(78.6% mAP), ResNetl101 (78.2% mAP) and ResNet101v2 (77.9% mAP)
while TEMNet with a Group Normalization (GN) layer outperformed these
by over 1 point, achieving a 80.0% mAP. Regarding the other metrics ResNets
achieved higher precision and F1 scores (for ResNet101 and ResNet101v2)
while TEMNet achieved the highest recall score. Interestingly the Incep-
tionResNetv2 architecture which was the most complex achieved the highest
mAP among the ResNet backbones with also the highest recall. However,
Inception-ResNet-v2 lacked the precision of other ResNet modules, perhaps
due to the fact that zero padding was necessary to make the shapes of the
inception blocks compatible with the upscaling and adding layers present in
the FPN.
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RCNN backbone mAP,7—05% | Precision % | Recall % | F1 score %
ResNet101 + FPN 78.2 76.7 84.0 80.0
ResNet101v2 + FPN 77.9 75.8 85.9 80.5
InceptionResNetv2 + FPN 78.6 64.7 86.2 73.7
TEMNet (BN) 77.8 60.8 84.9 70.9
TEMNet (GN) 80.0 71.3 87.9 78.8

Table 2: Object detection metrics for different Region based Convolutional Neural Network
(RCNN) backbone architectures. The results represent the mean Average Precision (mAP)
for predictions matching ground truth with an Intersection over Union (IoU) score over
0.5 tested on our validation dataset, the latter consisting of micrographs from different
experimental conditions. Our model, TEMNet with a Batch Normalization (BN) in the
Convolution blocks, achieved a mAP competitive with ResNet101 and ResNet101v2 while
TEMNet with a Group Normalization (GN) layer outperformed ResNet101, ResNet101v2
and Inception-ResNet-v2 by over 1 mAP point.

In addition to being accurate, the network prediction pipeline derived in
the present work significantly improved workflow times. While 30 minutes on
average was required to manually ascribe 200 HIV-1 particle classifications
on a single micrograph, our network offered a significant speedup, processing
130 micrographs in five minutes on one GPU, generating bounding box co-
ordinates and classification probabilities as well as count histograms for each
of the micrographs processed.

Furthermore, in order to evaluate the statistical distribution of classifi-
cations predicted by our Faster RCNN+FPN implementation, we measured
the percentage of each particle morphology class across different experimental
conditions. These morphology distributions were compared between the in
situ ground truth classification counts from manually tabulated micrographs
compared to the predicted distributions from the virion detection counts
performed by our Al. Side by side histograms are shown in Figure 7 for pre-
dictions using the TEMNet backbone filtering predictions whose confidence
score was above a 0.5 threshold. Ground truth labeled micrograph samples
as well as their detection and classification predictions for each experiment
are also presented in supplemental Figure A.13. Additionally, we compared
the morphology distributions for an independent set of NL4-3 viruses and
primary isolate samples that were not used as part of the training or vali-
dation micrographs. Side by side histograms are shown in Figure 8 for the
TEMNet backbone with a confidence threshold of 0.5; histograms for other
backbones with increasing confidence scores are presented in supplemental
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Figure A.14.
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Figure 7: In situ classifications of virions from different HIV-1 IN (D116N, N184L, delIN)
and PR mutant (D25A) viruses. A Ground truth distribution from manually ascribed
micrograph sets. B Resulting distributions from TEMNet’s predictions on the same mi-
crographs. Predictions with a confidence score ¢ above 0.5 were counted while those under
this confidence threshold were rejected. Numbers over each distribution indicate the num-
ber of virus particles counted and the number of independent micrographs analyzed (*).
Error bars represent standard deviation from experimental replicates.
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Figure 8: In situ classifications of virions from WT HIV-1np4-3, IN deletion mutant
delIN, and primary HIV-1 isolates YU2, and JR-CSF. A Ground truth distribution from
manually ascribed micrograph sets. B Resulting distributions from TEMNet’s predictions
on the same micrographs. Predictions with a confidence score ¢ above 0.5 were counted
while those under this confidence threshold were rejected. Other indicators are the same
as Figure 7.

19



RMSE (counts)
Backbone Confidence | WT | D116N | N184L | dellN | PR D25A
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Table 3: Root Mean Square Error (RMSE) calculated between the predicted and ground
truth distributions for each mutant virus. All predicted distributions were in accordance
with the ground truth showing an error lower than 10% for all experiments independent of
the convolutional backbone used. Among the convolutional backbones, ResNet101v2 pro-
vided the least error across all mutant viruses, followed by ResNet101, Inception-ResNet-v2
and TEMNet. Increasing the confidence threshold for which generated predictions were
counted as True Positives for the distributions reduced the average RMSE across mu-
tants for the TEMNet, ResNet101 and Inception-ResNet-v2 backbones and increased it
for the ResNet101v2 backbone, helping in the first two cases to reduce the error for the
WT and dellN mutants, which proved to be the most challenging micrographs to predict
while PR D25A distributions were perfectly predicted (no error) due to the homogeneity
of immature virions across these samples.
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RMSE (counts)

Backbone Confidence | NL4-3 | NL4-3 delIN | YU2 | JR-CSF
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Table 4: Root Mean Square Error (RMSE) calculated between the predicted and ground
truth distributions for wild type HIV-1np4_3 and its IN deletion mutant delIN. as well
as primary HIV-1 isolates YU2 and JR-CSF. Predicted distributions were in accordance
with the ground truth distributions showing an error lower than 10% for all experiments
independent of the convolutional backbone used. Among the convolutional backbones,
ResNet101v2 provided the least error under these conditions for the HIV-1ny1,4_3 samples,
followed by ResNet101, TEMNet and Inception-ResNet-v2. At the same time, Inception-
ResNet-v2 performed best with the primary virus samples closely followed by TEMNet.
By increasing the confidence score threshold, TEMNet performed best for HIV-Inr4_3
and HIV-1yys samples, while ResNet101 performed best with HIV-13r_csr samples.
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As summarized in Tables 3 and 4, ascribed morphology distributions were
in accordance with the associated ground truth measures with a root mean
squared error (RMSE) lower than 10% for each virus type independent of the
CNN backbone used in the Faster RCNN architecture. Among the analyzed
viruses, WT NL4-3 and delIN were the most challenging to classify, which
corresponded to micrographs that presented the lowest contrast between par-
ticle instances and background along with the most image noise out of the
validation samples (see Figure A.13). By contrast, PR D25A mutant viral
samples, which consisted of only immature virions, were classified without
error. For the TEMNet, ResNet101 and Inception-ResNet-v2 backbones, the
error for WT and delIN samples could be reduced by increasing the confi-
dence threshold for which True Positive instances were counted, reducing the
average RMSE across all samples for these backbones but increasing it for
the ResNet101v2 backbone. Similarly, increasing the confidence threshold
reduces the average RMSE for the primary isolates using the TEMNet back-
bone. In this regard TEMNet proves especially important providing the low-
est error when predicting the morphologies of the primary isolate viral sam-
ples. Additionally, the calculated p-value for the Pearson’s x? test (see Ta-
bles 5 and 6) indicates no significant statistical difference between the ground
truth and predicted distributions across the different mutant viruses, with
the exception of the WT virus when using the TEMNet backbone. In this
regard, ResNet101v2 proved to be the most accurate backbone when com-
paring the predicted morphology distributions across different experimental
conditions, followed by ResNet101, Inception-ResNet-v2 and TEMNet. For
this reason, we consider that ResNets outperform TEMNet on prediction
accuracy. However, while the former algorithms generally predicted virion
morphology more accurately across samples, TEMNet importantly offered
an accuracy trade off for prediction speed and compactivity.

Histograms for all backbones across different experimental samples with

varying confidence score threshold are presented in supplemental Figures A.15
and A.16.

4. Discussion

We have developed an end-to-end deep learning solution to the automated
detection and classification of HIV-1 virion particle morphologies from TEM
micrographs across different maturation stages. Our overall methodology is
not limited to HIV-1 particles and can be extended to other enveloped viruses
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x? test p-value
Backbone Confidence | WT | D116N | N184L | dellN | PR D25A
>0.5 0.02 0.34 0.07 | 0.08 1.00
TEMNet 0.9 004 021 006] 0.12 .00
>0.5 0.70 0.91 0.15| 0.43 1.00
ResNet101 >0.9 0.92| 056| 0.17] 0.56 1.00
>0.5 0.27 0.80 0.67 | 0.77 1.00
ResNet101v2 >0.9 008 063| 084] 0.73 1.00
. >0.5 6.33e~1 0.64 0.01 | 0.66 1.00
Inception-ResNet-v2 i——q 95550089 | 0.08 | 0.00 £.00
Table 5: Pearson’s x? test p-values calculated between the predicted and ground truth
distributions for each experimental condition. Within the probability threshold of p = 5%
there was no statistical difference between the distributions calculated from the predictions
and the distributions calculated from ground truth counts with the exception of the WT
virus with the TEMNet backbone. In accordance with the RMSE values (Table 3) for each
backbone, ResNet101v2 provided the highest p-value followed by ResNet101, Inception-
ResNet-v2 and TEMNet. p-values greater than 0.05 indicate no significant statistical
difference.
x? test p-value
Backbone Confidence | NL4-3 | NL4-3 delIN | YU2 | JR-CSF
>0.5 0.18 0.03 0.76 0.02
TEMNet 0.9 0.03 00| 006 028
>0.5 0.29 0.02 0.02 0.26
ResNeEMQ 0.9 0.21 0.05 [ 2.03¢ 7| 0.02
>0.5 0.58 0.46 | 5.37e % | 1.30e~*
ResR& ' >0.9 0.51 054 | 3.60e > | 2.78¢°
. >0.5 0.09 1.90e7° | 1.32¢7° 0.02
Inception-ResNet-v2 |——g7 0.02 9.57c 7 |20l | 0.4

Table 6: Pearson’s x? test p-values calculated between the predicted and ground truth
distributions for wild type NL4-3 and primary isolate YU2 and JR-CSF HIV-1 viruses.
TEMNet is the only backbone that predicts a distribution with no statistical significance
for primary isolates within a probability threshold of p = 5% when increasing the confi-
dence threshold to 0.9. The highest average p-values are encountered for ResNet101v2,
TEMNet, ResNet101 and Inception-ResNet-v2 in descending order. p-values greater than
0.05 indicate no significant statistical difference.
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provided that enough training data is available. In our approach, we have
overcome the limitations of comparatively small datasets to produce reliable
particle classifications and counts.

Our network, named TEMNet, is a new CNN architecture for object de-
tection and has been trained from scratch as a backbone for a two-stage
Faster RCNN [29] object detection network. In line with [37] and [38], we
demonstrated that our model converges when trained from scratch thanks to
Group Normalization [46] techniques and building a reasonably sized dataset
consisting of 13,650 labeled croppings of TEM micrographs for training and
validation. Importantly, the training dataset was built from different exper-
iments. Outcomes of particle classification were pitted head-to-head versus
manual ascriptions of the same micrographs, allowing the model to be robust
and generalizable for HIV-1 virions under diverse experimental setups.

We have demonstrated that networks developed to handle photon-based
images are competent at identifying and classifying objects from electron-
based imaging. Comparing TEMNet with ImageNet pretrained ResNet [42,
43, 44] backbones we found that while both networks worked with a high
accuracy on validation micrographs from different experiments, TEMNet re-
ported the highest mAP score at 80.0% surpassing ResNets by over 1 mAP
point (Table 2). All backbones predicted statistically significant data when
comparing the predicted morphology percentages for in situ micrographs for
different IN and PR mutant viruses, with manually ascribed ground truth dis-
tributions. In this regard, however, ResNet backbones outperformed TEM-
Net, presenting the lowest RMSE and the highest p-values for the Pearson
x? test as summarized in Tables 3 and 5. The WT and delIN mutant viruses,
whose samples had the most noise, preformed the poorest across techniques,
while the PR D25A active site mutant virus performed best, owing to the uni-
formity of the immature particle morphology across samples (Figures 7, A.15
and A.16).

Faster RCNN combined with our TEMNet backbone also proved to be a
highly efficient method for generating predictions on raw TEM micrographs,
offering a significant speedup to manual classification. While 30 minutes
on average was required to manually ascribe each micrograph that contained
approximately 200 viral particles, the model processed and generated predic-
tions of 130 micrographs in five minutes with a single GPU. This translates
to an approximate 780-fold improvement in speed. In addition, our predic-
tion method could also handle particle predictions for multi-magnification
micrograph sets, demonstrated in Figures 6 and A.12. Finally, the TEMNet
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backbone was accurate, efficient and also light. The memory footprint of
TEMNet’s training weights was only 15 MB compared to ResNet’s 235 MB
and Inception-ResNet-v2’s 292 MB, which renders TEMNet appropriate for
software implementations under hardware constraints and therefore useful
for web and mobile deployment.

Summarizing, here we present a robust Convolutional Neural Network
for the automated detection and classification of HIV-1 particle morphologies
from TEM micrographs. Our proposed TEMNet backbone has the capability
to accurately and efficiently detect HIV-1 virions and classify them accord-
ing to their maturation stage across varying experimental conditions. Fur-
thermore, the statistical distributions across experimental conditions agreed
with manually ascribed results while being significantly faster. Given that
Gag-interacting maturation inhibitors and ALLINIs, each of which disrupt
particle maturation, are in preclinical development, our methodology could
prove useful in highly promising antiretroviral drug development programs.
We moreover expect that our tool could prove useful to a broader range of
scientists including virologist and medical researchers, as long as there is suf-
ficient raw data on which to first train the machine learning methodology.
The latter could especially apply to histopathological detection of SARS-
CoV-2 infection (see [52] for review), where cell organelles that are similar in
size to virus particles often confound data interpretation.
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Appendix A. Supplemental Figures
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Figure A.9: Data augmentation procedure applied to TEM micrographs: A A raw TEM
micrograph is cropped into overlapping regions of 1024 x 1024 pixels containing viral
particles, a viral particle is counted as ground truth inside a cropped region when at least
75% of its bounding box area is contained within the region. (1-48x augmentation). B
Cropped images are further augmented by means of transformations: vertical flipping,
horizontal flipping, 180° rotations and gaussian noise. (4x augmentation).
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Figure A.10: Importance of pretraining for CNN architectures: A TEM micrograph cropp-
ping processed displaying predicted HIV-1 viral particles using ResNet101 weights trained
from scratch on a small dataset. B The same TEM micrograph section processed display-
ing HIV-1 viral particles predicted by RCNN with a ResNet101 backbone pretrained on
the massive-scale dataset ImageNet.

34



TEM Trained
micrograph weights

'

e B i
' .
! 1
. i
' . .
! | S '
. i
1 .
! 1
B i
R e .

|

e B i
'
i

1
. i
' .
i
! | g :
1
! 1
N

, N

! 1

N 1

' .

i

. I '
i

'

i

k '

\

Predicted
TEM
micrograph

Figure A.11: Flowchart representing the prediction algorithm of the RCNN network: A
TEM micrograph is divided into overlapping window crops that are passed to the RPN,
which detects regions with viral instances; these are then passed to the RCNN classifier
head which returns a class for each of the regions. Then predictions are aggregated and
processed into a predicted TEM micrograph. All RPN and RCNN classifiers use trained
weights to generate predictions.

35



Figure A.12: Predicted classification of HIV-1 virions for TEM micrographs at 25000 x
magnification using TEMNet.
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Figure A.13: In situ detection and classifications of virions from different WT and mutant
HIV-1 samples. Ground truth labeled micrograph from an expertly trained eye for A
WT, C D116N, E N184L, G delIN and I PR D25A viruses. Detection and classification
predictions generated from TEMNet on the same B WT, D D116N, F N184L, H dellN
and J PR D25A samples.
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Figure A.14: In situ classifications of WT NL4-3 and NL4-3 delIN and primary isolates
YU2 and JR-CSF HIV-1 virions. A Ground truth distribution from manually labeled
micrographs. B-F Resulting distributions from different CNN backbones with a confidence
score threshold ¢ : B TEMNet, ¢ > 0.9. C ResNet101, ¢ > 0.5. D ResNet101, ¢ > 0.9. E
ResNet101v2, ¢ > 0.5. F ResNet101v2, ¢ > 0.9. Error bars, numbers and asterisks are as
in Figure 7.
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A Ground Truth Distributions B Predicted Distributions TEMNet > 0.5
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Figure A.15: In situ classifications of WT and IN (D116N, N184L, delIN, E95A, N18I,
L241A), WT+4BI-D and PR D25A mutant virions. A Ground truth distribution from
manually labeled micrographs. B Resulting distributions from TEMNet’s predictions on
the same micrographs. Predictions with a confidence score ¢ above 0.5 were counted while
those under this confidence threshold were rejected. See Figure 7 for meanings of numbers,
asterisks, and error bars.
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A Ground Truth Distributions B Predicted Distributions TEMNet > 0.9
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Figure A.16: In situ classifications of WT and IN (D116N, N184L, delIN, E95A, N18I,
L241A), WT4BI-D and PR D25A mutant virions. A Ground truth distribution from
manually labeled micrographs. A Ground truth distribution from manually labeled mi-
crographs. B-F Resulting distributions from different CNN backbones with a confidence
score threshold ¢ : B TEMNet, ¢ > 0.9. C ResNet101, ¢ > 0.5. D ResNet101, ¢ > 0.9. E
ResNet101v2, ¢ > 0.5. F ResNet101v2, ¢ > 0.9. See Figure 7 for descriptions of numbers,
asterisks, and error bars.
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