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Abstract—This paper develops an ensemble learning-based 
linearization approach for power flow with reactive power 
modeled, where the polynomial regression (PR) is first used as a 
basic learner to capture the linear relationships between the bus 
voltages as the independent variables and the active or reactive 
power as the dependent variable in rectangular coordinates. 
Then, gradient boosting (GB) and bagging as ensemble learning 
methods are introduced to combine all basic learners to boost the 
model performance. The inferred linear power flow model is 
applied to solve the well-known optimal power flow (OPF) 
problem. The simulation results on IEEE standard power 
systems indicate that (1) ensemble learning methods can 
significantly improve the efficiency of PR, and GB works better 
than bagging; (2) as for solving OPF, the data-driven model 
outperforms the DC model and the SDP relaxation in both 
accuracy, and computational efficiency. 

Index Terms-- Power flow, data-driven, ensemble learning, 
gradient boosting, bagging. 

I. INTRODUCTION  
Power flow analysis is an indispensable part for power 

system planning and operation. However, the nonlinear and 
nonconvex properties of power flow equations restrict the 
convergency and computational speed of power flow solutions, 
especially in large scale power systems, which attracts many 
researchers. One of the typical measures is to linearize the 
nonlinear alternating current (AC) power flow model into 
linear models, such as the direct current (DC) power flow that 
maps the linear relationship between the active power and the 
voltage phase angle. Other extended linearized models of 
power flow can also be found in [1]- [7].  Linear 
approximations of the active and reactive power demands in 
distribution networks are proposed in [1], and the sufficient 
conditions for the existence of the power flow solution are also 
investigated. Similarly, in [2], a linear power flow for three-
phase distribution systems is proposed considering both 
balanced and unbalanced conditions with ZIP load models. 
Other linearized models are presented in [3]-[7] through 
decoupling voltage magnitude and phase angle.  

Although these approaches enhance the accuracy beyond 
the DC power flow, most of them are based on assumptions of 
simplifying network parameters to reach the linearization of 
power flow. In [8], variable-selection based methods are 
exploited to obtain the linearization of power flow, however, 

they indirectly change the bus number, even replace the 
original voltage variables by new variables and lead to the poor 
applicability in optimization and control problems. In the 
presence of massive databases and sufficient measurements 
related to power system operation, data-driven approaches 
attract more and more attentions, with applications in 
estimating Jacobian matrix [9] distribution factors [10], and the 
admittance matrix [11]. In this paper, our contributions are 
summarized as: 1) the polynomial regression [12], [13] is used 
as a basic learner to infer the linear map between the bus 
voltages as the independent variables and the active or reactive 
power as the dependent variable; gradient boosting [14], [15] 
and bagging [16], [17] as ensemble learning techniques are 
leveraged to assemble all basic learners to improve the 
accuracy of the learned model; 2) the resulting linear power 
flow model is used to construct a linear optimal power flow 
(OPF) model.  

The rest of this paper is organized as below. Section II 
illustrates the existing problems and solutions for computing 
and fitting power flow. The data driven linear power flow 
model is inferred in section III through ensemble learning 
methods. Eventually, the simulations and conclusions on some 
IEEE cases are displayed in Section IV and V. 

II. PROBLEM FORMULATION AND STATEMENT 
This section depicts the problem formulation and existing 

solutions in computing optimal power flow. Some challenges 
and tactics in fitting power flow are also discussed from the 
perspective of data mining.  
A.  Problem Formulation and Solutions 

In general, the nonlinear AC power flow (ACPF) 
formulations in an n-bus power system can be described by the 
following equations in (1)~(10): ௜ܲ = ݁௜ ∑ ௜௝ܩ) ௝݁௡௝ୀଵ − ௜௝ܤ ௝݂) + ௜݂ ∑ ௜௝ܩ) ௝݂ + ௜௝ܤ ௝݁)௡௝ୀଵ    (1) 

௜ܳ = ௜݂ ∑ ௜௝ܩ) ௝݁௡௝ୀଵ − ௜௝ܤ ௝݂) − ݁௜ ∑ ௜௝ܩ) ௝݂ + ௜௝ܤ ௝݁)௡௝ୀଵ    (2) 

௜ܲ௝ = ௜௝݁௜ܩ ௝݁ − ௜௝݁௜ܤ ௝݂ + ௜௝ܤ ௜݂ ௝݁ + ௜௝ܩ ௜݂ ௝݂ − ௜௝(݁௜ଶܩ + ௜݂ଶ) 
(3) 

௜ܳ௝ = ௜௝ܩ ௜݂ ௝݁ − ௜௝݁௜ܤ ௝݁ − ௜௝݁௜ܩ ௝݂ − ௜௝ܤ ௜݂ ௝݂ + ௜௝(݁௜ଶܤ + ௜݂ଶ)  
 (4) 
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௜ܲ = ௜ܲீ − ௜ܲ௅                                     (5) 

௜ܳ = ௜ܳீ − ௜ܳ௅                                    (6) 

௜ܲீ ௠௜௡ ≤ ௜ܲீ ≤ ௜ܲீ ௠௔௫                               (7) 

௜ܳீ ௠௜௡ ≤ ௜ܳீ ≤ ௜ܳீ ௠௔௫                             (8) 

௜ܲ௝ଶ + ௜ܳ௝ଶ ≤ ௜ܵ௝ீ௠௔௫                                (9) 

௜ܸ௠௜௡ଶ ≤ ݁௜ଶ + ௜݂ଶ ≤ ௜ܸ௠௔௫ଶ                       (10) 

where ௜ܲ	,  ௜ܳ 	,  ݁௜	,  ௜݂  denotes the active power injection, 
reactive power injection, the real and imaginary parts of 
voltage at bus ݅;  ௜ܲ௝ , ௜ܳ௝ ௜௝ܩ , ௜௝ܤ ,  are the active and reactive 
line flow, the real and imaginary parts of the line admittance 
between bus 	݅  and bus 	݆ ; G is the index set of generators; ௜ܲீ ,	 ௜ܳீ 	are the active and reactive power of the i-th generator; ௜ܲ௅ , 	 ௜ܳ௅  are the active and reactive power load at i-th bus; ௜ܲீ ௠௜௡, ௜ܲீ ௠௔௫,	 ௜ܳீ ௠௜௡ ,	 ௜ܳீ ௠௔௫  are the  lower and upper limits 
of active and reactive power of the i-th generator; ௜ܸ௠௔௫,	 ௜ܵ௝ீ௠௔௫ 
are the maximums of the i-th bus voltage and the ij-th branch 
transmission capacity.  

From the aspect of data mining, in (1)~(4) we treat ݁௜ and ௜݂	 as independent variables, while ௜ܲ  , ௜ܳ , ௜ܲ௝ , ௜ܳ௝  are treated as 
dependent variables. Though the linearization methods of 
power flow based on the assumptions of simplifying network 
parameters, to some extent, accelerate the power flow 
computation [1]- [8], their accuracy can be unsatisfactory. For 
advancing the computational accuracy and efficiency of 
algorithms and making the full use of big data techniques, the 
data mining method seems to be worth exploring with the 
accessible data pertaining to power system operation. 
B. Fitting Challenges and Remedies 

One of the most common problems in machine learning is 
overfitting. An overfitted model usually fits the training dataset 
perfectly, inversely, fails to predict the test dataset reliably. 
Correspondingly, ensemble learning [17], [18] approaches are 
recommended to avoid overfitting when learning the linear 
power flow model, through regularizing learning parameters. 
Another fitting issue is to handle the multicollinear correlations 
within the bus voltages as the independent variables, which is 
actually caused by insufficient data to reveal their true 
associations. Although many variable selection or shrinkage 
methods [19] have been suggested to meliorate the 
multicollinearity through reducing the number of independent 
variables, they may indirectly change the bus number and 
remove crucial variables for further optimization and control 
application in power system. Therefore, in this paper, we 
address the multicollinearity via increasing more datasets in 
model fitting to avoid removing variables. 

III. ENSEMBLE LEARNING BASED LINEAR POWER FLOW 
This section presents full details of the proposed approach, 

which includes: 1) the mapping rules of linear power flow, 2) 
ensemble learning methodologies, and 3) the formulation of 
OPF based on the learned linear models. 
A. Linear Mapping Formulations 

Based on the data mining techniques, the nonlinear 
quadratic forms of AC power flow in (1)~(4) can be 
approximated to linear formulations in rectangular coordinates 
as below. ௜ܲ = ௜ܺܣ + ܾ௜                                   (11) 

௜ܳ = ௜ܺܥ + ݀௜                                   (12) ௜ܲ௝ = ௜௝ܣ ௜ܺ௝ + ܾ௜௝                                (13) ௜ܳ௝ = ௜௝ܥ ௜ܺ௝ + ݀௜௝                                (14) 
where ܣ௜ ௜ܥ	, ௜௝ܣ	, ௜௝ܥ	,  are the corresponding linear coefficient 
vectors; ܾ௜ , 	݀௜ , 	ܾ௜௝ , 	݀௜௝  represent the constant terms; ܺ =[݁ଵ	 ଵ݂, . . , ݁௡	 ௡݂]் = ,ଶݔ	ଵݔ] . . , ்[ଶ௡ݔ , ௜ܺ௝ = [݁௜	 ௜݂ 	 ௝݁ 	 ௝݂]்   .ଶ௝൧்are the bus voltage vectorsݔ	ଶ௝ିଵݔ	ଶ௜ݔ	ଶ௜ିଵݔൣ=
B. Ensemble Learning Methodologies 

Gradient boosting (GB) and bagging as two typical 
ensemble learning methods are leveraged in this paper to 
reinforce the polynomial regression (PR) as a basic learner 
and compute all linear coefficient vectors and constant terms 
in (2). Assume that there is a dataset containing ܯ 
samples 	ሼ(ܺ௠, ௠ܻ)ሽ௠ୀଵெ  where ܺ௠ = ,௠ଵݔ] ,௠ଶݔ . . , [௠(ଶ௡)ݔ  is 
the m-th sample of bus voltages as the independent variables; ௠ܻ  is the m-th sample of the active or reactive power at all 
buses or branches, for instance, ௠ܻ = ,௠ଵ݌] ,௠ଶ݌ . . , ௠௜݌}=[௠௡݌ } is the m-th sample of the 
active power at all buses. We take the dependent variable ௜ܲ  as 
a general example to illustrate how to apply GB and bagging.	

1. Gradient Boosting 
Generally, GB tweaks learning parameters in an iterative 

fashion to find the minimum descending gradient through 
minimizing a loss function. We choose the mean squared error 
function as the specific loss function in (3) ݌)ܮ௠௜, ௠పෞ݌ ) = ଵଶ ௠௜݌) − ௠పෞ݌ )	ଶ																			 (15) 

where	݌௠௜  and ݌௠పෞ =  ௠௜(ܺ) are the observed and estimated݌
values of	 ௜ܲ . The procedure of GB is depicted as below. 

Algorithm: gradient boosting 
1. Initialize the model with a constant value	࢏࢓࢖૙ ૙࢏࢓࢖ .(ࢄ) (ࢄ) = ࢻ࢔࢏࢓ࢍ࢘ࢇ ∑ ,࢏࢓࢖)ࡸ ୀ૚࢓ࡹ(ࢻ 										 				 				(16) 
     where ࢻ is the initial constant vector. 
2. For ࢚ = ૚ to ܂ where T is the number of learners. 

1) Compute the descending gradient ࢚ࢽ by ࢚ࢽ = − ቂࣔࡸ൫(ࢄ)࢏࢓࢖,࢏࢓࢖൯ࣔ(ࢄ)࢏࢓࢖ ቃ(ࢄ)࢏࢓࢖ୀ࢚࢏࢓࢖ష૚(ࢄ)               (17) 

2) Fit a base learner ࣐࢚(ࢄ; ࣋) by ࢚࣋ = ࣂ࢔࢏࢓ࢍ࢘ࢇ ∑ ,࢚ࢽ)ࡸ ;࢓ࢄ)࢚࣐ ୀ૚࢓ࡹ((࣋              (18) 
where ࢚࣋ is the coefficient vector of ࣐࢚(ࢄ; ࣋) by fitting ࢚ࢽ. 
Here the polynomial regression (PR) as a basic learner is 
used to fit the key parameters in equations (11)~(14). 
3) Compute the learning rate ࢚ࣆ  ࢟࢈ ࣆ = ࣆ࢔࢏࢓ࢍ࢘ࢇ ∑ ,࢏࢓࢖)ࡸ (࢓ࢄ)૚ି࢚࢏࢓࢖ + ;ࢄ)࢚࣐ࣆ ୀ૚࢓ࡹ((࣋  (19) 
It is also allowed to set a constant learning rate. The smaller ࣆ is applied, the better generalization is achieved.  
4) Update the model: ࢚࢏࢓࢖ (ࢄ) = (ࢄ)૚ି࢚࢏࢓࢖  (20)                (ࢄ)࢚࣐࢚ࣆ	+

3. Output ࢀ࢏࢓࢖  (ࢄ)
2. Bagging 
Bagging as one of the model averaging approaches can 

reduce variances and avoid overfitting by adjusting the 
number of bootstraps. The key of bagging is to draw random 
samples with replacement and combine a basic learning 
method to train models. The algorithm is given as below. 
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Algorithm: bagging 
1. For ࢚࢈	 = ૚ to ۰܂ where BT is the number of bootstraps. 

1) At the bt-th bootstrap draw ࡹᇱ ᇱࡹ) ≤   random  (ࡹ
samples with replacement. 
2) Fit a base learner ࢚࢈࢏࢓࢖ ;ࢄ) ࣋) by ࢚࣋࢈ = ࣋࢔࢏࢓ࢍ࢘ࢇ ∑ ࢚࢈࢏࢓࢖)ࡸ , ࢚࢈࢏࢓࢖ ;࢓ࢄ) ୀ૚࢓ࡹ((࣋       (21) 
where ࢚࢈࢏࢓࢖  denotes the observed value of 	࢏ࡼ  at the bt-th 
bootstrap; ࢚࣋࢈  is the coefficient vector of ࢚࢈࢏࢓࢖ ;ࢄ) ࣋)  by 
fitting ࢚࢈࢏࢓࢖ . Similarly, the PR as the basic learner is 
performed to compute all parameters in Section A. 

2. Output (ࢄ)ࢍࢇ࢈࢏࢓࢖ by averaging all bootstrap results in  (ࢄ)ࢍࢇ࢈࢏࢓࢖ = 	 ૚ࢀ࡮ ∑ ࢚࢈࢏࢓࢖ ୀ૚࢚࢈ࢀ࡮		(ࢄ) 						 						  (22) 

where (ࢄ)ࢍࢇ࢈࢏࢓࢖ is the predictive value of 	࢏ࡼ . 
C. Convexifying the Optimal Power Flow 

According to the fitted linear power flows, the data driven 
convex approximation (DDCA) for OPF can be rewritten as    

Minimize	∑ (ܿ௜଴ + ܿ௜ଵ ௜ܲீ +௜∈ீ ܿ௜ଶ ௜ܲீ ଶ)																(23)												 ܣ௜ܺ + ܾ௜ = ௜ܲ = ௜ܲீ − ௜ܲ௅                      (24) 
௜ܺܥ  + ݀௜ = ௜ܳ = ௜ܳீ − ௜ܳ௅                     (25) ݔଶ௜ିଵଶ + ଶ௜ଶݔ ≤ ௜ܸ௠௔௫ଶ                          (26) ௜ܲீ ௠௜௡ ≤ ௜ܲீ ≤ ௜ܲீ ௠௔௫                          (27) ௜ܳீ ௠௜௡ ≤ ௜ܳீ ≤ ௜ܳீ ௠௔௫                         (28) ௜ܲ௝ଶ + ௜ܳ௝ଶ ≤ ௜ܵ௝ீ௠௔௫                            (29) ܣ௜௝ ௜ܺ௝ + ܾ௜௝ = ௜ܲ௝ ௜௝ܥ (30)                               ௜ܺ௝ + ݀௜௝ = ௜ܳ௝                               (31) 

where ܿ௜଴, ܿ௜ଵ,	ܿ௜ଶ are the i-th generator cost coefficients; ݔଶ௜ିଵ 
and ݔଶ௜ (݁௜ and	 ௜݂) are the real and imaginary part of voltage. 
The learned linear power flows transform (23)~(31) into a 
convex optimization problem which is more tractable than the 
originally nonconvex ACOPF problem. The DDCA for OPF 
tends to have much simpler formulations and calculations than 
the semidefinite programming (SDP) relaxation. As the 
proposed linear power flow model applies the data of power 
system operation without assumptions of the DC model and 
takes the reactive power into account, it seems to be much 
closer to the original ACPF and more accurate than the DC 
model. 

IV. SIMULATION ANALYSIS 
In this study, Monte Carlo method is adopted to generate 

random data samples of the bus voltages, the active and 
reactive power at each bus or branch, given in IEEE 5-, 57- and 
118-bus systems [20]. The active and reactive power loads are 
stochastically fluctuating around 0.6~1.1 times of preset 
values. Generally, the empirical required minimum sample size 
is at least 2.4 times as many as the number of buses [8], [10], 
[19]. 
A. Comparing Performance of Predictive Accuracy 

The simulation results through the polynomial regression 
(PR), gradient boosting (GB), and bagging, are obtained by 
the equal size of training and test datasets. The average root 
mean square error (RMSE) of the predicted dependent 
variable is used to measure the predictive accuracy, and the 
performance demonstration of all methods is characterized by 
comparing the test RMSEs, not the training RMSEs, shown in 
TABLE I.  

TABLE I TEST AND TRAINING RMSES OF ALL METHODS 
Case Method PR GB Bagging 

RMSE (10 e-05) test training test training test training 

case 5 
(size=175, 

T=200, 
BT=50) 

P 9476.04 11.22 64.08 59.01 310.04 112.91 

Q 2247.02 556.30 395.06 353.26 1333.24 570.53 

Pij 248.11 76.50 43.92 39.81 144.66 88.62 

Qij 1812.00 323.00 179.32 175.83 385.72 341.62 

case 57 
(size=250, 

T=200, 
BT=50) 

P 67.30 4.63 17.27 6.50 26.43 5.90 

Q 237.99 18.14 59.36 22.55 88.93 19.77 

Pij 23.52 17.20 17.27 6.51 19.73 18.04 

Qij 63.04 42.50 52.65 52.39 54.51 50.09 

case 118 
(size=400, 

T=200, 
BT=50) 

P 100.33 15.87 41.65 17.12 82.17 16.07 

Q 180.27 30.45 79.06 32.22 161.17 31.31 

Pij 56.97 20.80 20.64 20.71 25.90 21.56 

Qij 117.57 57.09 63.24 62.56 75.44 58.60 
Note that the unit of above data is 10 e-05. 

From TABLE I, some conclusions can be observed on all 
cases: 1) ensemble learning methods work better than the 
single learner PR; 2) GB outperforms bagging and PR; 3) 
there is no pronounced overfitting as the training RMSE is 
consistently smaller than the test RMSE for any dependent 
variable. 
B. Tuning Parameters 

As the model performance described by the test and 
training RMSEs is directly associated with a set of 
regularization parameters to handle overfitting, this subsection 
presents the tuning processes of GB and bagging, respectively, 
with regard to the number of learners T and the number of 
bootstraps BT. 

1. Tuning the Number of Learners T in GB 
The model performances of the active and reactive power 

injections P and Q on all cases are plotted in the logarithms of 
RMSEs in Fig. 1. (a)~(c). Each plot depicts how the RMSEs 
change as the number of learners T increases. From Fig. 1, we 
can observe that:  

(1) For all cases, the test and training RMSEs of P and Q 
gradually decrease to stable levels with the increase of the 
number of learners T;  

(2) Each case reaches the balance points at different 
numbers of learners. For case 5, after T=150 and T=180 the 
test and training RMSEs of Q and P tend to be constant, 
separately. The RMSEs of case 57 become hardly changeable 
when T=100 for Q and T=150 for P. Similarly, the RMSEs of 
case 118 stop descending when T=140 for Q and T=180 for P;  

(3) No evident overfitting or underfitting problems are 
observed on all cases through the tuning process. 

 
          (a) case 5: RMSEs of P, Q by boosting(log) 
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                                               (b) case 57: RMSEs of P, Q by boosting(log)                                (c) case 118: RMSEs of P, Q by boosting(log) 

               Fig. 1. The test and training RMSEs of P, Q with increasing T 

                         
               (a) case 5: test RMSEs of P by PR and bagging                           (b) case 5: training RMSEs of P by PR and bagging 

 
                                           (c) case 57: test RMSEs of P by PR and bagging                          (d) case 57: training RMSEs of P by PR and bagging 

 
                                          (e) case 118: test RMSEs of P by PR and bagging                        (f) case 118: training RMSEs of P by PR and bagging 

Fig. 2. Comparison of the test or training RMSE of P on all cases with increasing BT

2. Tuning the Number of Bootstraps BT in Bagging 
In Fig. 2. (a)~(f), comparing the RMSEs of the active 

power injection P on all cases before and after bagging is 
incorporated. Each plot represents the results of each bootstrap 
(blue broke curve) and bagging (red curve) as the number of 
bootstraps BT goes up. According to Fig. 2, we can conclude 
that:  

(1) The test or training RMSE of bagging becomes very 
small with slight fluctuations after sufficient times of 
bootstraps. When the number of bootstraps is 20 or more, both 
the test and training RMSEs seem to work well on all cases.  

(2) The result of every single bootstrap fluctuates 

stochastically around the red curve, indicating that the single 
learner has its unstable weakness. 

(3) Bagging can average the variances of all single learners 
and avoid overfitting. 
C. Comparing OPF Results 

As GB exhibits its superiority over others, the linear 
models fitted by GB are chosen to develop a data-driven 
convex approximation (DDCA) method and compute the 
optimal objective values (OOV) shown in TABLE II (unit: 
$/hr), compared with the original nonconvex ACOPF, the 
DCOPF and the semidefinite programming relaxation of OPF 
(SDPOPF). The results of ACOPF, DCOPF and SDPOPF can 
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be computed by Matpower 7.0 on all cases. Note that the 
results of ACOPF are set as the benchmarks and and the 
optimality gap ݃ displayed in TABLE III is defined as [20]:  ݃ = (݃ଵ − ݃ଶ)݃ଵ × 100% 

where ݃ଵ denotes the OOV of ACOPF; ݃ଶ represents one of 
the OOVs of DDCAOPF, DCOPF and SDPOPF. 
Additionally, the runtime (unit: s) of each approach is 
recorded in TABLE IV. 

TABLE II COMPARING OBJECTIVE VALUES OF OPF 
case ACOPF DDCAOPF DCOPF SDPOPF 

case 5 17551.89 17547.4 17479.9 16635.78 

case 57 12100.86 12096.04 10211.99 10458.06 

case 118 129660.70 129680.13 125947.88 129713.07 

TABLE III COMPARING OPTIMALITY GAPS 

case ACOPF DDCAOPF DCOPF SDPOPF 

case 5 0% 0.025% 0.41% 5.22% 

case 57 0% 0.040% 15.61% 13.57% 

case 118 0% -0.014% 2.86% -0.040% 

TABLE IV COMPARING RUNTIMES OF DIFFERENT METHODS 

case ACOPF DDCAOPF DCOPF SDPOPF 

case 5 2.95 1.57 2.30 23.82 

case 57 2.83 2.15 1.77 31.99 

case 118 3.94 2.91 2.11 39.08 

From TABLE II~ IV, they reveal that: 
(1) For the accuracy of OOV, DDCA performs better than 

the DC method and the SDP relaxation on all cases. 
 (2) The table of optimality gaps proves that DDCA (-

0.014%~0.040%) works more robustly than the SDP 
relaxation (-0.040%~13.57%) and the DC method 
(0.41%~15.61%) on the computational accuracy. 

(3) TABLE IV indicates on all cases DDCAOPF is more 
computationally tractable than ACOPF and SDPOPF, and its 
runtimes even can match DCOPF. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, an ensemble learning based linearization of 

power flow is proposed and applied in computing the OPF 
problem. As for the performance of learning methods, the 
application of ensemble learning methods in fitting power flow 
suggests their superiority over single learning method. In terms 
of solving the OPF, the proposed data-driven linear model of 
power flow outperforms the DC method and the SDP 
relaxation on the computational accuracy, and works better 
than ACOPF and SDPOPF on the computational efficiency.  

However, the research results mentioned above are only 
based on simulating datasets without considering uncertainties 
of power load and distributed generators (DG). Instead of using 
the simulating datasets, our future work will focus on sampling 
operation data from the real power systems, inferring the 
complexity and sensitivity of learned models, and introducing 

the uncertainties of power load and DGs by quantitative 
approaches. 
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