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Abstract—This paper develops an ensemble learning-based
linearization approach for power flow with reactive power
modeled, where the polynomial regression (PR) is first used as a
basic learner to capture the linear relationships between the bus
voltages as the independent variables and the active or reactive
power as the dependent variable in rectangular coordinates.
Then, gradient boosting (GB) and bagging as ensemble learning
methods are introduced to combine all basic learners to boost the
model performance. The inferred linear power flow model is
applied to solve the well-known optimal power flow (OPF)
problem. The simulation results on IEEE standard power
systems indicate that (1) ensemble learning methods can
significantly improve the efficiency of PR, and GB works better
than bagging; (2) as for solving OPF, the data-driven model
outperforms the DC model and the SDP relaxation in both
accuracy, and computational efficiency.

Index Terms-- Power flow, data-driven, ensemble learning,
gradient boosting, bagging.

L. INTRODUCTION

Power flow analysis is an indispensable part for power
system planning and operation. However, the nonlinear and
nonconvex properties of power flow equations restrict the
convergency and computational speed of power flow solutions,
especially in large scale power systems, which attracts many
researchers. One of the typical measures is to linearize the
nonlinear alternating current (AC) power flow model into
linear models, such as the direct current (DC) power flow that
maps the linear relationship between the active power and the
voltage phase angle. Other extended linearized models of
power flow can also be found in [1]- [7]. Linear
approximations of the active and reactive power demands in
distribution networks are proposed in [1], and the sufficient
conditions for the existence of the power flow solution are also
investigated. Similarly, in [2], a linear power flow for three-
phase distribution systems is proposed considering both
balanced and unbalanced conditions with ZIP load models.
Other linearized models are presented in [3]-[7] through
decoupling voltage magnitude and phase angle.

Although these approaches enhance the accuracy beyond
the DC power flow, most of them are based on assumptions of
simplifying network parameters to reach the linearization of
power flow. In [8], variable-selection based methods are
exploited to obtain the linearization of power flow, however,
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they indirectly change the bus number, even replace the
original voltage variables by new variables and lead to the poor
applicability in optimization and control problems. In the
presence of massive databases and sufficient measurements
related to power system operation, data-driven approaches
attract more and more attentions, with applications in
estimating Jacobian matrix [9] distribution factors [10], and the
admittance matrix [11]. In this paper, our contributions are
summarized as: 1) the polynomial regression [12], [13] is used
as a basic learner to infer the linear map between the bus
voltages as the independent variables and the active or reactive
power as the dependent variable; gradient boosting [14], [15]
and bagging [16], [17] as ensemble learning techniques are
leveraged to assemble all basic learners to improve the
accuracy of the learned model; 2) the resulting linear power
flow model is used to construct a linear optimal power flow
(OPF) model.

The rest of this paper is organized as below. Section II
illustrates the existing problems and solutions for computing
and fitting power flow. The data driven linear power flow
model is inferred in section III through ensemble learning
methods. Eventually, the simulations and conclusions on some
IEEE cases are displayed in Section IV and V.

II.  PROBLEM FORMULATION AND STATEMENT

This section depicts the problem formulation and existing
solutions in computing optimal power flow. Some challenges
and tactics in fitting power flow are also discussed from the
perspective of data mining.

A. Problem Formulation and Solutions

In general, the nonlinear AC power flow (ACPF)
formulations in an n-bus power system can be described by the
following equations in (1)~(10):

P; = e; 27-1(Gije; — Bijfj) + fi Xj=1(Gijf; + Bijep) (1)
Qi = fi Xj=1(Gijej — Byijfj) — e; Xj=1(Gijfj + Bije)) (2)
— Bijeif; + Bijfiej + Gijfif; — Gij(ef + f)
3)
Gijeif; — Bijfify + Bij(e? + f)
“)

Pij = Gi}-eiej

Qij = Gijfie; — Bijeie; —
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P, =Pf - P} (%)
Q=0 -0 ()
PiGmin < PiG < PiGmax (7)
Q™™ < QF < Q™ (®)
Pi +Qf < S O
VM2 < ef + f7 < vmex? (10)

where P;, Q;, e;, f; denotes the active power injection,
reactive power injection, the real and imaginary parts of
voltage at bus i; Pj;, Q;j, G;;, B;; are the active and reactive
line flow, the real and imaginary parts of the line admittance
between bus i and bus j; G is the index set of generators;
Pf, Qf are the active and reactive power of the i-th generator;
Pl QF are the active and reactive power load at i-th bus;
pgmin_ pGmax gGmin oGmax are the lower and upper limits
of active and reactive power of the i-th generator; V;"%*, Sg-max
are the maximums of the i-th bus voltage and the ij-th branch
transmission capacity.

From the aspect of data mining, in (1)~(4) we treat e; and
fi as independent variables, while P; ,Q;, P;j, Q;; are treated as
dependent variables. Though the linearization methods of
power flow based on the assumptions of simplifying network
parameters, to some extent, accelerate the power flow
computation [1]- [8], their accuracy can be unsatisfactory. For
advancing the computational accuracy and efficiency of
algorithms and making the full use of big data techniques, the
data mining method seems to be worth exploring with the
accessible data pertaining to power system operation.

B. Fitting Challenges and Remedies

One of the most common problems in machine learning is
overfitting. An overfitted model usually fits the training dataset
perfectly, inversely, fails to predict the test dataset reliably.
Correspondingly, ensemble learning [17], [18] approaches are
recommended to avoid overfitting when learning the linear
power flow model, through regularizing learning parameters.
Another fitting issue is to handle the multicollinear correlations
within the bus voltages as the independent variables, which is
actually caused by insufficient data to reveal their true
associations. Although many variable selection or shrinkage
methods [19] have been suggested to meliorate the
multicollinearity through reducing the number of independent
variables, they may indirectly change the bus number and
remove crucial variables for further optimization and control
application in power system. Therefore, in this paper, we
address the multicollinearity via increasing more datasets in
model fitting to avoid removing variables.

III. ENSEMBLE LEARNING BASED LINEAR POWER FLOW

This section presents full details of the proposed approach,
which includes: 1) the mapping rules of linear power flow, 2)
ensemble learning methodologies, and 3) the formulation of
OPF based on the learned linear models.

A. Linear Mapping Formulations

Based on the data mining techniques, the nonlinear
quadratic forms of AC power flow in (1)~(4) can be
approximated to linear formulations in rectangular coordinates
as below.

Qij = CijXi; + dj (14)

where A;, C;, A;j, C;j are the corresponding linear coefficient
vectors; b;, d;, b;j, d;j represent the constant terms; X =
[e1 fir-ren ful” = [x1 X200, x20]" Xij = le; fi €j f]]T =
[le-_l Xoi X2j—1 X2 j]Tare the bus voltage vectors.

B. Ensemble Learning Methodologies

Gradient boosting (GB) and bagging as two typical
ensemble learning methods are leveraged in this paper to
reinforce the polynomial regression (PR) as a basic learner
and compute all linear coefficient vectors and constant terms
in (2). Assume that there is a dataset containing M
samples {(Xp, ;) hm=1 Where Xp, = [Xm1, Ximzs - -) Xm(zm)] 1
the m-th sample of bus voltages as the independent variables;
Y,, is the m-th sample of the active or reactive power at all
buses or branches, for instance,
Yo = [Pmi Pmzs - Prnd ={Pmi } is the m-th sample of the
active power at all buses. We take the dependent variable P; as
a general example to illustrate how to apply GB and bagging.

1. Gradient Boosting

Generally, GB tweaks learning parameters in an iterative
fashion to find the minimum descending gradient through

minimizing a loss function. We choose the mean squared error
function as the specific loss function in (3)

— 1 —
L(pmi' pml) = E (pmi - pml) 2 (15)

where p,,; and pPr,, = pmi(X) are the observed and estimated
values of P;. The procedure of GB is depicted as below.

Algorithm: gradient boosting

1. Initialize the model with a constant value p3,;(X).

0 .
Pmi (X) =argmin, Z%:l L(pmi' a)
where a is the initial constant vector.

(16)

2.Fort =1 to T where T is the number of learners.
1) Compute the descending gradient y; by
— aL(pmivpmi(X))
Ve = [ Pmi (X)
2) Fit a base learner ¢,(X; p) by
pe = argming Yo L(Ve, @:(Xm; p)) (18)
where p, is the coefficient vector of ¢;(X; p) by fitting y,.
Here the polynomial regression (PR) as a basic learner is
used to fit the key parameters in equations (11)~(14).
3) Compute the learning rate u by
B = argming ¥M_; L(pmi Poi Xm) + 1 (X; p)) (19)
It is also allowed to set a constant learning rate. The smaller
W is applied, the better generalization is achieved.
4) Update the model:

Pri(X) = pii (X) + pep(X)

(17

Pmi () =plyt (X)

(20)

3. Output pT;(X)

2. Bagging

Bagging as one of the model averaging approaches can
reduce variances and avoid overfitting by adjusting the
number of bootstraps. The key of bagging is to draw random
samples with replacement and combine a basic learning
method to train models. The algorithm is given as below.
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Algorithm: bagging

TABLE I TEST AND TRAINING RMSES OF ALL METHODS

1. For bt = 1 to BT where BT is the number of bootstraps.

1) At the b¢-th bootstrap draw M’ (M’ < M) random
samples with replacement.
2) Fit a base learner p2%(X; p) by

Py = argmin, Yoi_; Lpmy Pri(Xm; p)) - (21)
where p2%, denotes the observed value of P; at the br-th
bootstrap; py is the coefficient vector of pZ%4(X;p) by
fitting p2% . Similarly, the PR as the basic learner is
performed to compute all parameters in Section A.

2. Output p:’:i‘q (X) by averaging all bootstrap results in
b 1
pUI(x) = L3I pht ()

where pf:ig (X) is the predictive value of P; .

(22)

C. Convexifying the Optimal Power Flow

According to the fitted linear power flows, the data driven
convex approximation (DDCA) for OPF can be rewritten as

Minimize ¥;c6(cio + ¢i1 PE + i PF%) 23)
AX +b; =P, =PF — Pt (24)
CX+di=0Q; =Qf —Qf (25)

X3i_1 + xF; S V2 (26)
PiGmin < PL’G < PiGmax (27)
QiGmin < QlG < QiGmax (28)
P} +Qf < S5 (29)
AigXyy + by = Py (30)
CijXij +dij = Qy (1)

where c¢;g, Ci1, Cj» are the i-th generator cost coefficients; x,;_4
and x,; (e; and f;) are the real and imaginary part of voltage.
The learned linear power flows transform (23)~(31) into a
convex optimization problem which is more tractable than the
originally nonconvex ACOPF problem. The DDCA for OPF
tends to have much simpler formulations and calculations than
the semidefinite programming (SDP) relaxation. As the
proposed linear power flow model applies the data of power
system operation without assumptions of the DC model and
takes the reactive power into account, it seems to be much
closer to the original ACPF and more accurate than the DC
model.

IV.

In this study, Monte Carlo method is adopted to generate
random data samples of the bus voltages, the active and
reactive power at each bus or branch, given in IEEE 5-, 57- and
118-bus systems [20]. The active and reactive power loads are
stochastically fluctuating around 0.6~1.1 times of preset
values. Generally, the empirical required minimum sample size
is at least 2.4 times as many as the number of buses [8], [10],
[19].

A. Comparing Performance of Predictive Accuracy

SIMULATION ANALYSIS

The simulation results through the polynomial regression
(PR), gradient boosting (GB), and bagging, are obtained by
the equal size of training and test datasets. The average root
mean square error (RMSE) of the predicted dependent
variable is used to measure the predictive accuracy, and the
performance demonstration of all methods is characterized by
comparing the test RMSEs, not the training RMSEs, shown in
TABLE 1.

Case Method PR GB Bagging
RMSE (10 e-05) test  training test training test training
P 947604 1122 6408 59.01 31004 11291
case 5
(size=175, Q224702 55630 39506 35326 133324 570.53
T=200,  p. 24811 7650 4392 3981 14466 88.62
BT=50) :
0, 181200 323.00 17932 17583 38572 341.62
P 6730 463 1727 650 2643 590
case 57
(size=250 23799 18.14 5936 2255 8893  19.77
T=200,  p. 2350 1720 1727 651 1973  18.04
BT=50) :
0, 6304 4250 5265 5239 5451  50.09
10033 1587 4165 17.12 8217  16.07
case 118
(size=400 18027 3045 79.06 3222 161.17 3131
T=200,  p. 5697 2080 2064 2071 2590 21.56
BT=50) :
0, 11757 57.09 6324 6256 7544 58.60

Note that the unit of above data is 10 e-05.

From TABLE I, some conclusions can be observed on all
cases: 1) ensemble learning methods work better than the
single learner PR; 2) GB outperforms bagging and PR; 3)
there is no pronounced overfitting as the training RMSE is
consistently smaller than the test RMSE for any dependent
variable.

B. Tuning Parameters

As the model performance described by the test and
training RMSEs is directly associated with a set of
regularization parameters to handle overfitting, this subsection
presents the tuning processes of GB and bagging, respectively,
with regard to the number of learners T and the number of
bootstraps BT.

1. Tuning the Number of Learners T in GB

The model performances of the active and reactive power
injections P and Q on all cases are plotted in the logarithms of
RMSE:s in Fig. 1. (a)~(c). Each plot depicts how the RMSEs
change as the number of learners T increases. From Fig. 1, we
can observe that:

(1) For all cases, the test and training RMSEs of P and Q
gradually decrease to stable levels with the increase of the
number of learners T

(2) Each case reaches the balance points at different
numbers of learners. For case 5, after T=150 and T=180 the
test and training RMSEs of O and P tend to be constant,
separately. The RMSEs of case 57 become hardly changeable
when T=100 for Q and T=150 for P. Similarly, the RMSEs of
case 118 stop descending when T=140 for Q and T=180 for P;

(3) No evident overfitting or underfitting problems are

observed on all cases through the tuning process.
10

1 P_test P_training
Q test Q_training
w01
2
é 0.01
S
0.001 s~
0'000 ! T T T T T T T
1 26 51 76 101 126 151 176

the number of learners (T)

(a) case 5: RMSEs of P, Q by boosting(log)
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Fig. 1. The test and training RMSEs of P, Q with increasing T
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Fig. 2. Comparison of the test or training RMSE of P on all cases with increasing BT

2. Tuning the Number of Bootstraps BT in Bagging

In Fig. 2. (a)~(f), comparing the RMSEs of the active
power injection P on all cases before and after bagging is
incorporated. Each plot represents the results of each bootstrap
(blue broke curve) and bagging (red curve) as the number of
bootstraps BT goes up. According to Fig. 2, we can conclude
that:

(1) The test or training RMSE of bagging becomes very
small with slight fluctuations after sufficient times of
bootstraps. When the number of bootstraps is 20 or more, both
the test and training RMSEs seem to work well on all cases.

(2) The result of every single bootstrap fluctuates

stochastically around the red curve, indicating that the single
learner has its unstable weakness.

(3) Bagging can average the variances of all single learners
and avoid overfitting.

C. Comparing OPF Results

As GB exhibits its superiority over others, the linear
models fitted by GB are chosen to develop a data-driven
convex approximation (DDCA) method and compute the
optimal objective values (OOV) shown in TABLE II (unit:
$/hr), compared with the original nonconvex ACOPF, the
DCOPF and the semidefinite programming relaxation of OPF
(SDPOPF). The results of ACOPF, DCOPF and SDPOPF can
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be computed by Matpower 7.0 on all cases. Note that the
results of ACOPF are set as the benchmarks and and the
optimality gap g displayed in TABLE III is defined as [20]:

_ 91792 1000
J1

where g, denotes the OOV of ACOPF; g, represents one of
the OOVs of DDCAOPF, DCOPF and SDPOPF.
Additionally, the runtime (unit: s) of each approach is
recorded in TABLE IV.

TABLE II COMPARING OBJECTIVE VALUES OF OPF

case ACOPF DDCAOPF DCOPF SDPOPF
case 5 17551.89 17547.4 17479.9 16635.78
case 57 12100.86 12096.04 10211.99 10458.06
case 118 129660.70 129680.13 125947.88 129713.07
TABLE III COMPARING OPTIMALITY GAPS
case ACOPF DDCAOPF DCOPF SDPOPF
case 5 0% 0.025% 0.41% 5.22%
case 57 0% 0.040% 15.61% 13.57%
case 118 0% -0.014% 2.86% -0.040%

TABLE IV COMPARING RUNTIMES OF DIFFERENT METHODS

case ACOPF  DDCAOPF DCOPF SDPOPF
case 5 2.95 1.57 2.30 23.82
case 57 2.83 2.15 1.77 31.99
case 118 3.94 291 2.11 39.08

From TABLE II~ IV, they reveal that:

(1) For the accuracy of OOV, DDCA performs better than
the DC method and the SDP relaxation on all cases.

(2) The table of optimality gaps proves that DDCA (-
0.014%~0.040%) works more robustly than the SDP
relaxation  (-0.040%~13.57%) and the DC method
(0.41%~15.61%) on the computational accuracy.

(3) TABLE 1V indicates on all cases DDCAOPF is more
computationally tractable than ACOPF and SDPOPF, and its
runtimes even can match DCOPF.

V.  CONCLUSIONS AND FUTURE WORK

In this paper, an ensemble learning based linearization of
power flow is proposed and applied in computing the OPF
problem. As for the performance of learning methods, the
application of ensemble learning methods in fitting power flow
suggests their superiority over single learning method. In terms
of solving the OPF, the proposed data-driven linear model of
power flow outperforms the DC method and the SDP
relaxation on the computational accuracy, and works better
than ACOPF and SDPOPF on the computational efficiency.

However, the research results mentioned above are only
based on simulating datasets without considering uncertainties
of power load and distributed generators (DG). Instead of using
the simulating datasets, our future work will focus on sampling
operation data from the real power systems, inferring the
complexity and sensitivity of learned models, and introducing

the uncertainties of power load and DGs by quantitative
approaches.
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