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Ensemble Learning Based Convex Approximation of
Three-Phase Power Flow

Ren Hu'"?, Student Member, IEEE, Qifeng Li

Abstract—Though the convex optimization has been widely used
in power systems, it still cannot guarantee to yield a tight (accu-
rate) solution to some problems. To mitigate this issue, this paper
proposes an ensemble learning based convex approximation for
alternating current (AC) power flow equations that differs from
the existing convex relaxations. The proposed approach is based
on three-phase quadratic power flow equations in rectangular
coordinates. To develop this data-driven convex approximation of
power flows, the polynomial regression (PR) is first deployed as a
basic learner to fit convex relationships between the independent
and dependent variables. Then, ensemble learning algorithms such
as gradient boosting (GB) and bagging are introduced to com-
bine learners to boost model performance. Based on the learned
convex approximation of power flow, optimal power flow (OPF)
is formulated as a convex quadratic programming problem. The
simulation results on IEEE standard cases of both balanced and
unbalanced systems show that, in the context of solving OPF,
the proposed data-driven convex approximation outperforms the
conventional semi-definite programming (SDP) relaxation in both
accuracy and computational efficiency, especially in the cases that
the conventional SDP relaxation fails.

Index Terms—Convex approximation, data-driven, ensemble
learning, power flow.

I. INTRODUCTION

OWER flow analysis plays a significant role in power
Psystem planning and operation. Many decision-making
processes in power systems rely heavily on accurate and effective
power flow calculations [1]-[3]. Power flow models are also
considered as inevitable system constraints in optimization prob-
lems like transmission or generation expansion planning and
optimal power flow (OPF) [3]-[5]. However, the nonlinearity
and nonconvexity of AC power flow (ACPF) make the OPF
problem computationally expensive due to the nondeterministic
polynomial time (NP) problem.

One approach to handling these challenges is to linearize the
power flow equations, which has been widely adopted in power
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generation dispatching [6], [7] and power market trading [8],
[9]. One of the most well-known linear PF models, i.e., the
direct current (DC) power flow, captures the linear relationship
between the active power flow injection and the bus voltage
phase angle. Other extended versions of linear power flow, that
involves reactive power, have also attracted substantial attention
[10]-[14]. For the sake of a better predictive accuracy, the
authors in [14] develops a linear regression model for power
flow through Principal component analysis (PCA) based and
Bayesian inference with regularization. Based on [14], the lin-
ear model is further improved considering measurement noise
in data to simulate the practical data in [15]. Reference [16]
explores the generalization errors of linear regression methods
discussed in [14], [15] in detail through bounding the training
and test error, which testifies the robustness of these methods
and enriches the work of regression-based linear approxima-
tion of power flow. Although linear power flow models are
computationally tractable, they are generally based on some
critical assumptions, such as ignoring the inherent quadratic
terms between bus voltages. Additionally, there may be some
concerns on their applicability to some problems, such as how
to explain and apply the new explanatory variables created by
the PCA-based method.

With the deluge of data generated by sensors like phasor
measurement units today, data-driven methods have attracted
massive research efforts in power system analysis, such as in
estimating distribution factors [17] and the Jacobian matrix
[18] and identifying the admittance matrix [19]. To overcome
the issues above, the convex quadratic approximation of the
originally nonconvex quadratic power flow is learnt in this paper
based on machine learning techniques, considering the inher-
ent quadratic terms between bus voltages. More precisely, the
polynomial regression [20], [21] is employed as a basic learner
to infer convex relationships between the active or reactive
power and the bus voltage. Since the original power flow is
nonlinear quadratic, and the polynomial regression can learn
the nonlinear quadratic relationship, the polynomial regression
is used to fit the convex nonlinear quadratic relationship in power
flow. Ensemble learning algorithms, i.e., gradient boosting [22],
[23] and bagging [24]-[26], are then introduced to assemble
every basic learner and tune the learning parameters to avoid
overfitting, and eventually yield a stronger learner. Boosting
and bagging tend to use homogeneous basic learners with the
good interpretability and applicability, while others may in-
volve heterogeneous basic learners with different assumptions.
Hence, any other ensemble learning methods, such as stacking,
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error-correcting output codes (ECOC), mixture of experts,
Bayesian model averaging and combination, etc., will not be
discussed here.
Although nonlinear programming problems are generally NP-
hard to solve, many convex nonlinear optimization problems
admit polynomial-time algorithms [27]. In recent years, high-
performance solvers such as MOSEK, CPLEX, and GUROBI
have been developed to effectively solve major types of convex
problems. Various convex relaxations, such as second-order
cone (SOC) [28], semi-definite programming (SDP) [29], en-
hanced SDP [30] convex DistFlow (CDF) [31], [32], quadratic
convex (QC) [33], moment-based [34], and convex hull relax-
ation [35], have been introduced to convexify a fundamental
power system optimization problem. Of these, SDP-based re-
laxations have attracted the most attention due to its general
applicability to nonconvex quadratic problems [32]-[34] includ-
ing the three-phase ACPF investigated in this paper. However,
they are generally computationally hard and not tight enough to
guarantee a satisfactory solution for many OPF cases and result
in failures [38], [46], [47]. The SOC relaxation is computation-
ally easier and, however, not as tight as SDP [35], while CDF
relaxation is only suitable for balanced tree networks. To avoid
the limitations of the existing convex relaxations, this paper
develops a novel convex approximation of power flow models
through using data-driven methods. The main contributions of
this paper can be summarized as follows:
® A data-driven convex quadratic approximation (DDCQA)
of power flow is developed based on the polynomial re-
gression and ensemble learning. In the parameter-fitting
process, ensemble learning algorithms are applied to in-
corporate all basic learners, i.e., the polynomial regression,
into a stronger learner and to enhance the accuracy of
DDCQA.

® The proposed DDCQA is applied to convexify the OPF and
a DDCQA-based OPF is proposed. The resulting OPF is a
convex quadratic programming problem that outperforms
the existing SDP relaxation in computational efficiency and
accuracy. More importantly, the accuracy of the proposed
DDCQA can be improved by learning from operation
experience.

The rest of this paper is organized as follows: Section II
depicts the existing problems and proposed solutions for com-
puting and fitting power flow. In Section III, data-driven convex-
ification of power flow is formulated through ensemble learning.
The empirical IEEE case analyses and conclusions are displayed
in Section IV and V, respectively.

II. PROBLEM FORMULATION AND STATEMENT

This section first presents a three-phase ACPF models in rect-
angular coordinates. Then, the existing problems are discussed,
and an overview of the proposed method is provided.

A. Three-Phase AC Power Flows in Rectangular Coordinates

In an n-bus three-phase power networks, the equations of
ACPF in rectangular coordinates for each phase involving the
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coupling terms from another two phases can be generally illus-
trated as below.
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where ® = {a,b, ¢} denotes the phase setand vy, ¢ € &; N =
{01,2,..,n} is the bus set, ¢,j € N; Pf and Q? represent the
¢-phase active and reactive power injections at bus ¢; ef and
f¢ are the real and imaginary parts of the ¢-phase voltage at

bus 7; Pf; and Q¢

flow at branch i-j; G,‘? and B;@V denote the conductance and
susceptance between ¢and ~ phases at branch i-j. Note that if
¢ = 7, then Gf’] =Gij, B?}"’ = B;j , they are the ¢-phase
self-conductance and self-susceptance at branch i-j. Generally,
for balanced power systems, the coupling termsin (1) are ignored
and the equations of ACPF for each phase can be simplified
without the superscripts.
In the formulations above, we treat ef, ff as independent
variables and P¢ Q¢ PE, ij as dependent variables with re-
spect to data mining. To facilitate the analysis of power flow
equations, we transform (1) into matrix forms:

are the ¢-phase active and reactive line

pi=XT A X

¢ =XT B X
bij = X;‘; Aij Xij

Qij = X}; Bi; Xi; 2)

where p;, ¢;, pij, ¢i; correspond to Pd),Qd) PE,QU, A;, B,
Aij, Bj; are symmetrical but indefinite matrices consti-
tuted by entries of the admittance matrix, indicating that
all dependent variables in power flow are nonconvex func-
tions of the independent variables. For the balanced three-
phase power systems, X denotes the voltage component
vector and consists of the single-phase voltage components
at all buses, X = [e1 f1,., en fu]l =11 72,.., 220]T |
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and X;;denotes another voltage component vector and con-
sists of the single-phase voltage components at buses ¢
; T T
and 7 Xij = [ei fz €; fj} = [$2i71 T2 251 .’L‘Qj] . For
the unbalanced three-phase power systems, X contains
the three-phase voltage components at all buses, X =
(2§ 28, .., 25,28 25.., a8, 2§ 25, .., x5,]T; X,; contains the
three-phase voltage components at buses 7 and j, X;; =
- : : - 1T
(25, 1 25 mgj—lmgp cey TG TG m%j—lm(zj]

B. Existing Problems and the Proposed Solutions

The nonlinearity and nonconvexity of the three-phase ACPF
(1) introduce challenges to compute optimization and control
problems in power systems. Many linearization methods have
been proposed to simplify the power flow models and reduce
the computation burden, however, at the cost of model accu-
racy. To overcome these problems, given that the power flow
equations are quadratic, data mining techniques can be applied
to fit a quadratic convex relationship between the independent
and dependent variables, provided that there are large historical
databases of power system operations or enough accessible
measurements. Theoretically, a convex quadratic approximation
of power flows, which is nonlinear, outperforms the linear ap-
proximations in terms of model fidelity. Moreover, according
to the theory of numerical optimization, a convex quadratic
programming is much more computationally tractable than SDP
problems.

An important step of obtaining such a DDCQA is to fit a
positive semi-definite approximation of the original indefinite
coefficient matrix of ACPF. Similar research can be found in
other areas like analyzing the correlation matrices of financial
stocks employed projection-based algorithms [40]-[42], which
converted the original non-convergence problem into a con-
vex optimization problem. Instead, in our study we take full
advantage of ensemble learning techniques to approximate to
the closest convex representations of power flow. The fitted
DDCQA of ACPF can be further applied to OPF computation,
state estimate or other cases in place of the original nonconvex
model.

III. ENSEMBLE LEARNING BASED CONVEX APPROXIMATION

This section introduces the procedure for the proposed en-
semble learning based DDCQA of ACPF in details. First, the
nonconvex quadratic mapping in (1) is replaced by a convex
quadratic mapping. Then, ensemble learning methods are intro-
duced to infer the parameters of the proposed convex mapping.
Finally, the convex mapping is further relaxed into a set of convex
constraints with application in OPF.

A. Convex Mapping Representations

First, we define a convex quadratic mapping in (3) between
power, i.e., p;, qi, Pi;, and g;;, and voltage X, as the original
power flow is represented by a quadratic formulation:

pi=XTAPX +BPX +
g =X" AIX + BIX + ¢!
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)(T X X
Dij = A5 Afj i + BYXij + ij
T
qij = ‘Xij AZJX” + B?,X” + ng 3)

where the positive semi-definite coefficient matrices of the
quadratic terms at bus ¢ and branch i-j are represented by A;
and Aj;, respectively; the coefficient vectors of the linear terms
are represented by B; and Bj;, and ¢; and ¢j; are constant
terms. Note that here the upper index (x) represents the index
set {p, q}, which corresponds to the active or reactive power.
(3) are convex functions, since their coefficient matrices of the
quadratic terms are at least positive semi-definite. To sum up, the
target is to find convex functions to approximate the non-convex
ones in (2), and (3) are inferred as the convex approximations
of (2).

B. Ensemble Learning for Inferring Convex Mapping

Next, ensemble learning, a machine learning technique, is
introduced to fit parameter matrices A and Aj;, vectors B and
B;;, and constants ¢; and ¢;; from historical system operation
data. Bagging and Gradient boost (GB) [39], two typical ensem-
ble learning algorithms, are of particular interest due to their
strong ability to enhance basic learners to improve the model’s
performance.

Assume that we are given a training set including M samples

{(Xpm, Yu)}M _ | For each sample in an n-bus system, the
vector of real and imaginary parts vector of bus voltage is
denoted by X, = [Z1n1, Zm2, -+, T(2n)] for balanced three-
phase systems, or X,;, = [Zyn1, Tm2, .-, T (en)] for unbalanced
three-phase systems. If the dependent variable Y is the active or
reactive power at each bus p; or ¢; , the observation value can
be depicted by Y,,, = py; Or ¢p,s. Similarly, for p;; or g;;, we
set Yy, = DPmij OF Gmij;. The following illustrations of bagging
and GB are all based on the dependent variable p; as a general
example. Other dependent variables follow the same procedure
as p;.

1) Bagging: Bagging, called bootstrap aggregating in some
references [24], [25], is designed to improve model stability and
accuracy and is applied in classification and regression analy-
sis. As an ensemble technique, it contributes to reducing vari-
ance and avoiding overfitting through adjusting the number of
bootstraps — a special case of the model averaging approach.
The main purpose of bagging is to draw random samples with
replacement and combine a basic learning method to train mod-
els. The specific loss function for p; is given as the following
mean squared error function:

L (s i (X)) = 5
where p,,; and p,,;(X) are the observed and estimated values
of p; , respectively. The algorithm is shown below in Algorithm
1: Bagging.

2) Gradient Boosting: Gradient boosting is widely used to
develop a strong learner by combining many weak learners in
an iterative fashion [22], [23] for regression and classification
problems. It is considered a gradient descent algorithm that can
restrain the overfitting effect of the regularization parameters,

(Prmi — Pmi (X))? )
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Algorithm 1: Bagging. Algorithm 2: Gradient Boosting.
1. For bt = 1to BT where BT is the number of 1. Initialize the model with a constant value p¥ .(X)
bootstraps. M
a. At the br-th bootstrap, draw M’ (M’ < M) random 0 .
) S (X)) = L ; 7
samples with replacement. Pmi (X) = arg = mzzl (Prmi ) ™

b. Fit a base learner p%,(X; 0) by

M

O = argmin Y L(py; prns(Xm:0)) ()
m =1

where pffli is the observed value of p; at the br-th

bootstrap and 8y, represents the coefficient vector of

plt.(X;0) by fitting pP%,. In a similar way, the

polynomial regression as the basic learner is introduced

to estimate all parameters in (3).

2. Output pfgf’ (X)) by averaging all bootstrap outcomes in
| BT

v (X) = —— PE(X 6

Pt (X) = 5= bt}_jlpm@( ) (©6)

where p:’sf (X)) is the predicted value of p, by bagging.

such as number of iterations and learning rate. The essence of
gradient descent is to adjust parameters iteratively to minimize a
loss function. It measures the local gradient of the loss function
for a given number of iterations and takes steps in the direction
of the descending gradient. Once the gradient is zero, we have
reached the minimum. The detailed procedure of the algorithm
is shown below in Algorithm 2: Gradient Boosting.

C. Multicollinearity and Overfitting

Multicollinearity is a situation in which two or more inde-
pendent variables are strongly linearly correlated, and it can
be ignored if the goal is to reach the accurate prediction of
model and the model fitting is good enough [43]. Overfitting
refers to a model that works well on the training dataset but
poorly on the test dataset. The lack of a training dataset can
also result in overfitting. In the field of machine learning, many
remedies have been put forward to overcome these challenges,
including removing unwanted independent variables by shrink-
age and PCA-based methods [43], enlarging dataset size, and
using ensemble learning [25], [26]. To some extent, removing
some variables may help improve the accuracy of prediction in
some linear models of power flow. However, it may not only
completely change the bus number of the power system but may
enlarge the model bias and contribute to poor interpretability
and applicability in further optimization and control problems.
Therefore, to preserve the original power system and make full
use of the data-driven techniques, increasing the amount of data
to learn is a sound and accessible way to relieve the fitting
problem. In addition, ensemble learning is applied to avoid
overfitting through regularization and resampling techniques.

where =y is the initial constant vector.

2.Fort = 1to T where T is the number of learners.
c. Compute the negative gradient r; by

apmz(X)
d. Fit a base learner h:(X; 8) by

re= —| Jpms (x)=pt-t (x)  (®)

M
0; = argmein ZlL(T‘uht(Xm;B)) ©)
m =

where 0 presents the coefficient vector of h(X; 0) by
fitting r+. Here the polynomial regression is adopted to
be a basic learner and fit the parameter matrices A and
Aj; , vectors Bj and Bj;, and constants cjand cj; in
3).

e. Compute the learning rate /3 by

M
Bt = arg Hgn Z L(pmuptr:zl(Xm)
m=1

Setting a constant learning rate is also allowed. In
practice, there is a common pattern that the smaller 3 is,
the lower the descent increment is, and the better
generalization is achieved. However, the cost of
improving the generalization is the reduction of
convergence speed.

f. Update the model.

Prni (X) = Pli (X) + Behe(X)

(10)

(1)

3. Output pI . (X))

D. Convex Approximation of Optimal Power Flow

After fitting the convex formulations of power flows, the data-
driven convex approximation for three-phase optimal power
flow consists of the objective function and constraints shown
in (12) as below.

Minimize Z Z(cio + Cﬂp?(ZS + Ci2pf¢2)
i€G ped
st XTAPPX 4 BIOX 4 % < pf? — pb?
XTA®X + B?X +¢1% < ¢9% — ¢
52+l <V

Pl < pd? < p??
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g¢<

4 —qf¢ S‘jigd)

2 2
pe+ )

o
i < S

XEAL X5+ BiY Xy + ¢ < g, (12)
where G is the index set of generators; c;o, ¢;1, ¢;2 are cost
coefficients of the i-th generator, and for distribution networks
only ¢;1 is needed which denotes the nodal price at substation i;
the phase subscript ¢ implies the constraints of distinct phases
are considered; pJ ®and qf¢ are the i-th generator active and
reactive power of the phase ¢; piL¢ and qiLd’ are the active

and reactive power load of the phase ¢ at i-th bus; Qi-’d), ﬁf¢,

q? ? and q! ¢ are the lower and upper limits of the i-th generator
active and reactive power at the phase ¢; V,” and 5'?; are the
upper limits of the i-th bus voltage and the branch i-j power flow
at the phase ¢. For the real and imaginary parts of bus voltage,
a:g’z;l and acgz (ef’and ff) , the imperative constraints are added
in the third inequation of (12).

The formulations (12) can also be applied to the OPF in
balanced three-phase power systems only if the superscripts of
the notations representing phases are ignored. And the objective
function can also be to minimize the overall power loss in
distribution networks.

IV. SIMULATION ANALYSIS
A. Case Selection and Data Sampling

We expected to use real-world data in this research which
was, unfortunately, not available at present. As an alternative, the
Monte Carlo method was introduced to simulate and generate
random data samples of operation measurements, including bus
voltage and bus or branch active and reactive power. Different
datasets were randomly sampled from diverse power networks,
including IEEE 5-, 9-, 57- and 118-bus balanced transmission
systems, and IEEE 34-bus unbalanced distribution system [38],
[46], [47]. In these data datasets, the active and reactive power
loads are randomly changed around their preset values within
aninterval [0.6, 1.1]. Each dataset contains up to 50000 samples
to ensure that there are sufficient samples for training models.
Generally, a larger sample set is needed to fit the parameters of a
bigger system. It has been observed in [14], [17], and [39], [41],
that the required minimum empirical sample size is at least twice
or six times the number of buses for balanced or unbalanced
power flows.

B. Predictive Performance Comparison

We randomly chose an equal amount of test and training
datasets for each case. For instance, both the test and training
sets for case 5 and case 9 contain 100 samples, even for each
bootstrap in bagging. Next, we fit the DDCQA of power flow
through pure polynomial regression (PR), gradient boosting
(GB), and bagging. The predictive accuracy is indicated by
the average root mean square error (RMSE) of the dependent

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 5, SEPTEMBER 2021

TABLE I
RMSE OF ALL METHODS ON DIFFERENT CASES

Case Method pure PR GB Bagging
RMSE (10 e-05) Test  Training  Test Training Test  Training
P 546.56  37.39 198.18 31.03 367.31 38.42
Case 5
(size=100, O  5477.60 21555 1330.46 209.35 2764.26 228.99
T=250, P;  503.06 47.88 50.85 31.16 286.67 49.96
BT=50
) Q; 445390 251.92 199.07 88.62 2376.14 246.03
P 4.75 1.82 3.12 1.73 4.05 2.01
Case 9
(size=100, 0 3.79 1.42 2.07 1.08 3.25 1.58
T=200, Py 46.14 3935 22.78 2021 4332  38.57
BT=50
) 0 9352 7796 8489 68.61 86.13  79.30
P 1259.5 260.61 883.4 247.08 954.38 247.37
Case 34
(size=250, 0 793.74 18576 579.29 15830 617.61 159.59
T=200, P;  7330.71 2025.70 2143.99 1888.12 5773.90 1973.32
BT=50
) Q; 619194 1621.43 1733.17 1405.64 4861.96 1527.63
401.14 3.07e-10 13431 0.33 210.74 4.76 e-10
Case 57
(size=200, 0 562.07 5.07¢-10 18544 0.08 30551 8.58e-10
T=200, Py 11.18 7.53 8.54 536 9.39 7.07
BT=50)
o 2629 1828 1741 14.14 2357 19.24
479.20 8.07e-10 321.36 0.85 423.01 4.95e-10
Case 118
(size=300, 0 440.60 3.73e-10 280.41 16.90 389.50 4.82¢-10
T=140, P; 622 051 2112 209 576 053
BT=50)
(o) 22.12 1.87 14.89 1.37  20.40 1.91

variable, and the performance of different methods is compared
by the test RMSE shown in Table 1.

Note that here T and BT are the maximum numbers of learners
and bootstraps in GB and bagging. The unit of data above is
10e-05. From Table I, we have the following ob-servations:

* GB and bagging work better than pure PR on all cases; GB

outperforms bagging and pure PR on all cases.

® The training RMSE is smaller than the test RMSE for any

dependent variable, even though sometimes they seem to
be close, as in case 9 and case 57.

C. Tuning Learning Parameters

Tuning engineering is a necessity in machine learning to
display the model performance and the generalization ability
described by the training and test RMSE. The following sections
focus on the tuning process of GB and bagging, respectively,
for the number of learners T and the number of bootstraps BT,
and analyzes the generalization ability of ensemble learning
techniques.

1) Tuning the Number of Learners T in GB: In order to
determine the number of learners that effectively improve the
model performance, all results of the active power injections p;
for case 5,9, 34, 57 and 118 as paradigms are plotted in Figs. 1
—5. Each plot depicts the trend of RMSE and the logarithms
of RMSE as the number of learners increases. Note that the
logarithms of RMSE are used to enlarge the difference between
the training and test RMSE in order to compare them. From
these plots, we can observe that:
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Fig. 3. Case 34: RMSE of P by boosting.
Fig. 6. Case 5: RMSE of P by bagging.
® The training and test RMSE of p; gradually decrease to be
stable with adjusting the number of learners T. Each case ® No overfitting is observed as the test RMSE is always larger
reaches the balance point at different numbers of learners. than the training one. For case 9, though the training and
For case 5, the test and training RMSE tend to be constant test RMSE seem to be very close in the same order of
after 150 learners have been incorporated. For case 57 (or magnitude, the statement above still holds. Hence, GB has

34) and 118, their test RMSE hardly change when T = 70 a good generalization ability on these cases.

and T = 80, respectively, while their training RMSE after 2) Tuning the Number of Bootstraps in Bagging: In the same
T = 100 start to drop slightly, with only 0.0001 or 0.001  fashion, Fig. 610 compare the training and test RMSE of p;
per additional learner. Similarly, all RMSE of case 9 drops  on five cases before and after using bagging. Each plot has two
only 0.0001 with over 180 learners. axes, the left one for the training RMSE (red and orange lines)
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Fig. 9. Case 57: RMSE of P by bagging.

and the right one for the test RMSE (blue and gray lines). The
training and test RMSE are marked by red and blue lines for
each single bootstrap, and by orange and gray lines for bagging.
Based on these plots, we can infer that:
® The training and test RMSE of bagging tend to be flat with
slight fluctuations, given enough bootstraps. In case 5 and
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Fig. 10. Case 118: RMSE of P by bagging.

34, when BT > 30, their training and test RMSE work
well. In case 9, when BT > 15, the test and training RMSE
converge to 4 e-05 and 2 e-05, respectively. Similarly, both
case 57 and 118 have steady test and training RMSE after
BT > 15.

® The result of each single bootstrap distributes stochasti-
cally around the orange (gray) line, implying that single
learner has its unstable weakness.

® Bagging plays an important role in averaging the variances

of all single learners and avoiding overfitting. This also
implies a good generalization ability for bagging.

3) Generalization Ability Analysis: As we know, the gener-
alization ability is generally referred to as the ability of how a
learning method performs on the unseen (test) data, and it can be
quantified by the generalization error or gap. The generalization
error is usually represented by the difference between the train-
ing and test errors. To some extent, the generalization ability
and the overfitting are highly correlated. In another word, the
better the generalization ability, the less possibility of overfitting;
a good ability of handling overfitting also indicates a good
generalization ability, and vice versa [17], [43]. When tuning
the parameters of boosting and bagging, both the training and
test RMSE eventually become constant, given enough number
of learners or bootstraps, shown in Figs. 1-10, exhibiting a good
ability of avoiding overfitting. These figures also imply how the
generalization error changes and finally converges across the
number of learners or bootstraps.

Furthermore, taking the results of case 57 and 118 as ex-
amples, the generalization errors represented by the difference
between the training and test RMSE for case 57 and 118 are
plotted and marked by green lines in Figs. 11-14, respectively.
From Figs. 11-14, we can observe that the generalization errors
(green lines) will finally converge as the trends of training and
test RMSE marked by blue and red lines gradually become flat.
Note that when the training error is much smaller than the test
error, the pattern of generalization error may be dominated by the
test error shown above. Hence, the ensemble learning methods,
GB and bagging used in this paper exhibit a good generalization
ability.
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TABLE II
COMPARING THE OBJECTIVE VALUES OF OPF
Case S‘;‘?Zile ACOPF SDPOPF DDCQAOPE
Case 5 100 17551.89 $/hr 16635.78 $/hr 17518.12 $/hr
Case 9 100 5296.69 $/hr 5297.41 $/hr 5296.70 $/hr
Case 34 300 211.30 $/hr - $/hr 213.96 $/hr
Case 57 200 12100.86 $/hr 10458.06 $/hr 12087.96 $/hr
Case 118 300 129660.70 $/hr 129713.07%/hr 129454.02 $/hr
TABLE III
COMPARING THE OPTIMALITY GAPS
Case Sample Size ACOPF SDPOPF DDCQAOPF
Case 5 100 0% 5.21% 0.19%
Case 9 100 0% 0.01% 0.00%
Case 34 300 0% -% 1.26%
Case 57 200 0% 13.60% 0.11%
Case 118 300 0% 0.04% 0.16%

D. Computational Evaluation of Algorithms

According to the analysis above, GB exhibits better fitting
outcomes than other methods. Based on the convex models fitted
by GB, the data-driven convex quadratic approximation of OPF
(DDCQAOPF) is applied to compute the minimum generation
cost (unit: $/hr) in all cases. In case 34, there are three sets of
battery energy storages installed at buses 820, 824 and 860. The
battery set at bus 820 is a single-phase source (capacity: 100kVA)
and the battery sets at buses 824 and 860 are three-phase sources
(single-phase capacity: 200k VA and 100k VA). The power factor
of batteries is set at 0.95. The unit electrical energy costs from
the substation and batteries are specified at 0.10, 0.12, 0.15, and
0.13 $/kWh. In this case study, we only consider a snapshot
as the multi-period load profiles for IEEE 34-bus unbalanced
system are not available. In Table II, the results of DDCQAOPF
are compared with the original nonconvex ACOPF and the
semidefinite programming relaxation of OPF (SDPOPF) [38]
to observe the computational accuracy of algorithms. Assume
that the results of ACOPF are set as the benchmarks, and the
optimality gap, Err shown in Table III, is defined as

_ |OViaeopy — OV|

Err = 100
rr Voo X %

where OVgcopr 18 the objective value of ACOPF and OV is
the objective value of SDPOPF or DDCQAOPF. For comparing
the computational efficiency of diverse algorithms, the runtime
(unit: second) of each algorithm in different cases is given in
Table IV. Note that the calculations above for all cases are
performed through Matlab, cvx package and Mosek solver.
Tables II-IV reveal that:
e For case 9 and case 118, both SDP relaxation and DDCQA
work well, and their objective values are almost the same
with ACOPF’s.
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TABLE IV
COMPARING THE RUNTIMES OF DIFFERENT METHODS

. ACOPF SDPOPF DDCQAOPF
Case Sample Size -
Runtime (second)
Case 5 100 2.72 17.98 3.07
Case 9 100 2.95 19.79 3.23
Case 34 300 1.54 3.03 2.79
Case 57 200 3.43 25.11 7.65
Case 118 300 3.19 36.89 11.57

e Particularly, in some cases (case 5, case 34, case 57) that
occur the inexactness of SDP relaxation, DDCQA outper-
forms SDP relaxation in the computational accuracy.

® A comparison of optimality gaps proves that DDCQA
(09%—1.26%) performs more robustly than SDP relaxation
(0.01%—13.60%) in the computational accuracy.

® The runtimes indicate that for all cases DDCQA runs more
efficiently than SDP relaxation, and its runtimes on case 5
and case 9 are close to ACOPF’s.

® DDCQA can be an appropriate alternative of SDP relax-
ation when it fails to obtain the exact solutions in case 5,
case 34 and case 57.

V. CONCLUSION AND FUTURE WORK

This paper develops an ensemble learning based DDCQA for
three-phase power flow. Unlike the most linear approximations
of power flow that ignore the interaction terms between the bus
voltages, the DDCQA retains the interaction terms and model
accuracy. The proposed DDCQA of three-phase ACPF model
mainly has two advantages. First, it is more computationally
effective than the other available convex model—the SDP re-
laxation. Second, its accuracy is similar to the SDP relaxation
in some cases while outperforms the later one in some other
cases. More importantly, the DDCQA, which is learning-based
model, has high potential in performance-improvement. On
the aspect of machine learning, we introduce an emerging
technique—ensemble learning algorithms — to improve the
predictive performance of DDCQA. Based on these fitted convex
models of power flows, a data-driven convex approximation is
proposed and compared with conventional SDP relaxation. We
expected to test our proposed method in real-life large-scale
power systems. Unfortunately, the data of those systems is not
publicly available. As empirical alternatives, IEEE standard test
systems are applied in this paper, just like the most of previous
research publications. The experimental analysis of IEEE stan-
dard systems shows that ensemble learning methods work better
than the basic learner, gradient boosting yields the best convex
model of power flows, and the proposed convex approximation
is superior to SDP relaxation in the computing accuracy and
efficiency. Especially, in some cases that the solutions of SDP
relaxation are not exact, the proposed algorithm can be an
advisable alternative. Theoretically, our approach will work for
the cases to which the SDP relaxation is applicable, such as
the real-life large-scale power systems. Our future work will be
extended to more practical applications of DDCQA of power

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 5, SEPTEMBER 2021

flows in control and optimization problems based on the data
from the real-world systems, especially in large-scale systems
and complex systems with uncertain intermittent renewable
energy resources. Also, theoretical inference on the exactness
of DDCQA and its approximation error will be discussed more
in detail in the future work.
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