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Southern Ocean ecosystems are globally important. Processes in the Antarctic
atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric
and oceanic systems. Southern Ocean biogeochemistry has also been shown to have
global importance. In contrast, ocean ecological processes are often seen as largely
separate from the rest of the global system. In this paper, we consider the degree of
ecological connectivity at different trophic levels, linking Southern Ocean ecosystems
with the global ocean, and their importance not only for the regional ecosystem but also
the wider Earth system. We also consider the human system connections, including
the role of Southern Ocean ecosystems in supporting society, culture, and economy
in many nations, influencing public and political views and hence policy. Rather than
Southern Ocean ecosystems being defined by barriers at particular oceanic fronts,
ecological changes are gradual due to cross-front exchanges involving oceanographic
processes and organism movement. Millions of seabirds and hundreds of thousands
of cetaceans move north out of polar waters in the austral autumn interacting in food
webs across the Southern Hemisphere, and a few species cross the equator. A number
of species migrate into the east and west ocean-basin boundary current and continental
shelf regions of the major southern continents. Human travel in and out of the Southern
Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors.
These operations arise from many nations, particularly in the Northern Hemisphere,
and are important in local communities as well as national economic, scientific, and
political activities. As a result of the extensive connectivity, future changes in Southern
Ocean ecosystems will have consequences throughout the Earth system, affecting
ecosystem services with socio-economic impacts throughout the world. The high level
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of connectivity also means that changes and policy decisions in marine ecosystems
outside the Southern Ocean have consequences for ecosystems south of the Antarctic
Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is
critical for interpreting current change, projecting future change impacts, and identifying
integrated strategies for conserving and managing both the Southern Ocean and the

broader Earth system.

Keywords: Southern Ocean, ecological connections, food webs, socio-economic, climate change, fisheries,

global connectivity, scale

INTRODUCTION

Southern Ocean ecosystems were traditionally considered as
largely distinct and separate from ecosystems in the rest of
the worlds oceans (Longhurst, 1998; Knox, 2007). This view
of a unique isolated ecosystem contrasts with the view of the
physical Southern Ocean as the center of the global thermohaline
circulation that mediates the exchange of energy and heat
between the oceans and influences patterns of circulation and
sea level across the planet (Marshall and Speer, 2012; Talley,
2013; Chown et al., 2015). This almost paradoxical view of a
highly connected ocean but an isolated ecosystem reflects, in
part, the multi-front structure of the upper Southern Ocean.
This structure restricts meridional (north-south) exchanges in
surface waters, where most life occurs, while there is strong
physical connectivity in intermediate and deeper waters through
flow along density surfaces. Although the biological isolation of
Antarctica has, to some extent, been qualified and its richness
highlighted (Clarke and Johnston, 2003; Clarke et al., 2005;
Barnes et al,, 2006; Chown et al., 2015; Fraser et al., 2018;
Chown and Brooks, 2019), the view of a “separate ecosystem”
remains pervasive, which constrains approaches to analyses
of the structure and function of Southern Ocean ecosystems
and their role in the Earth system. This view also influences
cultural and socio-economic perceptions, both of which affect
the development of conservation and sustainable management
measures and assessments of the impacts of change. Climate
change is affecting Southern Hemisphere atmosphere and ocean
circulation, with associated increases in ocean temperatures and
reductions in sea ice, influencing Southern Ocean chemistry
(e.g., reductions in pH), and biogeochemistry (e.g., carbon and
nutrient budgets) (see Henley et al., 2020; Morley et al., 2020).
Simultaneously, some previously exploited whale populations are
increasing (Branch et al., 2004; Branch, 2011), and substantial
commercial fisheries exist (Cavanagh et al., 2021a,b; Grant et al,,
2021). Significant changes are already being observed in Southern
Ocean ecosystems, and further perturbations are expected in the
coming decades, making the development of an understanding
of the impacts of climate change and direct human activities
a key research priority (Murphy et al,, 2008, 2012; Chown
et al., 2012; Murphy and Hofmann, 2012; Constable et al., 2014;
Rintoul et al., 2018).

Southern Ocean ecosystems support a range of globally
essential ecosystem services, yet the underlying processes
involved are poorly understood (Grant et al., 2013; Cavanagh
et al., 2021a). The influence of Southern Ocean ecosystems on

global ocean biogeochemical processes and carbon budgets is
recognized (Sarmiento et al., 2004; Palter et al., 2010; Treguer
et al., 2018; Henley et al, 2020), but the scale of influence
and the ecological processes involved are less well known (Le
Quéré et al., 2016; Treguer et al., 2018). There is evidence of
biological exchanges across the Antarctic Polar Front (APF) at all
trophic levels (plankton, fish, cephalopods, seabirds, and marine
mammals), but the degree of connectivity of Southern Ocean and
sub-Antarctic and wider Southern Hemisphere ecosystems has
been relatively poorly characterized and quantified (Xavier et al.,
1999; Barnes et al., 2006; Bernard et al., 2007; Moon et al., 2017).
Views of Southern Ocean ecosystem processes and links with the
wider global ocean have generally relied on the zonally (east-
west) averaged perspective of Southern Ocean dynamics and
north-south exchanges that have dominated analyses of physical
dynamics for a number of decades (Turner et al., 2009). Although
the importance of local and regional processes in maintaining
ecosystem structure and functioning is known, the implications
for understanding Southern Ocean scale dynamics and global
connectivity (Rintoul, 2018) or implications for conservation
and management of living resources (Reid, 2018) has received
little consideration. The extent and importance of such ecological
connectivity between oceanic ecosystems across the global oceans
and the potential for feedback effects has also received little
attention in analyses of the impacts of climate change or in the
development of Earth system models (IPCC, 2019).

Current national and international bodies involved in
fisheries management are generally unable to incorporate ocean
scale connections in conservation and management measures.
Activities in the Antarctic and the Southern Ocean are regulated
under the Antarctic Treaty System (ATS). Development of
measures for conservation and management of fisheries within
the Southern Ocean is overseen at a circumpolar scale under
the ATS by the Commission for Conservation of Antarctic
Marine Living Resources (CCAMLR; Press et al.,, 2019; Reid,
2019). CCAMLR has developed activities with adjacent regional
fisheries management bodies, but is yet to engage broadly
to influence decisions outside the ATS on matters that affect
the Southern Ocean (Anon, 2017). The International Whaling
Commission (IWC) and the Agreement on the Conservation of
Albatrosses and Petrels (ACAP) also consider Southern Ocean
conservation issues within a global remit, while the Convention
for the Conservation of Migratory Species (CMS) aims to
provide coordinated legal frameworks for conservation of species
throughout their migratory range, through the United Nations
environmental treaty system. The spread of responsibility for
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management of living resources in the Southern Ocean and
across the Southern Hemisphere in disparate organizations
with different remits limits the ability to incorporate ocean
scale climate change and human activities as integral inputs to
conservation and management.

The rapid changes being observed in Southern Ocean
ecosystems and the major changes expected over the next
few decades present a critical challenge to the ecosystem-
based management approach and make the understanding of
the impacts of change a priority (Murphy et al, 2012, 2016;
Constable et al., 2014; Reid, 2018). This analysis, a contribution
to the Marine Ecosystem Assessment for the Southern Ocean
(MEASO), provides an assessment of how the Southern Ocean
and associated human activities interact with and have reciprocal
dependencies on global ecological and human systems. Here
we examine the processes involved in biogeochemical and
ecological exchanges between Southern Ocean ecosystems and
the wider global ocean along with their importance at regional
(circumpolar) and global scales. We note that although the sub-
Antarctic Front (SAF) is an important physical structure and
the APF an ecological boundary, marking the northern extent of
ice-influenced surface waters, there is no fixed definition of the
Southern Ocean (Longhurst, 1998; Boltovskoy, 1999; Chapman
et al,, 2020; Hindell et al., 2020; see Constable et al., this volume,
for discussion on the areas being examined in MEASO). We
first consider the Southern Ocean’s physical and biogeochemical
connectivity with the global ocean, which provides the basic
framework for examining ecological connectivity. We then
examine ecological connections that depend on the scales of
biological movement, from microbes and plankton to highly
mobile seabirds and marine mammals, and consider the extent to
which these exchanges are important in maintaining populations
and local and regional food webs. Lastly, we consider the
interactions of human activities and associated impacts in the
Southern Ocean, including both regionally-specific and global
influences that will be important in conserving and managing the
region in the future.

SOUTHERN OCEAN ECOSYSTEM
CONNECTIONS

Processes Underpinning Connectivity
Two fundamental sets of processes determine the degree of
natural ecological connectivity between oceanic ecosystems:

(i) Physical advection processes-operating at different scales,
can transport dissolved nutrients and carbon, organic
material, and organisms from one ecosystem to another
(Mann and Lazier, 2005). This includes transport via ocean
currents, eddies, and diffusion or associated with sea ice or
in the atmosphere. Atmospheric processes are important in
transporting elements into marine ecosystems (e.g., iron or
mercury associated with dust deposition, Cossa et al., 2011;
Moore et al., 2013) and some microorganisms (Mestre
and Hofer, 2021) and in the movement patterns of some
seabirds (Weimerskirch et al., 2012).

(ii) Biological processes of movement—operating at different
scales, which utilize or can override physical processes over
particular scales to allow an organism to achieve spatial
displacement from one ecosystem to another or maintain
position. Movement processes also transport elements
(e.g., macro- and micronutrients), organic material, and
organisms between ecosystems (Costa et al., 2012; Shepard
et al., 2013; Walther et al., 2015; Hays, 2017).

Physical and Biogeochemical

Connections

Physical Connectivity

The general perspective of Southern Ocean connectivity with
the global ocean is a two-dimensional zonally-averaged view
of meridional exchanges (Figure 1A; Turner et al, 2009).
Increased observations and improvements in models over the
last decade have enabled the spatial and temporal variability
across multiple scales and three-dimensional nature of Southern
Ocean connectivity to be better understood (Figure 1 and
Supplementary Table 1; Garzoli and Matano, 2011; Marshall and
Speer, 2012; Talley, 2013; Frenger et al., 2015; Spence et al., 2017;
Tamsitt et al., 2017, 2020; Tanhua et al., 2017; Rintoul, 2018;
Foppert et al., 2019; Meijers et al., 2019b; Roach and Speer, 2019;
Chapman et al., 2020).

The Southern Ocean is the central connection between the
ocean basins in the global overturning circulation (Marshall
and Speer, 2012; Talley, 2013), with the extent and intensity of
northward or southward exchanges at particular depths being
regionally variable around the Southern Ocean (Talley, 2013;
Jones et al., 2016; Spence et al., 2017; Rintoul, 2018; Foppert et al.,
2019; Meijers et al., 2019a; Figures 1B,C and Supplementary
Table 1). There are differential inflows and outputs of Antarctic
Bottom Water (AABW), deep water, and intermediate and mode
waters in the Pacific, Atlantic and Indian Oceans and between
the ocean basins in the Southern Ocean (Ferster et al., 2018;
Tamsitt et al., 2020; Yamazaki et al., 2020). The eastern and
western boundary regions in the major ocean basins appear
to be particularly important in north-south exchange (Jones
et al, 2016; Tamsitt et al., 2017). These circulation exchanges
also vary inter-annually and seasonally, affecting the volume of
water transported as well as heat and salt content (Cerovecki
et al.,, 2019; Meijers et al., 2019a). In contrast to the eastward
flowing Antarctic Circumpolar Current (ACC), regions near the
continent are characterized by complex flows often dominated
by westward flowing currents as part of the Antarctic Coastal
Current. The polar gyre systems in the Weddell and Ross Sea
regions provide locally complex mixing of water masses, which
do not fit a simple two-dimensional zonally averaged view
(Rintoul, 2018; MacGilchrist et al., 2019; Yamazaki et al., 2020).
Frontal systems comprise a series of dynamic and variable zones
(Chapman et al., 2020; Figure 1D). For example, the APF does
not have a fixed location and instead varies within a broad zone.
Associated with these dynamic frontal zones, there is extensive
eddy activity that is most intense in areas of major bathymetric
features and moves water across frontal systems in and out of
the Southern Ocean (Frenger et al., 2015; Foppert et al., 2017;
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FIGURE 1 | lllustrations of physical connectivity of the Southern Ocean with the wider global ocean. (A) Zonally-averaged vertical view (surface to deep ocean) of the
meridional flows of the major water masses into and out of the Southern Ocean (S, south; N, north; APF, Antarctic Polar Front; SAF, Sub-Antarctic Front;

AASW, Antarctic Surface Water; CDW, Circumpolar Deep Water; AABW, Antarctic Bottom Water; AAIW, Antarctic Intermediate Water; SAMW, Subantarctic Mode
Water). 3-dimensional perspectives of Southern Ocean connectivity: (B) global thermohaline schematic from Lumpkin and Speer (2007). Color indicates approximate
density ranges. See their Figure 4 for details;© American Meteorological Society. Used with permission.), (C) model calculations of inter-basin exchanges
(depth-integrated residual volume transports, (Sv, where 1 Sv = 106 m® s™") based on Figure 2 of Ferster et al. (2018); orange dotted lines show boundaries over
which flows were calculated. Northern boundary = 30°S. (D) general location of the major frontal systems of the Antarctic Circumpolar Current (ACC; SAF = red;
APF = yellow; Southern ACC Front, SACCF = blue; Southern Boundary of ACC = SBACC = white), The dotted white line is from the schematic of Tamsitt et al.
(2017) showing an idealized particle trajectory illustrating the spiraling pathway of upwelling of southward flowing deep-water in the ACC as it interacts with major

Tamsitt et al., 2017; Rintoul, 2018; Figure 1D). The formation,
direction of rotation, and movement and longevity of the eddies
vary in different Southern Ocean regions, while the physical
properties and influence also vary with depth and may penetrate
to >2,000 m (Frenger et al, 2015). Ekman transport moves
water primarily northward (north-eastward) across the ACC
and southward in areas closer to the continent, whereas Stokes
drift can lead to some southward movement of surface waters
and eddy associated transport can move surface waters in both
directions (Ito et al., 2010; Holzer and Primeau, 2013; Dufour
et al., 2015; Tamsitt et al., 2017; Fraser et al., 2018).

The pathways and time scales by which water and tracers
enter and exit the Southern Ocean are a function of the
ocean’s full three-dimensional horizontal and vertical structure,
thereby providing a very different perspective of connectivity
that goes beyond the traditional two-dimensional view of ocean

circulation (Figure 1 and Supplementary Table 1). The major
physical (oceanic and atmospheric) mechanisms and processes
that generate cross-scale exchanges from local to regional,
circumpolar and with the global ocean can be represented
schematically [Figure 2A; developed from Niiranen et al.
(2018), their Figure B1]. In the ocean, these involve spatially
(horizontally and vertically) and temporally variable meridional
flows associated with major ocean currents and water masses
(Figure 2A), while regional and local processes (e.g., eddies,
surface flows, and topographic interactions) also result in cross-
frontal exchanges (Figures 1, 2A and Supplementary Table 1).
Atmospheric processes at different scales further influence
exchanges between the Southern Ocean and wider global ocean
regions (e.g., local and regional weather patterns, seasonality, and
large-scale climatology), affecting the distribution of tracers (e.g.,
in aerosols and dust) and routes for more efficient and rapid travel
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by seabirds (Phillips et al., 2007b; Kirby et al., 2008; Egevang et al.,
2010; Weimerskirch et al., 2012).

Biogeochemical Connectivity

The central role of the Southern Ocean in the global
overturning circulation provides a direct connection with
global biogeochemical cycles through the redistribution of
biogeochemical properties (nutrients, carbon, and oxygen)
amongst the major ocean basins and between the deep ocean,

surface ocean, and atmosphere (Henley et al, 2020; see
Figure 1B). Arguably, the most important role of the Southern
Ocean in the Earth system is its regulation of climate through
the exchange of CO, and other climate-active gases between
the ocean and the atmosphere (Sabine et al., 2004; Marinov
et al., 2006; Takahashi et al., 2012; Gruber et al., 2019). These
exchanges are driven by physical and biological processes and
their connectivity (Morrison et al., 2015) with oceanic regions
to the north. For example, the Southern Ocean between 30 and
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50°S is a major net annual carbon sink and the Southern Ocean
as a whole has taken up ~40% of the total oceanic uptake
of anthropogenic CO, (Orr et al.,, 2001; Fletcher et al., 20065
DeVries, 2014; Frolicher et al., 2015).

In addition, nutrient export from the Southern Ocean,
which is a function of a range of ecosystem processes, exerts
an important control on global nutrient distributions, and
therefore export production and oxygen and carbon budgets
over large oceanic areas north of 30°S (Sarmiento et al.,
2004; Marinov et al., 2006; Moore et al, 2018). Surface
nutrient concentrations and ratios, particularly in the formation
regions of Antarctic Intermediate and Subantarctic Mode Water
(AAIW and SAMW), are transported northward, subducted
into the ocean interior, and mixed through the thermocline
into macronutrient-limited low-latitude surface waters, where
they regulate primary production and phytoplankton species
composition (Sarmiento et al., 2004; Marinov et al., 2006; Palter
et al.,, 2010; Hauck et al., 2015, 2018). South of the Southern
Boundary of the ACC upwelling region (SBACC; Figure 1), water
masses move southward and can contribute to AABW formation,
thus playing an important role in transferring carbon into the
deep ocean (Marinov et al., 2006).

Iron is an important limiting micronutrient in the oceanic
“high-nutrient-low-chlorophyll (HNLC)” areas of the Southern
Ocean, occurring in low concentrations in surface waters and
regulating the growth of autotrophic organisms (de Baar et al,,
1990; Moore et al,, 2013). Iron availability has a particularly
strong impact on the uptake of the major nutrients (N,
nitrogen; P, phosphorus; Si, Silicon) by diatoms, with iron
limitation increasing the Si/N uptake ratio of diatom-dominated
communities (Hutchins and Bruland, 1998; Takeda, 1998;
Pondaven et al., 2000). This leads to a reduction in relative
concentrations of silicon (as silicic acid) south of the SAF by the
diatom-dominated primary production, such that surface waters
exported northward from the Southern Ocean are Si-deplete
and nitrogen- and phosphorus-rich (Treguer et al., 2018; Henley
et al., 2020). This promotes non-diatom phytoplankton growth
at lower latitudes, with implications for reduced carbon export
compared to fast-sinking diatoms (Buesseler, 1998; Ducklow
et al, 2001; Armstrong et al, 2009). Similarly, varying N/P
uptake ratios of different phytoplankton species influence the
N/P ratio of exported waters, with implications for carbon export
at lower latitudes (Arrigo et al, 1999; Weber and Deutsch,
2010; Martiny et al., 2013). The spatial and temporal variability
of oceanic connections (see section “Physical Connectivity,”
Supplementary Table 1) results in structure and variability in
the biogeochemical connections. Combined with the physical
variability, this generates inter-annual and seasonal variation
in the concentration of nutrients, carbon, and oxygen entering
the ocean interior.

Ecological Connectivity

Scales of Ocean Processes and Organism Movement
Evolutionary history is a major determinant of the distribution
and ecological connectivity of modern Antarctic fauna. The rich
contemporary fauna is considered to be largely endemic with

in situ adaptation to local conditions occurring during the period
of Southern Ocean cooling as Antarctica separated from the last
Gondwanan connections 23-40 mya (Clarke and Johnston, 2003;
Clarke and Crame, 2010; Fraser et al., 2012). Most Antarctic
groups appear to have survived Pleistocene glacial cycles within
the Antarctic region, for example, by sheltering in refugia created
by polynyas, deeper waters, or geothermal environments (Convey
etal., 2009; Allcock and Strugnell, 2012; Fraser et al., 2012, 2014).
There are, however, many mobile seabird and marine mammal
species that occur and breed both within and north of the APF
(Hindell et al., 2020). The Southern Ocean’s intense seasonality
is a fundamental driver of life-cycle evolution and hence also a
major influence on ecological connectivity (Clarke and Crame,
2010; Murphy et al., 2016; Varpe, 2017).

Passive and active dispersal, movements and migrations are
a fundamental aspect of the dynamics of marine species and
ecosystems (Nathan et al., 2008; Walther et al., 2015; Schldgel
et al.,, 2020). Passive dispersal of organisms can reduce local
accumulation and competition, moving organisms into regions
that are more favorable allowing colonization of new habitats.
Active movements and migrations allow organisms to shift
habitats to cope with changes in environmental conditions, food
availability and mortality, which involve trade-offs in terms of
overall reproductive success (Clark and Mangel, 2000; Schlagel
et al., 2020). A number of seabird and marine mammal species
in the polar regions are seasonally migratory in order to access
the optimal habitats for their life cycle (see section “Active
Dispersal”). For example, some species of whales target colder
areas with high densities of prey in the austral summer, and in the
austral winter they occupy warm waters for calving, and possibly
also skin regeneration (Pitman et al., 2020).

The major migratory movements of seabirds and whales
occur over relatively short periods of a few weeks during the
austral spring and autumn. This indicates that connectivity
between regions will be particularly intense during these
periods with concentrated patterns of movement and aggregation
in Southern Ocean regions during spring. By moving and
migrating the organisms can enhance reproductive success and
maintain higher overall abundance. However, it also means that
there are marked differences in local and regional abundance
spatially and seasonally, with intense aggregation and hence
high regional/local abundance in the summer habitats, but very
low abundance in winter, while abundance increases in their
winter habitats.

The multi-front structure of the Southern Ocean (Figure 1)
limits the exchanges of material and organisms in the upper ocean
from the most polar southern regions to areas north of the APF
and SAF. However, there is much more extensive cross-frontal
exchange than was previously understood, and frontal structures
do not extend into the deep ocean (Frenger et al., 2015; Foppert
et al., 2017; Chapman et al., 2020). Cross-frontal processes and
current fows (Figures 1, 2A) provide mechanisms and routes for
transferring material and organisms into and out of the Southern
Ocean, resulting in broad latitudinal zones of mixing of upper
ocean communities. Dispersal of organisms, or particular life
cycles stages, in (or above) the oceans results from a combination
of physical and biological process interactions at different scales,
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including passive and active movements. For organisms, as a
broad simplification, the relative importance of advective versus
active movement processes is a function of their size. Although
there are clear exceptions to the general allometric relationship,
small organisms tend to be more strongly influenced by physical
advective processes, while larger organisms are more mobile and
can overcome advective dispersal over smaller scales (Peters,
1983; Andersen et al, 2016; Hays, 2017). Organisms of every
size have evolved adaptations that allow them to utilize spatial
heterogeneities at different scales (horizontally and vertically)
and temporal variability in advective processes to influence
retention and dispersal to optimize access to favorable habitats
and/or resources (Mann and Lazier, 2005; Costa et al., 2012;
Shepard et al., 2013; Walther et al., 2015; Andersen et al., 2016;
Hays, 2017). Although many of the exchanges we consider
will be two-directional (north-south) and there is valuable
information on dispersal and migratory movements of some
species, particularly in terms of seasonal migrations of Southern
Ocean predators, there has been little focus on the exchanges at
most trophic levels.

We consider three scales of ecological connectivity linking
the Southern Ocean and global ocean ecosystems based on
the movement of Southern Ocean organisms (Supplementary
Table 2 and Figure 2B).

Passive Dispersal

The distribution of epipelagic planktonic organisms is primarily
driven by passive dispersal, so cross-frontal exchange processes
(e.g., eddy activity and surface currents) can greatly affect where
they are found. As a result of the variability of these processes
(see section “Physical and Biogeochemical Connections”), there
are particular areas around the Southern Ocean where exchanges
of planktonic organisms across frontal systems most frequently
occur (Tamsitt et al., 2017). In areas between the APF and SAF,
subduction processes (see section “Physical and Biogeochemical
Connections”), move planktonic organisms northward from
mode water formation areas (Jones et al., 2016). The success
and survival of these expatriate plankton (e.g., Southern Ocean
diatoms) depends on local physical and nutrient conditions (e.g.,
upwelling, cross-thermocline exchanges and silicic acid and iron
concentrations).

Studies examining the partitioning of zooplankton
communities over regional and circumpolar scales indicate
that changes are coincident with the major frontal zones
(Froneman et al., 1995; Pakhomov and McQuaid, 1996; Ward
et al., 2003; Johnston et al., unpublished data). The SAF and APF
can be strong barriers, and the APF is particularly significant
as the main distribution limit for many of the true cold water
Antarctic species (Deacon, 1982; Boltovskoy, 1999; Griffiths
et al., 2009). However, latitudinal movements and variation of
frontal positions and associated meandering and eddy shedding,
particularly within the Polar Frontal Zone (PFZ), facilitate
cross-frontal exchanges (Lutjeharms and Baker, 1980; Bryden,
1983; Heywood et al., 1985; Lutjeharms et al., 1985; Pakhomov
et al,, 1997; Chiba et al.,, 2001; Hunt et al., 2001, 2002; Bernard
et al., 2007; Foppert et al., 2017). Eddies that drift some distance
from their origin provide an effective means of transporting

faunas into different water masses (Atkinson et al., 1990; Bernard
et al, 2007) and can enhance zooplankton productivity and
abundance, particularly at their peripheries (Bernard et al., 2007;
Della Penna et al., 2018). Planktonic larvae of benthic species
can cross such frontal zones in eddies (Clarke et al., 2005), and
also have new and increasing passive opportunities on floating
debris such as plastic (Barnes, 2002; Horton and Barnes, 2020).
The result of these exchange processes is that there can be wide
transition zones between warm- and cold-water communities
where they mix to varying extents (Boltovskoy, 1999; Atkinson
and Sinclair, 2000). The different plankton communities across
the fronts are thus often represented by changes in the balance
of taxa or in the abundance of individual species, rather than
fundamentally differing faunas (Siegel and Piatkowski, 1990;
Tarling et al., 1995; Ward et al., 2012).

Compared to epipelagic species, many mesopelagic species
have wider-ranging distributions that are much less constrained
by frontal boundaries (Proud et al., 2017; Sutton et al., 2017).
Most mesopelagic species also encounter large temperature
changes during their seasonal vertical migrations, compared to
the comparatively small temperature change across the APF for
example, and hence frontal boundaries do not represent faunal
boundaries for these taxa (Proud et al., 2017; Sutton et al., 2017).
Biogeographic schemes that work well for epipelagic species
are therefore not appropriate for deeper dwelling species and
many planktonic mesopelagic taxa (e.g., decapods, ostracods,
and siphonophores) have distributions that are wider and more
likely to cross frontal boundaries compared to their epipelagic
counterparts (Angel and Fasham, 1975; Pugh, 1975, 1999; Fasham
and Foxton, 1979; Angel, 1999).

Some benthic and intertidal species are now known to cross
Southern Ocean fronts and enter Antarctic waters by rafting
with buoyant materials at the very surface of the ocean (Fraser
et al., 2018). Organisms floating at the surface are affected
by Stokes drift, through the horizontal transport of particles
with wind-driven surface waves (Fraser et al., 2018). Rafts of
buoyant macroalgae, for example, can-through a combination
of mesoscale eddies and storm-associated Stokes drift-cross
into Antarctic waters from Subantarctic sources north of the
APE some carrying diverse invertebrate and other passengers
(Avila et al., 2020).

Mixed Passive and Active Dispersal

A range of Southern Ocean plankton, fish and cephalopods
species have cross-frontal distributions while foraging seabirds
and marine mammals move across the APF to breed or feed or
in shorter seasonal migrations (Catry et al., 2004; Murphy et al,,
2007; Ashford et al., 2008; Della Penna et al., 2015; Hunt et al.,
2016; Pistorius et al., 2017; Xavier et al., 2018; Saunders et al.,
2019; Queirés et al., 2021).

The strong physical transition between warm and cold waters
at the APF strongly limits the potential for southward movement
of large migratory epipelagic fish species (Hunt et al., 2016).
The fish fauna of the Southern Ocean is largely distinct from
that north of the APF. The Antarctic fish fauna is primarily
dominated by the notothenioid group (Matschiner et al.,, 2011),
which has specific adaptations (Chen et al., 1997), allowing them

Frontiers in Ecology and Evolution | www.frontiersin.org

August 2021 | Volume 9 | Article 624451


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Murphy et al.

Southern Ocean Ecosystems: Global Connectivity

to exist in the coldest regions of the Southern Ocean. Several
other species of fish and cephalopods do have distributions
that cross the APF and/or the SAF with evidence of ontogenic
shifts in habitats. A key aspect of a number of these species’
life cycles is the importance of advection and physical processes
of aggregation and dispersal in maintaining distributions.
Mesoscale oceanographic processes, such as fronts, eddies
and jets, can have a profound influence on the distribution,
abundance, population dynamics and behavior of pelagic fish
(Ashford et al., 2005; Petitgas et al., 2013; Hunt et al., 2016;
Netburn and Koslow, 2018). Several demersal/semi-demersal
fish species with pelagic eggs and larval stages depend on
advection to transport offspring from spawning areas to suitable
nursery areas, and zonal advection is important in maintaining
connectivity amongst populations of such fishes (Ashford et al.,
2012; Damerau et al., 2012; Young et al., 2012; Hop and Gjosaeter,
2013; Vestfals et al., 2014; Hunt et al.,, 2016; Petrik et al., 2016;
Huserbraten et al., 2019; Mori et al, 2019). Although there
is generally little exchange between fish fauna in the upper
ocean across the APF, some species do move across the APF.
For example, the commercially exploited Patagonian toothfish
(Dissostichus eleginoides) is a species that shows population
connectivity at the ocean basin scale and across the APF (Ashford
et al, 2005, 2008, 2012). Spatial movements of organisms
associated with ocean currents (and sea ice drift in polar
waters) influence their distributions and hence susceptibility to
transport into or out of the Southern Ocean. Vertical migrations
by a range of zooplankton, fish and cephalopod species (see
Caccavo et al,, 2021; Johnston et al., unpublished data) involve
interactions with water masses that may facilitate north-south
exchanges across the APF.

Mesopelagic fish are ubiquitous in the world’s ocean and
comprise a substantial source of biomass (Irigoien et al., 2014;
Saunders et al., 2019). Of the mesopelagic fish, lanternfish (Family
Myctophidae; hereafter myctophids) are the most speciose and
biomass-dominant group in most oceanic regions (Gjosaeter and
Kawaguchi, 1980; Catul et al, 2011), including the Southern
Ocean (Hulley, 1981; Lubimova et al.,, 1987), where they are
important in pelagic food webs and biogeochemical cycles
(Pakhomov et al., 1996; Murphy et al., 2007; Saunders et al.,
2017, 2019; Caccavo et al, 2021). In parts of the Southern
Ocean the majority of myctophid species either do not reproduce
or their young do not recruit in waters south of the APF
(Saunders et al., 2017), with the core populations of most
myctophid species centered at predominantly sub-Antarctic,
or temperate latitudes (Hulley, 1981; McGinnis, 1982; Loeb
et al., 1993; Christiansen et al., 2018). This suggests that the
relatively high biomass of myctophid fish in Antarctic waters
appears to be sustained by mass immigration of adults from
lower latitudes involving oceanographic and behavioral processes
and interactions (Saunders et al., 2017). However, the level
of connectivity between Antarctic and sub-Antarctic/temperate
systems is also unlikely to be uniform for myctophid fish across
the Southern Ocean (Koubbi et al., 2011; McMahon et al.,
2019). Evidence that migrant individuals do not return from
this southward journey and form sink populations in waters
south of the APF was presented by Saunders et al. (2017),

further highlighting the importance of such regional connectivity
pathways in maintaining their distributions.

Some pelagic cephalopod species have distributions that
encompass areas north and south of the APF (Xavier et al,
1999), which in some species involves ontogenetic shifts in
habitat. Stable isotope analyses of carbon on different parts
of the cephalopod beaks show that numerous species move
from warmer waters to colder waters during their development
(Queirds et al.,, 2020), indicating similar ontogenetic shifts in
habitat to that observed in the mesopelagic fish community
(Saunders et al., 2017). More generally, distribution modeling
based on relationships with particular oceanographic conditions
and analyses of the diets of predators of squid further indicates
cross-frontal distributions (Xavier et al., 2016; Pereira et al.,
2017). Analyses of the diets of predators of squid, stable
isotope ratios, and species distribution models based on habitat
preferences have confirmed these cross-frontal distributions
around the Southern Ocean (Guerreiro et al., 2015; Xavier et al.,
2016; Pereira et al., 2017).

Benthic species show both passive and active transport of
organisms between the Southern Ocean and other oceans, e.g.,
pedunculate barnacles, “hitching a ride” as commensal epifaunal
on birds, seals, and whales (Barnes et al., 2004). Shipping has
increased passive riding on active transport into and out of
the Southern Ocean (Lewis et al., 2003; Lee and Chown, 2009;
McCarthy et al., 2019).

Active Dispersal

The migration of large numbers of seabirds and marine mammals
into the Southern Ocean during spring to feed, and in many
cases to breed, during the short summer period is part of the
classical view of the operation of the ecosystem (Knox, 2007).
However, major technological advances since the 1990s have
greatly increased knowledge of the at-sea activity patterns and
movements of a wide range of species (Phillips et al., 2007a;
Hindell et al., 2020). During the austral spring/early summer,
breeding seabirds and seals aggregate in large colonies on ice-
free land in coastal regions around the continent and on islands
further north. When young are being fed, foraging distance is
restricted and demand for prey is most intense within a few
hundred kilometers of the main breeding sites (Croxall et al.,
1985; Murphy, 1995). However, during both incubation and
chick-rearing, albatrosses and petrels travel long distances during
extended foraging trips, including northward across the APF
and SAF (Peron et al,, 2010). For example, wandering albatross
Diomedea exulans that breed south of the APF at South Georgia
mainly forage in shelf areas off South America and in oceanic
waters around the subtropical convergence (Xavier et al., 2004;
Ceia et al., 2015). Some species breeding on sub-Antarctic islands
north of the APF do the opposite, flying south to forage in the
Southern Ocean (Peron et al., 2010).

At the conclusion of the breeding season, adults, and fledgling
seabirds disperse across the Southern Ocean, keeping north of
the advancing seasonal pack ice or migrating across the APF
(Phillips et al., 2006; Weimerskirch et al., 2015). There is a
general movement of animals which bred south of the APF
into oceanic waters to its north during autumn and winter
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(Croxall et al., 2005; Quillfeldt et al., 2013). This is to avoid the
lower productivity, harsher weather, and shorter photoperiods
during the austral winter, which limit the foraging of visual
predators as well as phytoplankton growth: however, dispersal
strategies vary greatly among species, breeding sites, and
individuals (Delord et al., 2014; Weimerskirch et al., 2015;
Phillips et al., 2016). A number of species migrate into coastal
waters off South America, southern Africa, and Australasia,
which are areas of high productivity and may also be associated
with boundary currents or upwelling zones (Phillips et al., 2005,
2006; Quillfeldt et al., 2013). Other species undertake much
longer winter migrations northward toward the equator, and a
few even move into the Northern Hemisphere (Kopp et al., 2011).
The observed patterns and routes of both foraging movements
and long-distance migrations of seabirds are often associated with
weather patterns as the birds use the wind for efficient travel
between areas (Phillips et al., 2007b; Kirby et al., 2008; Egevang
et al., 2010; Weimerskirch et al., 2012).

Most seabirds migrating from islands south of the APF in
oceanic or continental shelf waters take varied routes across
a broad front, but trans-equatorial migrants to or from the
Northern Hemisphere often stay relatively close to continental
coasts (Shaffer et al., 2006; Egevang et al., 2010; Kopp et al., 2011).
The latter are some of the longest migrations of any organisms
on the Earth (e.g., Figure 3A). Short-tailed shearwaters Ardenna
tenuirostris tracked from Tasmania moved into the Southern
Ocean after breeding, before flying north across the western
Pacific Ocean to waters near Japan or further north in the Bering
Sea (Carey et al., 2014). The classic example of a long-distance
seabird migrant is the Arctic tern Sterna paradisaea, which breeds
in Europe and the Arctic, then migrates in its non-breeding
season to the Antarctic where it feeds in sea ice environments,
thereby experiencing an endless summer (Egevang et al., 2010;
Redfern and Bevan, 2020).

Cetaceans also migrate south to feed in the Southern Ocean
in spring and move northward during autumn to breed at lower
latitudes. Due to their size and mobility they can move large
distances within the Southern Ocean to target areas of enhanced
food availability (Branch et al., 2007; Horton et al., 2017, 2020;
Andrews-Goff et al., 2018; Bestley et al., 2019; Figure 3B). It
is not known whether their Southern Ocean entry points are
diffuse or concentrated, because very few species have been
tracked travelling into and out of the polar regions. Humpback
whales Megaptera novaeangliae, are the best studied species in
this respect; movement studies suggest a preference in some
areas for particular migratory routes into the Southern Ocean
for this Antarctic krill Euphausia superba feeding species. For
example, in the southwest Atlantic region, humpbacks appear
to follow a single southbound migratory route, consistent over
multiple years and varying environmental conditions (Horton
etal., 2020). Humpbacks tracked off east Australia follow multiple
distinct migratory routes into the polar regions (Andrews-Goff
etal., 2018), while whales migrating from Oceania (South Pacific)
have more diffuse southbound movements (Riekkola et al.,
2018), suggesting that regional patterns may vary depending
on Southern Ocean food predictability. A number of pinniped
species, such as Antarctic fur seals Arctocephalus gazella and

elephant seals Mirounga leonina, have distributions that cross the
PFZ, and a proportion of these populations move further north
out of the Southern Ocean during winter (Hindell et al., 2020).
This large number of organisms (fish, cephalopods, seabird,
and marine mammals) crossing the APF and PFZ during
their life cycle or their seasonal migrations further connects
the Southern Ocean to the rest of the globe. These animals
constitute a recurrent dispersion vector of microorganisms such
as bacteria, archea, fungi, and protists by transporting their
attached microbiota in and out of the Southern Ocean [see
examples in Mestre and Hofer (2021), and references therein].

IMPLICATIONS OF ECOLOGICAL
CONNECTIVITY

Seasonal Shifts in Demand for Prey

With better estimates of abundance and much-improved
knowledge of seasonal foraging and migration patterns in recent
years, it is possible to broadly assess seasonal shifts in demand
for prey of key groups of marine predators, including seabirds
and cetaceans. We estimated the seasonal shift in and out of
the Southern Ocean for these communities and their demand
for prey in the Southern Ocean compared with waters north
of the APF. Details of the data, methods, and concerns and
caveats for calculations of seabird and cetacean demand for prey
during and outside of the breeding season are given in the
Supplementary Material. Calculation results are presented in
Supplementary Tables 3, 4 (seabirds and cetaceans, respectively).
We have taken the APF as the major boundary for estimating
movements, recognizing that many species will only move into
sub-Antarctic regions south of the SAF. The calculations indicate
the magnitude of seasonal movement and change in predator
abundance, and food requirements in ice influenced polar waters
and areas further north. However, these estimates are uncertain,
and we regard them as the first set of illustrative estimates of
prey demand, which will require further refinement, providing
spatially and temporally resolved views of changes in distribution
and demand for prey of different predator species.

Seasonal Changes in Prey Demand of Seabirds

We considered just those populations that breed in the Southern
Ocean in our consumption estimates, primarily because of
uncertainties associated with colony sizes and the proportion
of time spent feeding south of the APF by many seabirds
that breed north of the APF. However, demand for prey will
also be high south of the APF for very abundant species that
use these waters during part of their breeding or nonbreeding
seasons, for example, short-tailed and sooty shearwaters Ardenna
grisea from colonies in Australasia, and Antarctic prions
Pachyptila desolata and thin-billed prions P. belcheri from sub-
Antarctic islands (Shaffer et al., 2006; Quillfeldt et al., 2013;
Carey et al, 2014; Supplementary Material). In total, we
estimated that 51 million pairs of seabirds breed annually in
the Antarctic region (south of the APF), which translates to
an estimated 137 million individuals, including the other life-
stages (sabbatical birds, immatures, and juveniles; Figure 4A
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FIGURE 3 | Patterns of movement and migration of seabird and marine mammal species, (A) Seabirds (see text for references). Red-Arctic tern (Sterna paradisaea);
White-short-tailed shearwaters (Ardenna tenuirostris); Yellow—black browed albatross (Thalassarche melanophris), wandering albatross (Thalassarche chrysostoma),
white-chinned petrel (Procellaria aequinoctialis) and giant petrel (Macronectes giganteus). Orange arrows show the general north-south seasonal migration of
seabirds. (B) Whales. White—-humpback whale (Megaptera novaeangliae) (Best et al., 1993; Zerbini et al., 2006, 2018; Robbins et al., 2011; Félix and Guzman, 2014;
Fossette et al., 2014; Rosenbaum et al., 2014; Garrigue et al., 2015; Guzman et al., 2015; Riekkola et al., 2018; Bestley et al., 2019; Horton et al., 2020); Yellow —
southern right whale (Eubalaena australis) (Best et al., 1993; Zerbini et al., 2018; Mackay et al., 2020; Riekkola et al., 2021).

and Supplementary Table 3). During the breeding season, the
at-sea distributions of most species are entirely south of the
APE. Of the species which often forage north of the APF
during breeding, most use oceanic waters, including grey-headed
albatrosses Thalassarche chrysostoma, black-browed albatrosses
T. melanophris and cape petrels Daption capense (Phillips
et al., 2004). The few exceptions include white-chinned petrel
Procellaria aequinoctialis, wandering albatrosses and to a lesser
extent the giant petrels Macronectes spp., which frequently travel
from South Georgia to the Patagonian Shelf or adjacent shelf-
break (Phillips et al., 2006; Jiménez et al., 2016; Granroth-Wilding
and Phillips, 2019). By comparison, as most or all individuals
of many species are migratory, at-sea distributions during the
nonbreeding season are largely or entirely (i.e., >80%) north
of the APF. In most cases, this reflects their migration to sub-
Antarctic, subtropical, or even tropical oceanic waters (Quillfeldt
et al.,, 2013; Clay et al., 2016, 2018). The exceptions among the
most abundant species from South Georgia are white-chinned
petrels, which winter on the Patagonian Shelf or the Humboldt
Upwelling system off Chile, and black-browed albatrosses, which
winter mainly in the Benguela Upwelling system off South Africa
and Namibia (Phillips et al., 2005, 2006).

Taking population sizes, at-sea distributions, and breeding
schedules into account 870,000 seabirds from Antarctic colonies
feed north of the APF for a total of 159 million bird-days during
the breeding season (<0.01% birds in the north). In contrast,
around 80 times as many seabirds-68.5 million—from Antarctic
colonies move north of the APF for a total of 16,600 million
bird-days during the nonbreeding season (51% of birds are in the

north in winter; Figure 4A). In terms of biomass, this represents
a flux of 18,000 tonnes of seabirds from Antarctic colonies to
feed north of the APF in the nonbreeding season, compared with
just 1,300 tonnes of seabirds which were feeding there during the
breeding season.

The three species contributing to the great majority of this
biomass movement in the nonbreeding season are the Antarctic
prion, macaroni penguin Eudyptes chrysolophus and white-
chinned petrel (8.1, 6.5, and 2.8 tonnes, respectively). Although
the total number of seabirds north of the APF during the
nonbreeding season is similar to the number that remains to
its south (70 vs. 68 million individuals), the latter represents
much greater biomass (151 vs. 19 thousand tonnes) of which
the top five species (contributing 11-47 thousand tonnes) are all
penguins; these are of course much heavier taxa than most of the
migrant petrels. Small animals require considerably more energy
than large animals for body maintenance per unit mass. Hence,
the total energy required from food, and hence the total mass
of prey consumed north and south of the APF for the seabirds
from Antarctic colonies during the nonbreeding season is similar
(1.07 x 10'® kJ and 1.79 million tonnes prey vs. 1.19 x 10'® kJ
and 1.99 million tonnes of prey; 47% of the demand is in the
north). This is in direct contrast to the breeding season when the
relative energy and food intake of Antarctic seabirds south of the
APF is 126 times that required to its north (56.5 x 10'* kJ and
9.42 million tonnes of prey vs. 0.4 x 10'* kJ and 74 thousand
tonnes of prey; <0.01% in the north; Figure 4A).

Given the locations and sizes of their main colonies, the
seabirds from south of the APF which feed to its north during
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number of birds moving seasonally = 68.5 x 10° (mass = 18 x 10° tonnes)
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South North
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number of cetaceans moving seasonally = 0.60 x 10°

(mass = 8.05 x 10° tonnes)

(range: 0.42 x 10° to 0.85 x 10°)

FIGURE 4 | Migration and seasonal changes in prey demand of predators that move seasonally in and out of the Southern Ocean (see text and Supplementary
Material for details). The APF is taken as the nominal boundary. Information on population sizes and spatial shifts of many species is very limited and estimates are
therefore uncertain and indicative. (A) seabirds, (B) cetaceans (assumes 90% of cetaceans move out of the Southern Ocean in winter (range based on available
error estimates). Estimates of summer and winter demand south of the APF and winter demand to the north are based on two estimates of summer consumption
rates and two estimates of winter:summer total consumption ratios [(i.) = low summer consumption rate and low winter:summer ratio, (ii.) = high summer
consumption rate and high winter:summer ratio]. No estimate is given for summer demand north of the APF.

the breeding season are mainly in the Atlantic sector, although
smaller numbers of seabirds also feed north of the APF in
the Indian Ocean (Phillips et al., 2004, 2006; Wakefield et al.,
2011; Granroth-Wilding and Phillips, 2019). The same broad
geographical pattern applies during the nonbreeding season, i.e.,
the largest numbers and biomass of seabirds migrating north of
the APF are in the Atlantic sector.

Excepting the south polar skua Stercorarius maccormicki
and Wilson’s storm petrel Oceanites oceanicus, the Antarctic

seabird populations that move north of the APF remain in the
Southern Hemisphere, predominantly in oceanic waters from
the sub-Antarctic to the subtropics. In the Atlantic, those in
oceanic waters will overlap with the southern portion of at-sea
distributions of the huge seabird populations from the South
Atlantic Islands. This overlap is greater during the nonbreeding
season than the breeding season (Reid et al.,, 2013; Dias et al.,
2017; Ronconi et al., 2018; Jones et al., 2020). Those Antarctic
populations that move to a greater or lesser extent close to or
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onto the Patagonian Shelf or into the Humboldt Current will
overlap with huge local breeding populations of seabirds and
many long-distance migrants from areas such as New Zealand
or the Northern Hemisphere (Spear et al., 2003; Landers et al.,
2011; Baylis et al., 2019; Ponchon et al, 2019). In the Indian
Ocean, the situation is somewhat different in that the Antarctic
seabird populations which feed north of APF overlap very
extensively not just during the nonbreeding but also during
the breeding season, with the major breeding populations of
seabirds on island groups within a few 100 km of the APF
(Delord et al., 2014; Reisinger et al, 2015). As such, it is
perhaps only the most numerous of the migrant seabirds from
the Antarctic region — Antarctic prion and macaroni penguin
in oceanic waters, and white-chinned petrel on the Patagonian
Shelf-that would have an impact on prey resources north of
the APF compared to the demand of local or other migrant
seabird species.

Seasonal Changes in Prey Demand of Cetaceans
Given the number, size and consumption rates of Southern Ocean
cetaceans, the demand for prey in summer and shifts in winter
are potentially very large (Reilly et al., 2004). Estimates of current
population numbers and migration patterns of cetaceans are
uncertain but there have been significant increases in estimates of
abundance over the last 25 years (Jackson et al., 2008, 2016; IWC,
2016). Although uncertain, the available estimates are useful
in considering the extent to which the demand for prey shifts
seasonally across the APF. We estimate that there are ~770,000
cetaceans in the Southern Ocean during the summer months, of
which ~667,000 are baleen whales. We assume that 90% of each
baleen whale species move northward after summer (Figure 4B
and Supplementary Material). Assuming an average body mass
equivalent to that of an adult male, this represents a movement
of ~8.05 x 10° tonnes of whale biomass mass each year. As
whales live a long time and build up body mass, this means that
the carbon may be shifted from areas where it is produced and
consumed to often distant regions where it is respired, excreted
or lost when whales die (Roman et al., 2014).

For baleen whales we estimate summer consumption of
between ~17 and 48 million tonnes of prey south of the APF
(Figure 4B and Supplementary Table 4). This is a higher
estimate compared to those in earlier studies, resulting from
the larger estimates of population size used in this study (Reilly
et al., 2004; Branch, 2007; IWC, 2013, 2016; Trathan and
Hill, 2016). Winter demand is highly uncertain. If we assume
that 10% of baleen whales stay in the Southern Ocean during
winter and continue to feed at summer rates, this results in
a prey demand south of the front of between ~0.35 and 2.5
million tonnes. The proportion of prey consumed outside the
summer season is very uncertain; Lockyer (1981) estimated this
to be 17%, but reviewing the consumption rate data available
for whales, Leaper and Lavigne (2007) suggested that this is
likely too low to satisfy the metabolic needs of whales. If the
proportion of prey consumed outside of the summer season
is 17% or double this value (34%) (Lockyer, 1981; Leaper
and Lavigne, 2007; Supplementary Material), estimates of prey
demand north of the front range from ~3 to 22 million tonnes.

Although the estimates of winter demand for prey are uncertain,
the migration represents a large reduction in prey demand
in the south and a very large movement of animal biomass,
carbon and nutrients.

Food Web Connectivity

Both passive dispersal processes and active movements of
organisms into and out of the Southern Ocean connect
food webs in different ecosystems. These processes transfer
nutrients, carbon, organic material, and organisms between
systems and affect the biogeochemistry, productivity, structure,
and functioning of the ecosystems (O’Gorman, 2016; Gounand
et al., 2018a,b). This export of production from one ecosystem
(source) can provide inputs into another, subsidizing local food
webs’ energy budgets. The relative importance of autochthonous
(local) production and allochthonous (external) production is
a subject often discussed in relation to horizontal transport
(between locations) as well as vertical transport (benthic-pelagic
coupling) of production within the Southern Ocean (Murphy,
1995; Ansorge et al., 1999; Froneman et al., 1999; Pakhomov
et al.,, 2000; Perissinotto et al., 2000; Murphy et al., 2007, 2012;
Hunt et al, 2016; Subalusky and Post, 2019; Treasure et al.,
2019; McCormack et al., unpublished data) but there is little
understanding of their operation or variability between the
Southern Ocean and global ocean ecosystems.

The importance of individual organism and food web
processes in biogeochemical cycles in Southern Ocean
ecosystems is being elucidated (Murphy and Hofmann,
2012; Cavan et al, 2019; Henley et al., 2020). The passive
and active movement of organisms have important impacts
on biogeochemical cycles across scales (Henley et al.,, 2020).
Biota cycle and store nutrients (especially iron) and carbon
over widely-varying timescales, and hence also act as vectors
transporting nutrients vertically, horizontally, and beyond the
Southern Ocean. Whist carbon uptake by primary production
is similar in magnitude to the direct uptake of CO; by solubility
pump processes across the Southern Ocean, this organic
carbon can be transferred into heterotrophic organisms,
leading to rapid sequestration and long-term carbon storage
in animal biomass, sediments or storage as refractory carbon
in the deep ocean (Henley et al, 2020). The processes of
vertical carbon export and sequestration associated with the
biota (Boyd et al., 2019) and the carbon’s fate depend on the
interactions with the three-dimensional flow (Robinson et al.,
2014). The movement of large mobile organisms also affects
biogeochemical cycles in remote ecosystems through the input
of nutrients and carbon (respiration, excretion, and mortality),
while also acting as consumers, potentially affecting primary
production and biogeochemical cycles (Roman et al, 2014;
Doughty et al., 2016).

The migration of large numbers of predators, resulting in
the annual northward and southward shifts in the distribution
of upper trophic level biomass, is driven by the high-latitude
Southern Ocean’s intense seasonality. Dispersal out of the region
during winter reduces the local demand for prey and hence the
dependence of the remaining highest trophic level productivity
on local Southern Ocean production. The mortality rates of
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zooplankton, fish, and cephalopod populations may, therefore,
also be significantly reduced during winter, especially in local
shelf areas where summer demand is concentrated (Croxall et al.,
1985; Murphy, 1995). Therefore, the effect of the mass movement
of organisms and biomass is to reduce and disperse the demand
for prey by mid- and upper trophic level species northward
and out of the Southern Ocean during winter (Figure 4 and
Supplementary Tables 3, 4). However, the total mass of prey
required by seabirds may not be that much lower; while adults
no longer need to provision chicks, they need to replace plumage,
which is energetically demanding and generally occurs during
the nonbreeding season (Catry et al., 2013). Although they
no longer provision young, their fledged offspring will expend
energy feeding for themselves.

This seasonal pattern of movement also represents a major
spatial transfer of energy, nutrients, carbon, and biomass across
the APF and the SAF. It results in a seasonal pattern of
concentration and dispersal of energy demand and increased
intensity of food web interactions during the summer (Figure 4
and Supplementary Tables 3, 4). Thus, food webs in the Southern
Ocean are highly seasonal and inextricably connected with
food webs further north, generating a seasonal interdependence
between polar and lower-latitude regional ecosystems. This
spatial connectivity is essential in determining the structure and
functioning of food webs north and south of the APF. Movement
of organisms between ecosystems will affect food web interactions
in both areas, generating top-down impacts on lower trophic
level and biogeochemical processes and competitive interactions
between migrant and resident predators (van Deurs et al., 2016).
These processes (advection and movement) coupling ecosystems
across scale (metacommunities) are essential in maintaining
ecosystems and affects their structure, functioning, biodiversity,
and stability and resilience (McCann et al., 2005; Bauer and Hoye,
2014; Walther et al., 2015; Doughty et al., 2016; van Deurs et al,,
2016; Bolchoun et al., 2017; Gounand et al., 2018a; Mougi, 2018,
2019; Dunn et al., 2019a).

Within the general pattern of northward movement of
seabirds and cetaceans during autumn, a number of species
move into eastern and western boundary areas around South
America, southern Africa, and Australasia (Figure 3). Some
species move along the coastal shelf areas or shelf edges,
feeding in local food webs as they transit out of and into
the Southern Ocean (Kopp et al., 2011; Andrews-Goff et al,
2018). Processes of food web connectivity are likely to be
particularly strong in these areas associated with the ocean basin
boundary regions, as these are also often areas of enhanced
productivity (Croxall and Wood, 2002; Phillips et al., 2005;
Peron et al.,, 2010). The predators can exploit shifting timings in
peak productivity and food availability by migrating, although
this brings them into competition with substantial resident
populations of predators (see section “Seasonal Changes in Prey
Demand of Seabirds”). The extent to which cetaceans impact
remote regional ecosystems where they concentrate for breeding
during the austral winter is unclear due to reduced feeding in the
austral winter, but they still will respire, die, and be predated, and
some species continue feeding year-round (Roman et al., 2014;
Doughty et al., 2016).

HUMAN SYSTEMS CONNECTIONS

Southern Ocean ecosystems support a range of globally
important ecosystem services. Ecosystem services are the benefits
that humankind obtains from natural ecosystems and are
generally grouped as provisioning (e.g., fishery products),
supporting (e.g., nutrient cycling), regulating (e.g., climate
regulation), and cultural (e.g., tourism). Assessments of the
current and potential future status of Southern Ocean ecosystem
services, together with decision-making considerations, are
provided in Cavanagh et al. (2021a). The demand for, and
importance of these services, for example, for supporting
global food security, for recreation (i.e., tourism), and climate
regulation, is expected to increase in the future (Rogers et al,
2020; Cavanagh et al., 2021a).

The three major areas of direct human interaction with
Southern Ocean ecosystems that involve people’s movement
and the associated transfer of material or resources, including
contaminants, microorganisms and pollutants (including
plastics) are: (i) fisheries, (ii) tourism, and (iii) science
activities. There are also transfers associated with national
activities and logistics. These interactions are influenced by
socio-economic and geopolitical factors, which also set the
governance framework.

These operations provide economic activity and employment
in countries across the world (Bertram et al., 2007), particularly
in the Antarctic gateway ports (Bertram et al., 2007), and
support extensive secondary industries, such as operation and
maintenance of fishing and commercial tourism (IAATO,
2019) and science vessels. These operations generate carbon
emissions through the movement of ships, aeroplanes, people,
and associated resources (Amelung and Lamers, 2007; Farreny
etal, 2011). Increased ship visits also potentially lead to a higher
probability of invasive species introductions into Southern Ocean
ecosystems (Lee and Chown, 2009; McCarthy et al., 2019; Morley
et al,, 2020; Grant et al., 2021). The accessibility of polar regions
to human activities (fishing, tourism scientific activities, and
shipping) is becoming greater with warming and reduced sea ice
distribution and timing induced by climate change (IPCC, 2019;
Meredith et al., 2019; Cavanagh et al., 2021a,b).

Fisheries

The Southern Ocean has long played a major role in global
production of goods from marine species, with a sequence of
exploitation that includes seals, whales, finfish, and krill (Grant
et al.,, 2021). It has also featured heavily in the global rise of
illegal, unreported and unregulated (IUU) fishing in the mid-
1990s. Global demand led to the near extirpation of Antarctic
fur seals in the early 19th century, the great whales during the
20th century, and a number of groundfish (nototheniid species,
including Notothenia rossii) in the 1970s and 1980s. The rapid
rise of Antarctic krill fishing in the 1970s led to the negotiation
of the Convention on the Conservation of Antarctic Marine
Living Resources (the “krill” convention) because of fears of
overfishing of krill and potential damage to the ecosystem as a
whole (Miller, 1991).
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FIGURE 5 | Total catches of the two current major Southern Ocean fisheries
over the historical period (1970s to present day) for each Flag State (catch
records from all years, CCAMLR): (A) toothfish (Dissostichus spp.) and

(B) Antarctic krill (Euphausia superba).

Recent assessments of Southern Ocean ecosystem services
have emphasized the global significance of Southern Ocean
fisheries (Cavanagh et al., 2021a). Over the period of the fishing
operations (1970s to present), catches in the two main fisheries
[toothfish (Dissostichus spp.) and Antarctic krill] have been taken
by vessels registered in states on every continent and in Northern
and Southern Hemispheres (Figure 5). The total catch of all
species in 2018/19 was 406 thousand tonnes (CCAMLR Statistical
Bulletin, 32, see their Table 4.1). The mean annual wholesale
value of Southern Ocean toothfish fisheries was US$206.7 million
per year for the period from 2011 to 2015 (CCAMLR, 2016),
and Antarctic krill (Euphuasia superba) had a first-sale value of
between US$100 to 416 million in 2017/2018 (Cavanagh et al.,
2021a). Currently, krill catches makeup <0.5% of the global
marine fisheries catch (GAMFC), although it has been suggested
that potential catch could be equivalent to >10% of GAMFC
(Nicol and Foster, 2016).

Tourism

The Southern Ocean is home to 90% of the worlds penguin
species, 50% of the world’s baleen whale species, and includes 80%
of the total area of high seas Marine Protected Areas (Boonzaier
and Pauly, 2016). The unique biodiversity is a significant driver
of tourism, which has increased rapidly over the last 30 years.
Over the last decade, the number of commercial tourism voyages
almost doubled (223 in 2010-2011, 432 in 2019-2020), while
passengers carried on ships has more than doubled (33,438 in
2010-2011, 74,120 in 2019-2020; IAATO, 2019). As a result, the
tourism industry directly impacts Southern Ocean ecosystems
in terms of ship traffic, landings, and site visits, with current

operations, concentrated on the Antarctic Peninsula (Bender
et al., 2016; Pertierra et al., 2017; Grant et al., 2021). Tourism has
a global footprint in that movement of people to join commercial
tourism ships involves air travel to South America (Ushuaia and
Punta Arenas), Africa (Cape Town), Australia (Hobart), and
New Zealand (Christchurch), or via flights to the South Shetland
Islands where visitors may join cruise vessels without having
to experience a potentially rough crossing of the Drake Passage
(known as fly/cruise tourism; Bertram et al., 2007; IAATO, 2019;
Figure 6). The operations of commercial tourism to the Antarctic
provide economic activity and employment in countries across
the world and particularly the Antarctic gateway ports (Bertram
et al., 2007; Figure 6).

Science

Southern Ocean ecosystems are an increasing focus of
international scientific activities as highlighted by the
international investment in a new generation of ice-capable
research vessels and the construction of new coastal research
stations on the continents margins (COMNAP, 2017).
Furthermore, there has been a rapid increase in the development
and deployment of remote and autonomous systems for
increasing observations of these ecosystems across multiple
spatial and temporal scales (Newman et al., 2019). This increased
scientific activity involves extensive inflows into Southern Ocean
regions of ships, airplanes, people, and associated resources,
while outflows include biological samples, specimens, and data. It
also involves national investments that contribute to the support
of communities and businesses as well as fundamental scientific
endeavors. The Southern Ocean and Antarctic scientists’ global
community supports personnel and associated businesses,
government and governance structures, non-governmental
organizations, and other bodies worldwide.

Society and Culture

People across the world have long had a fascination and concern
for Antarctica and the Southern Ocean from the heroic era in
the late 19th and early 20th Centuries (Larson, 2011), to the rise
of science (Walton, 2005), and the advent of the ATS with its
orientation toward the conservation of the region (Hanifah et al.,
2012; Hughes et al., 2018). The development and implementation
of the Madrid Protocol in 1998 was the result of a global effort
to provide long-term protection to the Antarctic environment
south of 60°S, instituting a ban on mining in the region in
perpetuity, which was in contrast to the negotiations at the
time for a convention to regulate mining activity (Scully, 2011).
The strength of commitment of Antarctic Treaty nations to
these principles was reaffirmed in 2016 in a declaration on the
25th Anniversary of the signing of the Protocol (ATCM, 2016)
confirming the central values of peace, science and conservation
in the region, as well as the importance of the region to the global
system. Antarctica and the Southern Ocean also have cultural
links to indigenous cultures, and the expression of ecosystem
science through art (Roberts et al., 2021). In recent times, there
has been an extensive media and cultural focus on the Southern
Ocean as a unique, fragile, and threatened environment. This
has and continues to contribute to developing global public
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for more than 1 operator in a country (IAATO, 2019, their Appendix 2).

FIGURE 6 | Global connections of the Antarctic tourism industry. (A) Nationalities of tourists. 55,489 sea-borne tourists, of more than 100 different nationalities,
visited Antarctica during the 2018-2019 season. The nationalities of the tourists are shown as bars, with bar length indicating the relative percentage of all tourists
(IAATO, 2019, their Table 2). The major routes of travel/arrival are indicated schematically. (B) Country of registration of tourism vessels (ships with country of
registration label; number of vessels where more than 1 is registered is indicated on the hull). The yellow circles indicate the region of the operator (numbers are given
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awareness and understanding of how the oceans and associated
ecosystems will be affected by anthropogenically driven climate
and ocean change.

Governance

The various instruments of the ATS regulate all activities in
the area south of 60°S (the Antarctic Treaty area), except for
whaling, which is managed by the IWC under the Convention
on the Regulation of Whaling (1946). The primary instruments
in the ATS are the Antarctic Treaty (1959) with its Protocol
on Environmental Protection (1991), the Convention on the
Conservation of Antarctic Seals (1972; CCAS), which is not
now active, and CCAMLR (1980; CAMLR Convention). The
area of jurisdiction of CCAMLR was extended to the Antarctic
Convergence (APF) in order to encompass the region thought to
contain most of the Antarctic marine ecosystem. The instruments
of the ATS are open to accession by nations.

The management bodies of the two active components of
the ATS are the Antarctic Treaty Consultative Meeting (ATCM)
and CCAMLR. Currently, there are 54 signatory Parties to
the Antarctic Treaty, of which 29 Parties have demonstrated
“substantial research activity” within Antarctica and thereby
attained consultative status which includes participation in
governance decision-making. The engagement of nations with
the Treaty represents approximately two thirds of the global
population. The underlying focus of the ATCM and CCAMLR
has been conservation of the region (Hanifah et al, 2012;
Press et al., 2019).

The importance of the Southern Ocean is recognized in
some global governance arrangements. These have included
consideration of managing high seas fish stocks through regional

fisheries management organizations (RFMOs) and harmonizing
the management of migratory species and shared stocks through
the UN Fish Stocks Agreement (1995). Although external
to the UN system, CCAMLR is recognized as the regional
management organization responsible for managing fisheries in
the Southern Ocean'. While there are exchanges of information
with RFMOs to the north of CCAMLR, there remains to be
formal arrangements about shared interests such as fishing for
toothfish and the incidental mortality of seabirds (Anon, 2017).
CCAMLR has developed work programs for managing
the marine environment, including taking steps to establish
marine protected areas, a request from under the Convention
on Biological Diversity (SC-CAMLR, 2005), and to conserve
Vulnerable Marine Ecosystems arising from the UN Resolution
61/105 in 2006 (SC-CAMLR, 2007), although much work
remains in this regard (Anon, 2017; Chown and Brooks, 2019).
While CCAMLR and the ATCM remain the regulatory bodies,
the recent review of CCAMLR in 2017 recommended that
CCAMLR give more attention to demonstrating its preeminent
role globally by establishing relationships with external bodies
that not only have an interest in Antarctica and the Southern
Ocean, a call gaining increasing support (Chown and Brooks,
2019; Dodds, 2019), but also to gain support for global actions
that will help CCAMLR achieve the long-term conservation
of the region (Anon, 2017). Unlike the ATCM, CCAMLR has
yet to establish a program on the effects of climate change,
including establishing a relationship with the UN Framework
Convention on Climate Change, on the effects of climate

Thttp://www.fao.org/fishery/topic/166304/en
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change on the conservation of Antarctic biota (Anon, 2017;
Cavanagh et al.,, 2021b).

WHY SOUTHERN OCEAN ECOSYSTEMS
MATTER AND WHY THEY ARE A
PRIORITY FOR THE FUTURE

Southern Ocean ecosystems are inextricably connected in
global ocean ecosystems and are important in Earth system
processes and human socio-economic systems. Southern Ocean
ecosystems connect across multiple trophic levels and temporal
and spatial scales that are interconnected by physical, ecological
and human exchange processes (Figure 7). Physical processes
connect habitats and influence biogeochemistry and productivity
(Figures 2, 7), which underpins the flow of energy and
carbon through regional food webs. Bio-physical interactions
and ecological processes (Figures 2, 7) of dispersal (drift) and
active movement (behavior, foraging, and migration) connect
ecological systems across scales. Human systems exchange by
movement of people, materials, resources, contaminants and
pollutants (including plastics). These processes are influenced by
a series of proximate (e.g., fisheries and atmospheric greenhouse

gas concentrations) and ultimate drivers (e.g., food security
and population change). The physical, ecological and human
exchange processes are affected by climate change, thereby
generating potential feedback effects, with consequences for
Southern Ocean and global systems (Figure 7).

Over the coming decades, changes in Southern Ocean
overturning circulation and bottom water formation will happen
and will affect global circulation and biogeochemical cycles
(IPCC, 2019; Meredith et al., 2019; Morley et al, 2020).
These physical changes will undoubtedly impact the supply of
nutrients and carbon to Southern Ocean surface waters, and their
redistribution horizontally and vertically within the Southern
Ocean and to the north (Henley et al., 2020 and references
therein). Warming and freshening of the mode and intermediate
waters north of the ACC will propagate northward into the
interior of the global ocean (IPCC, 2019; Meredith et al., 2019).

Projections based on coupled biogeochemical-ocean
circulation models suggest that Southern Ocean primary
productivity is likely to increase because of ocean warming
and increased iron inputs, but these projections are
uncertain and the projected changes vary with Ilatitude
(Hauck et al., 2015; Leung et al., 2015; Boyd, 2019; IPCC, 2019;
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A more productive Southern Ocean overall has the potential
to increase the biological uptake of CO,, with large-scale
consequences for biogeochemistry and ocean-climate feedbacks
(Del Castillo et al., 2019), although the extent to which this
can modulate the effects of carbon emissions later this century
is uncertain (Del Castillo et al., 2019; Rogers et al., 2020;
Cavanagh et al, 2021a). Importantly, shifts in the location
of primary production and the phytoplankton community
composition can influence this outcome. Moreover, the
dynamics of phytoplankton in the Southern Ocean will impact
productivity elsewhere in the world. Increased production in the
Southern Ocean could result in reduced quantities of exported
macronutrients, and therefore reduced production elsewhere
(Holzer and Primeau, 2013; Primeau et al., 2013; Hauck et al.,
2015; Bronselaer et al., 2016; Keller et al., 2016; Moore et al,,
2018). Further, uncertainty in future changes in Southern
Ocean biogeochemistry is compounded by uncertainties in
the changes to phytoplankton assemblages in the region
(Pinkerton et al., 2021).

As Southern Ocean phytoplankton communities shift
southward under global warming, the uptake of nitrogen is
expected to be greater relative to phosphorus, leading to a
decrease in the N/P ratio of water masses exported to the north
(Arrigo et al.,, 1999; Weber and Deutsch, 2010; Martiny et al,,
2013), which would reduce productivity in lower latitudes with
potential large-scale implications for carbon export and budgets
in those regions (Weber and Deutsch, 2010; Martiny et al., 2013;
Hauck et al., 2015, 2018). Conversely, shifts to diatoms in the
subantarctic could increase the N/P ratio of exported waters.
Similarly, changes in the Si/N ratio of exported waters, driven
by phytoplankton species shifts, changes in iron availability and
ocean acidification effects on diatom silica production, are also
expected to impact upon primary production, phytoplankton
species composition and carbon export throughout the low-
latitude oceans (Mosseri et al., 2008; Petrou et al., 2019; Henley
et al., 2020). The effect of enhanced productivity in the Southern
Ocean may lead to reductions in total export of nutrients from
the Southern Ocean, resulting in the trapping of nutrients (Moore
et al., 2018), with a consequent reduction in productivity across
the rest of the global ocean affecting global oxygen and carbon
budgets and food webs (Holzer and Primeau, 2013; Primeau
etal., 2013; Hauck et al., 2015; Bronselaer et al., 2016; Keller et al.,
2016). Nutrient biogeochemistry can also be modified by changes
in microbial processes or shifts in community composition,
abundance, distribution, behavior, and/or trophic interactions
of phytoplankton, zooplankton and higher organisms (Azam
et al,, 1991; Lavery et al,, 2010; Maas et al., 2013; Sailley et al,,
2013; Ratnarajah et al., 2014; Schmidt et al., 2016; Cavan et al.,
2019; Bestley et al., 2020; Henley et al., 2020; Caccavo et al., 2021;
Pinkerton et al., 2021; Johnston et al., unpublished data).

Ocean acidification resulting from increased uptake of CO,
is expected to occur earlier in the Southern Ocean than other
ocean regions (Orr et al., 2005; McNeil and Matear, 2008; Feely
et al.,, 2009), and has already been observed across a number of
Southern Ocean regions e.g., (Bednarsek et al., 2012; Takahashi
et al., 2014). Around 30% of Southern Ocean surface waters are
expected to be affected by ocean acidification by 2060 (Hauri

et al,, 2016). As well as altering biota, food webs and ecosystem
functions within the Southern Ocean (Gutt et al., 2015; Henley
et al., 2020), the northward export of waters undersaturated
with carbonate ions could promote the harmful effects of ocean
acidification in the lower-latitude oceans to the north (McNeil
and Matear, 2008; Feely et al., 2009).

Food webs in the Southern Ocean and their connectivity
to other systems are changing (Murphy et al., 2012; Constable
et al., 2014; Meredith et al., 2019) with consequences within (see
McCormack et al., unpublished data) and outside the Southern
Ocean. The connectivity of ecosystems through transport and
movement has the potential to transfer the signals of those
changes between ecosystems. Changes in small and large-
scale ocean dynamics will affect cross-frontal exchange and the
dispersal of plankton. Such changes in the rates of mixing
between polar, sub-polar and subtropical waters may also
potentially disrupt the life cycles of fish and cephalopod species
that cross oceanic fronts during development, thus affecting
their role in Southern Ocean food webs (Murphy et al., 2007;
McMahon et al., 2019; Saunders et al., 2019; Abreu et al., 2020).
The APF is not expected to undergo major changes in location in
the coming century (Meijers et al., 2019b), potentially limiting the
southward extension of the distributions in the Southern Ocean
of pelagic fish species from farther north (Boyce et al., 2008).
However, changes in cross-front exchanges due to increases in
eddy intensity may allow more frequent opportunistic incursions
further south of some species. Modeling suggests that warming
coastal and shelf waters around Antarctica (Griffiths et al.,
2017) is likely to result in colonization and establishment by
diverse non-native species, and have important consequences for
Antarctic ecosystems and food webs (but many native species
may also benefit from initial warming see Morley et al., 2019).

Southern Ocean waters have the fewest established non
indigenous species (NIS) of any large region, which does reflects
the general level of geographic and oceanographic exchange
(Clarke et al., 2005). Nevertheless vector density for potential NIS
travel is increasing, either through shipping (Lewis et al., 2003;
McCarthy et al., 2019) or rafting on plastic debris (Barnes et al.,
2018). Sustained presence of any given NIS within the Southern
Ocean requires not just transport, but transfer, establishment,
year-round survival and reproduction. Hughes et al. (2020)
considered a list of > 100 species thought to pose risk of invasion
to Antarctica. They considered that 13 were high risk in terms
of likely establishment and severity of impact, if successful. The
consequences of NIS spread in the Southern Ocean are still
unclear because each is likely to be species identity and local
area dependent and may have considerably lag phases. However,
Hughes et al. (2020) think the situation is highly concerning (see
also Grant et al., 2021), especially as native species are already
under pressure from many other interacting stressors (Gutt et al.,
2015; Rogers et al., 2020).

The analysis of seabird and whale movement in this study
is a first attempt to estimate the magnitude of the summer-
winter movement of large numbers of predators into and out
of the Southern Ocean. Large uncertainties are associated with
these estimates, but the scale of the migration and its ecological
importance in connecting ecosystems across the Southern
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Hemisphere is clear. The demand estimates also highlight that
changes affecting predators in the Southern Ocean will be
transferred out of the region and impact areas across oceanic and
coastal regions on the east and west basin boundaries.

The population sizes of some Southern Ocean species of
seasonally migrating predators have undergone major changes
over the last few decades, and these are expected to continue in
the future. The most profound ecological changes are associated
with recovering populations of the great whales that were
exploited to very low numbers in the 19th and 20th centuries
(Noad et al, 2019). The steady population increases observed
over the last 2 decades in several species of great whales (Tulloch
etal,, 2019) will affect Southern Ocean ecosystems as well as those
in shelf regions along the east and west coasts of South America,
Africa, and Australasia (Rosenbaum et al., 2014; Noad et al.,
2019; Zerbini et al., 2019). As whale populations recover from
historical harvesting, the increased demand for prey may increase
competition in local food webs, and change the balance of the
upper trophic level community. Changes in predator populations
will also generate shifts in the absolute and relative numbers of
seabirds and marine mammals of different species moving along
migration routes.

Threats to Southern Ocean ecosystems from potential
future human activities, together with the recovery of
historically harvested species and the natural high variability
of Southern Ocean ecosystems, will generate major challenges
for conservation and management (Chown et al., 2012; Hughes
et al, 2018; Chown and Brooks, 2019; Dunn et al., 2019b;
McCarthy et al., 2019). The major threat to the structure and
functioning of ecosystems in areas south of the APF is from
climate change (IPCC, 2019; Meredith et al., 2019), and there
are major uncertainties about the directions, magnitude and
time scales of impacts. Recent assessments indicate that climate
change generally poses a medium to high level of risk for the
capacity of the Southern Ocean to support ecosystem services
under future climate change (Cavanagh et al., 2021a). Increased
pressures may also be exerted on the region by tourism and by
increases in global demand for food (FAO, 2018). Pollution is
also a potential threat and may increase associated with increased
activity through a range of local and global sources, such as
oil-spills, marine debris, and ocean and atmospheric transport
of microplastics and heavy metals (Grant et al., 2021). Human
activities within the region are managed within a mandate to
conserve the region (Hughes et al, 2018), but global socio-
economic and political processes (Figure 7) will determine the
extent to which these threats are realized. In the short-term,
the number of visitors may increase although the negative
consequences of COVID-19 on tourism and science activities
may last for some years (Hughes and Convey, 2020).

CONCLUDING COMMENTS

Ecological processes interact with the full three-dimensional
physical structure of the Southern Hemisphere ocean and
atmosphere to produce a continuum of connected ecosystems
and food webs with intense seasonal dynamics rather than

distinct food webs. The two-directional connections between
Southern Ocean regional ecosystems and wider Southern
Hemisphere and global ocean ecosystems affect the stability and
resilience properties and responses to change of these connected
ecosystems, forming a “meta-ecosystem” in the global ocean. This
ocean-scale ecosystem connectivity and interdependence will
influence Earth system-level responses to climate change on time
scales of decades to millennia. However, the current generation
of Earth system models does not consider the importance of
such large scale ecological connectivity and potential feedbacks
(Eyring et al., 2016; IPCC, 2019). There is a major need to
improve understanding of species ecology, ecosystem structure
and functioning and seasonal dynamics throughout the Southern
Ocean and how this interacts with the biogeochemistry in the 3-
dimensional ocean and the links with global ocean ecosystems
(Box 1). Within this there are key questions about how important
such north-south ecological exchange processes and energy
flows are in Southern Ocean and global ecosystems and carbon
budgets and what are the major routes, vectors, magnitudes (and
variability) of transfer.

The ecological connectivity between Southern Ocean and
global ocean ecosystems underpin the processes that maintain
essential ocean ecosystem functions and services and are
important in maintaining human societal and economic
processes within the Earth system (Steffen et al., 2020; Cavanagh
et al.,, 2021a). The effects of change and decision making across
the global ocean will affect Southern Ocean ecosystems, and
in turn, decisions made for the Southern Ocean will affect
ecosystems and human systems across the planet. Geopolitics
will affect the ability of CCAMLR and other international
bodies (Dodds, 2019) to make decisions that will be required as
climate-driven changes become clearer, and the pressures from
increased direct human impacts increase driven by demand and
increased accessibility.

There is an urgent need to develop conservation and
management consortia between CCAMLR and adjacent bodies
that operate at Southern Hemisphere scales (Anon, 2017). The
ecological connectivity of Southern Ocean and global ocean
ecosystems has important implications for decision making
for conservation and management in the Southern Ocean
and across the Southern Hemisphere. Managing the Southern
Ocean in isolation does not consider the potential effects
of that management on people and regions outside of the
Southern Ocean, nor does it recognize the effects that actions
external to the region have on the dynamics of Southern
Ocean systems. Maintaining connectivity of populations, food
webs, and the flow of genes across scales will also help to
support ecological resilience to climate change. Prediction and
management of the impacts of human activities and climate
change on Southern Ocean ecosystems requires a view that
recognizes and incorporates the connectivity and linkages of
these ecosystems to global ocean ecosystems.

Such large-scale connections between ecosystems will
be important throughout the world’s oceans in developing
conservation and management approaches and understanding
the impacts of change (Dubois et al., 2016; Gounand et al., 2018b;
Young et al., 2018; Dunn et al., 2019a; Kenchington et al., 2019;
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BOX 1 | Knowledge gaps and future research priorities.

Global Connectivity. There is an urgent need to develop quantitative understanding of the global connectivity of Southern Ocean ecosystems. With changes
already occurring in ecosystems in the Southern Ocean and across the Southern Hemisphere the impacts of change are being transferred into and out of the
Southern Ocean with variability in that transfer both spatially and temporally. With Earth system models poorly representing Southern Ocean systems, and signals
within the Southern Ocean being confounded by the potential for ecological connectivity, new approaches are required to understand the impacts of change in
Southern Ocean ecosystems and the consequent effects in the wider Earth system and to manage and adapt to the global consequences of that change.
Developing such approaches to consider two-way ecosystem connectivity and impacts of change should be an important focus for international research
communities, including the science programs of the Scientific Committee on Antarctic Research (SCAR), the Integrating Climate and Ecosystem Dynamics in the
Southern Ocean programme (ICED) and the global Integrated Marine Biosphere Research programme (IMBeR).

Three-Dimensional View. Detailed information is available to highlight the three-dimensional nature of Southern Ocean circulation, and understanding of how it is
likely to change over the next half century is sufficient to investigate and quantify the biogeochemical and ecological implications for ecological connectivity and
ecosystem services from the Southern Ocean (see section “Southern Ocean Connections” and Supplementary Table 1). More information is particularly required
on the pathways of exchange and especially the subregional nature of the connections from the Southern Ocean to remote areas of the global ocean. The priority is
to identify and focus research in these subregions where connectivity is most likely to influence the internal dynamics of Southern Ocean ecosystems and has
greatest influence in the global ocean. We also need to improve our understanding of how individual species and food webs operate in the full three-dimensional
Southern Ocean, in the sea ice and full depth ocean, and how these processes influence biogeochemical cycles, particularly in the APF and SAF frontal zones.
Quantifying fluxes is a priority and more direct measurements and full-depth analyses are required of the nutrient, carbon and biological properties of waters flowing
across the regions of the APF and SAF, how these are produced, modified and impact ecosystems in remote regions. The development of time-series observations
is important, as the exchange processes will show strong seasonal and interannual variability and we need to start developing base-lines against which to

assess future changes.

Cross-Frontal Exchange. There is little information on the magnitude of cross-frontal exchanges in maintaining or influencing the dynamics of most Southern
Ocean biota, and how these exchanges influence trophic structure, particularly in ecosystems outside of the Southern Ocean. The importance of these movements
of large numbers of seabirds, marine mammals and possibly larger fish in connecting Southern Ocean and wider Southern Hemisphere and global ocean
ecosystems has generally not been considered. The calculations in this study of seasonal movement of seabirds and cetaceans and associated shifts in the demand
for prey into and out of the Southern Ocean (see section “Implications of Ecological Connectivity”) show that these are important in both Southern Ocean and
remote regional ecosystems. However, these preliminary calculations also highlight the uncertainty associated with such calculations and the need to improve
assessments of seasonal changes in abundance, distribution and energy and prey requirements. Understanding winter-time habitat use by predators is a crucial,
understudied, element of this. This requires focused studies of subregional ecosystems of the Southern Ocean, examining the spatial operation of food webs and
how these vary seasonally, and how extra-Southern Ocean processes impact on these. Ensuring the Southern Ocean Observing System (SOOS) program has
observations that can be used to specifically assess exchange processes would be a valuable step. However, new approaches aimed at quantifying energy and
carbon flows and the connectedness of ocean ecosystems are also required. Developing observation networks in regions where ecological exchanges are most
intense may be valuable, for example, the major boundary and coastal current regions appear to be particularly important in some of the major biogeochemical and
ecological exchange processes (see sections “Physical and Biogeochemical Connections” and “Ecological Connectivity”). Such regions would be areas where
enhanced observation networks of biogeochemical and ecosystem processes could be deployed, including, for example, networks of moorings or autonomous
vehicles and seabird and marine mammal tracking systems.

Modeling Ecological Connectivity. Ultimately, the only way to examine the role of ecological connections in food webs across the wide range of spatial and
temporal scales required is through the development of system-level ecological models. Such models are needed to quantify the relative importance to ecosystem
services of local and remote change, and for projecting future ecosystem states based on projected changes to the Earth system. There are few models available
that can be used to assess ecological connectivity across multiple trophic levels within food webs. This requires the development of dynamic models of food webs
across scales, which link physical, biogeochemical and ecological processes. A key aspect of this will be the development of high-resolution models of local and
regional whole ecosystem processes operating within larger scale models (e.g., circumpolar or global) to allow seasonal and spatial (horizontal and vertical)
connectivity to be examined. Moreover, these models are needed to assess the probabilities of invasive marine species becoming problematic in the Southern
Ocean and for better understanding the infiltration and impact of plastics in the system. Current Earth system models do not take account the connectedness of
oceanic ecosystems, its potential role in transferring impacts of change and the influence of cross-scale ecological exchanges on local and regional ecosystem
stability and resilience. Earth system models are required that explicitly include cross-scale ecological interactions and whole ecosystem processes to allow analyses
of their direct and indirect influence on climate processes and impacts of change.

Human Pressures. Southern Ocean ecosystems are likely to be affected by global pressures from future changes within human systems. Current human activities
that involve transfers of people and material in and out of the Southern Ocean have a global footprint. Improved understanding is required of the national and
international drivers of these processes in order to develop projections of how such activities may develop in the future, particularly as a result of climate change and
population increases. Such understanding will be crucial for generating scenarios and shared socio-economic pathways of future change that can be used in
conjunction with climate projections to inform future decision making for the Southern Ocean and throughout the global ocean.

Governance. At present insufficient attention is given to cross-system connections by regulatory bodies within and surrounding the Southern Ocean. There is an
urgent need for the further development of conservation and management measures that encompass multiple regional systems and conservation and management
bodies. Given the connectivity between Southern Ocean and global ocean ecosystems and the two-way effects, developing activities within the Antarctic Treaty
System will be important. Taking account of the importance of Southern Ocean ecosystems and their connectivity in the wider Earth system will also be important for
regulatory bodies that consider ecosystems across the Southern Hemisphere and throughout the global ocean.

Xu et al, 2019; Zuercher and Galloway, 2019; Guihou et al., polar ocean ecosystems (Niiranen et al., 2018). It is clearly
2020). However, oceanic ecosystems ecological connectivity —a major aspect of the structure and functioning of Southern
may be particularly important in the high-latitude and seasonal =~ Ocean ecosystems, which are already undergoing major

Frontiers in Ecology and Evolution | www.frontiersin.org 19 August 2021 | Volume 9 | Article 624451


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Murphy et al.

Southern Ocean Ecosystems: Global Connectivity

change. Those changes will impact areas north of the APF
and SAF and across the Southern Hemisphere and have global
consequences. Developing a quantitative understanding of
global ocean ecosystems’ connectedness and role in determining
responses to change, including impacts on climate processes,
is an urgent requirement for improving the representation of
ecological processes in Earth system models. Understanding
the impacts of change in the Southern Ocean and managing
and adapting to the global consequences of that change requires
new approaches to studying ocean ecosystems that consider the
connectedness of global ocean ecosystems (Box 1). Developing
such a global perspective requires the integration of research
communities and ocean management activities, linking Southern
Ocean and global research communities. That is a priority
of the Integrating Climate and Ecosystem Dynamics in the
Southern Ocean programme (ICED), which is part of the global
Integrated Marine Biosphere Research programme (IMBeR),
and co-sponored by the Scientific Committee on Ocean Research
(SCOR), Future Earth and the Scientific Committee on Antarctic
Research (SCAR). This is important not only from a Southern
Ocean perspective, but is also required for the development of
Earth System analyses and management across the global ocean,
which needs to take account of Southern Ocean ecosystem
processes to improve understanding, future projections and
ocean governance.

The Southern Ocean has not been remote for a long
time, and its regional ecosystems have never been separate.
The pathways of connection and feedback are important
in the Earth system and in human systems. We now have
an advanced understanding of local ecosystem processes
and the importance of interactions across scales, and
how this affects their structure and functioning, including
food web interactions and processes. Yet current analyses
and models of ocean ecosystems and their responses to
change often assume that such systems are only local and
affected by the bottom-up physical impacts of changing
environmental conditions.

This analysis shows that Southern Ocean ecosystem processes
are inextricably linked to global ocean ecosystems across
many scales. This conceptual shift in understanding has
global implications for assessing, analysing and modeling ocean
ecosystems (Bauer and Hoye, 2014; Walther et al, 2015;
van Deurs et al, 2016; Gounand et al, 2018a; Dunn et al,
2019a). Given the scale of the exchanges, the amount of
nutrients, carbon and energy being transferred and the number
and biomass of organisms moving over large areas of the
ocean, these processes are likely to be important in both
the direct climate-related processes (i.e., biogeochemical cycles
and carbon budgets) and in determining resilience properties
of ecosystems across scales and hence responses to change,
with potentially indirect impacts on climate processes (Bauer
and Hoye, 2014; Doughty et al., 2016). Analyses and models
are required that implicitly consider the scale of ecological
process connections across multiple trophic levels and how these
affect ecosystem properties of stability and resilience and their
responses to variability and change at local, regional, ocean basin,
and global scales.
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