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Abstract. In this paper, we present the Python package PSY-TaLiRo
which is a toolbox for temporal logic robustness guided falsification of
Cyber-Physical Systems (CPS). PSY-TaLiRo is a completely modular
toolbox supporting multiple temporal logic offline monitors as well as
optimization engines for test case generation. Among the benefits of
PSY-TaLiRo is that it supports search-based test generation for many
different types of systems under test. All PSY-TaLiRo modules can be
fully modified by the users to support new optimization and robustness
computation engines as well as any System under Test (SUT).
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1 Introduction

Requirements falsification for Cyber-Physical Systems (CPS) has gained promi-
nence in recent years as a practical way to test and debug industrial complex-
ity models and systems [18,22,24,27]. Since the automotive industry was an
early adopter of the falsification technology [16], many of the benchmark CPS
models driving the research were MATLAB/Simulink models [8,14,15,23]. As a
result, some of the academic falsification tools are MATLAB tools: Breach [10],
S-TaLiRo [5], and ARIsTEO [18]. Other academic falsification tools that partic-
ipate in the ARCH falsification competition [11] are FalStar [28] (Java/Scala),
zlscheck [3] (OCaml with Zelus models), and falsify [4] (ChainerRL [1] Python
Library for reinforcement learning calling MATLAB functions).

However, as the autonomy and robotics research communities (and even
industry) increasingly adopt Python as the preferred language for prototyping,
there is a need for a falsification toolbox natively in Python. An all Python/C++
falsification framework would resolve any computational inefficiencies and com-
patibility issues of calling Python from MATLAB and/or vice versa. A native
Python toolbox also helps to resolve incompatibilities which can be encountered
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when attempting to merge modules written in Python into other software ecosys-
tems (for example, using MATLAB to call an optimizer written in Python that
calls a Simulink model). The PSY-TaLiRo (or Ψ -TaLiRo) toolbox, which stands
for Python SYstems’ TemporAl LogIc RObustness, addresses exactly this need.
It is a fully modular and extensible toolbox for temporal logic guided falsification
which mirrors the S-TaLiRo [5] structure. Namely, the users can easily call dif-
ferent temporal logic robustness computation engines (e.g., TLTk [9], RTAMT
[20]), optimizers (SciPy), and Systems under Test (SUT) while still offering a
common interface and specification language syntax. PSY-TaLiRo supports mul-
tiple libraries to compute temporal logic robustness, referred to as robustness
computation backends, out of the box without any additional effort. When using
the RTAMT robustness computation engine, PSY-TaLiRo supports all major
operating systems.

In summary, PSY-TaLiRo makes the following contributions:

1. it is an open source fully modular toolbox in Python,
2. it provides a common syntax for the temporal logic monitors, and
3. it enables testing of Software and Hardware in the loop systems.

With PSY-TaLiRo, users will be able to quickly compare different optimization
and robustness computation engines without any other changes to the test setup.
Currently, the PSY-TaLiRo toolbox supports only basic functionality including
defining and executing models, optimizers, and specifications. Future goals for the
toolbox are to support the more advanced features of S-TaLiRo, including param-
eter mining and time varying control points for input signal parameterization.

This toolbox is open-source and publicly available at:

https://gitlab.com/sbtg/pystaliro

Additional materials, examples, and a quick-start guide can be found on the
documentation site available at:

https://sbtg.gitlab.io/pystaliro

2 Architecture

The toolbox is organized into several modules: the SUT, the specification, the
optimizers, and the options (see Fig. 1). Each module defines a Protocol inter-
face as defined in [17] or Abstract Base Class (ABC) which may be imple-
mented or extended respectively to create specialized implementations for a par-
ticular domain. A Python protocol is used to define the expected shape of an
object but implementations are not required to be sub-classes, while an ABC
requires sub-classing to implement. The life-cycle of a test is started by providing
a specification, a SUT, an optimizer and options object to the toolbox entry-
point. Using the SUT and the specification, the toolbox generates an objective

https://gitlab.com/sbtg/pystaliro
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Fig. 1. Component diagram of PSY-TaLiRo architecture

function that accepts a 1-D sequence of inputs and returns a robustness value.
The generated objective function and the options object are then passed as
parameters to the optimizer. The optimizer executes the objective function sev-
eral times, generating and storing the input sample and the output robustness
for each execution. When a sample is provided to the objective function, it is
decomposed into a sequence of static parameters and a sequence of signals that
are used as inputs to the system model. The output of the system model is passed
to the specification, which evaluates the result and produces a robustness value,
which is returned to the optimizer. When the optimizer terminates its execution,
a Result object is returned for every execution of the optimizer in case multiple
experiments are performed.

Type Checking. Optional static type checking was introduced to the Python
language in version 3.6 as type annotations defined in [21]. The benefit of static
type checking is that multiple classes of errors can be caught before the program
is executed by using a static type checker which traces the types of values through
a program to ensure consistency. Python supports incremental typing, where a
code-base can gradually add more type annotations over time instead of requiring
the entire project to be typed immediately. PSY-TaLiRo makes extensive use of
type annotations in both the internal and public APIs. Internally, annotations
help ensure consistency between modules, reduce the difficulty of reasoning about
functionality, and make it easier to implement additional features. For users, the
annotations indicate the proper usage of the API for constructing system tests
and a static type checker can provide immediate feedback.
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3 Interface

The PSY-TaLiRo toolbox provides a function staliro which serves as an entry-
point to the package. The staliro function accepts four required parameters -
a specification, a SUT, an optimizer, an options object, and one optional param-
eter – an optimizer-specific options structure. Calling this function returns a
sequence of Result objects that store the values generated by the optimizer
at each iteration and the corresponding robustness value. The entry-point also
implements basic validation logic for its inputs and outputs, ensuring the types
of each component and their return values are correct before moving on to the
next stage of the test.

3.1 System Under Test (SUT)

A SUT must provide the domain-specific information required to execute or sim-
ulate a system. It can be a simulation model e.g., (Python, MATLAB/Simulink,
etc.), software-in-the-loop (SiL) (e.g., PX4, Webots, etc.), or even hardware-
in-the-loop (HiL). A SUT is responsible for accepting inputs generated by the
optimizer and returning the output trajectory of the execution along with the
timestamps. The inputs generated by the optimizer are: static parameters, sig-
nal interpolators, and the simulation time interval. Static parameters are time-
invariant inputs to the system which are often used to represent initial condi-
tions. The simulation time interval dictates the range of time for which signals
will be generated and the simulation should be executed. Signal interpolators
are further described in the Interpolation section below.

Currently, PSY-TaLiRo provides two ways to run a SUT: a Blackbox class
and an ODE integrator. The Blackbox class provides the most general way to
execute a SUT because it makes no assumptions about the underlying architec-
ture of the system it represents. To construct a Blackbox, a user needs to provide
a function that accepts a vector of static parameters and/or initial conditions
X, a sequence of time values T , and an array of signal values U correspond-
ing to each time value. The Blackbox function must return the time values and
corresponding output/state trajectory of the SUT. In contrast, an ODE model
assumes the underlying system is represented as an ordinary differential equa-
tion and attempts to simulate the system by solving an initial-value problem.
To construct an ODE model, a user must provide a function that accepts a
time t, and the state at and the values of the input signal at t, and returns the
derivatives of the system dynamics at time t.

Interpolation. In addition to time-invariant inputs to the SUT, PSY-TaLiRo
also supports time-varying inputs referred to as signals. To generate a signal for
a model, a SignalOptions object is created and included in the test options. A
SignalOptions object defines an interval for the value of the signal as well as a
number of control points which dictates how many values the optimizer should
generate over the simulation interval. The optimizer-generated control points and
a set of equally-spaced time values are provided to an InterpolatorFactory
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also defined in the SignalOptions to create an interpolator which can generate
a signal value for any time in the simulation time interval. The generated inter-
polators are then passed to the model under test. Currently, the PSY-TaLiRo
toolbox provides factories for PChip, Piecewise Linear, and Piecewise con-
stant interpolators. Should a user want to implement a custom interpolator,
defining a class that implements the InterpolatorFactory and providing it to
the SignalOptions object is sufficient.

3.2 Specifications

The PSY-TaLiRo toolbox supports multiple robustness computation libraries,
referred to as backends by providing a uniform interface implemented as
the Specification class. The Specification interface defines the evaluate
method, which accepts the time and signal values from the SUT and returns the
robustness value. It is important to note that even though PSY-TaLiRo currently
supports TLTk [9] and RTAMT [20], PSY-TaLiRo’s modular architecture allows
the user to utilize any other robustness computation engine, or, in general, any
other reward or cost function. By implementing the Specification interface, a
user can define and use any specification language or analysis logic they choose.

To construct a specification, a user must provide a system requirement writ-
ten in STL, a dictionary structure specifying the requirement data. When the
TLTk library is selected, the Specification class is responsible for parsing the
discrete time STL requirement into a corresponding TLTk object representa-
tion. ANTLRv4 is used to generate a Python parser from a discrete time Signal
Temporal Logic (STL) grammar [6]. When the RTAMT library is selected, no
processing is done to the requirement and the both discrete and continuous time
requirements are supported.

Table 1 provides an overview of the supported common operators and syntax
between the two backends. Beyond the common syntax, each robustness com-
putation backend has different capabilities and the user is advised to read the
respective documentation. For example, TLTk supports parallel computation for
scaling up to very large signals and distance based robustness [12] for less con-
servative robustness estimates. On the other hand, RTAMT supports past-time
operators and dense time semantics.

Table 1. Common TLTk [9] and RTAMT [20] syntax supported in PSY-TaLiRo.

Specification constructs Syntax

Next* next, X

Eventually eventually, F

Globally always, G

Until until, U

Time constraints on operator OP OP[ ... , ... ]

Predicates varName (<= | >=) float

*Only supported in discrete time STL
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3.3 Optimizers

An optimizer in the PSY-TaLiRo toolbox is defined as a protocol that imple-
ments a method named optimize, which accepts an objective function, an options
object, and an optional object with additional configuration options that are
specific to the optimizer. The optimizer is also responsible for maintaining the
history of samples and robustness values generated during execution and pack-
aging them into a Result object when completed. Common optimizer behavior
is configured using the options object and specific optimizer behavior is config-
ured using the optimizer-specific options object. PSY-TaLiRo also defines two
search behaviors: falsification and minimization. Under falsification, the opti-
mizer stops when the first negative robustness value is found, while minimization
allows the optimizer to continue searching for lower robustness values until the
execution budget is exhausted. The PSY-TaLiRo toolbox provides a Uniform
Random Sampling optimizer and it also includes wrappers for Dual Annealing
and Basinhopping [26] optimizers implemented in the SciPy [25] package. PSY-
TaLiRo also provides support for the PartX family of optimization algorithms
[7] which comes with probabilistic guarantees on the absence or presence of fal-
sifying behaviors.

3.4 Options

To customize the behavior of the toolbox, an options object must be created
and provided to the staliro function. Constructing a minimally valid options
object can be accomplished by providing either the static parameters or sig-
nals keyword argument to the constructor. The static parameters attribute
defines a sequence of intervals which represent the bounds of the input variables
that do not change with respect to time. The signals attribute represents the
opposite: a sequence of signal options objects which define system inputs that
vary with time. Other important attributes are iterations which defines the
optimizer execution budget, runs which specifies the number of times to execute
the optimizer, and interval which specifies the interval of time for which the
system should run.

4 Examples

PSY-TaLiRo includes as Python demo an instance of the AircraftODE bench-
mark [19] as well as the test setup scripts for the Python version of the F16
GCAS benchmark problem [13]. In the following, we review how PSY-TaLiRo
can interface with SUT external to Python using the Blackbox template.

4.1 MATLAB/Simulink

The Simulink toolbox that is provided as a part of the MATLAB software pack-
age is useful for representing complex systems using block diagrams. MATLAB
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additionally provides a Python library to enable access to the MATLAB engine
from a Python application. A PSY-TaLiRo test using a Simulink model is imple-
mented by defining a Blackbox function which uses the MATLAB Python library
to pass the parameters and signal values to the Simulink simulation engine. The
data returned by Simulink can then be parsed into native Python data types by
the Blackbox function before returning from the simulate method.

There are a few considerations when implementing a Blackbox that requires
the MATLAB Python library. Since the simulate method of the Blackbox is
called many times by the optimizer, it is very inefficient to start a new instance
of the MATLAB engine every time. There will also be an unavoidable time
cost when interfacing with MATLAB due to the inter-process communication
between the Python interpreter and the MATLAB engine. Finally, any exception
that is raised during a simulation will halt the entire execution of the test, so
care must be taken to ensure that any errors produced during a simulation are
properly handled.

4.2 PX4

The strategies used to implement a Blackbox model that can interface with the
MATLAB/Simulink engine can also be applied for communication with more
complex systems such as the PX4 autopilot stack [2]. The PX4 is a commercial-
grade autopilot software package used to control small aircraft like quad-rotors,
and is capable of both SiL and HiL execution using one of several publicly
available simulators. A successful integration of the PSY-TaLiRo toolbox and
PX4 simulation environment was accomplished by using Docker to containerize
the simulator and custom ground-control software to create and upload missions
to the simulated drone. Some examples of requirements that were tested using
the PX4 were to avoid exclusion zones when executing a mission, and another
was to achieve a takeoff altitude within a threshold before landing.

5 Conclusions

We have presented the open-source Python toolbox PSY-TaLiRo (Ψ -TaLiRo).
PSY-TaLiRo implements search-based test generation for falsifying temporal
logic requirements over Cyber-Physical Systems (CPS). The toolbox is fully
modular and extensible in order to accommodate different algorithms for opti-
mization and temporal logic robustness (or arbitrary cost functions). Hence,
PSY-TaLiRo can provide test automation support for CPS (and in particular
autonomous systems) which are natively developed in Python.
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