
Certified Robustness of Graph Convolution Networks
for Graph Classification under Topological Attacks

Hongwei Jin∗, Zhan Shi∗ , Ashish Peruri, Xinhua Zhang
Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607
{hjin25,zshi22,vperur2,zhangx}@uic.edu

Abstract

Graph convolution networks (GCNs) have become effective models for graph
classification. Similar to many deep networks, GCNs are vulnerable to adversar-
ial attacks on graph topology and node attributes. Recently, a number of effective
attack and defense algorithms have been designed, but no certificate of robustness
has been developed for GCN-based graph classification under topological pertur-
bations with both local and global budgets. In this paper, we propose the first
certificate for this problem. Our method is based on Lagrange dualization and
convex envelope, which result in tight approximation bounds that are efficiently
computable by dynamic programming. When used in conjunction with robust
training, it allows an increased number of graphs to be certified as robust.

1 Introduction

Graph convolution networks [GCNs, 1] have been shown very effective for modeling graph struc-
tured data such as social networks [2] and protein interactive networks [3]. In this paper, we focus on
the application of GCN to graph classification, where given an attributed graph, the task is to predict
its class label. This is different from node classification where each node is assigned a (possibly
different) label. Along with other models such as graph kernels [4, 5], GCNs have achieved strong
performance in this task [6–9].

However, similar to most deep learning models, GCNs are also vulnerable to adversarial attacks
that maliciously perturb the data to induce specific errors [10, 11]. These include node attacks
(i.e., perturbing node features) [12–14] and topological attacks (i.e., adding or removing edges)
[11, 15]. They pose serious challenges because adversaries are often omnipresent in their typical
application scenarios [16–18], and even when no manual or computerized adversary is present, it is
still important to analyze the worst-case robustness of the model by treating nature as an adversary.

Since the strongest attack is often intractable to compute, an alternative approach that has recently
attracted considerable interest is to construct certificates of robustness, i.e., certain sufficient con-
ditions which, once satisfied, guarantee the immunity to any admissible attack (see Related Work).
Unfortunately such results have been scarce on graph data. [12] certified GCNs against node feature
perturbations for node classification. Under topological perturbation, [19] developed certificates for
PageRank and label/feature propagation, while [20] developed them for community detection.

Unfortunately, all of these techniques meet with substantial obstacles or slackness when extended
to GCNs for graph classification under topological attacks, an important application setting where
vulnerability is a real issue (Section 5). First of all, the technique of restricting to the k-hop subgraph
in node classification such as [12, 21] can no longer be utilized because graph classification requires
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pooling together the hidden representation of all nodes. Secondly, GCNs have a specific normaliza-
tion structure which introduces a new type of nonlinearity; treating it as a generic function leads to
loose certificates. Thirdly, the set of admissible topological perturbations (a.k.a. threat model) may
have a refined structure. For example, besides the global budgets, the number of perturbations per
node is often subjected to a local budget. This is not considered by [20] or [22], and extending them
to such a setting is nontrivial. [19] does not enforce symmetry on the attacked affinity matrix.

Our certificate is the first to address all these challenges. Given a trained GCN and a threat model
with both local and global budgets, it can efficiently verify that no topological perturbation can
change the graph prediction. Our main tool is dualization (Section 3) and convex envelope (Section
4), with the latter providing the tightest convex lower bound on a refined threat domain [23], and it
can be computed efficiently through dynamic programming. As a byproduct, we also developed a
new attack algorithm (Section 3.2), which, when used in conjunction with the certificate, confirms
empirically that both the attack and the certificate are often tight (Section 5).

Related Work We first overview the existing techniques of robust certificate, shedding light on
the obstacles in directly extending them to GCNs for graph classification under topological attacks.
A survey of adversarial attack and defence for graph structured data is available at [24]. Most related
to ours is the convex envelope relaxation of the ReLU activation [25], which has been generalized
by [26–29]. However, GCNs present a new source of nonlinearity left to be addressed: normaliza-
tion in the graph Laplacian. Methods based on curvature or Lipschitz continuous constant enjoy
more generality [30–32], but they depend on estimating the local or global curvature or engineering
Lipschitz layers, both of which are complicated by the discrete domain. It is also hard to quantify
the slackness in these relaxations, a problem that has been mitigated by our approach because the
convex envelope of the margin provides the tightest convex lower approximation.

Randomized smoothing adds noise to the input [33–35], and it has been extended to discrete noises
[20, 22]. However, the presence of both local and global budgets makes it hard to design the noise
distribution and to analyze the certificate. Semi-definite relaxation often leads to loose bounds [36,
37].

2 Preliminaries

We consider the task of graph classification. The training set consists of pairs of (Gk, yk), where
Gk is a directed or undirected graph, and yk ∈ [C] := {1, . . . , C} is its label for multiclass classifi-
cation. Given a graph G, its vertices are denoted as 1, 2, . . . , n, where n is the number of nodes in
G. We represent the topology of G by its adjacency matrix A, where Aij = 1 if i → j is an edge,
and is 0 otherwise. A is symmetric if the graph is undirected. For simplicity, we set Aii = 0, i.e., no
self-loop, although our method can be easily extended to accommodate self-loops.

Each node also has its own features xi ∈ Rd, and we stack them into a matrixX := (x1, . . . , xn)> ∈
Rn×d. So a graph G is uniquely characterized by the tuple (A,X). The graph convolution network
(GCN) mixes the hidden representation of nodes through a weight matrix D̂−

1
2 ÂD̂−

1
2 , where Â =

A + I with I being the identity matrix, and D̂ is a diagonal matrix whose diagonal is Â1 (1 is a
vector of all ones). For simplicity, it is also common to use D̂−1Â instead of D̂−

1
2 ÂD̂−

1
2 [e.g.,

19], and we will adopt D̂−1Â in our development as it does not lead to significant difference in
performance. We denote the i-th row and i-th column of A as Ai: and A:i, respectively.

The one-layer GCN for graph classification learns a hidden-layer weight matrix W ∈ Rd×d′ and an
output-layer weight matrix U ∈ Rd′×c, so that the following empirical risk is minimized:

minW,U E(G,y)∼p̃ `(pooling(σ(D̂−1ÂXW ))U, y). (1)

Here p̃ is the empirical distribution of graph-label pairs, ` is a loss function, and σ is the activation
function, which is applied element-wise on a matrix. The pooling function aggregates the hidden
representation of all nodes in a graph, and examples include i) averaging: H 7→ 1

n1
>H , where

H = σ(D̂−1ÂXW ); ii) maximum: H 7→ (max(H:1), . . . ,max(H:d′)); iii) attention: H 7→ α>H ,
where αi ≥ 0 and 1>α = 1. In this paper, we consider attention pooling where α is allowed to
depend on X but not on A. Obviously it subsumes average pooling with α = n−11.
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Let f be a (possibly nonconvex) function on a domain M ⊆ Rm. Then its Fenchel dual f∗ is
defined as f∗(z) = supx∈M{x>z − f(x)}, and the convex envelope f∗∗ is the Fenchel dual of f∗
[23]. Note that changing the domainMmay change f∗. It is known that any closed convex function
g that minorizes f (i.e., g(x) ≤ f(x) for all x ∈M) must satisfy that f∗∗(x) ≥ g(x) for all x ∈M.

2.1 Threat model, margin, and robustness certificate

Our goal is to attack the learned model by perturbing the graph topology A under the trained values
of W and U . It is also of interest to perturb X , but this is a continuous problem or has been well
studied [12]. Attacking A, in contrast, is much more challenging because it leads to a discrete
optimization problem under involved constraints: maxA∈A `(pooling(σ(D̂−1ÂXW ))U, y), where
A is the admissible set of perturbed graphs in {0, 1}n×n with Aii = 0. Examples of A include the
following subsets of {0, 1}n×n with Aii = 0:

A1: A can be asymmetric, but for each node, at most δl incident edges can be added or removed.
Here δl is a small integer (e.g., 3), which can also vary for different nodes i. Formally, we
can write it as

∥∥Ai: −Aorii: ∥∥1
≤ δl, where Aori is the original graph from the dataset.

A2: A can be asymmetric, but at most 2δg directed edges (or δg undirected edges) can be added
or removed across all nodes. We write it as

∥∥A−Aori∥∥
1

:=
∑
i

∥∥Ai: −Aorii: ∥∥1
≤ 2δg .

More refined threat models that distinguish dropping edges from adding them can be easily ac-
commodated in our framework too. Furthermore, we consider the symmetry constraint using
A3 := {A ∈ Rn×n : A> = A}, which is useful for modeling undirected graphs. This is a
convex set. It is conceivable that A1 is the simplest because the constraints are local, i.e., decom-
posed over nodes. These three constraints can be combined/intersected, and we denote the result via
the superscript, e.g., A1+3 := A1 ∩ A3.

Certificate. Given W and U , let zc = pooling(σ(D̂−1ÂXW ))U:c be the discriminant value for
class c. The worst-case margin with attention pooling is defined as

min
A∈A

min
c
zy − zc = min

c
min
A∈A

Fc(A), (2)

where Fc(A) :=
∑n

i=1
αiσ

(
(Âi:1)−1Âi:XW

)
(U:y − U:c)︸ ︷︷ ︸

=:fc,i(Ai:)

. (3)

If the minimal value is positive, then the trained model is certifiably robust. It suffices to minimize
Fc(A) for each fixed value of c ∈ [C]\{y}. In practice, any lower bound on the minimum value of
Fc(A) can serve as a certificate of robustness: if it is positive, then the model must be robust. On
the other hand, any A and c that make Fc(A) negative discloses its vulnerability as an attack. To
lighten notation, we will henceforth suppress the subscript c, and just write F (A) and fi(Ai:).

Our certificate will be presented under one hidden layer. Different from other neural networks,
GCNs usually do not benefit from more than two hidden layers (i.e., applying the graph Laplacian
twice) [1, 3, 11, 12]. Different from node classification which directly uses the output of the final
convolution layer as node-wise classification logits, graph classification has additional weights U
to optimize, along with optimizable pooling weights. So in practice, two hidden layers are not
essential. For completeness, we will detail the extension to multiple hidden layers in Appendix D.

3 Certifying Robustness by Lagrange Duality

Our first certificate is based on the weak duality in Lagrange dualization. It provides exact certifi-
cates (i.e., exact attacks) forA1,A2, andA1+2 at the cost ofO(n2) for linear activations andO(nδl)
for any nonlinear activation. We emphasize that linear activation is not an over-simplification for
GCNs, because it very often performs as well or even better than a nonlinear activation [38].

To start with, it is straightforward to minimize F (A) over A1 and A2, leading to an exact certifi-
cate. Under A1, F (A) can be decomposed over Ai: across nodes i, allowing each Ai: to be solved
separately. When σ is the linear activation (i.e., identity function), each Ai: in fi(Ai:) can be solved
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Algorithm 1: Dynamic programming for minimizing F (A) under A1+2

1 Initialize by s0(0) = 0 and c0 = 0. Precompute ai(j) for all i ∈ [n] and j ∈ [0, δl].
2 for i = 1, 2, . . . , n do
3 ci ← min{ci−1 + δl, 2δg}.
4 si(j)← mink{si−1(j − k) + ai(k) : k ∈ [0, δl], j − k ∈ [0, ci−1]} for all j ∈ [0, ci].
5 Pick jn ← arg minj sn(j).
6 for i = n, n− 1, . . . , 1 do
7 ki ← arg mink{si−1(jt−k) +ai(k) : k ∈ [0, δl], ji−k ∈ [0, ci−1]} and ji−1 ← ji−ki.
8 Recover the optimal Ai: based on the argmin in the definition of ai(ki) in (4).
9 Return A

by sorting, which costs O(δl +n log n) computation. The details are in Appendix C.1, and the same
strategy applies to A2. When σ is not linear, we can enumerate all the possible selections of δl
neighbors among the n − 1 ones, and that costs O(

(
n
δl

)
) complexity, which is still polynomial in n

for a fixed (small) value of δl. We will propose better solutions in Section 4.3 via convex envelope.

Using this technique, we can compute the exact attack forA1+2 at a cost of O(n2) for linear activa-
tion and O(nδl) for nonlinear activation. First apply the above technique for A1 to precompute

ai(j) := min{fi(Ai:) : Ai: satisfies
∥∥Ai: −Aorii: ∥∥1

= j}, ∀ i ∈ [n], j ∈ [0, δl]. (4)

Then minimizing F (A) over A1+2 is equivalent to minimizing
∑
i ai(ki) subject to ki ∈ [0, δl] and∑n

i=1 ki ≤ 2δg . This can be solved by dynamic programming as shown in Algorithm 1, where the
central quantity for update is si(j) — the lowest possible value of F (A) under

∑i
i′=1 ki′ = j and

ki′ = 0 for all i′ > i. Clearly the computational cost for the dynamic programming is O(nδgδl),
and the storage cost is O(nδg). We must also factor in the cost of computing {ai(j) : i ∈ [n], j ∈
[0, δl]}. When σ is identity, it costs O(δ2

l n+n2 log n). Otherwise, the above recipe costs O(
(
n
δl

)
n).

Unfortunately, polytime exact solutions are not available toA1+3,A2+3, andA1+2+3 even for linear
activation. See some hardness results in [39]. We will next show how to solve them approximately.

3.1 Approximate certificates of robustness for A1+3, A2+3, and A1+2+3 via dualization

Since exact solutions are available only in the aforementioned asymmetric constraints, we will next
develop a lower bound (i.e., certificate of robustness) for F (A) under A1+3, A2+3, and A1+2+3.
Since exact solution is already available under A1+2, our focus will be on addressing the additional
constraintA3. To this end, we will decomposeA1+2+3 intoA1+2 ∩A3, and resort to weak duality:

minA∈A1+2+3 F (A) = minA∈A1+2 maxΛ F (A) + tr(Λ>(A−A>)) (5)

≥ maxΛ minA∈A1+2

{
F (A) + tr((Λ> − Λ)A)

}
. (6)

Fixing Λ, the inner optimal solution for A ∈ A1+2 can be found in its exact value by Algorithm 1
for both linear and nonlinear activations, because tr((Λ>−Λ)A) is decomposed over the rows ofA.
With the optimal A∗, the supergradient in Λ can be evaluated via Danskin’s theorem: A∗ − (A∗)>.
This approach generalizes directly to A1+3 and A2+3: just use A1 and A2 in (6) respectively.

Due to lack of strong duality, the argmin of A in (6) extracted under the optimal Λ is not guaranteed
to be optimal or even symmetric. That said, this approach is meant to provide a lower bound that
certifies the robustness of the model; extracting a feasible A itself is only a secondary pursuit.

3.2 Emprically characterizing the certificate’s tightness: approximate attack by ADMM

Although a lower bound of F (A) certifies robustness, it is still unclear how tight it is. This can be
resolved by designing an upper bound. To this end, we propose the alternating direction method
of multipliers (ADMM), which has been used extensively in convex and nonconvex optimization
to address complicated constraints or objectives, where each component is simple enough to admit
efficient or closed-form proximal mapping. We leverage this idea and extend it to a discrete setting
by noting A1+2+3 = A1+2 ∩ A3, so that Algorithm 1 for A1+2 can be utilized:

minA,B F (A) + δ(A ∈ A1+2) + δ(B ∈ A3), s.t. A = B. (7)
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Here δ(·) = 0 if · is true, and∞ otherwise. The ADMM algorithm, which is designed for continuous
optimization, can be easily extended to our discrete setting with almost no change. First introduce
the augmented Lagrangian with a small positive constant µ and Frobenious norm ‖·‖F :

L(A,B,Λ) := F (A) + δ(A ∈ A1+2) + δ(B ∈ A3)− tr(Λ>(A−B)) + 1
2µ ‖A−B‖

2
F , (8)

Then ADMM loops as follows withB0 initialized to, e.g., the optimalA from the dual objective (6):

At+1 ← arg minA L(A,Bt,Λt) = arg minA∈A1+2 F (A)− tr(Λ>t A) + 1
2µ ‖A−Bt‖

2
F (9)

Bt+1 ← arg minB L(At+1, B,Λt) = arg minB∈A3

{
tr(Λ>t B) + 1

2µ ‖At+1 −B‖2F
}

(10)

Λt+1 ← Λt + 1
µ (Bt+1 −At+1) (11)

Step (9) is solvable by Algorithm 1 as x2 = x for x ∈ {0, 1}. (10) has a closed-form solution:
1
2 (At+ A>t − µΛt− µΛ>t ). More discussions are deferred to Appendix B.

4 Certifying Robustness by Convex Envelope

The above dualization based method relies on the efficient computation of ai(j) in (4), which can be
expensive for ReLU. In addition, although dualization provides a lower bound, it is not the tightest.
In this section, we show that both of the issues can be resolved by approximating the feasible domain
A with the smallest enclosing convex set (convex hull), and substituting the objective function with
the tightest convex minorant, i.e., the convex envelope [23]. Although convex optimization appears a
“solved” problem, there can still be “hidden” NP-hardness which hinders their application to neural
networks. Firstly, it is nontrivial to construct a convex function that is both efficiently computable
and matches the value of F (A) on A. Furthermore, the convex hull of the domain may not be
characterized by simple (generalized) inequalities, and even projecting to it can also be NP-hard.

As one of our major contributions, we will demonstrate that both of the obstacles can be overcome
in a nontrivial fashion thanks to the amenable structures in F (A) and A. In particular, F (A) can
be extended from A to its convex hull coA as a convex function F ◦(Z) that matches F on A (i.e.,
F ◦(A) = F (A) for A ∈ A), while retaining computational efficiency. As a result, the optimization

minF ◦(Z), s.t. Z ∈ coA, (12)

can be solved i) exactly over the convex hull ofA1+2,A1+3, orA2+3; and ii) with 1
2 -approximation

guarantee over the convex hull of A1+2+3. Although it is still challenging to quantify the gap to the
original minA∈A F (A), the feasibility of using convex envelope is still intuitively pleasing because
it provides the tightest convex minorant, and (12) does serve as a bona fide certificate of robustness.

Overview of the optimization algorithm. As will be seen later, although the explicit form of
coA can be easily derived forA1 andA2, difficulties arise onceA1 andA2 are intersected withA3.
In these cases, projection to co(A) turns out hard, and even explicitly expressing co(A) in terms of
linear constraints is nontrivial, precluding the application of projected gradient descent algorithm.
To bypass this difficulty, we adopted the conditional gradient algorithm [CG, 40], which instead of
projecting to co(A), resorts to maximizing a linear function over co(A) (polar operator). As a key
benefit, it is equivalent to maximizing a linear function over A, which turns out efficiently solvable
as shown in Section 4.1.

In a nutshell, CG builds a first-order Tayler approximation of the objective function F ◦ at the current
solution Zt, and then invokes the polar operator (PO) to find a corner of co(A) (denoted as Bt) that
minimizes this approximation over co(A). Then Zt is updated by moving towardsBt with a sensible
step size. Whenever the PO is exactly computable, the final optimal solution to (12) can be found in
O(1/ε) iterations. The CG algorithm is detailed as follows:

1. Initialize Z0 to any arbitrary element in coA (or just in A).
2. For t = 1, 2, . . .
3. PO: findBt ∈arg maxZ∈coA tr(R>Z) = arg maxA∈A tr(R>A), whereR=−∇F ◦(Zt−1).
4. Update Zt ← (t+ 2)−1(2Bt + tZt−1).

Note that CG queries the domain only through the PO in Step 3. Sections 4.1 and 4.2 will respec-
tively address the efficient computation of the PO and the gradient of F ◦(A).
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Algorithm 2: Greedy algorithm for solving the polar operator under A1+2+3
◦

1 Initialize V = 0 and set Ĵ = (J + J>)/2.
2 Sort the indices I := {(i, j) : j > i, Ĵij > 0} in a descending order of Ĵij .
3 for (i, j) ∈ I (in the sorted order) do
4 Set V̂ = V , followed by V̂ij ← 1 and V̂ji ← 1. If V̂ ∈ A1+2+3, then V ← V̂ .
5 Return V

4.1 Convexification of A and its polar operators

We first demonstrate how the PO in CG can be efficiently computed whenA consists of the intersec-
tion of A1, A2, and/or A3. Let Vij encode whether Aij changes upon Aori (1 for yes and 0 for no).
ThenA = 1

2 [(2Aori−E)◦(−2V +E)+E], where ◦ represents the elementwise product, andE is a
matrix of all ones. Now the PO problem can be converted to arg maxV ∈A◦ tr(J>V )+tr(R>Aori),
where A◦ is the A with Aori set to the zero matrix, and J = R− 2R ◦Aori.
Given J , maximizing tr(J>V ) over V ∈ A2+3

◦ is exactly the same problem as (10). Maximizing
over A1+3

◦ is a maximum weight b-matching problem (b = δl) with a fully connected graph, and its
exact solution can be found in O(n4) time [41]. Maximization overA1+2

◦ can be solved by dynamic
programming almost identical to Algorithm 1. Simply redefine at(j) therein by the negative of the
sum of the largest j elements in Jt: with at(0) = 0. It costs O(nδgδl) in time, and O(nδg) in space.

The PO for A1+2+3
◦ is NP-hard, but a 1

2 -approximate solution (in a relative sense) can be found by
greedily adding edges to V as shown in Algorithm 2. The time complexity is O(n2 log n). The
analysis, however, is rather involved based on k-extendible systems, and we summarize our bound
and implied certificate in Theorem 1. By [42], CG with an α-approximate PO converges to a solution
whose objective value is at most 1

α times of the true minimum (assume w.l.o.g. that it is positive).
Theorem 1. (Proof relegated to Appendix A.1) Suppose Algorithm 2 returns V ∗, and CG returns a
solution Zt. Then tr(J>V ∗) ≥ 1

2 maxV ∈A1+2+3
◦

tr(J>V ), and a certificate can be derived as

minA∈A1+2+3 F (A) ≥ F ◦(Zt) + tr(R>Zt)− 2 tr(J>V ∗)− tr(R>Aori). (13)

Restoring tractability of PO by relaxing the convex hull. Since coA1+2+3 only admits a 1
2 -

approximate PO, the resulting certificate may be not tight. It is thus worthwhile to slightly relax the
domain in exchange for the factor of 2. The most natural one is C := coA1∩coA2∩A3 (recallA3 is
already convex). PO on C simply optimizes a linear function over linear constraints {Z∈ [0, 1]n×n :
Z> = Z,Zii = 0,

∥∥Z −Aori∥∥
1
≤ 2δg,

∥∥Zi: −Aorii: ∥∥1
≤ δl}. More details are given in Appendix

A.2. In our experiment, the optimal F ◦ value found is very close to what CG found for coA1+2+3.

4.2 Convexification of F (A) for linear activation

We next convexify F (A). To start with, let us consider the identity activation σ. Although fi is
defined on the discrete domain, we can think of it as an extended function on a continuous domain:

hi(z) :=

{
fi(z) if z ∈ Pi := {z ∈ {0, 1}n : zi = 0,

∥∥z −Aorii: ∥∥1
≤ δl}

∞ otherwise
. (14)

So the convex envelope of hi over coPi can be written as

h∗∗i (z) = supr
{
r>z − supw∈Pi

{
r>w − fi(w)

}}
= maxr minw∈Pi r

>z − r>w + fi(w). (15)

This objective is concave in r, thus solvable by, e.g., bundle method. Further, given r, the optimal w
can be found efficiently using the same technique as minimizing F (A) overA1 (Appendix C.1). So
it is straightforward to evaluate h∗∗i (z), and the convex envelope of F (A) over coA1 =

∏
i coPi is

F ◦1 (Z) :=
∑

i
h∗∗i (Zi:), Z ∈ coA1. (16)

Since all points in Pi must be an extreme point of coPi, F ◦1 (Z) = F (Z) for all Z ∈ A1. Although
F ◦1 is derived from A1, it can be optimized over any subset of coA1, e.g., coA1+2+3.
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Further refinement is possible by considering all Zi: jointly to enforce the global budget: H(Z) :=∑
i fi(Zi:) if Z ∈ A1+2, and is∞ otherwise. Then the convex envelope of F (A) over coA1+2 is

F ◦1+2(Z) := H∗∗(Z) = supR

{
tr(R>Z)− supW∈A1+2

{
tr(R>W )−

∑
i
fi(Wi:)

}}
. (17)

Optimization recipe (17) is again concave in R, and given R, the optimal W can be found effi-
ciently by Algorithm 1, providing the gradient in R. So given Z, the optimal R can be found by
bundle method. Then by Danskin’s theorem, the gradient of F ◦1+2(Z) in (17) is simply the optimal
R, which can be fed to the polar operator (PO) for CG. Clearly, F ◦1+2(Z) = F (Z) for all Z ∈ A1+2.

4.3 Convexification of F (A) for ReLU activation

When σ is ReLU, fi(Ai:) = (Âi:1)−1[Âi:XW ]+v, where v := αi(U:y − U:c), and [z]+ :=
max{0, z} is applied element-wise to a vector. Our first step is to adopt the technique in [12, 25],
which approximates a ReLU unit x̂ := [x]+ over x ∈ [l, u] via the following intervals or values:

x̂ ∈ [[x]+, u(x− l)/(u− l)] if l · u < 0, x̂ = x if l ≥ 0, x̂ = 0 if u ≤ 0. (18)

Both l and u of the j-th entry of Âi:XW can be estimated under
∥∥Ai: −Aorii: ∥∥1

≤ δl (Appendix
C.2). Since fi(Ai:) is to be minimized, minimizing vj x̂ij under (18) with x=xij =Âi:XW:j yields

min
x̂ij meets (18)

vj x̂ij =

{
vj · σ−ij(xij) := vjuij(Âi:XW:j − lij)/(uij − lij) if j ∈ Ni
vj · σ+

ij(xij) := vj [Âi:XW:j ]+ otherwise
, (19)

where Ni := {j : vj < 0 ∧ lij · uij < 0}. (20)

Letting ei be the canonical vector for coordinate i, we can lower bound fi(Ai:) by gi(Ai:), where

gi(z) := (1>z + 1)−1ĝi(z), z ∈ Pi (21)

where ĝi(z) :=
∑

j /∈Ni
vjσ

+
ij((z + ei)

>XW:j) +
∑

j∈Ni
vjσ
−
ij((z + ei)

>XW:j). (22)

To finally convexify it, note that σ−ij is affine, hence can be handled with ease. σ+
ij is in fact the

original ReLU, which yields the greater of 0 and an affine function. So ĝi is convex. We now extend
the convex envelope technique to gi. First its form in (21) allows it to be trivially extended to coPi:

hi(z) = gi(z) = (1>z + 1)−1ĝi(z) if z ∈ coPi, and hi(z) =∞ otherwise. (23)

Then the convex envelope of hi over coPi can be derived as

h∗∗i (z) = supr
{
r>z − supw∈coPi

{
r>w − (1>w + 1)−1ĝi(w)

}}
(24)

= maxr minα∈[0,n] minw:w∈coPi, 1>w=α{r>z − r>w + (α+ 1)−1ĝi(w)}. (25)

Given r and α, the inner-most optimization over w is convex because ĝi is convex. The optimization
over α is not convex, but it is one dimensional, hence can be solved globally withO(1/ε) complexity,
e.g., by enumerating over an ε-grid. The formula of the derivative in α is relegated to Appendix C.3.
We solved r by bundle method. The final convexified objective is F ◦1+2(Z) :=

∑
i h
∗∗
i (Zi:).

5 Experimental Results

Our experiment aims to evaluate the certificate of robustness for GCNs in graph classification, with
an emphasis on its tightness. This is facilitated by the ADMM that provides an upper bound under
topological attacks. We will also apply the certificate to the models trained with a robust regularizer.
All code and data are available at https://github.com/RobustGraph/RoboGraph.

Datasets We tested on four public datasets that are commonly used in graph classification: En-
zymes, NCI1, MUTAG, and PROTEINS [43]. Their properties are summarized in Appendix E.
We used 30% of the whole dataset for training, 20% for validation, and 50% for testing. The test set
has a higher fraction because our focus is on attacking the model on the test set. Due to space limit,
we only report the result on Enzymes, relegating to Appendix E the result of the other two datasets.
Enzymes has 600 graphs, C = 6 classes, d = 21 node features. The median number of node over
all graphs is 32, while that of edge is 120.

7

https://github.com/RobustGraph/RoboGraph


0 5 10 15 20
g

60

70

80

90

100

%
 o

f g
ra

ph
s

NR,S=2
R,S=2
NR,S=3
R,S=3

(a) Fraction of graphs certified robust
with s ∈ {2, 3}, under robust train-
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(b) Fraction of graphs that are certified as robust (lower green area) and
vulnerable (upper red area, percentage = 100 − y-axis). Left: s = 2,
right: s = 3 for attack. Both are under robust training.

Figure 1: Certificates under linear activation on Enzymes. s is the local attack strength at testing.
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(b) Fraction of graphs that are certified as robust and vulnerable

Figure 2: Certificates under ReLU activation on Enzymes, with other settings identical to Figure 1
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(c) ReLU (s = 2)
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(d) ReLU (s = 3)

Figure 3: Certificate for Enzymes with 80% for training. Settings are identical to Figure 1 and 2.

Training algorithms and settings We used a single hidden layer and the latent dimensionality was
set to 32. Average pooling was also deployed. In [12], the local budget was set to 1% of the total local
degree of freedom (i.e., number of node features). This is clearly inapplicable to our setting because
most graphs do not even have 100 nodes; indeed, the median #node is 32. Following [19], we varied
the local budget for each node v in a graph G by δl(v) = max(0, dv − max({dv : v ∈ G}) + s),
where dv is the degree of v in the original graph, max({dv : v ∈ G}) is the max of the node degrees
inG, and s called the local attack strength that is varied from 1, 2, etc. A lower value of s results in a
more restrictive budget. The underlying rationale is to endow a larger local budget for higher degree
nodes, because they often require more perturbations to make a difference [11, 12]. Empirically we
observed that when s = 3, about 60% of the nodes in each graph get a positive budget thanks to ties
in dv , and that rate goes to nearly 100% when s = 4.

As shown by [12, 19], a hinge loss added to (1) can significantly improve the robustness without
degrading the accuracy: λ

∑
c6=y max{0, 1 + maxA∈A(zc(A) − zy(A))}, adapted from node clas-

sification to graph classification. So in practice, it is almost always advisable to use it, computation
permitting. In our experiment, we set λ = 0.5, str = 3, and δtrg = ∞, because they produced the
highest robustness while not hurting the test accuracy. Note that the value of s and δg for test data
can be different from str and δtrg (i.e., different A). Our work claims no novelty in robust training,
and it was leveraged to demonstrate the effectiveness of our certificate in a more realistic setting.

Performance of the certificates Figure 1a demonstrates the percentage of graphs that are certified
robust by the dualization method, where the activation function is linear. Figure 2a shows a similar
result, but for ReLU activation using the convex envelope approach from Section 4.3, optimized
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Figure 6: Test accuracy under
various attacks

over coA1 ∩ coA2 ∩A3. The global budget δg is varied from 1 to 20. It is clear that robust training
significantly increases the fraction of graphs that are certifiably robust. Naturally, s = 2 allows more
graphs to be certified robust. Since node features are not subject to attack, the certified percentage
does not drop to 0 even for large δg , akin to Figure 4a of [19].

Tightness of the certificates To better examine the tightness of our certificates, Figure 1b plots the
percentage of graphs that are certified as robust (lower green area, same as the ’R’ curves Figure 1a)
and vulnerable (by ADMM, upper red area). It is for linear activation under robust training, and that
for ReLU is in Figure 2b. Clearly the gap is almost zero for linear activation, while that for ReLU
is also quite small, below 20% which is similar to [12]. So the gap stems from the approximation in
ReLU, and any improvement in this respect can benefit a number of certificate algorithms like ours.

In addition, we compared three convex certificates for ReLU: ENV_Single (used above) is the con-
vex envelop based on the single linear approximation (forNi) as in (19). We also adopted the double
linear approximation (for N̄i) from [26], which enables both dualization (Dual) and convex envelope
(ENV_Double) methods. Figure 4 shows ENV_Single yields clearly superior (higher) certificate.

Performance on larger training sets We additionally experimented on Enzyme with 80%, 10%,
10% for training, validation and testing, respectively. The small size of test data led to marked
variations in the gap plot, and it is unclear how to “average” them. So we plotted a typical result in
Figure 3, showing the fraction of certifiably robust/vulnerable for both linear and ReLU activations.
Compared with Figure 1b and 2b where 30% graphs were used for training, the tightness here
appears similar, or slightly better under the linear activation.

Computational efficiency The two convex envelope based methods are more costly (Figure 5).
Since single linear approximation keeps the nonsmooth [·]+ function in (19) for N̄i, it is slightly
more expensive than double linear approximation.

To test the scalability to graphs with a larger number of nodes and edges, we examined another
dataset DD [44], where the median number of node and edge per graph is 284 and 716, respectively.
We set δg = 20 and s = 3. For the certificates with linear activation, Enzyme (median #node = 32,
median #edge = 120) takes 0.37 seconds per graph on average, while DD takes 7.3 seconds. For the
certificates with ReLU activation, Enzyme takes 1 second per graph on average, while DD takes 28
seconds. This is consistent with the fact that the computational cost depends quadratically on the
number of nodes (in practice, a bit lower than that due to implementation details).

Different datasets have different number of classes. To facilitate comparison, the reported time cost
is for each class. The number of edges in the original graph does not affect the computational cost
much, because the attacker can both delete and add edges.

Comparison with other structural attacks While not being our key focus, we also compared
ADMM with Dai et al. [10], which provides an effective topological attack to a flexible range of
applications including graph classification. [11, 12, 15, 19] are not applicable to structural attacks
on GCNs for graph classification. As can be seen from Figure 6, robust training (R) mitigates the
drop of accuracy compared with non-robust training (NR), and ADMM finds more effective attacks
under both robust and non-robust training.

Conclusion In this paper we proposed the first robustness certificate for graph classification using
GCNs under structural attacks. Its tightness and efficiency, along with a new ADMM-based attack,
are demonstrated empirically. We will extend the framework to distributionally robust optimization.
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Broader Impact

Graph convolutional networks (GCNs) have been shown effective in a number of applications such
as social networks, biological graphs, citation networks, and etc. Despite its recent success, its
vulnerability to adversarial attacks has also been revealed and attacks on both node feature and graph
structure have been proposed. Direct extension of defense algorithms from image classification
domain meets with immediate obstacles because computing the adversarial network is a highly
involved discrete optimization problem, costing a substantial amount of computations.

This paper proposed the first algorithm that provides tight lower and upper bounds for the margin
of graph classification under both global and local budget constraints, allowing a certificate of
robustness to be computed efficiently in practice, and proved in theory. It can be readily applied to
a number of high-impact domains in real-world problems, including cross-lingual knowledge graph
alignment [45], fraud detection [46], cancer classification based on multi-modal fMRI images [47],
chemical and biological interface prediction [48], categorization of scientific papers [1], etc.
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Supplementary Material
A Proofs

A.1 Proof of Theorem 1.

The proof for the first part follows from [49], which showed that if the constraint set is a k-extendible
system, then the greedy algorithm can find a 1

k -approximate solution. So it suffices to check that
A1+2+3
◦ is 2-extendible.

Let T be a finite set and L be a collection of subsets of T . Then (T,L) is 2-extendible if

• For all C ⊆ D, if D ∈ L then C ∈ L;
• Suppose C ⊆ D ∈ L, and x be such that x /∈ C and C ∪ {x} ∈ L. Then there exists
Y ⊆ D\C such that |Y | ≤ k and D\Y ∪ {x} ∈ L.

Consider the obvious bijection between V ∈ A1+2+3
◦ and a graph of n nodes where two different

nodes i and j are connected by an undirected edge if, and only if, (Xji =)Xij = 1. So let T be the
set of all possible (non-self) undirected edges, and L be the set of undirected graphs with at most
δg edges and each node has degree at most δl. Clearly such (T,L) satisfies the first condition. To
check the second condition, let x be an edge (i, j). If x ∈ D, then the condition holds trivially with
Y = ∅. Otherwise, x /∈ D, hence x /∈ C. Note that the degree of i and j in the graph C must be
strictly less than δl, because otherwise C ∪ {x} would not be in L (i.e., not valid). If the degree of
i in D is δl, then we can find an edge e1 ∈ D\C that is incident to i, and add e1 to Y . Similarly if
the degree of j in D is δl, then we can find an edge e2 ∈ D\C that is incident to j, and add e2 to Y .
Clearly |Y | ≤ 2, Y ⊆ D\C, and D\Y ∪ {x} ∈ L.

To prove the second part, note by convexity, F (A) = F ◦(A) ≥ F ◦(Zt) + tr((A−Zt)>∇F ◦(Zt)).
Therefore

min
A∈A

F (A) ≥ F ◦(Zt) + tr(R>Zt)−max
A∈A

tr(R>A), where R = −∇F ◦(Zt). (26)

If the PO can be solved exactly, then the right-hand side can be evaluated exactly, leading to a
slightly tighter certificate than F ◦(Zt). However, if the PO is not tractable, then let V ∗ be the result
returned by the greedy algorithm, and it follows from Theorem 1 that

max
A∈A1+2+3

tr(R>A) = max
V ∈A1+2+3

◦

tr(R>((−2Aori + E) ◦ V +Aori)) (27)

≤ 2 tr(J>V ∗) + tr(R>Aori), where J = R ◦ (−2Aori + E). (28)

Plugging it into (26) and we get a feasible certificate, though at a price of 2.

A.2 Representing coA1 ∩ coA2 ∩ A3 by linear inequalities.

We first show that

coD = {z ∈ [0, 1]n : ‖z − α‖1 ≤ δl} , where D := {z ∈ {0, 1}n : ‖z − α‖1 ≤ δl} . (29)

Clearly, the right-hand side subsumes D and is convex. Therefore it subsumes coD. To show
the converse direction, it suffices to show that for any γ ∈ Rn, maxz∈z∈[0,1]n:‖z−α‖1≤δl γ

>z can
be attained at an integral solution (hence in D). To this end, without loss of generality, suppose
α1 = . . . = αm = 0 and αm+1 = . . . = αn = 1, where m ∈ {0, 1, . . . , n}. Then ‖z − α‖1 ≤ δl
can be written as

∑m
i=1 zi−

∑n
i=m+1 zi ≤ δl−n+m. So this linear inequality, along with zi ≤ 1,

can be written as Pz ≤ (1, . . . , 1, δl − n+m)>, where

P :=



1
1

1
1

1
1

1 . . . 1 −1 . . . −1

 ∈ R(n+1)×n. (30)
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Here the last row has m ones, followed by n−m copies of−1. Now we can partition the rows of P
into two groups R1 and R2, where R1 consists of the first m rows, and R2 consists of the remaining
n−m+ 1 rows. Now obviously each column contains at most two nonzero entries. For the first m
columns, the two nonzero entries have the same sign, with one belonging to R1 and the other to R2.
For the last n −m + 1 columns, both the 1 and −1 belong to R2. So P is totally unimodular [50].
Finally noting that δl − n+m is integral, there must be an optimal solution that is integral.

B ADMM Properties

Although ADMM is not guaranteed to find the global optimum, the analogy with convex ADMM
suggests that it may well minimize F (A) approximately. This is verified in our experiment, and it
trivially provides an upper bound for F (A) under A ∈ A1+2+3.

In practice, we can add additional constraints to B in the splitting formula (7), hoping that the
overlap of constraints with A can help accelerate convergence. For example, if we replace δ(B ∈
A3) by δ(B ∈ A2+3), then the update of Bt in (10) still admits a closed form because the objective
is linear in B (note x2 = x for x ∈ {0, 1}).
In particular, since B must be symmetric, the linearity of the objective allows it to be written as
tr(Q>B) for some symmetric matrix Q. So we only need to sort the entries {Qij : i < j} in an
ascending order. If there are at least δg negative numbers in it, then take the first δg indices and set
their corresponding entries inB to 1, with the rest set to 0. If there are less than δg negative numbers,
then find their indices and set the corresponding entries in B to 1. Finally mirror the 1’s to the lower
triangle Overall, the computational cost is O(n2 log n).

Similarly, to optimize F (A) over A1+3 and A2+3, simply use δ(A ∈ A1) + δ(B ∈ A1+3) and
δ(A ∈ A2) + δ(B ∈ A2+3), respectively. In both cases, the optimization in A is over simple
constraints, while that over B can be done as above.

To further improve the solution, we also applied local adjustment by looping over:

Pruning: if removing an edge can improve F , then pick one that improves F best.

Adding: if the local/global budget allows, then add an edge that best improves F .

Replacing: If removing an edge and adding a new one improves F , then find the substitution that
best improves F while respecting the local budgets

The process can be terminated if no more change is made to the graph in the loop.

C Algorithmic Details

C.1 Optimizing fi(Ai:) over Pi := {z ∈ {0, 1}n : zi = 1,
∥∥z −Aorii: ∥∥1

= j}

Recall from (3) that fi(Ai:) = αiσ
(

(Âi:1)−1Âi:XW
)

(U:y − U:c). When σ is identity, we can

write it as fi(Ai:) = (Âi:1)−1Âi:π for some vector π. Denote a = (Aorii: )> and let vk encode
whether Aik changes upon Aoriik (1 for true and 0 for false). Then A>i: = v+ a− 2a ◦ v. Noting that
1>v = j, the optimization can now be written as

min
v
f(v) =

β>v + c1
a>v + c2

, s.t. v ∈ {0, 1}n, 1>v = j, vi = 0, (31)

for some vector β and scalar c1, c2. Now we only need to enumerate all possible values of s := a>v
from 0 to min(j,1>a) in the denominator. Let I+ := {k ∈ [n] : ak = 1} and I− = [n]\({i} ∪ I+).
Then it is trivial to optimize the numerator under a>v = s by computing

min
vk:k∈I+

∑
k∈I+

βkvk, s.t. vk ∈ {0, 1},
∑
k∈I+

vk = s, (32)

min
vk:k∈I−

∑
k∈I−

βkvk, s.t. vk ∈ {0, 1},
∑
k∈I−

vk = j − s. (33)
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Both can be computed by sorting {βk : k ∈ I+} and {βk : k ∈ I−}, and this sorting only needs to
be done once (and be used for all values of s). So the overall complexity of optimizing fi(Ai:) over
Pi is O(n log n).

C.2 Lower and upper bound for ReLU approximation

Both l and u of the j-th entry of Âi:XW can be easily estimated under
∥∥Ai: −Aorii: ∥∥1

≤ δl. Let
V = |Ai: − Aorii: |, so that Vj = 0 if Ai: makes no change to Aoriij , and Vj = 1 otherwise (adding or
removing an edge). Then

l = min
‖Ai:−Aorii: ‖1≤δl

Ai:(XW ):j + (XW )i,j (34)

= min
1>V≤δl

(2Aorii: − 1) ◦ (−2V > + 1) + 1

2
(XW ):j + (XW )i,j (35)

= min
1>V≤δl

[(1− 2Aorii: ) ◦ (XW )>:j ]V +Aorii: (XW ):j + (XW )i,j (36)

Now the detailed algorithm can be derived and is presented in Algorithm 3.

Algorithm 3: l and u of the j-th entry of Âi:XW

1 Initialize V l = V u = 0 and set J = (1− 2Aorii: ) ◦ (XW )>:j .
2 Sort the indices I := {1, . . . , n} in an ascending order of J .
3 Let k = 1

4 while J [I[k]] < 0 and 1>V l < δl and 1>V l < δg do
5 If I[k] 6= i, set V l[I[k]] = 1
6 k = k + 1

7 Return V l

8 l = [(1− 2Aorii: ) ◦ (XW )>:j ]V
l +Aorii: (XW ):j + (XW )i,j

9 Let k = n

10 while J [I[k]] > 0 and 1>V u < δl and 1>V u < δg do
11 If I[k] 6= i, set V u[I[k]] = 1
12 k = k − 1
13 Return V u

14 u = [(1− 2Aorii: ) ◦ (XW )>:j ]V
u +Aorii: (XW ):j + (XW )i,j

C.3 Derivative of (25) in α.

Note we can change variable by θ = |w − Aorii: |, so that θj = 0 if w makes no change to Aoriij ,
and θj = 1 otherwise (adding or removing an edge). Then w = 1

2 [(2Aorii: − 1) ◦ (−2θ + 1) + 1].
So 1>w = α can be translated into a linear constraint on θ, which we denote as β>θ = ηα.
Now w ∈ coPi is equivalent to θj ∈ [0, 1] and 1>θ ∈ [0, δl]. Write out the Lagrangian for the
minimization over w:

J(α) := min
θ:1>θ≤δl,β>θ=ηα,θj∈[0,1]

(α+ 1)−1κ(θ)− γ>θ (37)

= min
θ

max
λ≥0,µ,ρj≥0,ξj≥0

(α+ 1)−1κ(θ)− γ>θ + λ(1>θ − δl) + µ(β>θ − ηα) (38)

+
∑
j

ρj(θj − 1)−
∑
j

ξjθj . (39)

Taking partial derivative with respect to θj , we have

(α+ 1)−1∇jκ(θ)− γj + λ+ µβj + ρj − ξj = 0. (40)

If θj ∈ (0, 1), then ρj = ξj = 0, and

(α+ 1)−1∇jκ(θ)− γj + λ+ µβj = 0. (41)
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So as long as there are two indices j which satisfy θj ∈ (0, 1), we can solve for (λ, µ). If 1>θ < δl,
we can further simplify by λ = 0. In practice, we can collect all such j and find the least square
solution of (λ, µ). With that, we can compute J ′(α) = −κ(θ)(α+ 1)−2 − µ ∂

∂αηα.

D Extension to Multiple Hidden Layers

As noted by [1], GCNs do not benefit from more than two hidden layers. For completeness, we
sketch here how our approach can be extended to two hidden layers. In this case

F (A) =
∑n

i=1
αiLi:σ(LXW )(U:y − U:c)︸ ︷︷ ︸

=:fi(Ai:)

, where L := D̂−1Â. (42)

F is quadratic in L when σ is the linear activation. When σ is ReLU, we can use the double linear
approximation as in [26], and it will again make F quadratic in L. As a result, in both cases, the
second-order Taylor expansion will be exact

F (L) = F (Lori) + tr((L− Lori)>∇F (Lori)) + 1
2 vec(L− Lori)> ·H · vec(L− Lori), (43)

where we vectorized Lori so that H := ∇2F (vec(L)) is a n2-by-n2 matrix, which is in fact inde-
pendent of L because F is quadratic in L. Letting

σF := max{vec(V )> ·H · vec(V ) : V ∈ Rn×n, ‖V ‖F ≤ 1}, (44)

then

F (L) ≥ F (Lori) + tr((L− Lori)>∇F (Lori))− σF
2

∥∥L− Lori∥∥2

F
. (45)

To minimize the right-hand side of (45), notice that all terms linear in L can be dealt with in the same
way as in one-hidden-layer GCNs. The only new term is ‖L‖2F , which is equal to

∑
i(A
>
i:1)−1.

Since the dynamic programming in Algorithm 1 is based on A>i:1 (see Appendix C), it can be easily
extended to handle the extra terms arising from ‖L‖2.

The bound in (45) can be tightened in two major ways:

1) The norm can be refined. For example, instead of Frobenious norm, we can adopt∥∥L− Lori∥∥
2,∞ := maxi

∥∥Li: − Lorii: ∥∥2
, which is equal to maxi(A

>
i:1)−1/2. The major benefit is

that this norm cannot be greater than 1, so squaring it in (45) is indeed a reduction. On the flip side,
this new norm will complicate the computation of σF , so we propose the following semi-definite
relaxation which offers a log n-approximate solution.

Denote X = vec(V )vec(V )> ∈ Rn2×n2

. Then vec(V )> ·H ·vec(V ) = tr(HX) and the constraint
that ‖V ‖2,∞ ≤ 1 implies

n∑
i=1

X(i−1)n+t,(i−1)n+t ≤ 1, ∀t ∈ [n]. (46)

So σF is upper bounded by an SDP relaxation on X:

max
X

tr(HX), s.t. X � 0,
n∑
i=1

X(i−1)n+t,(i−1)n+t ≤ 1, ∀t ∈ [n]. (47)

Then by

A. Nemirovski, C. Roos, and T. Terlaky. On maximization of quadratic form over intersection of
ellipsoids with common center. Math. Program. Ser. A, 86:463–473, 1999.

the optimal SDP objective is at most 2 log(2n) times of the true value of σF under ‖·‖2,∞.

2) The domain of v considered in (44) only needs to cover the subset of the unit ball (under the
above refined norm) that is attainable by L−Lori for some A ∈ A. It can be much smaller than the
value of σF computed from the unit ball.
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E Experiment

Here we provide detailed experiments for all datasets. Although part of the results for Enzymes
have been shown in Section 5, we will further provide the results when the attack strength is s = 4
at testing. The observations and conclusions from all datasets are similar to what is presented in
Section 5. The properties of all datasets are summarized in Table 1.

Table 1: Datasets for used in experiment.

dataset #graphs #labels # node features median #node median #edge

Enzymes 600 6 21 32 120

NCI1 4110 2 37 27 58

PROTEINS 1113 2 4 26 98

MUTAG 188 2 7 17 38

E.1 Comparing activation and pooling functions

We first show in Table 2 that the performance of (linear, ReLU) activation, in conjunction with
various pooling methods, can be quite mixed. No combination is uniformly the best. In particular,
we considered average pooling (avg), max pooling (max), and attention pooling with

• att_node: the attention weights α were trained as functions of node features only;
• att_topo: the attention weights α were trained also using the graph Laplacian [51].

dataset activation
pooling

avg max att_topo att_node

Enzymes
ReLU 31.6 ± .5 29.8 ± .4 29.5 ± 1.1 19.9 ± 1.3

Linear 29.1 ± 1.7 30.3 ± .0 30.1 ± .8 21.3 ± 4.4

NCI1
ReLU 65.0 ± 0.3 62.5 ± .0 67.6 ± .2 63.0 ± .1

Linear 58.3 ± .0 62.5 ± .3 61.4 ± .0 63.2 ± .2

PROTEINS
ReLU 67.4 ± 1.2 66.9 ± 1.6 66.0 ± .0 64.9 ± .0

Linear 64.1 ± 3.3 69.5 ± .4 65.5 ± .1 62.9 ± 2.3

MUTAG
ReLU 68.8 ± 1.5 66.1 ± .8 70.2 ± .4 73.3 ± 3.5

Linear 65.3 ± .0 65.7 ± .8 69.4 ± 2.0 74.1 ± 2.0

Table 2: Comparison of graph classification accuracy under various activations and pooling func-
tions. The best result of each row is marked in boldface. 30% data were used for training, 20% for
validation, and 50% for testing. There is one hidden layer with d′ = 64 hidden nodes. All settings
were run for 10 times to obtain mean and standard deviation.

As a result, it is meaningful and useful to study the robustness certificate and attack for all combina-
tions of activation and pooling.
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E.2 More results on Enzymes
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Figure 7: Fraction of graphs certified robust with s ∈ {2, 3, 4}, under robust training (R) and non-
robust training (NR). Dataset: Enzymes.
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(c) s = 4

Figure 8: Fraction of graphs that are certified as robust (lower green area) and vulnerable (upper
red area, percentage = 100 − y-axis. Linear activation. All are under robust training. Dataset:
Enzymes.
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(c) s = 4

Figure 9: Same as Figure 8, but using ReLU activation.
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Figure 10: Test accuracy under various attacks, and robust training (R) or non-robust training (NR).
ReLU activation. Dataset: Enzymes.
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E.3 More results on NCI1
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Figure 11: Fraction of graphs certified robust with s ∈ {2, 3, 4}, under robust training (R) and
non-robust training (NR). Dataset: NCI1.
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Figure 12: Fraction of graphs that are certified as robust (lower green area) and vulnerable (upper
red area, percentage = 100 − y-axis. Linear activation. All are under robust training. Dataset:
NCI1.
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Figure 13: Same as Figure 12, but using ReLU activation.
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Figure 14: Test accuracy under various attacks, and robust training (R) or non-robust training (NR).
ReLU activation. Dataset: NCI1.
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In general, the gap for linear activation should be smaller than that for ReLU activation. This has
been the case for all datasets, except when s = 2 and 3 for NCI1 (Figure 12 and 13). Since the
convex envelop is still a lower bound of the true objective Fc(A), there could be exceptions in some
cases for some datasets.
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E.4 More results on PROTEINS
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Figure 15: Fraction of graphs certified robust with s ∈ {2, 3, 4}, under robust training (R) and non-
robust training (NR). Dataset: PROTEINS. In (a), all the three lines for NR certified 100% graphs
as robust for all δg .
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Figure 16: Fraction of graphs that are certified as robust (lower green area) and vulnerable (upper
red area, percentage = 100 − y-axis. Linear activation. All are under robust training. Dataset:
PROTEINS.
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Figure 17: Same as Figure 16, but using ReLU activation.
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Figure 18: Test accuracy under various attacks, and robust training (R) or non-robust training (NR).
ReLU activation. Dataset: PROTEINS.
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E.5 More results on MUTAG
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Figure 19: Fraction of graphs certified robust with s ∈ {2, 3, 4}, under robust training (R) and
non-robust training (NR). Dataset: MUTAG.
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Figure 20: Fraction of graphs that are certified as robust (lower green area) and vulnerable (upper
red area, percentage = 100 − y-axis. Linear activation. All are under robust training. Dataset:
MUTAG.
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Figure 21: Same as Figure 20, but using ReLU activation.
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Figure 22: Test accuracy under various attacks, and robust training (R) or non-robust training (NR).
ReLU activation. Dataset: MUTAG.
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