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Abstract 

Research has revealed that the performance of root mean square error of approximation 

(RMSEA) in assessing structural equation models with small degrees of freedom (df) is 

suboptimal, often resulting in the rejection of correctly specified or closely fitted models. This 

study investigates the performance of standardized root mean square residual (SRMR) and 

comparative fit index (CFI) in small df models with various levels of factor loadings, sample 

sizes, and model misspecifications. We find that, in comparison to RMSEA, population SRMR 

and CFI are less susceptible to the effects of df. In small df models, the sample SRMR and CFI 

could provide more useful information to differentiate models with various levels of misfit. The 

confidence intervals and p-values of a close fit were generally accurate for all three fit indices. 

We recommend researchers use caution when interpreting RMSEA for models with small df and 

to rely more on SRMR and CFI. 
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Evaluating SEM Model Fit with Small Degrees of Freedom 

Structural equation modeling (SEM) has remained a popular data analytic technique in 

psychology, business, education, and other disciplines (Austin & Calderón, 1996; MacCallum & 

Austin, 2000; Tremblay & Gardner, 1996). Often, the purpose of conducting an SEM study is to 

evaluate the viability of a hypothesized theoretical structure. In most practical situations, the 

model under consideration is, to some degree, incorrect or misspecified (Box, 1979; MacCallum, 

2003). As a result, it makes sense to test whether the model has a close fit or, put differently, 

whether any misfit is substantively ignorable (Shi, Maydeu-Olivares, & DiStefano, 2018). To 

evaluate how well the data fit the theory, researchers rely upon fit information to verify that the 

tested model correctly approximates the theoretical underpinnings hypothesized by the 

researchers. Fit indices, as well as other information from the results (e.g., parameter estimates), 

are employed to describe the model’s fit and provide support for decisions, such as altering the 

relationships estimated by the model, or to support removing non-performing items. Thus, 

researchers rely upon fit indices to provide information about modeled relationships.  

Currently, one of the most widely used goodness-of-fit indices is the root mean square 

error of approximation (RMSEA) (Steiger, 1989, 1990; Steiger & Lind, 1980). RMSEA 

measures the unstandardized discrepancy between the population and the fitted model, adjusted 

by its degrees of freedom (df). Different proposals have been made as to the correct use of 

RMSEA.  

The most common approach is to calculate and interpret the sample’s RMSEA (Hancock 

& Mueller, 2010; McDonald & Ho, 2002). RMSEA is considered a “badness-of-fit measure,” 

meaning that lower index values represent a better-fitting model. Often, researchers compare the 

sample’s RMSEA with a cutoff value; often, a RMSEA value of less than 0.06 is used to denote 
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an acceptable model (Hu & Bentler, 1999). However, interpreting the sample’s RMSEA this way 

is a heuristic decision, basing the evaluation solely on the value of the sample statistic while 

ignoring its sampling variability. Often, to help assess the sampling error of the RMSEA, a 

confidence interval (CI) is provided with the point estimate. As an alternative, formal statistical 

inferences can be formed by testing the hypothesis that RMSEA k≤ , where k is the reference 

cutoff in the population. However, this (less common) approach requires identifying the 

population’s RMSEA cutoff value (Browne & Cudeck, 1993).  

In practice, RMSEA is a very popular fit index; however, a major drawback is that it is an 

unstandardized effect size. As a result, the population’s RMSEA values cannot be substantively 

interpreted or compared across models. In addition to the extent of model misspecification, the 

RMSEA value depends on other characteristics of the population model (i.e., incidental factors) 

(Saris, Satorra, & van der Veld, 2009). One important incidental factor is the size of the model1. 

For example, at the population level, the same RMSEA value (e.g., 0.06) may have different 

meanings if the tested models have different degrees of freedom (Chen, Curran, Bollen, Kirby, & 

Paxton, 2008; Savalei, 2012). 

Methodological studies have shown that RMSEA is unsuitable for assessing models with 

small degrees of freedom (Kenny, Kaniskan & McCoach, 2015; Shi, Lee, & Maydeu-Olivares, 

2019). This situation may arise when the tested model is small, or when there are many estimated 

paths relative to the information available for analysis (cf. Bollen, 1989a). The RMSEA 

 
1 Researchers have used different indices to indicate the size of an SEM model, such as the 
number of observed variables (p), the number of estimated parameters (q), the degrees of 
freedom (df), and the number of observed variables per latent factor (p/f; Shi, Lee, et al., 2015, 
2018). Although the above indicators are different concepts, in many cases, they tend to vary 
together. For example, a larger number of indicators (p) often resulted in a larger df. In this 
study, we refer to small models as models with small df.  
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penalizes model complexity by incorporating df in the denominator of its formula. As a result, 

when the model has very small df (e.g., df = 1), the population value of RMSEA for a close-

fitting model (e.g., omitting a residual correlation of 0.10) may be large, and the conventional 

cutoff may be misleading at the population level (Shi et al., 2019). In addition, prior studies have 

pointed out that sample RMSEA does not perform well when it is used to assess models with 

small df using sample data. Given identical sample sizes, the bias observed with a point estimate 

is larger in models with very small df (Kenny et al., 2015). For example, when fitting correctly 

specified models with very small df, Kenny et al. (2015) found that, as df decreased, the 

sampling variability of RMSEA increased, and sample estimates exceeded the cutoff value more 

frequently. The coverage of RMSEA may be acceptable when considering the CI while fitting 

models with small df, but the CI becomes wider as the df decreases, suggesting a greater level of 

uncertainty in the fit index. Prior research has suggested that RMSEA may not be useful when 

fitting models with very small df. Kenny et al. (2015, p. 486) stated, “We recommend not 

computing the RMSEA for small df models, especially those with small sample sizes.” 

This finding is informative, but in practice, social science researchers often encounter 

very small models. For example, a three-wave latent growth model has df =1 (Meredith & Tisak, 

1990)2. Models with small df are often observed in path analysis applications. For example, with 

three waves of data collected from two variables, the cross-lagged panel model (CLPM) and 

random intercept cross-lagged panel model (RI-CLPM) have df = 4 and 1, respectively 

 
2  When fitting a three-wave latent growth model, the number of sample moments = 6 

covariances) + 3 (means) = 9, and the number of free parameters = 8 (2 factor variances + 2 

factor means + 1 covariance between factors + 3 residual variances). Therefore, df = 9 – 8 = 

1.  
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(Hamaker, Kuiper & Grasman, 2015). Also, the use of very short scales to lower the cost of data 

collection, reduce the response burden and frustration for survey participants, and increase 

response rates, is commonplace (Maydeu-Olivares & Steenkamp, 2019; Robinson, 2018). As a 

result, short scales have become popular in many social science fields like psychology (Ziegler, 

Kemper, & Kruyen, 2014), human resource management (Robinson, 2018) and marketing 

research (Bruner, Hensel, & James, 2005; de Jong, Steenkamp, & Veldkamp, 2009). For 

example, short scales with four items have been widely utilized to measure global job 

satisfaction (Price, 1977), organizational citizenship behavior (Lee & Allen, 2002), male sexual 

health (Rosen et al., 2007), patient decisional conflict (Légaré et al., 2010), and depression and 

anxiety (Löwe et al., 2010). Unfortunately, fitting a one-factor model with four items results in a 

tested model with only two degrees of freedom.  

Researchers need to explore the plausibility of using other fit indices to assess models 

with very small df. In the current study, we focus on two potentially useful indices: the 

standardized root mean square residual (SRMR) (Bentler, 1995; Joreskog & Sorbom, 1988) and 

comparative fit index (CFI) (Bentler, 1990). We selected these indices as they have been 

routinely reported in most SEM software (e.g., Mplus) and widely used in empirical SEM 

applications (McDonald & Ho, 2002). In addition, the theoretical sampling distributions of both 

SRMR and CFI have been derived using asymptotic methods (Ogasawara, 2001a; 2001b; 2007; 

Maydeu-Olivares, 2017; Lai, 2019a). Researchers may construct the CIs (or conduct significance 

tests; e.g., SRMR ≤ k) for population effect sizes of misfit, which makes SRMR and CFI 

comparable to RMSEA. 

Prior model fit studies have shown that compared to the population RMSEA, the 

population SRMR and CFI are less susceptible to the influence of model sizes (Kenny & 
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McCoach, 2003; Maydeu-Olivares, 2017; Shi, Maydeu-Olivares, & DiStefano, 2018; Shi et al., 

2019). Several simulation studies have investigated the behavior of the sample values of SRMR 

and CFI (e.g., Hu & Bentler, 1999; Sharma, Mukherjee, Kumar, & Dillon, 2005; Fan & Sivo, 

2005; 2007) under various levels and types of model (mis)specifications. Concerning the model 

size, however, most studies focus on models with at least 10–15 observed variables; thus, it is 

not clear whether the findings can be generalized to models with very small df.  

In terms of the CIs and close fit tests, Maydeu-Olivares, Shi and Rosseel (2018) 

compared the performance of RMSEA and SRMR under models with df ranging from 35 to 

1,710. They found that the CIs for SRMR yielded better coverage of its population value when 

assessing models with large df (e.g., df > 400). Lai (2019a) investigated the performance of CIs 

for CFI and found that the CIs were generally accurate for models with df ranging from 24 to 

119. While these studies have provided information on the viability of SRMR and CFI in large 

models, details of their performance in very small models remain unknown. 

 To fill this research gap, we compared the performance of RMSEA, SRMR, and CFI in 

assessing very small models. We considered various levels of model (mis)specifications (i.e., 

correctly specified, close fitting, and severely misspecified) and sample sizes. To assist empirical 

researchers, we focused on population values, sample point estimates, interval estimates (i.e., 

90% CIs), and close fit tests for all three fit indices. First, we reviewed the statistical theories 

underlying RMSEA, SRMR, and CFI. Second, we presented a simulation study that compares 

the performances of the indices in small df models, along with an empirical example. Finally, we 

discussed the implications and provide recommendations. 

The Statistical Theory Underlying RMSEA, SRMR, and CFI 

Root Mean Square Error of Approximation (RMSEA)  
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The population RMSEA is defined as (Browne & Cudeck, 1993):  

     
FRMSEA
df




      (1) 

where F  denotes the minimum of a discrepancy function between the population covariance 

matrix, Σ, and the model implied covariance matrix, 0Σ , for the postulated model, and df 

denotes the df for the tested model. From equation 1, it is easy to show that for a fixed (non-zero) 

value of F , the population RMSEA increases as df decreases. It is also noteworthy that the 

population value of RMSEA depends on the estimation method employed. When maximum 

likelihood (ML) is used, the population RMSEA is  

 ML
ML

FRMSEA
df

=


. (2)   

Assuming no mean structure is present3, MLF  is obtained by minimizing  

 ( )1
0ln ln trML pF −− + −= 0Σ Σ ΣΣ , (3) 

where p denotes the number of observed variables. Given sample data and assuming normality, 

the population RMSEA can be estimated as  

 

2

max ,0ML
ML

X dfRMSEA
N df

 −
=  × 

, (4)  

 
3 We focused on “classical” covariance structure models without mean structures.  
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where N denotes sample size. 2
MLX  is the ML-based likelihood-ratio chi-square test statistics.  

A 90% CI for RMSEAML can be constructed as 

 max 0,  ,  max 0, L U
N df N df

   
   × ×   

, (5)  

where L and U are the solutions to 

  2
2( ; , ) .95MLF X df L

χ
=  and 2

2( ; , ) .05MLF X df U
χ

=  (6) 

and 2 ( ; , )F df
χ
⋅ λ  denotes the cumulative non-central chi-squared distribution with df degrees of 

freedom and non-centrality parameter λ  (Browne & Cudeck, 1993). Finally, the p-value for a 

close fit test with a population cutoff k ( *
0 :H RMSEA k≤ ) can be obtained using  

 ( )2
221 ; ,MLF df dX N f k

χ
− × × . (7) 

All the notations are the same as above. The RMSEA is a “badness” measure of fit: lower 

RMSEA values indicate better fit. In practice, RMSEA ≤ .06 is the most commonly used cutoff 

for acceptable fit (Hu & Bentler, 1999).  

Standardized Root Mean Square Residual (SRMR) 

The SRMR in the population is defined as (Joreskog & Sorbom, 1988; Maydeu-Olivares, 2017):  

 
( ) 201 ij ijs s

i j ii jj

SRMR
t t ≤

 σ −σ′
 = =

σ σ  
∑ε ε , (8) 
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where σij denotes the unknown population covariance between variables i and j (or the variance, 

if i = j) and 0
ijσ  denotes the population covariance (or variance) under the tested model. sε  is the 

vector of the population standardized residual covariances, and ( 1) / 2t p p= +  signifies the 

number of unique elements in the residual covariance matrix (i.e., the difference between the 

observed and model-implied covariance matrices) where p denotes the number of observed 

variables. Thus, the population value of SRMR can be approximately interpreted as the average 

population standardized residual covariance. 

In finite samples, let sij be the sample covariance, ˆ ijσ  the model implied covariance, and

se  the t vector of the standardized residual covariances with elements 
ˆij ij

ii jj

s
s s
−σ

. A sample 

counterpart of the population SRMR in equation 8 can be estimated using 

 

( ) 2
ˆ1 ij ijs s

b
i j ii jj

s
SRMR

t t s s≤

 ′ −σ
 = =
  

∑e e . (9) 

The sample SRMR value is the value typically produced in SEM software packages and 

evaluated by researchers to assess a model’s fit4. 

 
4  We focused on models with a saturated mean structure and follow the sample SRMR formula 

(equation 9) computed in many widely used SEM software programs (e.g., LISREL, Jöreskog & 

Sörbom, 2017; EQS, Bentler, 2004, and lavaan, Rosseel, 2012). However, in Mplus (Muthén & 

Muthén, 2017), by default, the sample SRMR is computed as  



* 2 * 21 ˆ ˆ) )Mplus ij i
i j i

SRMR
t p ≤

 
= (ε + (ε +  

∑ ∑  
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Maydeu-Olivares (2017) showed that the sample estimates for SRMR are biased, and an 

asymptotically unbiased estimate of the population SRMR can be expressed as:  

 

( )1
ˆmax tr( ),0

ˆ s s s
u sSRMR k

t
−

′ −
=

e e Ξ
, (10) 

where 
( )

2

2

ˆ ˆtr( ) 2ˆ 1
4
s s s s

s
s s

k
′+

= −
′

e e
e e

Ξ Ξ
 and sΞ  represents the asymptotic covariance matrix of 

se . This study investigates the performance of both the biased ( bSRMR ) and unbiased (SRMRu ) 

estimates of SRMR. 

CIs for the SRMR and close fit tests can be obtained using a reference normal 

distribution. Specifically, with large samples, a (1- α) % CI for the SRMR can be computed as  

 ( )  ( )max 0, ( ) ,max 0, ( )u u u uSRMR z SE SRMR SRMR z SE SRMRα/2 α/2
   − +   

, (11) 

where zα/2  is the (two-tailed) critical z value for the given α level, and SE () denotes asymptotic 

standard error, given as (Maydeu-Olivares, 2017):  

 

* ˆ
ˆ

ˆ ˆ
ij ij

ij
ii jj ii jj

s
s s

σ
ε = −

σ σ
   * ˆˆ

ˆ
i i

i
ii ii

m
s

µ
ε = −

σ
 

where mi and ˆ iµ denote the sample and expected mean of variable i, respectively. Mplus users can 

estimate the sample SRMR defined in equation 9 by using “MODEL=NOMEANSTRUCTURE” in 

the ANALYSIS command (Asparouhov & Muthén, 2018; Pavlov, Maydeu-Olivares & Shi, 2020).  
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2

2 tr( ) 2SE( )
2

s s s s
u s

s s

SRMR k
t

− ′+
=

′
e e

e e
Ξ Ξ . (12) 

In addition, a statistical test for model close fit can be conducted using the hypotheses

0 1:  vs. :SRMR k SRMR kH H≤ > , where 0k >  is a reference cutoff value for close fit at the 

population level. The p-values are obtained using 1 ( )p z= −Φ , where ()Φ  denotes a standard 

normal distribution function and 

 


( )
u

u

SRMR kz
SE SRMR

−
=   (13) 

Similar to RMSEA, SRMR also measures the “badness” of model fit. The most 

commonly used criterion for a good fit is SRMR ≤ .08 (Hu & Bentler, 1999). Recently, Shi, 

Maydeu-Olivares, and DiStefano (2018) proposed new criteria by considering the impact of the 

measurement quality. Specifically, the cutoffs for good fit and acceptable fit were SRMR ≤ .05×

2R  and SRMR ≤ .10× 2R , respectively. 2R  is the average communality (i.e., the squared 

standardized loading) across all items.  

Comparative Fit Index (CFI) 

The population CFI is defined as (Bentler, 1990):  

 1 m

b

FCFI
F

= −  (14) 

where Fm and Fb represent the minimum of the discrepancy function for the researcher’s 

proposed model and baseline model, respectively. Therefore, the CFI measures the relative 

improvement in fit going from the baseline model to the postulated model. 
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The population values of CFI also depend on the model estimation method. The 

population ML fit function is given in equation 3. When using ML, the sample CFI can be 

estimated as5:  

 

2 2

2

max( ,0) max( ,0)
max( ,0)

b b m m
ML

b b

df dfCFI
df

− − −
=

−
χ χ

χ
, (15) 

where 2
bχ  and bdf  denote the likelihood-ratio chi-square test statistics and the corresponding df 

for the baseline model, respectively, and 2
mχ  and mdf represent the chi-square test statistic and df 

for the proposed model, respectively. 

Lai (2019a) proposed two new consistent point estimators for CFI directly based on the 

fit function ( ˆ
mF ) and recommended a bias-corrected sample estimate of CFI ( FBCCFI ). Let s and 

σ be the t × 1 vector of the unique elements in S and Σ , respectively.  FBCCFI  is expressed as  

 

( )

( )

ˆ
1 ˆ

m
MLBC

FBC b
MLBC

FCFI
F

= − ; (16) 

 1ˆ ˆ ˆ(2 ) [ ]MLBCF F N tr−= − Γφ , (17) 

where φ  is the second derivative of φ , which is a function of s (i.e., ˆ ( )mF = sφ ), evaluated at s = 

σ and 𝜽𝜽 = 𝜽𝜽* (𝜽𝜽* denotes the population model parameter), and Γ̂ is the sample estimate for the 

asymptotic covariance matrix of Ns .  

 

5  In this study, MLCFI  (defined in equation 15) is the usual point estimator of the population CFI 

reported in most SEM software when ML is used, which is different from equation 8 in Lai (2019a). 



SEM Model Fit with Small DF 14 

Under a normal reference distribution, a (1- α) % CI for the CFI can be computed as  

  ( )  ( )min 1, ( ) , min 1, ( )CFI z SE CFI CFI z SE CFIα/2 α/2
   − +   

.  (18) 

In equation 18, zα/2  is the (two-tailed) critical z value for the given α level, CFI  is a 

sample estimate of CFI, and SE () is asymptotic standard error. Lai (2019a) derived two forms of

( )SE CFI and recommended using 

 

' ˆˆ ˆ( ) /SE CFI N= g gΓ , (19) 

where ĝ  is computed as the first-order derivative of the function of CFI with respect to s 

( φ /∂ ∂s ) evaluated at s = s and ˆ=θ θ  ( θ̂ denotes the sample estimates of the model parameters).  

A statistical test for acceptable fit (with a population cutoff k) can be conducted under the 

hypotheses 0 1:  vs. :k CFI kH CFI H≥ < . The p-values are obtained under a standard normal 

distribution function, ()Φ , as 1 ( )p z= −Φ , where z is expressed as  

 


( )
CFI kz
SE CFI

−
= . (20) 

All the notations are the same as above. The values of CFI are normed between 0 and 1: 

higher values of CFI indicate better model fit. In practice, the most widely used criterion for a 

good fit is .95CFI ≥ (Hu & Bentler, 1999). 

We provided the theory underlying RMSEA, SRMR, and CFI to orient readers to the 

similarities and differences among the indices. All three indices are often employed to evaluate 
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models, and researchers compute both point estimates and CIs for each index. Further study of 

the three indices can aid applied researchers interested in model testing. 

Monte Carlo Simulations 

We performed simulations to investigate the behaviors of RMSEA, SRMR, and CFI 

when assessing models with small df. We considered scenarios with both correctly specified and 

misspecified models. In correctly specified models, the population model was a one-factor 

confirmatory factor analysis (CFA) model and the same model was fit to the data. The 

population model in misspecified conditions was a two-factor CFA model, but a one-factor 

model was fit to the data. The population factor variance(s) were set to 1.0. To create the 

different simulation conditions, we manipulated four variables: model size, size of the factor 

loadings, magnitude of model (mis)specification, and sample size. 

Model size. We manipulated model size by changing p, the number of observed variables 

(Moshagen, 2012; Shi, Lee, & Terry, 2015, 2018). In this study, we focused on small models 

with ps of 4, 8, and 12. For the population model with two factors, each factor had an equal 

number of items loaded. As we estimated the one-factor model, the dfs for the fitted model 

ranged from 2 (p = 4) to 54 (p = 12). 

Size of factor loadings. Three levels of factor loadings were considered: low (λ = .40), 

medium (λ = .60), and high (λ = .80). The error variances were set as 1- λ2 so that the factor 

loadings were standardized.  

Sample size. Sample sizes were 50, 100, 200, 500, and 1,000. These numbers were 

chosen to represent the range of very small to large samples frequently observed in psychological 

and behavioral research.  
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Magnitude of Model (Mis)specification. Since model misspecification was introduced by 

ignoring the multidimensional structure, the magnitude of model misfit was manipulated using 

different ρs in the population model. Specifically, under misspecified conditions, the population 

ρs included 0.60 and 0.90; a smaller correlation coefficient indicated greater misspecification. 

Note that the population model under the correctly specified conditions was a one-factor model, 

which is equivalent to a two-factor model with a perfect inter-factor correlation (i.e., ρ = 1.0).  

We considered a range of model misspecifications: correctly specified (ρ = 1.0), minor (ρ 

= 0.90), and severe (ρ = 0.60) (Shi, Maydeu-Olivares, & DiStefano, 2018). For example, when 

fitting a one-factor model to two-factor data with an inter-factor correlation of ρ = 0.90, most 

researchers would consider the misfit ignorable. However, when the population model has two 

factors with ρ = 0.60, the one-factor model cannot be overlooked and should be rejected based on 

the model fit information.  

In summary, we considered 135 simulated conditions: 5 (sample sizes) × 3 (model sizes) 

× 3 (factor loading levels) × 3 (factor inter-correlations). For each simulated condition, 5,000 

replications were generated with the simsem package in R (Pornprasertmanit, Miller, & 

Schoemann, 2012; R Development Core Team, 2015). The observed data were generated using a 

multivariate normal distribution.  

In each simulation condition, first, we computed the population values for RMSEA, 

SRMR, and CFI by fitting the one-factor CFA models to the population covariance matrix. We 

then fit a one-factor model to each simulated dataset and computed the sample’s RMSEA, 

SRMR, and CFI. This provided the empirical distributions of the sample fit indices with over 

5,000 replications. Under the model misspecification conditions, we computed 90% CIs for 

RMSEA, SRMR, and CFI. We also computed the p-value of a close fit test (when the RMSEA 
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and SRMR were less than or equal to their population values and the CFI was greater than or 

equal to its population values). We conducted all data analyses with ML estimation using the 

lavaan package in R (R Development Core Team, 2015; Rosseel, 2012). 

For all three fit indices, we reported population values under different model sizes, factor 

loading levels, and magnitudes of model misspecification. To better summarize the empirical 

distributions of the sample estimates, for each simulated condition, we computed the empirical 

means and standard deviations of the sample RMSEA, SRMR, and CFI (across 5,000 

replications). We also calculated the proportion of replications for each index that would be 

rejected based on the conventional cutoff values for acceptable fit (Hu & Bentler, 1999; Shi, 

Maydeu-Olivares, & DiStefano, 2018). In terms of interval estimates, we computed the average 

and median width of the 90% CIs for each fit index. The accuracy of these CIs was determined 

by computing their coverage rates - how often the population value was within the CI. Finally, 

we evaluated the accuracy of the p-values for the close fit tests by computing the Type I error 

rates (i.e., α = 0.05). Specifically, we calculated the percentage of replications in which the null 

hypothesis of close fit6 were rejected.  

Results 

In our study, not every replication converged. Low convergence rates resulted when both 

the df and sample size were very small (e.g., df = 2 and N = 50), factor loadings were low (i.e., λ 

= .40), and the model was severely misspecified (i.e., ρ = 0.60). For that specific condition, the 

convergence rate was 57%. The complete results of the convergence rates are provided in the 

supplementary materials. Only cases that converged were included when calculating the outcome 

 
6  The RMSEA and SRMR were less than or equal to their population values and the CFI was greater 

than or equal to its population value. 
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variables. We also conducted analyses of variance (ANOVA) on selected outcome measures.  

Specifically, an eta squared (η2) value above 5% was used to identify the main conditions that 

contributed to practically sizeable variability in the outcome (Shi, Maydeu-Olivares, & 

DiStefano, 2018)7.  

------------------------------------------- 
Insert Tables 1-3 here 

-------------------------------------------- 
Population Values 

The population values for RMSEA, SRMR, and CFI across simulation conditions are 

reported in Tables 1–3. Figures 1–3 plot the population RMSEAs, SRMRs, and CFIs against the 

dfs across the different magnitudes of model misspecification and factor loading levels. When 

the model was correctly specified, the population RMSEA and SRMR were both equal to zero 

and the population CFI was equal to one. Under the misspecified condition, the population 

RMSEAs ranged from 0.010 to 0.374, the population SRMRs from 0.006 to 0.117, and the 

population CFIs from 0.748 to 0.996. In general, the population RMSEA and SRMR increased 

and the population CFI decreased as the level of model misspecification increased, and the 

magnitude of factor loadings increased, suggesting a worse fit. In addition, the effect of factor 

loadings was more pronounced when the level of model misfit is more severe.  

The ANOVA results showed that the most important sources of variability in the 

population RMSEA were the levels of factor loadings (λ; η2 = 0.48), magnitudes of model 

misspecification (ρ; η2 = 0.27), the interaction between λ and ρ (λ × ρ; η2 = 0.10), and model size 

(df; η2 = 0.07). For a certain magnitude of model misspecification, the population RMSEA 

decreased dramatically as the model size increased and level of factor loadings decreased. For 

example, when fitting a one-factor model to two-factor data with ρ = 0.60 and λ = 0.60, as the df 

 
7 The ANOVA tables are also available in the supplementary materials. 



SEM Model Fit with Small DF 19 

increased from 2 (p = 4) to 54 (p = 12), the population RMSEA fell from 0.154 to 0.088. 

Meanwhile, for a fixed level of model misfit and model size (e.g., ρ = 0.60 and df = 2), as the 

standardized factor loadings decreased from 0.80 to 0.40, the population RMSEA dropped from 

0.374 to 0.058.  

The most important factors that affect the population values of SRMR were the 

magnitudes of model misspecification (ρ; η2 = 0.50), levels of factor loadings (λ; η2 = 0.36), and 

their interaction (λ × ρ; η2 = 0.13). When fitting a one-factor model to two-factor data with ρ = 

0.60 and df =2, as λ decreased from 0.80 to 0.40, the population SRMR dropped dramatically 

from 0.094 to 0.023. However, under the models considered in the current study, the population 

SRMR was less susceptible to the influence of model size (df; η2 < 0.01) compared to the 

population RMSEA. Keeping the level of model misfit and factor loadings the same (e.g., ρ = 

0.60 and λ = .60), as the df increased from 2 (p = 4) to 54 (p = 12), the population SRMR 

increased slightly, from 0.053 (df = 2) to 0.066 (df = 54). 

Finally, for population CFI, variability is mostly attributed to the magnitudes of model 

misspecification (ρ; η2 = 0.74), levels of factor loadings (λ; η2 = 0.16), and their interaction (λ × 

ρ; η2 = 0.09). For the models considered in this study, the population CFI was not sensitive to the 

impact of model size (df; η2 < 0.01). Taking the same conditions as in the example above, as λ 

decreased from 0.80 to 0.40 (ρ = 0.60 and df =2), the population CFI increased from 0.748 to 

0.915. As the df increased from 2 to 54 (ρ = 0.60 and λ = .60), the population CFI was relatively 

stable and slightly decreased from 0.876 to 0.842.  

------------------------------------------- 
Insert Figures 1-3 here 

-------------------------------------------- 
Average Sample Estimates  
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Table 1 summarizes the empirical distributions of the sample RMSEAs, SRMRs, and 

CFIs across replications. Specifically, it reports the means and standard deviations of the 

empirical distributions. We reported sample SRMRs using both  bSRMR (equation. 9) and 

SRMRu (equation 10) and reported sample CFIs using both MLCFI (equation 15) and  FBCCFI

(equation 16) as presented earlier.  

The accuracy (bias) of the point estimates was determined by comparing the average 

sample estimates with the corresponding population values. For each fit index, ANOVA were 

conducted by using the relative bias of average point estimates as the outcome variable8. Figures 

1–3 plot the average sample estimates of RMSEA, bSRMR ,SRMRu , MLCFI , and  FBCCFI by 

different sample sizes across simulation conditions. Not surprisingly, the average sample 

estimates of all three fit indices approached the population values as the sample size (N) 

increased. Other than the sample size (N; η2 = 0.11), the important sources of (relative) biases in 

estimating the population RMSEA include the level of factor loadings (λ; η2 = 0.10), the 

magnitudes of model misspecification (ρ; η2 = 0.10) and three interaction terms (i.e., λ × ρ; η2 = 

0.14; N × λ; η2 = 0.13; N × ρ; η2 = 0.12). Generally, the relative bias in estimating the population 

RMSEA decreases as the level of factor loadings increase, and the level of model misfit 

increases. The effects of the magnitude of factor loadings and the level of model misfit were 

more pronounced as the sample size became smaller.  

 

8 The relative bias was computed as est pop

pop

−θ θ

θ
, where estθ  represents the average sample 

estimate of the fit indices across all replications, and popθ indicates the population value of fit 
indices. For RMSEA and SRMR, the relative bias was not computed under correctly specified 
models as the population value (the denominator) equals zero.  
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The most important sources of (relative) biases in estimating the population SRMR was 

the choice of formula (η2 = 0.12). The effect of the choice of formula was also moderated by the 

magnitude of factor loadings (η2 = 0.10) and the level of model misfit (η2 = 0.06). Other 

noticeable factors included the sample size (N; η2 = 0.07), the level of factor loadings (λ; η2 = 

0.14), the magnitudes of model misspecification (ρ; η2 = 0.09), and their interaction (λ × ρ; η2 = 

0.09) 

Specifically, the average sample SRMR using the biased formula ( bSRMR ) was more 

sensitive to the impact of sample size (N), model size (df), and the level of factor loadings (λ). As 

shown in the figure, the bias in  bSRMR could increase dramatically as N decreases and λ and df 

increase. Given the same level of df and λ, the sample SRMR computed using the unbiased 

formula (SRMRu ) converged on its population value faster. Furthermore, when the model was 

correctly specified (i.e., population RMSEA and SRMR were both equal to zero), the sample 

estimates of SRMRu tended to be more accurate, on average, than those calculated from 

RMSEA, especially when the df was very small. For example, when λ = 0.60, df =2, and N = 50, 

the average of the sample RMSEA and SRMRu for the correctly specified model was 0.050 and 

0.020, respectively. 

For estimating CFI, according to the ANOVA results, the impact of the choice between 



MLCFI  and  FBCCFI was not practically important (η2 = 0.02). However, as shown in the figure, 



MLCFI  generally converged on its population value faster than  FBCCFI , especially for models 

with lower factor loadings (λ) and larger df.  For both MLCFI  and  FBCCFI , the bias in estimating 

the population value decreased as sample size (N; η2 = 0.28) increased, and the magnitude of 

factor loadings increased (λ; η2 = 0.20). The effect of sample size was more noticeable as λ 
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decreased (N × λ; η2 = 0.19) and/or df increased (N × df; η2 = 0.09). For example, when fitting 

correctly specified models (i.e., population CFI = 1.0) with N = 100, λ = 0.80, and df = 2, the 

average MLCFI  and  FBCCFI  were both 0.996. Keeping all other conditions the same, as λ 

decreased to 0.40 and df increased to 54, the average MLCFI  and  FBCCFI  dropped to 0.938 and 

0.922, respectively. 

Standard Deviations of Point Estimates  

Next, we checked the variability of the point estimates. For SRMR and CFI, we focused 

on the empirical variability of SRMRu  and MLCFI  as they yield more accurate point estimates 

compared to SRMRb  and  FBCCFI . It is noteworthy that using asymptotic methods, the empirical 

standard deviations for SRMRu and  FBCCFI  tended to be larger than those obtained from 

SRMRb and MLCFI , especially when the sample size was small. We first summarized the results 

under correctly specified models as the population values of RMSEA, SRMR, and CFI were 

constant across conditions. Not surprisingly, for all three fit indices, as sample size (N) increased, 

the empirical standard deviations of the sample estimates decreased. The ANOVA results also 

showed that the model size (df) was an important source to explain the sampling variability of 

RMSEA (η2 = 0.35). For SRMR, the important sources of sampling variability are the level of 

model misfit (ρ; η2 = 0.16) and the interaction between ρ and df (ρ × df; η2 = 0.06). In general, the 

empirical standard deviations of SRMR decreased as df decreased, especially as the model misfit 

level decreased. However, the empirical standard deviation of the sample CFI was not sensitive 

to the model size (η2 = .01). Instead, the levels of model misfit (ρ; η2 = 0.19) and magnitudes of 

factor loadings (λ; η2 = 0.25) played an important role in explaining the empirical standard 

deviation of the sample CFI, especially when the sample size was small (N × λ; η2 = 0.11).  
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------------------------------------------- 
Insert Figure 4 here 

-------------------------------------------- 
To better demonstrate the patterns, we plotted the empirical standard deviations of the 

three fit indices against the dfs (e.g., N = 100; ρ = 1.0) in Figure 4. As shown in this figure and in 

Tables 1–3, for both RMSEA and SRMR, their empirical standard deviation increased as df 

decreased. The empirical standard deviation of the sample CFI was generally stable as df 

decreased, but a larger standard deviation of CFI was associated with lower factor loadings (λ). 

The standard deviation of the sample SRMR also tended to increase as the level of factor 

loadings increased; however, these changes were not as pronounced as those observed from the 

sample CFI.  

Regarding the empirical standard deviations, similar behaviors were observed under 

misspecified conditions. When models were misspecified, the population values of the fit indices 

varied by model size and level of factor loadings. As a result, the raw standard deviations may 

not be comparable across conditions. To account for the differences in the population values, we 

also computed the coefficient of variation (CV; Everitt, 1998) as the ratio of the empirical 

standard deviation divided by the population fit indices. The values of the CVs are reported in 

Table 1–3. Similar patterns were observed in terms of the relationships between df and CV.  

By comparing the empirical standard deviations among the three fit indices, we found 

that under correctly specified models (where both population RMSEA and SRMR are equal to 

zero), the empirical standard deviations of SRMR were noticeably smaller than the standard 

deviations of RMSEA, especially when fitting small df models. For example, when N = 100, λ = 

0.60, and df = 2, the standard deviations of RMSEA and SRMR were 0.052 and 0.018, 

respectively. Under misspecified models, the standard deviations of SRMR were smaller than the 

standard deviations of RMSEA under most simulated conditions. However, the CVs for RMSEA 
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were generally smaller than those obtained from SRMR under small df models. RMSEA yielded 

larger standard deviations but smaller CVs because the population RMSEA increased 

dramatically as df decreased. Meanwhile, the scale of the population CFI was much larger. 

Consequently, the CVs for CFI were noticeably smaller than those calculated from RMSEA and 

SRMR.  

Empirical Rejection Rates using Conventional Cutoffs 

Following prior research, models are considered to be adequately fitted if their RMSEA 

values are below 0.06 or CFI values above 0.95 (Hu & Bentler, 1999). For SRMR, we applied 

two cutoffs for acceptable fit: SRMR values below 0.08 (Hu & Bentler, 1999) or SRMR values 

below R2 ×.10 (Shi, Maydeu-Olivares, & DiStefano, 2018). Table 4 reports the percentage of 

replications with sample RMSEAs and SRMRs exceeding the cutoffs and CFIs falling below the 

conventional cutoffs (suggesting that the model does not fit adequately).  

------------------------------------------- 
Insert Table 4 here 

-------------------------------------------- 
We focused on the results from SRMRu  and MLCFI  as they produced less biased point 

estimates (compared to SRMRb  and FBCCFI ). Results showed that applying the conventional 

cutoff of SRMR ≤ .08 to SRMRu  could yield misleading conclusions as it often retains severely 

misspecified models unless the level of factor loadings is very high (λ = 0.80). Therefore, for 

SRMR, we applied the cutoff of SRMR ≤ .10 × R2 and compared the results with those obtained 

from RMSEA and CFI. We plotted the empirical rejection rates for RMSEA (MLRMSEA ≤ .06), 

SRMR (SRMRu ≤ 10 × R2), and CFI (MLCFI ≥ 0.95) across all simulated conditions in Figure 5.  

------------------------------------------- 
Insert Figure 5 here 

-------------------------------------------- 
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As shown, for correctly specified models (ρ = 1.00) or models with minor 

misspecification (ρ = 0.90), the observed sample RMSEAs tended to exceed the cutoff of 0.06 

when the sample sizes decreased, especially when df was very small and the level of factor 

loadings (λ) was high. For example, in models with minor misspecifications (ρ = .90) where N = 

200, λ = 0.80, and df = 2, sample RMSEA values were greater than 0.06 in 80% of the 

replications. In addition, the sample RMSEA did not have enough power to reject severely 

misspecified models (ρ = 0.60) when the level of factor loadings was very low (λ = 0.40), even 

when the sample size (N) reached 1,000. For example, when ρ = 0.60, N = 1,000, λ = 0.40, and df 

= 2, only 37% of the sample RMSEA exceeded 0.06.  

As sample sizes decreased, the sample cutoff for SRMR and CFI rejected greater 

proportions of the correctly specified or slightly misspecified models, especially when the levels 

of factor loadings were very low (i.e., λ = 0.40). The rejection rates for SRMR generally 

increased as df decreased, while the rejection rates for CFI tended to decrease as df decreased. 

For example, when fitting correctly specified models with N = 500 and λ = 0.40, as df decreased 

from 54 to 2, the rejection rates for the sample SRMR increased from 10% to 21%, whereas the 

rejection rates for the sample CFI decreased from 8% to 3%. In addition, for both SRMR and 

CFI, lower levels of factor loadings were associated with lower power rates to reject the severely 

misspecifed models.  

In general, with medium or high levels of factor loadings (λ ≥ .60), as the sample size 

reaches 200, using SRMRu  and MLCFI with the conventional cutoffs, researchers reject severely 

misspecified models and retain correctly specified or close-fitting models (power greater than 

80% and Type I error rates of less than 10%) even when df is very small. For example, when df = 

2, λ = 0.80, and N = 200, the proportion of rejections based on SRMRu were 0%, 0%, and 97%, 
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and the proportion of rejections based on MLCFI were 0%, 4%, and 100% for correctly specified, 

slightly misspecified, and severely misspecified models, respectively. However, under the same 

conditions, the rejection rates based on the sample MLRMSEA  were 17%, 80%, and 100%, 

respectively.  

Interval Estimates  

Under model misspecifications for all three fit indices, we examined the accuracy of the 

CIs and p-values for the close fit tests. Specifically, the CIs and close fit tests for SRMR were 

computed based on the unbiased sample estimates (SRMRu ). For CFI, the CIs and close fit tests 

were computed using MLCFI  in equations 18 and 209. Table 5 reports the coverage rates for the 

90% CIs, where coverage rates between 85% and 95% (90% ± 5%) were considered acceptable 

(Maydeu-Olivares, Shi, & Rosseel, 2018). These cases are highlighted in bold in the table. 

Figure 6 provides the boxplots of the coverage rates for the 90% CIs of the three fit indices 

across all simulated conditions. As shown in Table 5 and Figure 6, in small df models, the 90% 

CIs for RMSEA, SRMR, and CFI were accurate across most simulated conditions. The CIs for 

the RMSEA generally performed better than the CIs for SRMR and CFI when there were minor 

model misspecifications (ρ = 0.90) and/or when the level of factor loadings was low (e.g., λ = 

0.40). However, the CIs for SRMR and CFI were generally more accurate when the model 

misspecification was more severe (ρ = .60) and/or when the level of factor loadings was high 

(e.g., λ = 0.80).  

------------------------------------------- 
Insert Table 5 and Figure 6 here 

-------------------------------------------- 
 

9  We also computed CIs and conducted close fit tests using  FBCCFI in equations 18 and 20, and the 

results were similar to those obtained using MLCFI .  
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We also computed the widths of the CIs across replications. Table 5 presents the average 

and median widths of the CIs. Figures 7–9 plot the average and median widths of the CIs for 

RMSEA, SRMR, and CFI against model sizes (dfs) across various sample sizes (i.e., N = 50, 

100, and 200), magnitudes of model misspecification, and levels of factor loadings. The 

ANOVA results showed that for all three fit indices, sizeable variability in the average width of 

the CIs could be explained by sample size (N). Not surprisingly, as sample size increased, the 

CIs for all three fit indices became narrower.  

------------------------------------------- 
Insert Figures 7-9 here 

-------------------------------------------- 
Model size (df) was an important factor in predicting the average width of the CIs for 

RMSEA (η2 = 0.46) and SRMR (η2 = 0.28). As shown in Table 5 and Figures 6–7, for both 

RMSEA and SRMR, the average width of the CIs increased as df decreased, especially when 

sample size was small. When fitting models with very small dfs (e.g., df = 2) and small sample 

sizes (e.g., N ≤ 100), the average widths of the CIs for both RMSEA and SRMR could be very 

large. For example, when ρ = 0.90, N =100, λ = 0.60, and df =2, the average width of the CIs for 

RMSEA and SRMR were both 0.18. Such wide intervals reflected high uncertainty and could not 

provide useful information in practice. For SRMR, we also observed a noticeable interaction 

effect between standardized factor loadings and the model size (λ × df; η2 = 0.09). As indicated 

in Figures 7 and 8, the average widths of the CIs for SRMR decreased noticeably as the level of 

factor loadings increased, especially when df was small. In addition, for SRMR, the median 

widths of the CIs were much narrower than their mean widths. For example, when ρ = 0.90, N 

=100, λ = 0.80, and df =2, the average and median width of CIs for SRMR were 0.13 and 0.05, 

respectively. Such patterns were not observed for the CIs for RMSEA.  
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Meanwhile, the widths of the CIs for CFI were less sensitive to the model size (η2 = 

0.02). Instead, sizable variability in the widths of the CIs for CFI can be explained by the size of 

model misfit (ρ; η2 = 0.23) and level of factor loadings (λ; η2 =0.20). As shown in Figure 9, the 

widths of the CIs for CFI became narrower as the level of factor loadings (λ) increased and 

model misfit became less severe (e.g., ρ = 0.90). The average and median widths of the CIs for 

CFI yielded similar values.  

Close Fit Tests 

Finally, we examined the accuracy of the p-values for close fit tests. Table 6 depicts the 

empirical rejection rates (Type I error rates) at the 5% significance level when testing whether 

the RMSEAs and SRMRs were less than or equal to and the CFIs were greater than or equal to 

their population values. We considered a 5% rejection rate range between 2% and 8% to be 

reasonably accurate (5% ± 3%; Bradley, 1978), thus those cases are highlighted in bold.  

------------------------------------------- 
Insert Table 6 here 

-------------------------------------------- 
The results showed that, in general, the empirical rejection rates for all three indices were 

close to their nominal levels under the examined conditions, even when the model size (df) was 

very small. Figure 10 provides the boxplots of the Type I error rates for close fit tests based on 

the three indices across levels of factor loadings (λ) and model misfit (ρ). As shown in Table 7 

and Figure 10, the Type I error rates for RMSEA were generally more accurate when the level of 

factor loadings was low (e.g., λ = 0.40) and/or the level of model misfit was minor (e.g., ρ = 

0.90). However, for SRMR and CFI, Type I error rates tended to be more accurate under models 

with more severe levels of misfit (e.g., ρ = 0.60) and/or higher levels of factor loadings (e.g., λ = 

0.80). 
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------------------------------------------- 
Insert Figure 10 here 

-------------------------------------------- 

Numerical Example: Open-Book Closed-Book Data 

In this section, we present a numeric example to compare the sample estimates and CIs 

for SRMR and RMSEA when assessing a factor analysis model with small df. The R code and 

data used in this example are included as supplementary materials. For this, we used the open-

book closed-book (OBCB) dataset first introduced in Mardia, Kent, and Kirby (1979). The 

OBCB data consisted of test scores of five topics (i.e., p = 5): mechanics, vectors, algebra, 

analysis, and statistics. The first two tests are from closed-book tests while the other three are 

from open-book tests. The five tests (variables) were measured on a scale of 0–100. Table 7 

summarizes the descriptive statistics of the measured variables. The sample size is N = 88. The 

OBCB data closely matched the conditions considered in our simulation study (i.e., small p, 

small N, and approximately normally distributed data). 

------------------------------------------- 
Insert Table 7 here 

-------------------------------------------- 
We first fit a one-factor CFA model with no mean structure to the OBCB data using ML 

estimation (df = 5). The standardized factor loadings under the one-factor model ranged from 

0.60 to 0.92. The sample RMSEA was 0.096, with a 90% CI between 0 and 0.195. The sample 

SRMRs using the biased (SRMR.b) and unbiased (SRMR.u) formulas were 0.048 and 0.039, 

respectively. The 90% CI using the unbiased formula SRMR was [0.004, 0.074]. In terms of 

CFI, the sample CFIML and CFIFBC were 0.979 and 0.976, respectively, while their corresponding 

90% CIs were [0.923, 1] and [0.918, 1], respectively. Using conventional cutoffs, the sample 

RMSEA suggested that the one-factor model fit the data poorly. The sample SRMR and CFI met 
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the cutoffs for close fit; however, their CIs indicated that with a 90% level of confidence, it is not 

clear whether the population values met the conventional cutoffs. 

Based on previous studies (e.g., Cai & Lee, 2009), we fit a simple-structure CFA model 

with two correlated factors (i.e., closed-book tests and open-book tests). The df for the two-factor 

model was four and the standardized factor loadings ranged from 0.70 to 0.93. The sample 

RMSEA for the two-factor model was 0; however, the 90% CI for the RMSEA was [0, 0.118], 

suggesting high uncertainty in estimating the RMSEA. The sample SRMRs using the biased 

(SRMR.b) and unbiased (SRMR.u) formulas were 0.019 and 0, respectively. The 90% CI for the 

unbiased formula SRMR was [0, 0.061]. For CFI, both the sample CFIML and CFIFBC were equal 

to 1.000. The 90% CIs based on CFIML and CFIFBC were [0.976, 1] and [0.967, 1], respectively. 

The 90% CIs for SRMR and CFI are noticeably narrower than those obtained from RMSEA. 

Using the recommended cutoffs10, the point estimates and 90% CIs of the SRMR and CFI 

suggested that the proposed two-factor model fit well. 

Discussion and conclusion 

This study compared the suitability of RMSEA, SRMR, and CFI in assessing factor 

analysis models with small dfs. The theoretical presentation of the formulas for RMSEA, SRMR, 

and CFI provided a foundation for understanding the indices and how their point estimates and 

CIs were calculated. At the population level, the results showed that given a fixed magnitude of 

model misspecification, the population RMSEA (i.e., the true value) increased noticeably as df 

 
10  For the acceptable fit cutoff, we used CFI ≥ 0.95 and SRMR ≤ R2×0.10. For the numerical 

example, the average communality of the manifest variables was R2 = 0.620. The cutoff value for 

the SRMR was 0.620 ×0.10 = 0.062. 
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decreased. This finding is not surprising. By definition, RMSEA penalizes more complex models 

by including their df in the denominator of its formula. Therefore, keeping the misspecified 

parameter(s) fixed, the population RMSEA is expected to increase as df decreases. 

On the other hand, for a fixed magnitude of misspecification (i.e., the inter-factor 

correlation, ρ), population SRMR, and CFI are less susceptible to the effect of model size (df). In 

addition, as the levels of factor loadings (λ) increased, the population RMSEA and SRMR 

increased and population CFI decreased, suggesting a worse fit. Our findings regarding the 

effects of model size (df) and level of factor loadings (λ) on the population fit indices are 

consistent with those of previous studies (Ridon, 1996; Kenny & McCoach, 2003; Savalei, 2012; 

Shi et al., 2019; Maydeu-Olivares, 2017; Shi, Maydeu-Olivares, & DiStefano, 2018; Hancock & 

Mueller, 2011; McNeish, An & Hancock, 2018).  

The results of this study provide a better understanding of the behavior of sample 

RMSEA, SRMR, and CFI when assessing models with small df. For all three fit indices, the 

biases for the sample estimates decreased as the levels of factor loadings (λ) and sample size (N) 

increased. Compared to the biased sample SRMR ( bSRMR ; equation 9), the sample SRMR 

computed using the unbiased formula (SRMRu ; equation 10) performed better with small sample 

sizes, converging to its population value faster. We also compared sample CFIs computed using 

two formulas. The CFI computed under MLCFI (equation 15) could converge to its population 

value faster than  FBCCFI (equation 16) under the conditions considered in the current study, 

especially for models with a low level of factor loadings (λ) and large df. Under both formulas, 

noticeable biases in the sample CFIs were observed when fitting large models with low factor 

loadings and very small sample size.  

When fitting models with smaller df, the variability (i.e., standard deviation) of the 
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sample RMSEA and SRMR tended to increase, especially when the sample size (N) was small. 

However, the standard deviation of the sample estimates of CFI was less sensitive to model size 

(df). We provided explanations of the impact of model size (df) on the standard deviations of the 

three fit indices. First, we showed, in the Appendix, that under a null hypothesis of close fit, the 

asymptotic variance of the sample squared RMSEA has variance 0
2 2

42 F
N df N df

+
× ×

. This 

generalizes the result of Rigdon (1996) and Kenny et al. (2015), who showed that in the special 

case of exact model fit, 0 0F = , this variance is 2

2
N df×

. As a result, holding the level of 

population model misspecification 0F  constant, the variance of the sample RMSEA increases as 

df decreases, leading to higher uncertainty when estimating this population parameter. For the 

unbiased SRMR, under the normal reference distribution, the expected standard error for SRMR 

is approximated asymptotically as given in equation 12. We see in this equation that when 

holding the degree of misfit constant, as ( 1) / 2t p p= + decreases (in small models), the 

variability of SRMRu increases. Finally, in small models, both the independence baseline model 

and fitted model will involve a small df. Since the CFI is a comparative index, the impact of df 

on the variability of the chi-square test statistics could be canceled out to some degree. 

Additional studies are needed to further investigate this issue. 

From empirical users’ perspective, we also examined the performance of applying the 

conventional cutoffs to the evaluation of small df models. When the df was very small (df = 2), 

sample RMSEA tended to reject close-fitting models (ρ = .90) often (20%), even as the sample 

size reached 1,000. The sample SRMR and CFI performed better with small df models. 

Generally, as the sample size reaches 200, the unbiased sample SRMR (SRMRu ) and CFI 

(MLCFI ) can be used even for very small models (e.g., df = 2), except when the level of factor 
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loadings is very low. Researchers should also be cautious when applying the conventional 

cutoffs for SRMR or CFI with low factor loadings. When the standardized factor loadings are 

very low (i.e., λ ≤ 0.4), using sample SRMR or CFI with a conventional cutoff often leads to 

rejection of correctly specified or close-fitting models, except when the sample size is very large 

(e.g., N > 1,000). 

The three fit indices performed similarly in terms of the accuracy of their p-values in 

close fit tests and CI coverage rates. RMSEA performed better when the level of factor loadings 

was low (e.g., λ = 0.40) and/or the level of model misfit was minor (e.g., ρ = 0.90), whereas 

SRMR and CFI were superior to RMSEA in models with more severe levels of misfit (e.g., ρ = 

0.60) and/or higher levels of factor loadings (e.g., λ = 0.80). It is notable that the performance of 

CIs for SRMR and CFI became worse as the level of model misfit decreased. The plausible 

explanations are as follows. The values of SRMR and CFI are bounded by zero and one, 

respectively. As a result, a normal approximation may fail to represent the observations at the tail 

of the distribution, especially when the degree of model misfit is small (i.e., producing more 0s 

for SRMR and more 1s for CFI).  

In addition, the widths of the CIs for CFI are not sensitive to the model size (df). The 

average widths of the CIs for RMSEA and SRMR can be noticeably wide under models with 

very small df (e.g., df = 2), especially when the sample size is small. Under the above conditions, 

however, the median widths of the CIs for SRMR were much narrower than the average widths; 

this pattern was not observed for the CIs of RMSEA.  

Why were the average and median CI sizes for SRMR so different? We examined the 

empirical distributions of the size of the CIs for both RMSEA and SRMR under a specific 

condition (i.e., λ = 0.60, ρ = 0.90, N = 100, and df = 2). For RMSEA, the size of the CIs was 
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generally large across most replications: 4,478 of 5,000 (89.6%) of RMSEA CIs were larger than 

0.10. However, the CIs for SRMR were generally much narrower than the RMSEA CIs in the 

majority of replications: Only 1,192 of 5,000 (23.8%) SRMR CIs were larger than 0.10. 

Nevertheless, a small proportion of SRMR CIs were extremely large: 276 out of 5,000 (5.5%) 

were larger than 0.30. Due to this small number of extreme values, the average size of SRMR 

CIs was inflated and their median size was noticeably smaller than average. In summary, in 

assessing very small models with small sample sizes (e.g., df = 2 and N < 100), SRMR CIs were 

mostly narrower than RMSEA CIs. Nevertheless, there is a slight chance that unreasonably wide 

CIs may be observed using SRMR. Future studies should explore this phenomenon further. 

The current study is not without limitations. First, its findings on sample and interval 

estimates are based on multivariate normally distributed data, and many conclusions are 

condtional on the assumption of multivariate normality. The assumption of normality can be 

violated in many applications (Micceri, 1989). Statistical theories and formulas to estimate 

RMSEA, SRMR, CFI, and close fit tests under non-normal data are available (Brosseau-Liard, 

Savalei, & Li, 2012; Brosseau-Liard & Savalei, 2014; Savalei, 2018; Gao, Shi, & Maydeu-

Olivares, 2020; Maydeu-Olivares, 2017; Shi, Maydeu-Olivares & Rosseel, 2020; Lai, 2019a; 

2019b; 2020). Based on previous findings (e.g., Lai, 2019a; 2019b; 2020; Maydeu-Olivares et 

al., 2018; Gao et al., 2020), we expected the formulas to show acceptable performance under 

non-normal data. However, future studies should verify the performance of RMSEA, SRMR, and 

CFI in assessing small df models with non-normal data. Moreover, this study only considered 

one type of model misspecification (misspecified dimensionality under factor analysis models). 

In future studies, additional types of models (e.g., path analysis models) and model 

misspecifications (e.g., omitted cross-loading) should be investigated. 
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In summary, our findings support the idea that the behaviors of fit indices rely not only 

on the model fit or misfit, but also on the context of the model, such as the model size (df). The 

population RMSEA is heavily influenced by the model size (df). When df was very small, the 

sample RMSEA often erroneously rejected correctly specified or close-fitting models. The CIs of 

RMSEA also tended to be very wide, suggesting high uncertainty regarding the size of the model 

misfit. In comparison to RMSEA, the population SRMR and CFI are less susceptible to the 

effects of changes in df. The sample SRMR and CFI could provide more useful information in 

assessing models with very small df. A sample of N = 200 observations is generally adequate for 

interpreting the sample SRMR (SRMRu ) or CFI (MLCFI ) in extremely small models (e.g., df = 

2), unless the level of factor loadings is very low (λ ≤ 0.40). In general, the 90% CIs and p-values 

for close fit tests under SRMR and CFI were accurate. The CIs for SRMR can be fairly wide as 

the df is very small, especially when the sample size (N) is small and factor loadings are very 

low. The widths of CIs for CFI are less sensitive to the impact of df. 

Based on the major findings, we provide the following concluding remarks. When 

assessing very small models (e.g., df = 2), researchers should be cautious in interpreting 

RMSEA and should rely more on SRMR and CFI. In other words, researchers should pay close 

attention when interpreting fit indices of models with very small df and low factor loadings, 

especially when the sample size is small. It is worth noting that, based on classic psychometric 

theory (Lord & Novick, 2008; McDonald, 1999), short scales with low (standardized) factor 

loadings are not recommended for use in practice as they could generate unreliable test scores. In 

addition, considering construct representation, short scales are generally suitable for “narrow” 

measures that have “content homogeneous indicators”. However, researchers should be cautious 

in applying short scales for conceptually broader constructs that have more diverse item content 
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(Cattell, 1966; Reise, Morizot & Hays, 2007).  

We acknowledge and emphasize that evaluating model fit is a critical but difficult task 

and that there are no “golden rules” for assessing any models. It is generally recommended that 

model fit be evaluated based on more than one index. For instance, Hu and Bentler (1999) 

recommended a two-index strategy using a combination of SRMR and one supplementary 

index11. Our recommendations are consistent with this two-index strategy in that the SRMR and 

CFI may be used to assess models with small df. We hope that the findings from this study 

inform researchers in psychological, behavioral, and other social science fields, who work with 

small df models. 

 

  

 
11  The supplementary indices included the Tucker-Lewis Index (TLI; Tucker & Lewis, 1973), Bollen's 

(1989b) fit index (BL89), relative noncentrality index (RNI; McDonald & Marsh, 1990), CFI, 

Gamma hat (Steiger, 1989), McDonald's centrality index (Mc; McDonald, 1989), and RMSEA.  
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Appendix: 

Asymptotic Mean and the Variance of the Sample Squared RMSEA in Close Fitting 

Models 

Under parameter drift assumptions, the asymptotic distribution of the likelihood-ratio 

test statistic can be approximated by a non-central chi-square distribution with df degrees of 

freedom and noncentrality parameter 0NFλ = , where 0F  denotes the population discrepancy 

between the data generating process and the fitted model (Steiger & Lind, 1980; Browne & 

Cudeck, 1993). Since the mean and variance of a non-central chi-square distribution with df

degrees of freedom and noncentrality parameter λ  are df + λ  and 2 4df + λ , respectively, it 

follows that under the null hypothesis of close model fit *
0 :H RMSEA k≤ , 

( ) ( )222
0MLML

ML
E X df FX dfE RMSEA E

N df N df N df df
− − λ

= = = = × × × 

( ) ( )222
0

2 2 2 2 2 2

var 42var var MLML
ML

X FX df dfRMSEA
N df N df N df N df N df

 − 2 + 4λ
= = = = + × × × × × 

In the special case where the model fits exactly, i.e., *
0 : 0H RMSEA = , 0 0F = , and these 

expressions reduce to those reported in Kenny et al. (2015, p.492): ( )2
0MLE RMSEA =  and 

( )2

2

2var MLRMSEA
N df

=
×

. 



Table 1: Population Values and Average Sample Estimates: RMSEA   

N λ df 
Correctly Specified Models 

ρ = 1.0 
Close Fit Models 

ρ = 0.9 
Severely Misspecifed Models 

ρ = 0.6 
pop. mean sd pop. mean sd c.v. pop mean sd c.v. 

50 

.4 
2 0 0.030 0.058 0.015 0.030 0.056 3.73 0.058 0.028 0.056 0.97 

20 0 0.039 0.043 0.011 0.039 0.043 3.91 0.040 0.043 0.044 1.10 
54 0 0.047 0.036 0.010 0.047 0.035 3.50 0.036 0.054 0.037 1.03 

.6 
2 0 0.046 0.072 0.044 0.051 0.075 1.70 0.154 0.099 0.098 0.64 

20 0 0.044 0.045 0.030 0.050 0.046 1.53 0.101 0.097 0.050 0.50 
54 0 0.048 0.036 0.028 0.054 0.036 1.29 0.088 0.096 0.034 0.39 

.8 
2 0 0.051 0.075 0.126 0.099 0.101 0.80 0.374 0.325 0.109 0.29 

20 0 0.044 0.045 0.084 0.084 0.051 0.61 0.228 0.221 0.043 0.19 
54 0 0.048 0.036 0.074 0.085 0.035 0.47 0.190 0.191 0.030 0.16 

100 

.4 
2 0 0.026 0.045 0.015 0.025 0.044 2.93 0.058 0.029 0.048 0.83 

20 0 0.025 0.029 0.011 0.026 0.029 2.64 0.040 0.036 0.033 0.83 
54 0 0.025 0.024 0.010 0.026 0.024 2.40 0.036 0.038 0.026 0.72 

.6 
2 0 0.033 0.052 0.044 0.041 0.056 1.27 0.154 0.120 0.079 0.51 

20 0 0.026 0.030 0.030 0.034 0.032 1.07 0.101 0.096 0.033 0.33 
54 0 0.025 0.024 0.028 0.033 0.026 0.93 0.088 0.088 0.022 0.25 

.8 
2 0 0.033 0.052 0.126 0.102 0.080 0.63 0.374 0.346 0.072 0.19 

20 0 0.026 0.030 0.084 0.079 0.035 0.42 0.228 0.222 0.029 0.13 
54 0 0.025 0.024 0.074 0.074 0.023 0.31 0.190 0.188 0.020 0.11 

200 

.4 
2 0 0.021 0.034 0.015 0.022 0.035 2.33 0.058 0.033 0.042 0.72 

20 0 0.016 0.020 0.011 0.018 0.021 1.91 0.040 0.035 0.025 0.63 
54 0 0.015 0.016 0.010 0.016 0.017 1.70 0.036 0.034 0.018 0.50 

.6 
2 0 0.023 0.036 0.044 0.035 0.044 1.00 0.154 0.136 0.056 0.36 

20 0 0.017 0.020 0.030 0.028 0.024 0.80 0.101 0.098 0.021 0.21 
54 0 0.015 0.016 0.028 0.027 0.018 0.64 0.088 0.088 0.013 0.15 

.8 
2 0 0.023 0.036 0.126 0.110 0.060 0.48 0.374 0.356 0.050 0.13 

20 0 0.017 0.020 0.084 0.081 0.022 0.26 0.228 0.224 0.020 0.09 
54 0 0.015 0.016 0.074 0.073 0.014 0.19 0.190 0.188 0.014 0.07 

500 

.4 
2 0 0.014 0.023 0.015 0.017 0.025 1.67 0.058 0.044 0.035 0.60 

20 0 0.010 0.013 0.011 0.012 0.014 1.27 0.040 0.037 0.015 0.38 
54 0 0.008 0.010 0.010 0.011 0.011 1.10 0.036 0.035 0.009 0.25 

.6 
2 0 0.015 0.023 0.044 0.035 0.033 0.75 0.154 0.148 0.034 0.22 

20 0 0.010 0.013 0.030 0.027 0.016 0.53 0.101 0.100 0.012 0.12 
54 0 0.008 0.010 0.028 0.026 0.011 0.39 0.088 0.088 0.008 0.09 

.8 
2 0 0.015 0.023 0.126 0.121 0.035 0.28 0.374 0.365 0.032 0.09 

20 0 0.010 0.013 0.084 0.083 0.012 0.14 0.228 0.226 0.013 0.06 
54 0 0.009 0.010 0.074 0.073 0.008 0.11 0.190 0.189 0.009 0.05 

1000 
.4 

2 0 0.010 0.016 0.015 0.014 0.019 1.27 0.058 0.050 0.026 0.45 
20 0 0.007 0.009 0.011 0.010 0.010 0.91 0.040 0.039 0.009 0.23 
54 0 0.006 0.007 0.010 0.009 0.008 0.80 0.036 0.036 0.006 0.17 

.6 2 0 0.010 0.016 0.044 0.037 0.026 0.59 0.154 0.151 0.024 0.16 
20 0 0.007 0.009 0.030 0.029 0.010 0.33 0.101 0.101 0.008 0.08 



54 0 0.006 0.007 0.028 0.027 0.006 0.21 0.088 0.088 0.005 0.06 

.8 
2 0 0.011 0.016 0.126 0.124 0.024 0.19 0.374 0.368 0.023 0.06 

20 0 0.007 0.009 0.084 0.083 0.008 0.10 0.228 0.227 0.009 0.04 
54 0 0.006 0.007 0.074 0.073 0.005 0.07 0.190 0.189 0.006 0.03 

 

Note. N = sample size; λ = standardized factor loadings; df = degrees of freedom; ρ = interfactor correlations; pop. = the population values; mean = 
the average sample estimates across replications; sd = the standard deviations of the sample estimates across replications; c.v. = the coefficient of 
variation.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2: Population Values and Average Sample Estimates: SRMR 

N λ df 

Correctly Specified Models 
ρ = 1.0 

Close Fit Models 
ρ = 0.9 

Severely Misspecifed Models 
ρ = 0.6 

pop. SRMR.b SRMR.u pop. SRMR.b SRMR.u pop. SRMR.b SRMR.u 
mean sd mean sd mean sd c.v. mean sd c.v. mean sd c.v. mean sd c.v. 

50 

.4 
2 0 0.042 0.021 0.014 0.025 0.006 0.042 0.021 3.53 0.013 0.025 4.12 0.023 0.042 0.022 0.96 0.013 0.025 1.10 

20 0 0.087 0.014 0.018 0.025 0.007 0.088 0.014 2.01 0.019 0.024 3.49 0.028 0.092 0.015 0.53 0.022 0.027 0.98 
54 0 0.099 0.010 0.018 0.021 0.007 0.100 0.010 1.44 0.018 0.022 3.10 0.029 0.105 0.011 0.38 0.026 0.025 0.88 

.6 
2 0 0.038 0.020 0.016 0.025 0.013 0.040 0.021 1.62 0.018 0.026 2.03 0.053 0.059 0.029 0.55 0.040 0.039 0.73 

20 0 0.068 0.013 0.016 0.020 0.016 0.072 0.013 0.83 0.020 0.022 1.38 0.063 0.097 0.021 0.33 0.056 0.033 0.52 
54 0 0.076 0.009 0.014 0.017 0.016 0.080 0.010 0.63 0.019 0.019 1.19 0.066 0.106 0.017 0.26 0.061 0.027 0.42 

.8 
2 0 0.022 0.012 0.010 0.015 0.023 0.033 0.018 0.78 0.022 0.023 0.99 0.094 0.102 0.036 0.38 0.099 0.038 0.40 

20 0 0.039 0.009 0.009 0.012 0.028 0.051 0.012 0.44 0.025 0.018 0.65 0.112 0.130 0.034 0.31 0.119 0.036 0.33 
54 0 0.043 0.007 0.008 0.010 0.029 0.056 0.010 0.36 0.027 0.015 0.52 0.117 0.136 0.032 0.28 0.123 0.034 0.29 

100 

.4 
2 0 0.032 0.016 0.012 0.020 0.006 0.031 0.016 2.73 0.012 0.020 3.29 0.023 0.034 0.017 0.75 0.014 0.022 0.95 

20 0 0.062 0.010 0.014 0.018 0.007 0.063 0.010 1.44 0.014 0.018 2.57 0.028 0.069 0.011 0.41 0.023 0.022 0.78 
54 0 0.070 0.007 0.012 0.015 0.007 0.071 0.007 1.01 0.014 0.016 2.26 0.029 0.077 0.008 0.28 0.025 0.019 0.67 

.6 
2 0 0.026 0.014 0.011 0.017 0.013 0.029 0.015 1.19 0.015 0.020 1.51 0.053 0.057 0.023 0.44 0.047 0.030 0.57 

20 0 0.048 0.008 0.011 0.014 0.016 0.052 0.009 0.56 0.016 0.016 1.01 0.063 0.081 0.016 0.25 0.060 0.022 0.35 
54 0 0.053 0.006 0.010 0.012 0.016 0.057 0.007 0.42 0.015 0.014 0.88 0.066 0.088 0.013 0.20 0.064 0.018 0.27 

.8 
2 0 0.015 0.008 0.006 0.010 0.023 0.028 0.013 0.57 0.022 0.017 0.73 0.094 0.102 0.027 0.28 0.101 0.027 0.29 

20 0 0.027 0.005 0.006 0.008 0.028 0.040 0.009 0.31 0.026 0.013 0.45 0.112 0.123 0.026 0.23 0.118 0.026 0.24 
54 0 0.030 0.004 0.006 0.007 0.029 0.044 0.007 0.25 0.028 0.010 0.35 0.117 0.128 0.024 0.20 0.122 0.024 0.21 

200 

.4 
2 0 0.023 0.012 0.009 0.015 0.006 0.024 0.012 2.06 0.010 0.015 2.57 0.023 0.029 0.014 0.63 0.016 0.019 0.83 

20 0 0.044 0.007 0.010 0.013 0.007 0.045 0.007 1.02 0.011 0.013 1.87 0.028 0.053 0.009 0.32 0.024 0.017 0.61 
54 0 0.049 0.005 0.009 0.011 0.007 0.050 0.005 0.70 0.010 0.011 1.62 0.029 0.059 0.006 0.22 0.026 0.014 0.49 

.6 
2 0 0.018 0.010 0.008 0.012 0.013 0.022 0.011 0.88 0.012 0.015 1.15 0.053 0.055 0.018 0.34 0.051 0.021 0.39 

20 0 0.034 0.006 0.008 0.010 0.016 0.038 0.006 0.40 0.014 0.012 0.77 0.063 0.072 0.012 0.19 0.062 0.014 0.23 
54 0 0.038 0.004 0.007 0.008 0.016 0.042 0.005 0.29 0.015 0.010 0.66 0.066 0.078 0.010 0.15 0.065 0.012 0.18 

.8 
2 0 0.010 0.005 0.004 0.007 0.023 0.025 0.010 0.42 0.022 0.012 0.51 0.094 0.101 0.020 0.21 0.101 0.020 0.21 

20 0 0.019 0.003 0.004 0.005 0.028 0.035 0.006 0.23 0.027 0.008 0.29 0.112 0.119 0.019 0.17 0.117 0.019 0.17 
54 0 0.021 0.002 0.004 0.005 0.029 0.037 0.005 0.18 0.029 0.006 0.22 0.117 0.124 0.017 0.14 0.121 0.017 0.14 

500 

.4 
2 0 0.015 0.008 0.007 0.010 0.006 0.016 0.008 1.39 0.008 0.011 1.78 0.023 0.026 0.011 0.49 0.020 0.015 0.65 

20 0 0.028 0.004 0.006 0.008 0.007 0.029 0.005 0.66 0.008 0.009 1.25 0.028 0.040 0.006 0.23 0.026 0.010 0.37 
54 0 0.031 0.003 0.005 0.007 0.007 0.032 0.003 0.46 0.007 0.008 1.08 0.029 0.043 0.005 0.16 0.029 0.007 0.26 

.6 
2 0 0.011 0.006 0.005 0.008 0.013 0.017 0.008 0.63 0.012 0.011 0.83 0.053 0.054 0.012 0.23 0.053 0.012 0.23 

20 0 0.021 0.003 0.005 0.006 0.016 0.027 0.004 0.28 0.014 0.008 0.51 0.063 0.067 0.008 0.13 0.063 0.009 0.14 
54 0 0.024 0.002 0.004 0.005 0.016 0.029 0.003 0.20 0.016 0.006 0.40 0.066 0.071 0.007 0.10 0.066 0.007 0.11 

.8 
2 0 0.006 0.003 0.003 0.004 0.023 0.024 0.006 0.28 0.023 0.007 0.29 0.094 0.100 0.013 0.14 0.100 0.013 0.14 

20 0 0.012 0.002 0.003 0.003 0.028 0.031 0.004 0.15 0.028 0.005 0.17 0.112 0.116 0.011 0.10 0.115 0.012 0.10 
54 0 0.013 0.001 0.002 0.003 0.029 0.033 0.004 0.12 0.029 0.004 0.13 0.117 0.121 0.010 0.09 0.119 0.010 0.09 

1000 .4 2 0 0.011 0.006 0.005 0.007 0.006 0.012 0.006 1.03 0.006 0.008 1.34 0.023 0.025 0.009 0.38 0.022 0.011 0.46 
20 0 0.020 0.003 0.004 0.006 0.007 0.021 0.003 0.47 0.007 0.007 0.94 0.028 0.034 0.005 0.17 0.027 0.006 0.22 



54 0 0.022 0.002 0.004 0.005 0.007 0.023 0.002 0.33 0.007 0.006 0.81 0.029 0.037 0.004 0.12 0.029 0.005 0.16 

.6 
2 0 0.008 0.004 0.004 0.005 0.013 0.015 0.006 0.48 0.012 0.008 0.62 0.053 0.053 0.009 0.16 0.053 0.009 0.16 

20 0 0.015 0.002 0.003 0.004 0.016 0.022 0.003 0.21 0.015 0.005 0.32 0.063 0.065 0.006 0.09 0.063 0.006 0.09 
54 0 0.017 0.002 0.003 0.004 0.016 0.024 0.002 0.15 0.016 0.004 0.23 0.066 0.068 0.005 0.07 0.066 0.005 0.08 

.8 
2 0 0.005 0.002 0.002 0.003 0.023 0.024 0.005 0.20 0.023 0.005 0.20 0.094 0.099 0.010 0.10 0.099 0.010 0.10 

20 0 0.008 0.001 0.002 0.002 0.028 0.029 0.003 0.11 0.028 0.003 0.11 0.112 0.114 0.008 0.07 0.114 0.008 0.07 
54 0 0.009 0.001 0.002 0.002 0.029 0.031 0.003 0.09 0.029 0.003 0.09 0.117 0.119 0.007 0.06 0.118 0.007 0.06 

 

Note. N = sample size; λ = standardized factor loadings; df = degrees of freedom; ρ = interfactor correlations; pop. = the population values; mean = 
the average sample estimates across replications; sd = the standard deviations of the sample estimates across replications; c.v. = the coefficient of 
variation. SRMR.b = sample SRMR using the biased formula (· bSRMR ; Equation 9); SRMR.u = sample SRMR computed using the unbiased formula 
(·SRMRu ;Equation 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3: Population Values and Average Sample Estimates: CFI 

N λ df 

Correctly Specified Models 
ρ = 1.0 

Close Fit Models 
ρ = 0.9 

Severely Misspecifed Models 
ρ = 0.6 

pop. CFI.ML CFI.FBC pop. CFI.ML CFI.FBC pop. CFI.ML CFI.FBC 
mean sd mean sd mean sd c.v. mean sd c.v. mean sd c.v. mean sd c.v. 

50 

.4 
2 1 0.950 0.130 0.918 0.167 0.996 0.949 0.134 0.13 0.917 0.170 0.17 0.915 0.937 0.165 0.18 0.907 0.196 0.21 

20 1 0.893 0.144 0.829 0.200 0.994 0.887 0.150 0.15 0.822 0.207 0.21 0.903 0.852 0.181 0.20 0.767 0.243 0.27 
54 1 0.845 0.148 0.781 0.180 0.993 0.835 0.157 0.16 0.766 0.190 0.19 0.894 0.767 0.188 0.21 0.675 0.228 0.26 

.6 
2 1 0.975 0.053 0.966 0.070 0.993 0.969 0.061 0.06 0.958 0.080 0.08 0.876 0.906 0.127 0.14 0.876 0.162 0.18 

20 1 0.959 0.055 0.950 0.061 0.989 0.948 0.064 0.06 0.937 0.072 0.07 0.854 0.839 0.119 0.14 0.810 0.137 0.16 
54 1 0.946 0.054 0.934 0.058 0.986 0.931 0.064 0.06 0.917 0.069 0.07 0.842 0.802 0.107 0.13 0.777 0.114 0.14 

.8 
2 1 0.992 0.017 0.991 0.018 0.982 0.976 0.035 0.04 0.974 0.038 0.04 0.785 0.816 0.106 0.14 0.804 0.113 0.14 

20 1 0.985 0.020 0.983 0.021 0.972 0.961 0.035 0.04 0.957 0.036 0.04 0.759 0.765 0.084 0.11 0.752 0.089 0.12 
54 1 0.979 0.021 0.975 0.022 0.966 0.947 0.034 0.04 0.941 0.035 0.04 0.748 0.742 0.073 0.10 0.731 0.077 0.10 

100 

.4 
2 1 0.963 0.088 0.939 0.128 0.996 0.960 0.096 0.10 0.935 0.137 0.14 0.915 0.936 0.140 0.15 0.902 0.178 0.19 

20 1 0.942 0.086 0.923 0.109 0.994 0.935 0.094 0.09 0.911 0.122 0.12 0.903 0.877 0.139 0.15 0.827 0.182 0.20 
54 1 0.938 0.078 0.922 0.088 0.993 0.928 0.087 0.09 0.910 0.099 0.10 0.894 0.854 0.129 0.14 0.816 0.149 0.17 

.6 
2 1 0.987 0.028 0.985 0.032 0.993 0.981 0.035 0.04 0.978 0.040 0.04 0.876 0.893 0.102 0.12 0.875 0.121 0.14 

20 1 0.983 0.025 0.981 0.026 0.989 0.974 0.033 0.03 0.971 0.035 0.04 0.854 0.853 0.082 0.10 0.843 0.088 0.10 
54 1 0.981 0.024 0.978 0.025 0.986 0.970 0.032 0.03 0.966 0.033 0.03 0.842 0.835 0.070 0.08 0.826 0.073 0.09 

.8 
2 1 0.996 0.008 0.996 0.008 0.982 0.980 0.023 0.02 0.980 0.024 0.02 0.785 0.805 0.075 0.10 0.797 0.079 0.10 

20 1 0.994 0.008 0.994 0.009 0.972 0.969 0.022 0.02 0.968 0.022 0.02 0.759 0.766 0.059 0.08 0.759 0.062 0.08 
54 1 0.993 0.009 0.992 0.009 0.966 0.961 0.020 0.02 0.960 0.021 0.02 0.748 0.751 0.052 0.07 0.745 0.055 0.07 

200 

.4 
2 1 0.976 0.054 0.966 0.075 0.996 0.971 0.060 0.06 0.958 0.087 0.09 0.915 0.932 0.113 0.12 0.903 0.153 0.17 

20 1 0.972 0.043 0.968 0.047 0.994 0.966 0.051 0.05 0.961 0.056 0.06 0.903 0.895 0.099 0.11 0.877 0.115 0.13 
54 1 0.973 0.037 0.970 0.039 0.993 0.967 0.043 0.04 0.962 0.046 0.05 0.894 0.886 0.084 0.09 0.874 0.089 0.10 

.6 
2 1 0.994 0.013 0.993 0.014 0.993 0.988 0.021 0.02 0.987 0.022 0.02 0.876 0.885 0.077 0.09 0.875 0.086 0.10 

20 1 0.992 0.012 0.992 0.012 0.989 0.984 0.018 0.02 0.983 0.019 0.02 0.854 0.855 0.055 0.06 0.851 0.058 0.07 
54 1 0.992 0.011 0.992 0.011 0.986 0.982 0.017 0.02 0.981 0.018 0.02 0.842 0.840 0.046 0.05 0.837 0.047 0.06 

.8 
2 1 0.998 0.004 0.998 0.004 0.982 0.982 0.016 0.02 0.981 0.016 0.02 0.785 0.799 0.054 0.07 0.793 0.056 0.07 

20 1 0.997 0.004 0.997 0.004 0.972 0.971 0.014 0.01 0.971 0.014 0.01 0.759 0.763 0.042 0.06 0.759 0.044 0.06 
54 1 0.997 0.004 0.997 0.004 0.966 0.964 0.013 0.01 0.964 0.013 0.01 0.748 0.750 0.037 0.05 0.747 0.038 0.05 

500 

.4 
2 1 0.989 0.024 0.987 0.027 0.996 0.984 0.031 0.03 0.982 0.036 0.04 0.915 0.922 0.086 0.09 0.909 0.102 0.11 

20 1 0.989 0.018 0.989 0.018 0.994 0.985 0.022 0.02 0.984 0.023 0.02 0.903 0.904 0.060 0.07 0.899 0.062 0.07 
54 1 0.990 0.015 0.990 0.015 0.993 0.985 0.019 0.02 0.985 0.019 0.02 0.894 0.893 0.047 0.05 0.891 0.048 0.05 

.6 
2 1 0.998 0.005 0.997 0.005 0.993 0.991 0.012 0.01 0.991 0.012 0.01 0.876 0.879 0.051 0.06 0.874 0.054 0.06 

20 1 0.997 0.005 0.997 0.005 0.989 0.988 0.010 0.01 0.988 0.010 0.01 0.854 0.854 0.034 0.04 0.853 0.034 0.04 
54 1 0.997 0.004 0.997 0.004 0.986 0.986 0.009 0.01 0.986 0.009 0.01 0.842 0.841 0.028 0.03 0.840 0.028 0.03 

.8 
2 1 0.999 0.002 0.999 0.002 0.982 0.982 0.010 0.01 0.981 0.010 0.01 0.785 0.793 0.035 0.04 0.789 0.036 0.05 

20 1 0.999 0.002 0.999 0.002 0.972 0.972 0.008 0.01 0.972 0.008 0.01 0.759 0.761 0.027 0.04 0.759 0.028 0.04 
54 1 0.999 0.001 0.999 0.002 0.966 0.965 0.007 0.01 0.965 0.007 0.01 0.748 0.748 0.024 0.03 0.747 0.024 0.03 

1000 .4 2 1 0.994 0.012 0.994 0.013 0.996 0.990 0.018 0.02 0.990 0.019 0.02 0.915 0.919 0.065 0.07 0.913 0.073 0.08 
20 1 0.995 0.009 0.995 0.009 0.994 0.990 0.013 0.01 0.990 0.013 0.01 0.903 0.903 0.039 0.04 0.902 0.040 0.04 



54 1 0.995 0.007 0.995 0.007 0.993 0.991 0.011 0.01 0.990 0.011 0.01 0.894 0.895 0.030 0.03 0.894 0.030 0.03 

.6 
2 1 0.999 0.003 0.999 0.003 0.993 0.992 0.008 0.01 0.992 0.008 0.01 0.876 0.877 0.037 0.04 0.875 0.038 0.04 

20 1 0.999 0.002 0.999 0.002 0.989 0.989 0.006 0.01 0.989 0.006 0.01 0.854 0.854 0.023 0.03 0.853 0.023 0.03 
54 1 0.999 0.002 0.999 0.002 0.986 0.986 0.006 0.01 0.986 0.006 0.01 0.842 0.842 0.019 0.02 0.841 0.019 0.02 

.8 
2 1 1.000 0.001 1.000 0.001 0.982 0.982 0.007 0.01 0.982 0.007 0.01 0.785 0.790 0.025 0.03 0.788 0.026 0.03 

20 1 1.000 0.001 1.000 0.001 0.972 0.972 0.006 0.01 0.972 0.006 0.01 0.759 0.760 0.019 0.03 0.758 0.019 0.03 
54 1 1.000 0.001 1.000 0.001 0.966 0.966 0.005 0.01 0.965 0.005 0.01 0.748 0.748 0.017 0.02 0.747 0.020 0.03 

 

Note. N = sample size; λ = standardized factor loadings; df = degrees of freedom; ρ = interfactor correlations; pop. = the population values; mean = 
the average sample estimates across replications; sd = the standard deviations of the sample estimates across replications; c.v. = the coefficient of 
variation. CFI.ML = sample CFI computed using · MLCFI  (Equation 15); CFI.FBC = sample CFI computed using · FBCCFI  (Equation 16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 4: Empirical Rejection Rates using Conventional Cutoffs 

N λ df 

Correctly Specified Models 
ρ = 1.0 

Close Fit Models 
ρ = 0.9 

Severely Misspecifed Models 
ρ = 0.6 

RMSEA 
> 0.06 

SRMR 
> 0.08 

SRMR 
> 0.10× R2 

CFI 
< 0.95 

RMSEA 
> 0.06 

SRMR 
> 0.08 

SRMR 
> 0.10× R2 

CFI 
< 0.95 

RMSEA 
> 0.06 

SRMR 
> 0.08 

SRMR 
> 0.10× R2 

CFI 
< 0.95 

50 

.4 
2 0.22 0.02 0.25 0.21 0.22 0.02 0.26 0.21 0.20 0.03 0.24 0.21 

20 0.34 0.01 0.40 0.46 0.34 0.01 0.41 0.47 0.37 0.03 0.45 0.52 
54 0.41 0.00 0.45 0.66 0.41 0.00 0.45 0.66 0.50 0.02 0.56 0.74 

.6 
2 0.31 0.02 0.23 0.17 0.34 0.03 0.26 0.21 0.57 0.16 0.52 0.48 

20 0.38 0.00 0.20 0.32 0.44 0.01 0.27 0.40 0.79 0.24 0.75 0.79 
54 0.43 0.00 0.14 0.46 0.49 0.00 0.22 0.55 0.87 0.24 0.84 0.92 

.8 
2 0.34 0.00 0.00 0.04 0.55 0.02 0.05 0.17 0.98 0.69 0.83 0.91 

20 0.39 0.00 0.00 0.06 0.71 0.00 0.02 0.33 1.00 0.86 0.95 0.99 
54 0.43 0.00 0.00 0.11 0.80 0.00 0.01 0.50 1.00 0.91 0.98 1.00 

100 

.4 
2 0.21 0.00 0.29 0.20 0.20 0.00 0.28 0.21 0.24 0.01 0.33 0.27 

20 0.16 0.00 0.38 0.36 0.16 0.00 0.40 0.39 0.28 0.00 0.55 0.55 
54 0.08 0.00 0.38 0.43 0.09 0.00 0.40 0.46 0.21 0.00 0.64 0.70 

.6 
2 0.26 0.00 0.12 0.09 0.32 0.00 0.18 0.14 0.75 0.14 0.68 0.64 

20 0.17 0.00 0.06 0.11 0.26 0.00 0.13 0.20 0.88 0.18 0.87 0.89 
54 0.08 0.00 0.02 0.12 0.17 0.00 0.08 0.25 0.90 0.17 0.94 0.96 

.8 
2 0.26 0.00 0.00 0.00 0.66 0.00 0.01 0.11 1.00 0.78 0.92 0.99 

20 0.17 0.00 0.00 0.00 0.74 0.00 0.00 0.18 1.00 0.94 0.99 1.00 
54 0.09 0.00 0.00 0.00 0.77 0.00 0.00 0.28 1.00 0.98 1.00 1.00 

200 

.4 
2 0.16 0.00 0.28 0.17 0.17 0.00 0.30 0.19 0.27 0.00 0.43 0.36 

20 0.02 0.00 0.31 0.23 0.03 0.00 0.35 0.27 0.16 0.00 0.67 0.62 
54 0.00 0.00 0.28 0.23 0.00 0.00 0.34 0.29 0.05 0.00 0.78 0.75 

.6 
2 0.18 0.00 0.03 0.02 0.28 0.00 0.08 0.07 0.91 0.07 0.79 0.78 

20 0.03 0.00 0.00 0.01 0.10 0.00 0.04 0.06 0.97 0.10 0.97 0.97 
54 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.05 0.98 0.10 1.00 1.00 

.8 
2 0.18 0.00 0.00 0.00 0.80 0.00 0.00 0.04 1.00 0.85 0.97 1.00 

20 0.03 0.00 0.00 0.00 0.84 0.00 0.00 0.07 1.00 0.99 1.00 1.00 
54 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.13 1.00 1.00 1.00 1.00 

500 

.4 
2 0.06 0.00 0.21 0.08 0.08 0.00 0.25 0.11 0.34 0.00 0.63 0.51 

20 0.00 0.00 0.16 0.04 0.00 0.00 0.22 0.09 0.04 0.00 0.85 0.76 
54 0.00 0.00 0.10 0.03 0.00 0.00 0.16 0.06 0.00 0.00 0.95 0.89 

.6 
2 0.06 0.00 0.00 0.00 0.25 0.00 0.01 0.01 0.99 0.02 0.92 0.94 

20 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.00 0.02 1.00 1.00 
54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.03 1.00 1.00 

.8 
2 0.06 0.00 0.00 0.00 0.95 0.00 0.00 0.01 1.00 0.94 1.00 1.00 

20 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.01 1.00 1.00 1.00 1.00 
54 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.03 1.00 1.00 1.00 1.00 



1000 

.4 
2 0.01 0.00 0.10 0.02 0.03 0.00 0.16 0.04 0.37 0.00 0.75 0.63 

20 0.00 0.00 0.04 0.00 0.00 0.00 0.10 0.01 0.01 0.00 0.96 0.89 
54 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.00 1.00 0.98 

.6 
2 0.01 0.00 0.00 0.00 0.20 0.00 0.00 0.00 1.00 0.00 0.98 0.99 

20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 
54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 

.8 
2 0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.98 1.00 1.00 

20 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 
54 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 

 

Note. N = sample size; λ = standardized factor loadings; df = degrees of freedom; ρ = interfactor correlation; the results for SRMR and CFI were 
based on ·SRMRu and · MLCFI .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: Coverage Rates, Average and Median Widths of the 90% Confidence Intervals (CI) 

N λ df 
90% CI Coverage Rates Average CI Widths  Median CI Widths 

ρ = .90 ρ = .60 ρ = .90 ρ = .60 ρ = .90 ρ = .60 
RMSEA SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFI 

50 

.4 
2 0.92 0.90 0.97 0.91 0.80 0.93 0.22 0.46 0.34 0.22 0.58 0.39 0.23 0.14 0.29 0.23 0.14 0.34 

20 0.89 0.90 0.81 0.89 0.97 0.83 0.12 0.07 0.33 0.12 0.07 0.37 0.13 0.06 0.31 0.13 0.06 0.34 
54 0.82 0.83 0.59 0.83 0.95 0.61 0.10 0.05 0.29 0.10 0.06 0.31 0.10 0.04 0.30 0.10 0.06 0.32 

.6 
2 0.91 0.87 0.99 0.91 0.87 0.79 0.25 0.48 0.17 0.29 0.31 0.30 0.26 0.12 0.13 0.31 0.14 0.26 

20 0.87 0.94 0.94 0.88 0.83 0.85 0.12 0.06 0.18 0.14 0.09 0.30 0.13 0.05 0.17 0.14 0.09 0.30 
54 0.80 0.91 0.85 0.82 0.84 0.79 0.10 0.04 0.18 0.10 0.07 0.27 0.10 0.04 0.17 0.09 0.08 0.27 

.8 
2 0.90 0.88 0.93 0.89 0.94 0.78 0.28 0.17 0.08 0.34 0.13 0.29 0.31 0.08 0.07 0.34 0.13 0.30 

20 0.86 0.80 0.97 0.83 0.88 0.83 0.14 0.04 0.10 0.12 0.11 0.24 0.14 0.05 0.10 0.11 0.11 0.24 
54 0.81 0.81 0.93 0.78 0.88 0.85 0.10 0.04 0.11 0.07 0.10 0.22 0.10 0.04 0.11 0.07 0.10 0.21 

100 

.4 
2 0.91 0.88 0.98 0.92 0.83 0.92 0.16 0.27 0.26 0.17 0.25 0.34 0.17 0.10 0.21 0.18 0.11 0.29 

20 0.89 0.87 0.91 0.90 0.96 0.89 0.08 0.04 0.25 0.09 0.05 0.32 0.09 0.04 0.23 0.09 0.05 0.30 
54 0.88 0.80 0.83 0.88 0.66 0.82 0.06 0.03 0.21 0.07 0.04 0.26 0.07 0.03 0.19 0.07 0.04 0.28 

.6 
2 0.90 0.85 0.99 0.92 0.94 0.79 0.18 0.18 0.10 0.23 0.14 0.27 0.19 0.08 0.07 0.24 0.10 0.25 

20 0.89 0.93 0.98 0.87 0.86 0.86 0.09 0.04 0.11 0.09 0.06 0.24 0.09 0.04 0.09 0.09 0.06 0.24 
54 0.87 0.88 0.96 0.84 0.86 0.86 0.07 0.03 0.10 0.06 0.05 0.21 0.07 0.03 0.09 0.06 0.05 0.21 

.8 
2 0.90 0.91 0.87 0.90 0.90 0.83 0.22 0.13 0.06 0.24 0.09 0.24 0.24 0.05 0.05 0.24 0.09 0.23 

20 0.87 0.83 0.93 0.82 0.86 0.86 0.10 0.03 0.07 0.08 0.08 0.18 0.10 0.03 0.07 0.08 0.08 0.18 
54 0.84 0.83 0.93 0.76 0.86 0.86 0.07 0.03 0.07 0.05 0.07 0.16 0.06 0.03 0.07 0.05 0.07 0.16 

200 

.4 
2 0.91 0.87 0.99 0.92 0.84 0.89 0.12 0.16 0.18 0.13 0.17 0.28 0.12 0.07 0.14 0.14 0.08 0.23 

20 0.90 0.87 0.96 0.89 0.71 0.93 0.06 0.03 0.16 0.07 0.04 0.25 0.06 0.03 0.14 0.07 0.04 0.25 
54 0.89 0.80 0.95 0.89 0.75 0.90 0.04 0.02 0.14 0.05 0.03 0.21 0.05 0.02 0.12 0.05 0.03 0.22 

.6 
2 0.90 0.83 0.98 0.90 0.96 0.82 0.13 0.11 0.06 0.17 0.07 0.22 0.14 0.06 0.04 0.17 0.07 0.22 

20 0.89 0.92 0.99 0.85 0.88 0.87 0.06 0.03 0.06 0.06 0.04 0.18 0.07 0.03 0.05 0.06 0.04 0.18 
54 0.89 0.66 0.98 0.83 0.88 0.89 0.05 0.02 0.06 0.04 0.04 0.15 0.05 0.02 0.05 0.04 0.04 0.15 

.8 
2 0.89 0.94 0.83 0.89 0.86 0.86 0.17 0.04 0.04 0.17 0.06 0.18 0.17 0.04 0.04 0.17 0.06 0.18 

20 0.86 0.86 0.90 0.80 0.84 0.87 0.06 0.02 0.05 0.05 0.05 0.13 0.06 0.02 0.05 0.05 0.05 0.13 
54 0.84 0.85 0.93 0.74 0.87 0.88 0.04 0.02 0.05 0.03 0.05 0.12 0.04 0.02 0.04 0.03 0.05 0.12 

500 

.4 
2 0.90 0.85 0.99 0.91 0.91 0.82 0.08 0.10 0.09 0.10 0.08 0.22 0.08 0.05 0.07 0.11 0.05 0.20 

20 0.90 0.88 0.99 0.89 0.84 0.88 0.04 0.02 0.08 0.04 0.03 0.18 0.04 0.02 0.07 0.04 0.03 0.18 
54 0.89 0.83 0.98 0.88 0.84 0.89 0.03 0.01 0.07 0.03 0.02 0.15 0.03 0.02 0.06 0.03 0.02 0.15 

.6 
2 0.90 0.87 0.93 0.89 0.91 0.86 0.09 0.06 0.03 0.11 0.04 0.16 0.10 0.04 0.02 0.11 0.04 0.16 

20 0.89 0.77 0.98 0.84 0.90 0.88 0.04 0.02 0.03 0.03 0.03 0.11 0.04 0.02 0.03 0.03 0.03 0.11 
54 0.89 0.78 0.97 0.81 0.90 0.90 0.03 0.01 0.03 0.02 0.02 0.09 0.03 0.01 0.03 0.02 0.02 0.09 

.8 
2 0.89 0.93 0.87 0.89 0.80 0.88 0.11 0.02 0.03 0.10 0.04 0.12 0.11 0.02 0.03 0.10 0.04 0.12 

20 0.86 0.88 0.90 0.81 0.85 0.89 0.04 0.01 0.03 0.03 0.03 0.09 0.04 0.01 0.03 0.03 0.03 0.09 
54 0.84 0.88 0.92 0.74 0.87 0.90 0.02 0.01 0.03 0.02 0.03 0.08 0.02 0.01 0.03 0.02 0.03 0.08 

1000 
.4 

2 0.89 0.83 0.99 0.90 0.94 0.82 0.06 0.10 0.05 0.07 0.04 0.18 0.06 0.03 0.04 0.08 0.03 0.17 
20 0.90 0.90 0.99 0.88 0.88 0.90 0.03 0.01 0.04 0.03 0.02 0.13 0.03 0.02 0.04 0.03 0.02 0.13 
54 0.90 0.54 0.99 0.87 0.87 0.90 0.02 0.01 0.04 0.02 0.01 0.10 0.02 0.01 0.03 0.02 0.01 0.10 

.6 2 0.90 0.91 0.87 0.89 0.90 0.88 0.07 0.03 0.02 0.07 0.03 0.12 0.08 0.03 0.02 0.07 0.03 0.12 
20 0.89 0.85 0.93 0.85 0.91 0.89 0.03 0.01 0.02 0.02 0.02 0.08 0.03 0.01 0.02 0.02 0.02 0.08 



54 0.88 0.84 0.93 0.82 0.90 0.90 0.02 0.01 0.02 0.01 0.02 0.06 0.02 0.01 0.02 0.01 0.02 0.06 

.8 
2 0.89 0.90 0.89 0.89 0.76 0.89 0.07 0.02 0.02 0.07 0.03 0.08 0.07 0.02 0.02 0.07 0.03 0.08 

20 0.86 0.89 0.90 0.80 0.86 0.89 0.02 0.01 0.02 0.02 0.02 0.06 0.02 0.01 0.02 0.02 0.02 0.06 
54 0.83 0.89 0.91 0.73 0.88 0.90 0.01 0.01 0.02 0.01 0.02 0.06 0.01 0.01 0.02 0.01 0.02 0.06 

 

Note. N = sample size; λ = standardized factor loadings; df = degrees of freedom; ρ = interfactor correlation; the coverage rates between 0.85 to 0.95 
are highlighted in bold.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6: Empirical Rejection Rates of the Close Fit Test (α = .05) 

N λ df ρ = .90 ρ = .60 
RMSEA SRMR CFI RMSEA SRMR CFI 

50 

.4 
2 0.02 0.01 0.03 0.01 0.01 0.03 

20 0.07 0.10 0.19 0.06 0.03 0.17 
54 0.16 0.17 0.41 0.15 0.05 0.39 

.6 
2 0.04 0.02 0.01 0.02 0.01 0.02 

20 0.09 0.06 0.06 0.07 0.01 0.09 
54 0.18 0.09 0.15 0.15 0.01 0.15 

.8 
2 0.05 0.02 0.01 0.02 0.02 0.03 

20 0.09 0.02 0.03 0.07 0.03 0.05 
54 0.16 0.03 0.07 0.13 0.03 0.07 

100 

.4 
2 0.02 0.02 0.02 0.02 0.01 0.02 

20 0.06 0.13 0.09 0.05 0.04 0.11 
54 0.10 0.20 0.17 0.08 0.06 0.18 

.6 
2 0.04 0.03 0.01 0.02 0.02 0.02 

20 0.07 0.07 0.02 0.06 0.02 0.05 
54 0.10 0.10 0.04 0.09 0.02 0.07 

.8 
2 0.05 0.03 0.01 0.02 0.06 0.03 

20 0.07 0.03 0.02 0.06 0.07 0.03 
54 0.10 0.04 0.03 0.10 0.06 0.04 

200 

.4 
2 0.04 0.03 0.01 0.02 0.01 0.01 

20 0.05 0.13 0.04 0.05 0.05 0.06 
54 0.07 0.20 0.05 0.07 0.06 0.08 

.6 
2 0.05 0.03 0.00 0.04 0.03 0.02 

20 0.07 0.07 0.01 0.07 0.03 0.04 
54 0.07 0.09 0.02 0.09 0.03 0.04 

.8 
2 0.05 0.04 0.01 0.02 0.09 0.02 

20 0.07 0.04 0.02 0.07 0.09 0.04 
54 0.09 0.05 0.03 0.11 0.08 0.04 

500 

.4 
2 0.05 0.04 0.01 0.03 0.03 0.02 

20 0.05 0.12 0.01 0.06 0.05 0.04 
54 0.06 0.17 0.02 0.07 0.06 0.04 

.6 
2 0.05 0.04 0.01 0.04 0.04 0.02 

20 0.06 0.05 0.01 0.07 0.03 0.04 
54 0.06 0.09 0.01 0.10 0.03 0.04 

.8 
2 0.05 0.05 0.02 0.03 0.16 0.03 

20 0.06 0.04 0.03 0.08 0.10 0.04 
54 0.08 0.06 0.03 0.11 0.09 0.04 

1000 

.4 
2 0.05 0.04 0.00 0.04 0.04 0.02 

20 0.05 0.10 0.01 0.06 0.04 0.03 
54 0.05 0.14 0.01 0.07 0.06 0.03 

.6 
2 0.05 0.04 0.01 0.05 0.04 0.03 

20 0.06 0.05 0.01 0.08 0.04 0.04 
54 0.06 0.08 0.02 0.09 0.04 0.04 

.8 
2 0.05 0.05 0.03 0.03 0.21 0.02 

20 0.07 0.04 0.03 0.09 0.09 0.04 
54 0.07 0.06 0.04 0.11 0.08 0.04 

 

Note. N = sample size; λ = standardized factor loadings; df = degrees of freedom; ρ = interfactor correlation; 

empirical rejection rates between 0.02 to 0.08 are highlighted in bold.  

 

 

 



 

Table 7:  Descriptive Statistics for the Open-Book Closed-Book Data 

 

 

Items Means Standard Deviations Skewness Kurtosis 
1. Mechanics 38.95 17.49 -0.33 -0.46 

2. Vectors 50.59 13.15 -0.23 0.32 
3. Algebra 50.60 10.62 -0.32 1.30 
4. Analysis 46.68 14.85 -0.64 -0.46 
5. Statistics 42.31 17.26 0.47 -0.31 



Figure 1: Population Values and Average Sample Estimates: RMSEA   

 

 

 
(a) Correctly Specified Models (ρ = 1.0) 



 
(b) Close Fit Models (ρ = 0.9) 



 
(c) Severely Misspecifed Models (ρ = 0.6) 

 

 

Note. N = sample size; df = degrees of freedom. The horizontal lines indicate Hu & Bentler (1999)’s 
conventional cutoff for sample RMSEA (i.e., 0.06). 

 

 

 

 

 

 

 

 

 

 

 



Figure 2: Population Values and Average Sample Estimates: SRMR 

 
(a) Correctly Specified Models (ρ = 1.0) 



 
(b) Close Fit Models (ρ = 0.9) 



 
(c) Severely Misspecifed Models (ρ = 0.6) 

 

 

Note. N = sample size; df = degrees of freedom. SRMR.b = sample SRMR using the biased formula (· bSRMR ; 
Equation 9); SRMR.u = sample SRMR computed using the unbiased formula (·SRMRu ; Equation 10); the 
horizontal lines indicate Hu & Bentler (1999)’s conventional cutoff for sample SRMR (i.e., 0.08). 

 

 

 

 

 

 

 

 

 

 



Figure 3: Population Values and Average Sample Estimates: CFI 

 

 
(a) Correctly Specified Models (ρ = 1.0) 



 
(b) Close Fit Models (ρ = 0.9) 



 
(c) Severely Misspecifed Models (ρ = 0.6) 

 

 

Note. N = sample size; df = degrees of freedom. CFI.ml = sample CFI computed using · MLCFI  (Equation 15); 
CFI.fbc = sample CFI computed using · FBCCFI  (Equation 16); the horizontal lines indicate Hu & Bentler (1999)’s 
conventional cutoff for sample CFI (i.e., 0.95).  

 

 

 



 

 

Figure 4: Effect of df on the Empirical Standard Deviations of RMSEA, SRMR, and CFI (ρ = 1.0; N =100) 

 

 

 

Note. N = sample size; df = degrees of freedom; ρ = interfactor correlation; the results for SRMR and CFI were based on ·SRMRu and · MLCFI .  
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(a) RSMEA (b) SRMR (c) CFI 



Figure 5: Empirical Rejection Rates using Conventional Cutoffs  

 
(a) Correctly Specified Models (ρ = 1.0) 



 
(b) Close Fit Models (ρ = 0.9) 



 
(c) Severely Misspecifed Models (ρ = 0.6) 

 

Note. N = sample size; df = degrees of freedom; the results for SRMR and CFI are based on ·SRMRu and · MLCFI ; reference lines of 0.10 and 0.80 are 
included for correctly specified models/models with minor misspecification and severely misspecified models, respectively.  

 

 

 



 

Figure 6: Coverage Rates of the 90% Confidence Intervals 

 

 

Note. Reference lines indicate the range of acceptable coverage rates of the 90% confidence intervals (i.e., between 0.85 and 0.95).  

 

 

 



 

Figure 7: The Average and Median Widths of the 90% Confidence Intervals: RMSEA 

  
(a) ρ = 0.9 (b) ρ = 0.6 

 

 

 

Note. N = sample size; df = degrees of freedom 

 

 

 

 

 



Figure 8: The Average and Median Widths of the 90% Confidence Intervals: SRMR 

  
 

(a) ρ = 0.9 (b) ρ = 0.6 
 

 

 

 

Note. N = sample size; df = degrees of freedom 

 

 

 

Figure 9: The Average and Median Widths of the 90% Confidence Intervals: CFI 



 

 

 
(a) ρ = 0.9 (b) ρ = 0.6 

 

 

 

 

Note. N = sample size; df = degrees of freedom 

 

 

 

 

 



Figure 10: Empirical Rejection Rates of the Close Fit Test (α = .05) 

 

 

Note. Reference lines indicate the range of acceptable rejection rates (i.e., between 0.02 and 0.08).  
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