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Abstract
Research has revealed that the performance of root mean square error of approximation
(RMSEA) in assessing structural equation models with small degrees of freedom (df) is
suboptimal, often resulting in the rejection of correctly specified or closely fitted models. This
study investigates the performance of standardized root mean square residual (SRMR) and
comparative fit index (CFI) in small df models with various levels of factor loadings, sample
sizes, and model misspecifications. We find that, in comparison to RMSEA, population SRMR
and CFI are less susceptible to the effects of df. In small df models, the sample SRMR and CFI
could provide more useful information to differentiate models with various levels of misfit. The
confidence intervals and p-values of a close fit were generally accurate for all three fit indices.
We recommend researchers use caution when interpreting RMSEA for models with small df and
to rely more on SRMR and CFI.
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Evaluating SEM Model Fit with Small Degrees of Freedom

Structural equation modeling (SEM) has remained a popular data analytic technique in
psychology, business, education, and other disciplines (Austin & Calderon, 1996; MacCallum &
Austin, 2000; Tremblay & Gardner, 1996). Often, the purpose of conducting an SEM study is to
evaluate the viability of a hypothesized theoretical structure. In most practical situations, the
model under consideration is, to some degree, incorrect or misspecified (Box, 1979; MacCallum,
2003). As a result, it makes sense to test whether the model has a close fit or, put differently,
whether any misfit is substantively ignorable (Shi, Maydeu-Olivares, & DiStefano, 2018). To
evaluate how well the data fit the theory, researchers rely upon fit information to verify that the
tested model correctly approximates the theoretical underpinnings hypothesized by the
researchers. Fit indices, as well as other information from the results (e.g., parameter estimates),
are employed to describe the model’s fit and provide support for decisions, such as altering the
relationships estimated by the model, or to support removing non-performing items. Thus,
researchers rely upon fit indices to provide information about modeled relationships.

Currently, one of the most widely used goodness-of-fit indices is the root mean square
error of approximation (RMSEA) (Steiger, 1989, 1990; Steiger & Lind, 1980). RMSEA
measures the unstandardized discrepancy between the population and the fitted model, adjusted
by its degrees of freedom (df). Different proposals have been made as to the correct use of
RMSEA.

The most common approach is to calculate and interpret the sample’s RMSEA (Hancock
& Mueller, 2010; McDonald & Ho, 2002). RMSEA is considered a “badness-of-fit measure,”
meaning that lower index values represent a better-fitting model. Often, researchers compare the

sample’s RMSEA with a cutoff value; often, a RMSEA value of less than 0.06 is used to denote
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an acceptable model (Hu & Bentler, 1999). However, interpreting the sample’s RMSEA this way
is a heuristic decision, basing the evaluation solely on the value of the sample statistic while
ignoring its sampling variability. Often, to help assess the sampling error of the RMSEA, a
confidence interval (CI) is provided with the point estimate. As an alternative, formal statistical
inferences can be formed by testing the hypothesis that RMSEA < k , where k is the reference
cutoff in the population. However, this (less common) approach requires identifying the
population’s RMSEA cutoff value (Browne & Cudeck, 1993).

In practice, RMSEA is a very popular fit index; however, a major drawback is that it is an
unstandardized effect size. As a result, the population’s RMSEA values cannot be substantively
interpreted or compared across models. In addition to the extent of model misspecification, the
RMSEA value depends on other characteristics of the population model (i.e., incidental factors)
(Saris, Satorra, & van der Veld, 2009). One important incidental factor is the size of the model'.
For example, at the population level, the same RMSEA value (e.g., 0.06) may have different
meanings if the tested models have different degrees of freedom (Chen, Curran, Bollen, Kirby, &
Paxton, 2008; Savalei, 2012).

Methodological studies have shown that RMSEA is unsuitable for assessing models with
small degrees of freedom (Kenny, Kaniskan & McCoach, 2015; Shi, Lee, & Maydeu-Olivares,
2019). This situation may arise when the tested model is small, or when there are many estimated

paths relative to the information available for analysis (cf. Bollen, 1989a). The RMSEA

1 Researchers have used different indices to indicate the size of an SEM model, such as the
number of observed variables (p), the number of estimated parameters (g), the degrees of
freedom (df), and the number of observed variables per latent factor (p/f; Shi, Lee, et al., 2015,
2018). Although the above indicators are different concepts, in many cases, they tend to vary
together. For example, a larger number of indicators (p) often resulted in a larger df. In this
study, we refer to small models as models with small df.
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penalizes model complexity by incorporating df in the denominator of its formula. As a result,
when the model has very small df (e.g., df = 1), the population value of RMSEA for a close-
fitting model (e.g., omitting a residual correlation of 0.10) may be large, and the conventional
cutoff may be misleading at the population level (Shi et al., 2019). In addition, prior studies have
pointed out that sample RMSEA does not perform well when it is used to assess models with
small df using sample data. Given identical sample sizes, the bias observed with a point estimate
is larger in models with very small df (Kenny et al., 2015). For example, when fitting correctly
specified models with very small df, Kenny et al. (2015) found that, as df decreased, the
sampling variability of RMSEA increased, and sample estimates exceeded the cutoff value more
frequently. The coverage of RMSEA may be acceptable when considering the CI while fitting
models with small df, but the CI becomes wider as the df decreases, suggesting a greater level of
uncertainty in the fit index. Prior research has suggested that RMSEA may not be useful when
fitting models with very small df. Kenny et al. (2015, p. 486) stated, “We recommend not
computing the RMSEA for small df models, especially those with small sample sizes.”

This finding is informative, but in practice, social science researchers often encounter
very small models. For example, a three-wave latent growth model has df =1 (Meredith & Tisak,
1990)2. Models with small df are often observed in path analysis applications. For example, with
three waves of data collected from two variables, the cross-lagged panel model (CLPM) and

random intercept cross-lagged panel model (RI-CLPM) have df =4 and 1, respectively

When fitting a three-wave latent growth model, the number of sample moments = 6
covariances) + 3 (means) = 9, and the number of free parameters = 8 (2 factor variances + 2

factor means + 1 covariance between factors + 3 residual variances). Therefore, df =9 — 8 =

1.
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(Hamaker, Kuiper & Grasman, 2015). Also, the use of very short scales to lower the cost of data
collection, reduce the response burden and frustration for survey participants, and increase
response rates, is commonplace (Maydeu-Olivares & Steenkamp, 2019; Robinson, 2018). As a
result, short scales have become popular in many social science fields like psychology (Ziegler,
Kemper, & Kruyen, 2014), human resource management (Robinson, 2018) and marketing
research (Bruner, Hensel, & James, 2005; de Jong, Steenkamp, & Veldkamp, 2009). For
example, short scales with four items have been widely utilized to measure global job
satisfaction (Price, 1977), organizational citizenship behavior (Lee & Allen, 2002), male sexual
health (Rosen et al., 2007), patient decisional conflict (Légaré et al., 2010), and depression and
anxiety (Lowe et al., 2010). Unfortunately, fitting a one-factor model with four items results in a
tested model with only two degrees of freedom.

Researchers need to explore the plausibility of using other fit indices to assess models
with very small df. In the current study, we focus on two potentially useful indices: the
standardized root mean square residual (SRMR) (Bentler, 1995; Joreskog & Sorbom, 1988) and
comparative fit index (CFI) (Bentler, 1990). We selected these indices as they have been
routinely reported in most SEM software (e.g., Mplus) and widely used in empirical SEM
applications (McDonald & Ho, 2002). In addition, the theoretical sampling distributions of both
SRMR and CFI have been derived using asymptotic methods (Ogasawara, 2001a; 2001b; 2007;
Maydeu-Olivares, 2017; Lai, 2019a). Researchers may construct the Cls (or conduct significance
tests; e.g., SRMR < k) for population effect sizes of misfit, which makes SRMR and CFI
comparable to RMSEA.

Prior model fit studies have shown that compared to the population RMSEA, the

population SRMR and CFI are less susceptible to the influence of model sizes (Kenny &
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McCoach, 2003; Maydeu-Olivares, 2017; Shi, Maydeu-Olivares, & DiStefano, 2018; Shi et al.,
2019). Several simulation studies have investigated the behavior of the sample values of SRMR
and CFI (e.g., Hu & Bentler, 1999; Sharma, Mukherjee, Kumar, & Dillon, 2005; Fan & Sivo,
2005; 2007) under various levels and types of model (mis)specifications. Concerning the model
size, however, most studies focus on models with at least 10—15 observed variables; thus, it is
not clear whether the findings can be generalized to models with very small df.

In terms of the CIs and close fit tests, Maydeu-Olivares, Shi and Rosseel (2018)
compared the performance of RMSEA and SRMR under models with df ranging from 35 to
1,710. They found that the CIs for SRMR yielded better coverage of its population value when
assessing models with large df (e.g., df > 400). Lai (2019a) investigated the performance of Cls
for CFI and found that the CIs were generally accurate for models with df ranging from 24 to
119. While these studies have provided information on the viability of SRMR and CFI in large
models, details of their performance in very small models remain unknown.

To fill this research gap, we compared the performance of RMSEA, SRMR, and CFI in
assessing very small models. We considered various levels of model (mis)specifications (i.e.,
correctly specified, close fitting, and severely misspecified) and sample sizes. To assist empirical
researchers, we focused on population values, sample point estimates, interval estimates (i.e.,
90% ClIs), and close fit tests for all three fit indices. First, we reviewed the statistical theories
underlying RMSEA, SRMR, and CFI. Second, we presented a simulation study that compares
the performances of the indices in small df models, along with an empirical example. Finally, we
discussed the implications and provide recommendations.

The Statistical Theory Underlying RMSEA, SRMR, and CFI

Root Mean Square Error of Approximation (RMSEA)
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The population RMSEA is defined as (Browne & Cudeck, 1993):

RMSEA= | & (1)
af
where £ denotes the minimum of a discrepancy function between the population covariance

matrix, %, and the model implied covariance matrix, X, for the postulated model, and df

denotes the df for the tested model. From equation 1, it is easy to show that for a fixed (non-zero)

value of F, the population RMSEA increases as df decreases. It is also noteworthy that the
population value of RMSEA depends on the estimation method employed. When maximum

likelihood (ML) is used, the population RMSEA is

RMSEA,, = difﬂ : )

Assuming no mean structure is present®, £, is obtained by minimizing

F,, =h|Z,|~In|E[+tr(EE,)-p, (3)

where p denotes the number of observed variables. Given sample data and assuming normality,

the population RMSEA can be estimated as

2 —
RMSEAwm =, |max M,O , 4
N xdf

3 We focused on “classical” covariance structure models without mean structures.
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where N denotes sample size. X, is the ML-based likelihood-ratio chi-square test statistics.

A 90% CI for RMSEAML can be constructed as

\/max (O,L],\/max (0, v ] , (%)
Nxdf N xdf

where L and U are the solutions to

F, (X;,;df,L)=.95 and F, (X;,:df ,U)=.05 (6)

and sz (s df ,A) denotes the cumulative non-central chi-squared distribution with df degrees of

freedom and non-centrality parameter A (Browne & Cudeck, 1993). Finally, the p-value for a

close fit test with a population cutoff k ( H, : RMSEA < k ) can be obtained using
I-F, (Xpp:df . Nxdf xk*). (7)

All the notations are the same as above. The RMSEA is a “badness” measure of fit: lower
RMSEA values indicate better fit. In practice, RMSEA < .06 is the most commonly used cutoff
for acceptable fit (Hu & Bentler, 1999).

Standardized Root Mean Square Residual (SRMR)

The SRMR in the population is defined as (Joreskog & Sorbom, 1988; Maydeu-Olivares, 2017):

! j— 0 ?
SRMR = | [=:% = 12[—(6” G”)] , @®)
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where o denotes the unknown population covariance between variables i and j (or the variance,

if i =j) and csg. denotes the population covariance (or variance) under the tested model. € is the

vector of the population standardized residual covariances, and ¢ = p(p+1)/2 signifies the

number of unique elements in the residual covariance matrix (i.e., the difference between the
observed and model-implied covariance matrices) where p denotes the number of observed
variables. Thus, the population value of SRMR can be approximately interpreted as the average
population standardized residual covariance.

In finite samples, let s; be the sample covariance, &, the model implied covariance, and

Sij —G[j

e the ¢ vector of the standardized residual covariances with elements . A sample

SiiS ji

counterpart of the population SRMR in equation 8 can be estimated using

NGE
SRR, — .| _ Is (-8, _ )

The sample SRMR value is the value typically produced in SEM software packages and

evaluated by researchers to assess a model’s fit*.

We focused on models with a saturated mean structure and follow the sample SRMR formula
(equation 9) computed in many widely used SEM software programs (e.g., LISREL, Joreskog &
Sérbom, 2017; EQS, Bentler, 2004, and lavaan, Rosseel, 2012). However, in Mplus (Muthén &
Muthén, 2017), by default, the sample SRMR is computed as

— 1 v o
SRMR, ., = \/E(Z(a,,) +Z(si) J

i<j
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Maydeu-Olivares (2017) showed that the sample estimates for SRMR are biased, and an

asymptotically unbiased estimate of the population SRMR can be expressed as:

. max(esles - tr(és),O)
SRMR. = k' t , (10)

tr(E2) +2¢'E e, _ : : :
: ~—— and E_ represents the asymptotic covariance matrix of

4(ele, )2

where IQS =1-

e . This study investigates the performance of both the biased (SfM\Rb ) and unbiased (STU\ZQL{)

estimates of SRMR.

ClIs for the SRMR and close fit tests can be obtained using a reference normal

distribution. Specifically, with large samples, a (1- a) % CI for the SRMR can be computed as
max[O,(smu —za/zSE(mu))},max [0,(51?]%,, n za/QSE(mu))] (11)

where z_,, is the (two-tailed) critical z value for the given o level, and SE () denotes asymptotic

standard error, given as (Maydeu-Olivares, 2017):

S.. Gij i

M (1.
& = T & :_/—_M—(f—
\/S s \/Gii Vi Sii Gii

i

where m; and [1, denote the sample and expected mean of variable i, respectively. Mplus users can

estimate the sample SRMR defined in equation 9 by using “MODEL=NOMEANSTRUCTURE” in
the ANALYSIS command (Asparouhov & Muthén, 2018; Pavlov, Maydeu-Olivares & Shi, 2020).
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p— 1 r—

=2 )+2e = e
S) - S S8 . (12)
2tee,

SE(SRMR,) = \/k;2 tr(

In addition, a statistical test for model close fit can be conducted using the hypotheses

H, :SRMR <k vs. H, : SRMR >k , where k >0 is a reference cutoff value for close fit at the
population level. The p-values are obtained using p =1—®(z), where ®() denotes a standard

normal distribution function and

_ SRMR.—k

z —
SE(SRMR.)

(13)
Similar to RMSEA, SRMR also measures the “badness” of model fit. The most

commonly used criterion for a good fit is SRMR < .08 (Hu & Bentler, 1999). Recently, Shi,

Maydeu-Olivares, and DiStefano (2018) proposed new criteria by considering the impact of the

measurement quality. Specifically, the cutoffs for good fit and acceptable fit were SRMR < .05x

R* and SRMR < .10x R, respectively. R’ is the average communality (i.e., the squared
standardized loading) across all items.

Comparative Fit Index (CFI)

The population CFI is defined as (Bentler, 1990):

CFl=1-—+2 (14)

b

where Fn and F» represent the minimum of the discrepancy function for the researcher’s
proposed model and baseline model, respectively. Therefore, the CFI measures the relative

improvement in fit going from the baseline model to the postulated model.
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The population values of CFI also depend on the model estimation method. The
population ML fit function is given in equation 3. When using ML, the sample CFI can be
estimated as”:

2 2
CF]ML _ maX(Xb dﬁ > O) maX(Xm dfm 4 0)

B max(y,’ —df,,0) ’ (15)

where x; and df, denote the likelihood-ratio chi-square test statistics and the corresponding df
for the baseline model, respectively, and x> and df, represent the chi-square test statistic and df’

for the proposed model, respectively.

Lai (2019a) proposed two new consistent point estimators for CFI directly based on the

fit function (ﬁm ) and recommended a bias-corrected sample estimate of CFI (6}7\1 rsc). Let s and

o be the 7 X 1 vector of the unique elements in S and X, respectively. CFl e is expressed as

7 (m)

—— F
CF]FBCZI—%; (16)
MLBC
ﬁMLBC =F- (2N)_ltr[q;f‘] ) (17)

where ¢ is the second derivative of ¢, which is a function of s (i.e., ﬁm =(s) ), evaluated at s =

o and 8 = 0* (@* denotes the population model parameter), and I is the sample estimate for the

asymptotic covariance matrix of v Ns.

In this study, Cﬁ me (defined in equation 15) is the usual point estimator of the population CFI

reported in most SEM software when ML is used, which is different from equation 8 in Lai (2019a).
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Under a normal reference distribution, a (1- a) % CI for the CFI can be computed as

min[l,(c/’l?l—zmSE(C/’l?l))},min [1(5?71 +zq/2SE(C/’f?I))} . (18)

In equation 18, z_, is the (two-tailed) critical z value for the given a level, CFI isa
sample estimate of CFI, and SE () is asymptotic standard error. Lai (2019a) derived two forms of

SE (C/’}?] ) and recommended using
SE(CFI)=+/8T8/ N, (19)

where g is computed as the first-order derivative of the function of CFI with respect to s

(0@ / 0s) evaluated at s =s and 0 = 0 (é denotes the sample estimates of the model parameters).

A statistical test for acceptable fit (with a population cutoff k) can be conducted under the

hypotheses H, : CFI > k vs. H, : CFI < k . The p-values are obtained under a standard normal

distribution function, ®(), as p =1-®d(z), where z is expressed as

 CFI—k
SE(CFI)

z (20)
All the notations are the same as above. The values of CFI are normed between 0 and 1:
higher values of CFI indicate better model fit. In practice, the most widely used criterion for a
good fitis CFI >.95 (Hu & Bentler, 1999).
We provided the theory underlying RMSEA, SRMR, and CFI to orient readers to the

similarities and differences among the indices. All three indices are often employed to evaluate
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models, and researchers compute both point estimates and Cls for each index. Further study of
the three indices can aid applied researchers interested in model testing.

Monte Carlo Simulations

We performed simulations to investigate the behaviors of RMSEA, SRMR, and CFI
when assessing models with small df. We considered scenarios with both correctly specified and
misspecified models. In correctly specified models, the population model was a one-factor
confirmatory factor analysis (CFA) model and the same model was fit to the data. The
population model in misspecified conditions was a two-factor CFA model, but a one-factor
model was fit to the data. The population factor variance(s) were set to 1.0. To create the
different simulation conditions, we manipulated four variables: model size, size of the factor
loadings, magnitude of model (mis)specification, and sample size.

Model size. We manipulated model size by changing p, the number of observed variables
(Moshagen, 2012; Shi, Lee, & Terry, 2015, 2018). In this study, we focused on small models
with ps of 4, 8, and 12. For the population model with two factors, each factor had an equal
number of items loaded. As we estimated the one-factor model, the dfs for the fitted model
ranged from 2 (p =4) to 54 (p = 12).

Size of factor loadings. Three levels of factor loadings were considered: low (A = .40),
medium (A = .60), and high (A = .80). The error variances were set as 1- A% so that the factor
loadings were standardized.

Sample size. Sample sizes were 50, 100, 200, 500, and 1,000. These numbers were
chosen to represent the range of very small to large samples frequently observed in psychological

and behavioral research.
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Magnitude of Model (Mis)specification. Since model misspecification was introduced by
ignoring the multidimensional structure, the magnitude of model misfit was manipulated using
different ps in the population model. Specifically, under misspecified conditions, the population
ps included 0.60 and 0.90; a smaller correlation coefficient indicated greater misspecification.
Note that the population model under the correctly specified conditions was a one-factor model,
which is equivalent to a two-factor model with a perfect inter-factor correlation (i.e., p = 1.0).

We considered a range of model misspecifications: correctly specified (p = 1.0), minor (p
=0.90), and severe (p = 0.60) (Shi, Maydeu-Olivares, & DiStefano, 2018). For example, when
fitting a one-factor model to two-factor data with an inter-factor correlation of p = 0.90, most
researchers would consider the misfit ignorable. However, when the population model has two
factors with p = 0.60, the one-factor model cannot be overlooked and should be rejected based on
the model fit information.

In summary, we considered 135 simulated conditions: 5 (sample sizes) x 3 (model sizes)
x 3 (factor loading levels) x 3 (factor inter-correlations). For each simulated condition, 5,000
replications were generated with the simsem package in R (Pornprasertmanit, Miller, &
Schoemann, 2012; R Development Core Team, 2015). The observed data were generated using a
multivariate normal distribution.

In each simulation condition, first, we computed the population values for RMSEA,
SRMR, and CFI by fitting the one-factor CFA models to the population covariance matrix. We
then fit a one-factor model to each simulated dataset and computed the sample’s RMSEA,
SRMR, and CFI. This provided the empirical distributions of the sample fit indices with over
5,000 replications. Under the model misspecification conditions, we computed 90% Cls for

RMSEA, SRMR, and CFI. We also computed the p-value of a close fit test (when the RMSEA
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and SRMR were less than or equal to their population values and the CFI was greater than or
equal to its population values). We conducted all data analyses with ML estimation using the
lavaan package in R (R Development Core Team, 2015; Rosseel, 2012).

For all three fit indices, we reported population values under different model sizes, factor
loading levels, and magnitudes of model misspecification. To better summarize the empirical
distributions of the sample estimates, for each simulated condition, we computed the empirical
means and standard deviations of the sample RMSEA, SRMR, and CFI (across 5,000
replications). We also calculated the proportion of replications for each index that would be
rejected based on the conventional cutoff values for acceptable fit (Hu & Bentler, 1999; Shi,
Maydeu-Olivares, & DiStefano, 2018). In terms of interval estimates, we computed the average
and median width of the 90% CIs for each fit index. The accuracy of these CIs was determined
by computing their coverage rates - how often the population value was within the CI. Finally,
we evaluated the accuracy of the p-values for the close fit tests by computing the Type I error
rates (i.e., a = 0.05). Specifically, we calculated the percentage of replications in which the null
hypothesis of close fit® were rejected.

Results

In our study, not every replication converged. Low convergence rates resulted when both
the df and sample size were very small (e.g., df =2 and N = 50), factor loadings were low (i.e., A
=.40), and the model was severely misspecified (i.e., p = 0.60). For that specific condition, the
convergence rate was 57%. The complete results of the convergence rates are provided in the

supplementary materials. Only cases that converged were included when calculating the outcome

6 The RMSEA and SRMR were less than or equal to their population values and the CFI was greater

than or equal to its population value.
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variables. We also conducted analyses of variance (ANOVA) on selected outcome measures.
Specifically, an eta squared (n?) value above 5% was used to identify the main conditions that
contributed to practically sizeable variability in the outcome (Shi, Maydeu-Olivares, &

DiStefano, 2018)’.

Insert Tables 1-3 here

Population Values

The population values for RMSEA, SRMR, and CFI across simulation conditions are
reported in Tables 1-3. Figures 1-3 plot the population RMSEAs, SRMRs, and CFIs against the
dfs across the different magnitudes of model misspecification and factor loading levels. When
the model was correctly specified, the population RMSEA and SRMR were both equal to zero
and the population CFI was equal to one. Under the misspecified condition, the population
RMSEAs ranged from 0.010 to 0.374, the population SRMRs from 0.006 to 0.117, and the
population CFIs from 0.748 to 0.996. In general, the population RMSEA and SRMR increased
and the population CFI decreased as the level of model misspecification increased, and the
magnitude of factor loadings increased, suggesting a worse fit. In addition, the effect of factor
loadings was more pronounced when the level of model misfit is more severe.

The ANOVA results showed that the most important sources of variability in the
population RMSEA were the levels of factor loadings (A; n° = 0.48), magnitudes of model
misspecification (p; 2= 0.27), the interaction between A and p (A x p; n>= 0.10), and model size
(df; 1*= 0.07). For a certain magnitude of model misspecification, the population RMSEA
decreased dramatically as the model size increased and level of factor loadings decreased. For

example, when fitting a one-factor model to two-factor data with p = 0.60 and A = 0.60, as the df’

7 The ANOVA tables are also available in the supplementary materials.
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increased from 2 (p = 4) to 54 (p = 12), the population RMSEA fell from 0.154 to 0.088.
Meanwhile, for a fixed level of model misfit and model size (e.g., p = 0.60 and df = 2), as the
standardized factor loadings decreased from 0.80 to 0.40, the population RMSEA dropped from
0.374 to 0.058.

The most important factors that affect the population values of SRMR were the
magnitudes of model misspecification (p; n*>= 0.50), levels of factor loadings (A; n*>= 0.36), and
their interaction (A % p; n?= 0.13). When fitting a one-factor model to two-factor data with p =
0.60 and df =2, as A decreased from 0.80 to 0.40, the population SRMR dropped dramatically
from 0.094 to 0.023. However, under the models considered in the current study, the population
SRMR was less susceptible to the influence of model size (df: n* < 0.01) compared to the
population RMSEA. Keeping the level of model misfit and factor loadings the same (e.g., p =
0.60 and A = .60), as the df increased from 2 (p = 4) to 54 (p = 12), the population SRMR
increased slightly, from 0.053 (df = 2) to 0.066 (df = 54).

Finally, for population CFI, variability is mostly attributed to the magnitudes of model
misspecification (p; n?>= 0.74), levels of factor loadings (A; 1> = 0.16), and their interaction (A x
p; 12 = 0.09). For the models considered in this study, the population CFI was not sensitive to the
impact of model size (df 1> < 0.01). Taking the same conditions as in the example above, as A
decreased from 0.80 to 0.40 (p = 0.60 and df =2), the population CFI increased from 0.748 to
0.915. As the df increased from 2 to 54 (p = 0.60 and A = .60), the population CFI was relatively

stable and slightly decreased from 0.876 to 0.842.

Insert Figures 1-3 here

Average Sample Estimates
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Table 1 summarizes the empirical distributions of the sample RMSEAs, SRMRs, and

CFlIs across replications. Specifically, it reports the means and standard deviations of the
empirical distributions. We reported sample SRMRs using both SRMR, (equation. 9) and

SRMRu (equation 10) and reported sample CFIs using both CFlw. (equation 15) and CFI rsc
(equation 16) as presented earlier.

The accuracy (bias) of the point estimates was determined by comparing the average
sample estimates with the corresponding population values. For each fit index, ANOVA were

conducted by using the relative bias of average point estimates as the outcome variable®. Figures

1-3 plot the average sample estimates of RMSEA, SRMR, , SRMRu , CFlu. , and CFI rsc by
different sample sizes across simulation conditions. Not surprisingly, the average sample
estimates of all three fit indices approached the population values as the sample size (N)
increased. Other than the sample size (N; n>= 0.11), the important sources of (relative) biases in
estimating the population RMSEA include the level of factor loadings (A; n>= 0.10), the
magnitudes of model misspecification (p; 2= 0.10) and three interaction terms (i.e., A X p; N> =
0.14; N x &; n2=0.13; N x p; n>= 0.12). Generally, the relative bias in estimating the population
RMSEA decreases as the level of factor loadings increase, and the level of model misfit
increases. The effects of the magnitude of factor loadings and the level of model misfit were

more pronounced as the sample size became smaller.

8 The relative bias was computed as ———" where @, represents the average sample
pop
estimate of the fit indices across all replications, and 6, indicates the population value of fit

indices. For RMSEA and SRMR, the relative bias was not computed under correctly specified
models as the population value (the denominator) equals zero.
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The most important sources of (relative) biases in estimating the population SRMR was
the choice of formula (n?>= 0.12). The effect of the choice of formula was also moderated by the
magnitude of factor loadings (n*= 0.10) and the level of model misfit (n*= 0.06). Other
noticeable factors included the sample size (N; n°= 0.07), the level of factor loadings (A; 0> =
0.14), the magnitudes of model misspecification (p; n?= 0.09), and their interaction (A x p; 1> =

0.09)

Specifically, the average sample SRMR using the biased formula (mb ) was more

sensitive to the impact of sample size (N), model size (df), and the level of factor loadings (A). As

shown in the figure, the bias in SRMR could increase dramatically as N decreases and A and df

increase. Given the same level of df and A, the sample SRMR computed using the unbiased

formula (SEMTQM) converged on its population value faster. Furthermore, when the model was

correctly specified (i.e., population RMSEA and SRMR were both equal to zero), the sample

estimates of SRMRu tended to be more accurate, on average, than those calculated from

RMSEA, especially when the df was very small. For example, when A = 0.60, df =2, and N = 50,

the average of the sample RMSEA and SRMRu for the correctly specified model was 0.050 and
0.020, respectively.

For estimating CFI, according to the ANOVA results, the impact of the choice between
CFl i and CFI rscwas not practically important (n>= 0.02). However, as shown in the figure,
CFlw. generally converged on its population value faster than CFI rac , especially for models

with lower factor loadings (1) and larger df. For both CFl i and CFI rsc , the bias in estimating
the population value decreased as sample size (N; n?= 0.28) increased, and the magnitude of

factor loadings increased (A; n°= 0.20). The effect of sample size was more noticeable as A
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decreased (N x A; n>= 0.19) and/or df increased (N x df: n°= 0.09). For example, when fitting

correctly specified models (i.e., population CFI = 1.0) with N =100, A = 0.80, and df = 2, the
average CFlw. and CFI rsc were both 0.996. Keeping all other conditions the same, as A

decreased to 0.40 and df increased to 54, the average CFlw and CFI psc dropped to 0.938 and
0.922, respectively.

Standard Deviations of Point Estimates

Next, we checked the variability of the point estimates. For SRMR and CFI, we focused

on the empirical variability of SRMRu and CFl; as they yield more accurate point estimates

compared to SRMRb and CFl rsc. It is noteworthy that using asymptotic methods, the empirical

standard deviations for SRMRu and CFI rsc tended to be larger than those obtained from

SRMRb and CFI , especially when the sample size was small. We first summarized the results
under correctly specified models as the population values of RMSEA, SRMR, and CFI were
constant across conditions. Not surprisingly, for all three fit indices, as sample size (N) increased,
the empirical standard deviations of the sample estimates decreased. The ANOVA results also
showed that the model size (df) was an important source to explain the sampling variability of
RMSEA (n?= 0.35). For SRMR, the important sources of sampling variability are the level of
model misfit (p; n>= 0.16) and the interaction between p and df (p x df: 1> = 0.06). In general, the
empirical standard deviations of SRMR decreased as df decreased, especially as the model misfit
level decreased. However, the empirical standard deviation of the sample CFI was not sensitive
to the model size (n>=.01). Instead, the levels of model misfit (p; 0> = 0.19) and magnitudes of
factor loadings (A; n?= 0.25) played an important role in explaining the empirical standard

deviation of the sample CFI, especially when the sample size was small (N x A; n?=0.11).
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Insert Figure 4 here

To better demonstrate the patterns, we plotted the empirical standard deviations of the
three fit indices against the dfs (e.g., N = 100; p = 1.0) in Figure 4. As shown in this figure and in
Tables 1-3, for both RMSEA and SRMR, their empirical standard deviation increased as df
decreased. The empirical standard deviation of the sample CFI was generally stable as df
decreased, but a larger standard deviation of CFI was associated with lower factor loadings ().
The standard deviation of the sample SRMR also tended to increase as the level of factor
loadings increased; however, these changes were not as pronounced as those observed from the
sample CFI.

Regarding the empirical standard deviations, similar behaviors were observed under
misspecified conditions. When models were misspecified, the population values of the fit indices
varied by model size and level of factor loadings. As a result, the raw standard deviations may
not be comparable across conditions. To account for the differences in the population values, we
also computed the coefficient of variation (CV; Everitt, 1998) as the ratio of the empirical
standard deviation divided by the population fit indices. The values of the CVs are reported in
Table 1-3. Similar patterns were observed in terms of the relationships between df'and CV.

By comparing the empirical standard deviations among the three fit indices, we found
that under correctly specified models (where both population RMSEA and SRMR are equal to
zero), the empirical standard deviations of SRMR were noticeably smaller than the standard
deviations of RMSEA, especially when fitting small df models. For example, when N = 100, A =
0.60, and df = 2, the standard deviations of RMSEA and SRMR were 0.052 and 0.018,
respectively. Under misspecified models, the standard deviations of SRMR were smaller than the

standard deviations of RMSEA under most simulated conditions. However, the CVs for RMSEA
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were generally smaller than those obtained from SRMR under small df models. RMSEA yielded
larger standard deviations but smaller CVs because the population RMSEA increased
dramatically as df decreased. Meanwhile, the scale of the population CFI was much larger.
Consequently, the CVs for CFI were noticeably smaller than those calculated from RMSEA and
SRMR.

Empirical Rejection Rates using Conventional Cutoffs

Following prior research, models are considered to be adequately fitted if their RMSEA
values are below 0.06 or CFI values above 0.95 (Hu & Bentler, 1999). For SRMR, we applied
two cutoffs for acceptable fit: SRMR values below 0.08 (Hu & Bentler, 1999) or SRMR values
below R? x.10 (Shi, Maydeu-Olivares, & DiStefano, 2018). Table 4 reports the percentage of
replications with sample RMSEAs and SRMRs exceeding the cutoffs and CFIs falling below the

conventional cutoffs (suggesting that the model does not fit adequately).

Insert Table 4 here

We focused on the results from SRMRu and CFl.; as they produced less biased point
estimates (compared to SRMRb and CFI rsc ). Results showed that applying the conventional

cutoff of SRMR < .08 to SRMRu could yield misleading conclusions as it often retains severely
misspecified models unless the level of factor loadings is very high (A = 0.80). Therefore, for

SRMR, we applied the cutoff of SRMR < .10 x R? and compared the results with those obtained
from RMSEA and CFI. We plotted the empirical rejection rates for RMSEA (mm <.00),

SRMR (mu <10 x R?), and CFI (E\FI mr=>0.95) across all simulated conditions in Figure 5.

Insert Figure 5 here
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As shown, for correctly specified models (p = 1.00) or models with minor
misspecification (p = 0.90), the observed sample RMSEAs tended to exceed the cutoff of 0.06
when the sample sizes decreased, especially when df was very small and the level of factor
loadings (A) was high. For example, in models with minor misspecifications (p =.90) where N =
200, A = 0.80, and df = 2, sample RMSEA values were greater than 0.06 in 80% of the
replications. In addition, the sample RMSEA did not have enough power to reject severely
misspecified models (p = 0.60) when the level of factor loadings was very low (A = 0.40), even
when the sample size (N) reached 1,000. For example, when p = 0.60, N = 1,000, A = 0.40, and df
= 2, only 37% of the sample RMSEA exceeded 0.06.

As sample sizes decreased, the sample cutoff for SRMR and CFI rejected greater
proportions of the correctly specified or slightly misspecified models, especially when the levels
of factor loadings were very low (i.e., A = 0.40). The rejection rates for SRMR generally
increased as df decreased, while the rejection rates for CFI tended to decrease as df decreased.
For example, when fitting correctly specified models with N = 500 and A = 0.40, as df decreased
from 54 to 2, the rejection rates for the sample SRMR increased from 10% to 21%, whereas the
rejection rates for the sample CFI decreased from 8% to 3%. In addition, for both SRMR and
CFI, lower levels of factor loadings were associated with lower power rates to reject the severely
misspecifed models.

In general, with medium or high levels of factor loadings (A > .60), as the sample size

reaches 200, using SRMRu and CFIu with the conventional cutoffs, researchers reject severely
misspecified models and retain correctly specified or close-fitting models (power greater than

80% and Type I error rates of less than 10%) even when df'is very small. For example, when df =

2, A =0.80, and N = 200, the proportion of rejections based on mu were 0%, 0%, and 97%,
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and the proportion of rejections based on CFI u were 0%, 4%, and 100% for correctly specified,

slightly misspecified, and severely misspecified models, respectively. However, under the same

conditions, the rejection rates based on the sample RMSEAyz were 17%, 80%, and 100%,
respectively.

Interval Estimates

Under model misspecifications for all three fit indices, we examined the accuracy of the

Cls and p-values for the close fit tests. Specifically, the CIs and close fit tests for SRMR were
computed based on the unbiased sample estimates (mu ). For CFI, the CIs and close fit tests

were computed using CFlw. in equations 18 and 20°. Table 5 reports the coverage rates for the
90% ClIs, where coverage rates between 85% and 95% (90% + 5%) were considered acceptable
(Maydeu-Olivares, Shi, & Rosseel, 2018). These cases are highlighted in bold in the table.
Figure 6 provides the boxplots of the coverage rates for the 90% ClIs of the three fit indices
across all simulated conditions. As shown in Table 5 and Figure 6, in small df models, the 90%
CIs for RMSEA, SRMR, and CFI were accurate across most simulated conditions. The CIs for
the RMSEA generally performed better than the CIs for SRMR and CFI when there were minor
model misspecifications (p = 0.90) and/or when the level of factor loadings was low (e.g., A =
0.40). However, the CIs for SRMR and CFI were generally more accurate when the model
misspecification was more severe (p = .60) and/or when the level of factor loadings was high

(e.g., A=0.80).

Insert Table 5 and Figure 6 here

We also computed Cls and conducted close fit tests using C/']*:I rac in equations 18 and 20, and the

o~

results were similar to those obtained using CF1 yz .
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We also computed the widths of the Cls across replications. Table 5 presents the average
and median widths of the Cls. Figures 7-9 plot the average and median widths of the CIs for
RMSEA, SRMR, and CFI against model sizes (dfs) across various sample sizes (i.e., N = 50,
100, and 200), magnitudes of model misspecification, and levels of factor loadings. The
ANOVA results showed that for all three fit indices, sizeable variability in the average width of
the CIs could be explained by sample size (N). Not surprisingly, as sample size increased, the

ClIs for all three fit indices became narrower.

Insert Figures 7-9 here

Model size (df) was an important factor in predicting the average width of the CIs for
RMSEA (n? = 0.46) and SRMR (> = 0.28). As shown in Table 5 and Figures 67, for both
RMSEA and SRMR, the average width of the Cls increased as df decreased, especially when
sample size was small. When fitting models with very small dfs (e.g., df = 2) and small sample
sizes (e.g., N < 100), the average widths of the CIs for both RMSEA and SRMR could be very
large. For example, when p = 0.90, N =100, A = 0.60, and df =2, the average width of the CIs for
RMSEA and SRMR were both 0.18. Such wide intervals reflected high uncertainty and could not
provide useful information in practice. For SRMR, we also observed a noticeable interaction
effect between standardized factor loadings and the model size (A x df; 1> = 0.09). As indicated
in Figures 7 and 8, the average widths of the CIs for SRMR decreased noticeably as the level of
factor loadings increased, especially when df was small. In addition, for SRMR, the median
widths of the CIs were much narrower than their mean widths. For example, when p = 0.90, N
=100, A = 0.80, and df =2, the average and median width of CIs for SRMR were 0.13 and 0.05,

respectively. Such patterns were not observed for the CIs for RMSEA.
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Meanwhile, the widths of the CIs for CFI were less sensitive to the model size (n? =
0.02). Instead, sizable variability in the widths of the CIs for CFI can be explained by the size of
model misfit (p; n?> = 0.23) and level of factor loadings (A; 1> =0.20). As shown in Figure 9, the
widths of the CIs for CFI became narrower as the level of factor loadings (A) increased and
model misfit became less severe (e.g., p = 0.90). The average and median widths of the CIs for
CFI yielded similar values.

Close Fit Tests

Finally, we examined the accuracy of the p-values for close fit tests. Table 6 depicts the
empirical rejection rates (Type I error rates) at the 5% significance level when testing whether
the RMSEAs and SRMRs were less than or equal to and the CFIs were greater than or equal to
their population values. We considered a 5% rejection rate range between 2% and 8% to be

reasonably accurate (5% = 3%; Bradley, 1978), thus those cases are highlighted in bold.

Insert Table 6 here

The results showed that, in general, the empirical rejection rates for all three indices were
close to their nominal levels under the examined conditions, even when the model size (df) was
very small. Figure 10 provides the boxplots of the Type I error rates for close fit tests based on
the three indices across levels of factor loadings (1) and model misfit (p). As shown in Table 7
and Figure 10, the Type I error rates for RMSEA were generally more accurate when the level of
factor loadings was low (e.g., A = 0.40) and/or the level of model misfit was minor (e.g., p =
0.90). However, for SRMR and CFI, Type I error rates tended to be more accurate under models
with more severe levels of misfit (e.g., p = 0.60) and/or higher levels of factor loadings (e.g., A =

0.80).
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Insert Figure 10 here

Numerical Example: Open-Book Closed-Book Data

In this section, we present a numeric example to compare the sample estimates and Cls
for SRMR and RMSEA when assessing a factor analysis model with small df. The R code and
data used in this example are included as supplementary materials. For this, we used the open-
book closed-book (OBCB) dataset first introduced in Mardia, Kent, and Kirby (1979). The
OBCB data consisted of test scores of five topics (i.e., p = 5): mechanics, vectors, algebra,
analysis, and statistics. The first two tests are from closed-book tests while the other three are
from open-book tests. The five tests (variables) were measured on a scale of 0—100. Table 7
summarizes the descriptive statistics of the measured variables. The sample size is N = 88. The
OBCB data closely matched the conditions considered in our simulation study (i.e., small p,

small », and approximately normally distributed data).

Insert Table 7 here

We first fit a one-factor CFA model with no mean structure to the OBCB data using ML
estimation (df = 5). The standardized factor loadings under the one-factor model ranged from
0.60 to 0.92. The sample RMSEA was 0.096, with a 90% CI between 0 and 0.195. The sample
SRMRs using the biased (SRMR.b) and unbiased (SRMR.u) formulas were 0.048 and 0.039,
respectively. The 90% CI using the unbiased formula SRMR was [0.004, 0.074]. In terms of
CFI, the sample CFImL and CFIrsc were 0.979 and 0.976, respectively, while their corresponding
90% ClIs were [0.923, 1] and [0.918, 1], respectively. Using conventional cutoffs, the sample

RMSEA suggested that the one-factor model fit the data poorly. The sample SRMR and CFI met
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the cutoffs for close fit; however, their Cls indicated that with a 90% level of confidence, it is not
clear whether the population values met the conventional cutoffs.

Based on previous studies (e.g., Cai & Lee, 2009), we fit a simple-structure CFA model
with two correlated factors (i.e., closed-book tests and open-book tests). The df for the two-factor
model was four and the standardized factor loadings ranged from 0.70 to 0.93. The sample
RMSEA for the two-factor model was 0; however, the 90% CI for the RMSEA was [0, 0.118],
suggesting high uncertainty in estimating the RMSEA. The sample SRMRs using the biased
(SRMR.b) and unbiased (SRMR.u) formulas were 0.019 and 0, respectively. The 90% CI for the
unbiased formula SRMR was [0, 0.061]. For CFI, both the sample CFIme and CFlrsc were equal
to 1.000. The 90% CIs based on CFImL and CFIrsc were [0.976, 1] and [0.967, 1], respectively.
The 90% ClIs for SRMR and CFI are noticeably narrower than those obtained from RMSEA.
Using the recommended cutoffs'’, the point estimates and 90% Cls of the SRMR and CFI

suggested that the proposed two-factor model fit well.

Discussion and conclusion

This study compared the suitability of RMSEA, SRMR, and CFI in assessing factor
analysis models with small dfs. The theoretical presentation of the formulas for RMSEA, SRMR,
and CFI provided a foundation for understanding the indices and how their point estimates and
ClIs were calculated. At the population level, the results showed that given a fixed magnitude of

model misspecification, the population RMSEA (i.e., the true value) increased noticeably as df’

" For the acceptable fit cutoff, we used CFI = 0.95 and SRMR < R?x0.10. For the numerical

example, the average communality of the manifest variables was R? = 0.620. The cutoff value for

the SRMR was 0.620 x0.10 = 0.062.
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decreased. This finding is not surprising. By definition, RMSEA penalizes more complex models
by including their df in the denominator of its formula. Therefore, keeping the misspecified
parameter(s) fixed, the population RMSEA is expected to increase as df decreases.

On the other hand, for a fixed magnitude of misspecification (i.e., the inter-factor
correlation, p), population SRMR, and CFI are less susceptible to the effect of model size (df). In
addition, as the levels of factor loadings (A) increased, the population RMSEA and SRMR
increased and population CFI decreased, suggesting a worse fit. Our findings regarding the
effects of model size (df) and level of factor loadings (1) on the population fit indices are
consistent with those of previous studies (Ridon, 1996; Kenny & McCoach, 2003; Savalei, 2012;
Shi et al., 2019; Maydeu-Olivares, 2017; Shi, Maydeu-Olivares, & DiStefano, 2018; Hancock &
Mueller, 2011; McNeish, An & Hancock, 2018).

The results of this study provide a better understanding of the behavior of sample
RMSEA, SRMR, and CFI when assessing models with small df. For all three fit indices, the

biases for the sample estimates decreased as the levels of factor loadings (A) and sample size (N)
increased. Compared to the biased sample SRMR (mb ; equation 9), the sample SRMR

computed using the unbiased formula (mu ; equation 10) performed better with small sample

sizes, converging to its population value faster. We also compared sample CFIs computed using
two formulas. The CFI computed under CFlu (equation 15) could converge to its population

value faster than CFI rsc (equation 16) under the conditions considered in the current study,
especially for models with a low level of factor loadings (1) and large df. Under both formulas,
noticeable biases in the sample CFIs were observed when fitting large models with low factor
loadings and very small sample size.

When fitting models with smaller df, the variability (i.e., standard deviation) of the
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sample RMSEA and SRMR tended to increase, especially when the sample size (V) was small.

However, the standard deviation of the sample estimates of CFI was less sensitive to model size
(df). We provided explanations of the impact of model size (df) on the standard deviations of the
three fit indices. First, we showed, in the Appendix, that under a null hypothesis of close fit, the

4k, . This

asymptotic variance of the sample squared RMSEA has variance —; + >
N~ xdf Nxdf

generalizes the result of Rigdon (1996) and Kenny et al. (2015), who showed that in the special

case of exact model fit, F;, =0, this variance is . As a result, holding the level of

Nzxf

population model misspecification F| constant, the variance of the sample RMSEA increases as

df decreases, leading to higher uncertainty when estimating this population parameter. For the
unbiased SRMR, under the normal reference distribution, the expected standard error for SRMR
is approximated asymptotically as given in equation 12. We see in this equation that when

holding the degree of misfit constant, as ¢ = p(p +1)/2 decreases (in small models), the

variability of SRMRy increases. Finally, in small models, both the independence baseline model
and fitted model will involve a small df. Since the CFI is a comparative index, the impact of df
on the variability of the chi-square test statistics could be canceled out to some degree.
Additional studies are needed to further investigate this issue.

From empirical users’ perspective, we also examined the performance of applying the
conventional cutoffs to the evaluation of small df models. When the df was very small (df = 2),
sample RMSEA tended to reject close-fitting models (p = .90) often (20%), even as the sample

size reached 1,000. The sample SRMR and CFI performed better with small df models.
Generally, as the sample size reaches 200, the unbiased sample SRMR (mu) and CFI

(61;[ mz ) can be used even for very small models (e.g., df = 2), except when the level of factor
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loadings is very low. Researchers should also be cautious when applying the conventional
cutoffs for SRMR or CFI with low factor loadings. When the standardized factor loadings are
very low (i.e., A < 0.4), using sample SRMR or CFI with a conventional cutoff often leads to
rejection of correctly specified or close-fitting models, except when the sample size is very large
(e.g., N> 1,000).

The three fit indices performed similarly in terms of the accuracy of their p-values in
close fit tests and CI coverage rates. RMSEA performed better when the level of factor loadings
was low (e.g., A = 0.40) and/or the level of model misfit was minor (e.g., p = 0.90), whereas
SRMR and CFI were superior to RMSEA in models with more severe levels of misfit (e.g., p =
0.60) and/or higher levels of factor loadings (e.g., A = 0.80). It is notable that the performance of
CIs for SRMR and CFI became worse as the level of model misfit decreased. The plausible
explanations are as follows. The values of SRMR and CFI are bounded by zero and one,
respectively. As a result, a normal approximation may fail to represent the observations at the tail
of the distribution, especially when the degree of model misfit is small (i.e., producing more Os
for SRMR and more 1s for CFI).

In addition, the widths of the CIs for CFI are not sensitive to the model size (df). The
average widths of the CIs for RMSEA and SRMR can be noticeably wide under models with
very small df (e.g., df = 2), especially when the sample size is small. Under the above conditions,
however, the median widths of the CIs for SRMR were much narrower than the average widths;
this pattern was not observed for the CIs of RMSEA.

Why were the average and median CI sizes for SRMR so different? We examined the
empirical distributions of the size of the CIs for both RMSEA and SRMR under a specific

condition (i.e., A = 0.60, p = 0.90, N = 100, and df = 2). For RMSEA, the size of the CIs was
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generally large across most replications: 4,478 of 5,000 (89.6%) of RMSEA CIs were larger than
0.10. However, the CIs for SRMR were generally much narrower than the RMSEA CIs in the
majority of replications: Only 1,192 of 5,000 (23.8%) SRMR CIs were larger than 0.10.
Nevertheless, a small proportion of SRMR Cls were extremely large: 276 out of 5,000 (5.5%)
were larger than 0.30. Due to this small number of extreme values, the average size of SRMR
ClIs was inflated and their median size was noticeably smaller than average. In summary, in
assessing very small models with small sample sizes (e.g., df =2 and N < 100), SRMR Cls were
mostly narrower than RMSEA CIs. Nevertheless, there is a slight chance that unreasonably wide
CIs may be observed using SRMR. Future studies should explore this phenomenon further.

The current study is not without limitations. First, its findings on sample and interval
estimates are based on multivariate normally distributed data, and many conclusions are
condtional on the assumption of multivariate normality. The assumption of normality can be
violated in many applications (Micceri, 1989). Statistical theories and formulas to estimate
RMSEA, SRMR, CFI, and close fit tests under non-normal data are available (Brosseau-Liard,
Savalei, & Li, 2012; Brosseau-Liard & Savalei, 2014; Savalei, 2018; Gao, Shi, & Maydeu-
Olivares, 2020; Maydeu-Olivares, 2017; Shi, Maydeu-Olivares & Rosseel, 2020; Lai, 2019a;
2019b; 2020). Based on previous findings (e.g., Lai, 2019a; 2019b; 2020; Maydeu-Olivares et
al., 2018; Gao et al., 2020), we expected the formulas to show acceptable performance under
non-normal data. However, future studies should verify the performance of RMSEA, SRMR, and
CFTI in assessing small df models with non-normal data. Moreover, this study only considered
one type of model misspecification (misspecified dimensionality under factor analysis models).
In future studies, additional types of models (e.g., path analysis models) and model

misspecifications (e.g., omitted cross-loading) should be investigated.
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In summary, our findings support the idea that the behaviors of fit indices rely not only
on the model fit or misfit, but also on the context of the model, such as the model size (df). The
population RMSEA is heavily influenced by the model size (df). When df was very small, the
sample RMSEA often erroneously rejected correctly specified or close-fitting models. The Cls of
RMSEA also tended to be very wide, suggesting high uncertainty regarding the size of the model
misfit. In comparison to RMSEA, the population SRMR and CFI are less susceptible to the
effects of changes in df. The sample SRMR and CFI could provide more useful information in

assessing models with very small df. A sample of N =200 observations is generally adequate for

interpreting the sample SRMR (,Smu ) or CFI ((7F\’I uz ) in extremely small models (e.g., df =
2), unless the level of factor loadings is very low (A < 0.40). In general, the 90% Cls and p-values
for close fit tests under SRMR and CFI were accurate. The Cls for SRMR can be fairly wide as
the df'is very small, especially when the sample size (N) is small and factor loadings are very
low. The widths of CIs for CFI are less sensitive to the impact of df.

Based on the major findings, we provide the following concluding remarks. When
assessing very small models (e.g., df = 2), researchers should be cautious in interpreting
RMSEA and should rely more on SRMR and CFI. In other words, researchers should pay close
attention when interpreting fit indices of models with very small df and low factor loadings,
especially when the sample size is small. It is worth noting that, based on classic psychometric
theory (Lord & Novick, 2008; McDonald, 1999), short scales with low (standardized) factor
loadings are not recommended for use in practice as they could generate unreliable test scores. In
addition, considering construct representation, short scales are generally suitable for “narrow”
measures that have “content homogeneous indicators”. However, researchers should be cautious

in applying short scales for conceptually broader constructs that have more diverse item content
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(Cattell, 1966; Reise, Morizot & Hays, 2007).

We acknowledge and emphasize that evaluating model fit is a critical but difficult task
and that there are no “golden rules” for assessing any models. It is generally recommended that
model fit be evaluated based on more than one index. For instance, Hu and Bentler (1999)
recommended a two-index strategy using a combination of SRMR and one supplementary
index'!. Our recommendations are consistent with this two-index strategy in that the SRMR and
CFI may be used to assess models with small df. We hope that the findings from this study
inform researchers in psychological, behavioral, and other social science fields, who work with

small df models.

""" The supplementary indices included the Tucker-Lewis Index (TLIL; Tucker & Lewis, 1973), Bollen's

(1989Db) fit index (BL89), relative noncentrality index (RNI; McDonald & Marsh, 1990), CFI,
Gamma hat (Steiger, 1989), McDonald's centrality index (Mc; McDonald, 1989), and RMSEA.
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Appendix:
Asymptotic Mean and the Variance of the Sample Squared RMSEA in Close Fitting
Models
Under parameter drift assumptions, the asymptotic distribution of the likelihood-ratio

test statistic can be approximated by a non-central chi-square distribution with df degrees of
freedom and noncentrality parameter A = NF,, where F, denotes the population discrepancy

between the data generating process and the fitted model (Steiger & Lind, 1980; Browne &

Cudeck, 1993). Since the mean and variance of a non-central chi-square distribution with df
degrees of freedom and noncentrality parameter A are df +A and 2df + 4\ , respectively, it

follows that under the null hypothesis of close model fit H, : RMSEA <k,

E(RMSEAia)zE[XAzﬂ_dfj:E(XML)_df: L )
Nxdf N xdf Nxdf df

i 2 _ var( X2
Var(RMSEALL)=Var Xin=df = 2( ML2)=2d{+4};= 22 + 45, >
Nxdf | N°xdf? N°xdf> N°xdf Nxdf

In the special case where the model fits exactly, i.e., H, : RMSEA=0, F, =0, and these

expressions reduce to those reported in Kenny et al. (2015, p.492): E (R@LL) =0 and

Var(RMSEAzzuL)z 22 .
N~ xdf



Table 1: Population Values and Average Sample Estimates: RMSEA

Correctly Specified Models Close Fit Models Severely Misspecifed Models
N A df p=1.0 p=09 p=0.6

pop. mean sd pop. mean sd C.v. pop mean sd C.v.
2 0 0.030 0.058 0.015 0.030 0.056 3.73 0.058 0.028 0.056 0.97
4 20 0 0.039 0.043 0.011 0.039 0.043 3.91 0.040 0.043 0.044 1.10
54 0 0.047 0.036 0.010 0.047 0.035 3.50 0.036 0.054 0.037 1.03
2 0 0.046 0.072 0.044 0.051 0.075 1.70 0.154 0.099 0.098 0.64
50 .6 20 0 0.044 0.045 0.030 0.050 0.046 1.53 0.101 0.097 0.050 0.50
54 0 0.048 0.036 0.028 0.054 0.036 1.29 0.088 0.096 0.034 0.39
2 0 0.051 0.075 0.126 0.099 0.101 0.80 0.374 0.325 0.109 0.29
.8 20 0 0.044 0.045 0.084 0.084 0.051 0.61 0.228 0.221 0.043 0.19
54 0 0.048 0.036 0.074 0.085 0.035 0.47 0.190 0.191 0.030 0.16
2 0 0.026 0.045 0.015 0.025 0.044 2.93 0.058 0.029 0.048 0.83
A4 20 0 0.025 0.029 0.011 0.026 0.029 2.64 0.040 0.036 0.033 0.83
54 0 0.025 0.024 0.010 0.026 0.024 2.40 0.036 0.038 0.026 0.72
2 0 0.033 0.052 0.044 0.041 0.056 1.27 0.154 0.120 0.079 0.51
100 .6 20 0 0.026 0.030 0.030 0.034 0.032 1.07 0.101 0.096 0.033 0.33
54 0 0.025 0.024 0.028 0.033 0.026 0.93 0.088 0.088 0.022 0.25
2 0 0.033 0.052 0.126 0.102 0.080 0.63 0.374 0.346 0.072 0.19
.8 20 0 0.026 0.030 0.084 0.079 0.035 0.42 0.228 0.222 0.029 0.13
54 0 0.025 0.024 0.074 0.074 0.023 0.31 0.190 0.188 0.020 0.11
2 0 0.021 0.034 0.015 0.022 0.035 2.33 0.058 0.033 0.042 0.72
4 20 0 0.016 0.020 0.011 0.018 0.021 1.91 0.040 0.035 0.025 0.63
54 0 0.015 0.016 0.010 0.016 0.017 1.70 0.036 0.034 0.018 0.50
2 0 0.023 0.036 0.044 0.035 0.044 1.00 0.154 0.136 0.056 0.36
200 .6 20 0 0.017 0.020 0.030 0.028 0.024 0.80 0.101 0.098 0.021 0.21
54 0 0.015 0.016 0.028 0.027 0.018 0.64 0.088 0.088 0.013 0.15
2 0 0.023 0.036 0.126 0.110 0.060 0.48 0.374 0.356 0.050 0.13
.8 20 0 0.017 0.020 0.084 0.081 0.022 0.26 0.228 0.224 0.020 0.09
54 0 0.015 0.016 0.074 0.073 0.014 0.19 0.190 0.188 0.014 0.07
2 0 0.014 0.023 0.015 0.017 0.025 1.67 0.058 0.044 0.035 0.60
A4 20 0 0.010 0.013 0.011 0.012 0.014 1.27 0.040 0.037 0.015 0.38
54 0 0.008 0.010 0.010 0.011 0.011 1.10 0.036 0.035 0.009 0.25
2 0 0.015 0.023 0.044 0.035 0.033 0.75 0.154 0.148 0.034 0.22
500 .6 20 0 0.010 0.013 0.030 0.027 0.016 0.53 0.101 0.100 0.012 0.12
54 0 0.008 0.010 0.028 0.026 0.011 0.39 0.088 0.088 0.008 0.09
2 0 0.015 0.023 0.126 0.121 0.035 0.28 0.374 0.365 0.032 0.09
.8 20 0 0.010 0.013 0.084 0.083 0.012 0.14 0.228 0.226 0.013 0.06
54 0 0.009 0.010 0.074 0.073 0.008 0.11 0.190 0.189 0.009 0.05
2 0 0.010 0.016 0.015 0.014 0.019 1.27 0.058 0.050 0.026 0.45
4 20 0 0.007 0.009 0.011 0.010 0.010 0.91 0.040 0.039 0.009 0.23
1000 54 0 0.006 0.007 0.010 0.009 0.008 0.80 0.036 0.036 0.006 0.17
6 2 0 0.010 0.016 0.044 0.037 0.026 0.59 0.154 0.151 0.024 0.16
) 20 0 0.007 0.009 0.030 0.029 0.010 0.33 0.101 0.101 0.008 0.08




54 0 0.006 0.007 0.028 0.027 0.006 0.21 0.088 0.088 0.005 0.06
2 0 0.011 0.016 0.126 0.124 0.024 0.19 0.374 0.368 0.023 0.06
.8 20 0 0.007 0.009 0.084 0.083 0.008 0.10 0.228 0.227 0.009 0.04
54 0 0.006 0.007 0.074 0.073 0.005 0.07 0.190 0.189 0.006 0.03

Note. N = sample size; A = standardized factor loadings; df = degrees of freedom; p = interfactor correlations; pop. = the population values; mean =
the average sample estimates across replications; sd = the standard deviations of the sample estimates across replications; c.v. = the coefficient of
variation.



Table 2: Population Values and Average Sample Estimates: SRMR

Correctly Specified Models Close Fit Models Severely Misspecifed Models
N af p=1.0 p=09 p=0.6
pop SRMR.b SRMR.u pop SRMR.b SRMR.u pop SRMR.b SRMR.u

) mean sd mean sd ) mean sd c.v. mean sd c.v. ) mean sd c.v. mean sd c.v.

2 0 0.042 0.021 | 0.014 0.025 | 0.006 | 0.042 0.021 3.53 | 0.013 0.025 4.12 | 0.023 | 0.042 0.022 096 | 0.013 0.025 1.10

20 0 0.087 0.014 | 0.018 0.025 | 0.007 | 0.088 0.014 2.01 | 0.019 0.024 3.49 | 0.028 | 0.092 0.015 0.53 | 0.022 0.027 0.98

54 0 0.099 0.010 | 0.018 0.021 | 0.007 | 0.100 0.010 1.44 | 0.018 0.022 3.10 | 0.029 | 0.105 0.011 038 | 0.026 0.025 0.88

2 0 0.038 0.020 | 0.016 0.025 | 0.013 | 0.040 0.021 1.62 | 0.018 0.026 2.03 | 0.053 | 0.059 0.029 0.55 | 0.040 0.039 0.73

50 20 0 0.068 0.013 | 0.016 0.020 | 0.016 | 0.072 0.013 0.83 | 0.020 0.022 1.38 | 0.063 | 0.097 0.021 033 | 0.056 0.033 0.52
54 0 0.076 _ 0.009 | 0.014 0.017 | 0.016 | 0.080 0.010 0.63 | 0.019 0.019 1.19 | 0.066 | 0.106 0.017 0.26 | 0.061 0.027 0.42

2 0 0.022 0.012 | 0.010 0.015 | 0.023 | 0.033 0.018 0.78 | 0.022 0.023 0.99 | 0.094 | 0.102 0.036 0.38 | 0.099 0.038 0.40

20 0 0.039 0.009 | 0.009 0.012 | 0.028 | 0.051 0.012 0.44 | 0.025 0.018 0.65 | 0.112 | 0.130 0.034 0.31 | 0.119 0.036 0.33

54 0 0.043  0.007 | 0.008 0.010 | 0.029 | 0.056 0.010 0.36 | 0.027 0.015 0.52 | 0.117 | 0.136 0.032 0.28 | 0.123 0.034 0.29

2 0 0.032 0.016 | 0.012 0.020 | 0.006 | 0.031 0.016 2.73 | 0.012 0.020 3.29 | 0.023 | 0.034 0.017 0.75 | 0.014 0.022 0.95

20 0 0.062 0.010 | 0.014 0.018 | 0.007 | 0.063 0.010 1.44 | 0.014 0.018 2.57 | 0.028 | 0.069 0.011 0.41 | 0.023 0.022 0.78

54 0 0.070  0.007 | 0.012 0.015 | 0.007 | 0.071 0.007 1.01 | 0.014 0.016 2.26 | 0.029 | 0.077 0.008 0.28 | 0.025 0.019 0.67

2 0 0.026 0.014 | 0.011 0.017 | 0.013 | 0.029 0.015 1.19 | 0.015 0.020 1.51 | 0.053 | 0.057 0.023 0.44 | 0.047 0.030 0.57

100 20 0 0.048 0.008 | 0.011 0.014 | 0.016 | 0.052 0.009 0.56 | 0.016 0.016 1.01 | 0.063 | 0.081 0.016 0.25 | 0.060 0.022 0.35
54 0 0.053 0.006 | 0.010 0.012 | 0.016 | 0.057 0.007 042 | 0.015 0.014 0.88 | 0.066 | 0.088 0.013 0.20 | 0.064 0.018 0.27

2 0 0.015 0.008 | 0.006 0.010 | 0.023 | 0.028 0.013 0.57 | 0.022 0.017 0.73 | 0.094 | 0.102 0.027 0.28 | 0.101 0.027 0.29

20 0 0.027 0.005 | 0.006 0.008 | 0.028 | 0.040 0.009 031 | 0.026 0.013 045 | 0.112 | 0.123 0.026 023 | 0.118 0.026 0.24

54 0 0.030 0.004 | 0.006 0.007 | 0.029 | 0.044 0.007 0.25 | 0.028 0.010 035 | 0.117 | 0.128 0.024 0.20 | 0.122 0.024 0.21

2 0 0.023 0.012 | 0.009 0.015 | 0.006 | 0.024 0.012 2.06 | 0.010 0.015 2.57 | 0.023 | 0.029 0.014 0.63 | 0.016 0.019 0.83

20 0 0.044 0.007 | 0.010 0.013 | 0.007 | 0.045 0.007 1.02 | 0.011 0.013 1.87 | 0.028 | 0.053 0.009 0.32 | 0.024 0.017 0.61

54 0 0.049 0.005 | 0.009 0.011 | 0.007 | 0.050 0.005 0.70 | 0.010 0.011 1.62 | 0.029 | 0.059 0.006 0.22 | 0.026 0.014 0.49

2 0 0.018 0.010 | 0.008 0.012 | 0.013 | 0.022 0.011 0.88 | 0.012 0.015 1.15 | 0.053 | 0.055 0.018 0.34 | 0.051 0.021 0.39

200 20 0 0.034 0.006 | 0.008 0.010 | 0.016 | 0.038 0.006 0.40 | 0.014 0.012 0.77 | 0.063 | 0.072 0.012 0.19 | 0.062 0.014 0.23
54 0 0.038 0.004 | 0.007 0.008 | 0.016 | 0.042 0.005 0.29 | 0.015 0.010 0.66 | 0.066 | 0.078 0.010 0.15 | 0.065 0.012 0.18

2 0 0.010 0.005 | 0.004 0.007 | 0.023 | 0.025 0.010 0.42 | 0.022 0.012 0.51 | 0.094 | 0.101 0.020 0.21 | 0.101 0.020 0.21

20 0 0.019 0.003 | 0.004 0.005 | 0.028 | 0.035 0.006 0.23 | 0.027 0.008 0.29 | 0.112 | 0.119 0.019 0.17 | 0.117 0.019 0.17

54 0 0.021 0.002 | 0.004 0.005 | 0.029 | 0.037 0.005 0.18 | 0.029 0.006 0.22 | 0.117 | 0.124 0.017 0.14 | 0.121 0.017 0.14

2 0 0.015 0.008 | 0.007 0.010 | 0.006 | 0.016 0.008 139 | 0.008 0.011 1.78 | 0.023 | 0.026 0.011 0.49 | 0.020 0.015 0.65

20 0 0.028 0.004 | 0.006 0.008 | 0.007 | 0.029 0.005 0.66 | 0.008 0.009 1.25 | 0.028 | 0.040 0.006 0.23 | 0.026 0.010 0.37

54 0 0.031 0.003 | 0.005 0.007 | 0.007 | 0.032 0.003 046 | 0.007 0.008 1.08 | 0.029 | 0.043 0.005 0.16 | 0.029 0.007 0.26

2 0 0.011 0.006 | 0.005 0.008 | 0.013 | 0.017 0.008 0.63 | 0.012 0.011 0.83 | 0.053 | 0.054 0.012 0.23 | 0.053 0.012 0.23

500 20 0 0.021 0.003 | 0.005 0.006 | 0.016 | 0.027 0.004 0.28 | 0.014 0.008 0.51 | 0.063 | 0.067 0.008 0.13 | 0.063 0.009 0.14
54 0 0.024 0.002 | 0.004 0.005 | 0.016 | 0.029 0.003 0.20 | 0.016 0.006 0.40 | 0.066 | 0.071 0.007 0.10 | 0.066 0.007 0.11

2 0 0.006 0.003 | 0.003 0.004 | 0.023 | 0.024 0.006 0.28 | 0.023 0.007 0.29 | 0.094 | 0.100 0.013 0.14 | 0.100 0.013 0.14

20 0 0.012 0.002 | 0.003 0.003 | 0.028 | 0.031 0.004 0.15 | 0.028 0.005 0.17 | 0.112 | 0.116 0.011 0.10 | 0.115 0.012 0.10

54 0 0.013 0.001 | 0.002 0.003 | 0.029 | 0.033 0.004 0.12 | 0.029 0.004 0.13 | 0.117 | 0.121 0.010 0.09 | 0.119 0.010 0.09

1000 2 0 0.011 0.006 | 0.005 0.007 | 0.006 | 0.012 0.006 1.03 | 0.006 0.008 134 | 0.023 | 0.025 0.009 038 | 0.022 0.011 0.46
20 0 0.020 0.003 | 0.004 0.006 | 0.007 | 0.021 0.003 0.47 | 0.007 0.007 094 | 0.028 | 0.034 0.005 0.17 | 0.027 0.006 0.22




54 0 0.022 0.002 | 0.004 0.005 | 0.007 | 0.023 0.002 0.33 | 0.007 0.006 0.81 | 0.029 | 0.037 0.004 0.12 | 0.029 0.005 0.16
2 0 0.008 0.004 | 0.004 0.005 | 0.013 | 0.015 0.006 048 | 0.012 0.008 0.62 | 0.053 | 0.053 0.009 0.16 | 0.053 0.009 0.16
6 20 0 0.015 0.002 | 0.003 0.004 | 0.016 | 0.022 0.003 0.21 | 0.015 0.005 0.32 | 0.063 | 0.065 0.006 0.09 | 0.063 0.006 0.09
54 0 0.017 0.002 | 0.003 0.004 | 0.016 | 0.024 0.002 0.15 | 0.016 0.004 0.23 | 0.066 | 0.068 0.005 0.07 | 0.066 0.005 0.08
2 0 0.005 0.002 | 0.002 0.003 | 0.023 | 0.024 0.005 0.20 | 0.023 0.005 0.20 | 0.094 | 0.099 0.010 0.10 | 0.099 0.010 0.10
8 20 0 0.008 0.001 | 0.002 0.002 | 0.028 | 0.029 0.003 0.11 | 0.028 0.003 0.11 | 0.112 | 0.114 0.008 0.07 | 0.114 0.008 0.07
54 0 0.009 0.001 | 0.002 0.002 | 0.029 | 0.031 0.003 0.09 | 0.029 0.003 0.09 | 0.117 | 0.119 0.007 0.06 | 0.118 0.007 0.06

Note. N = sample size; A = standardized factor loadings; df = degrees of freedom; p = interfactor correlations; pop. = the population values; mean =
the average sample estimates across replications; sd = the standard deviations of the sample estimates across replications; c.v. = the coefficient of

variation. SRMR.b = sample SRMR using the biased formula (SRMR, ; Equation 9); SRMR.u = sample SRMR computed using the unbiased formula
( SRMRu ;Equation 10).



Table 3: Population Values and Average Sample Estimates: CFI

Correctly Specified Models Close Fit Models Severely Misspecifed Models
N ar p=1.0 p=09 p=0.6
pop CFLML CFLFBC pop CFLML CFLFBC pop CFLML CFLFBC
) mean sd mean sd ) mean sd c.v. mean sd c.v. ) mean sd c.v. mean sd c.v.
2 1 0.950 0.130 | 0918 0.167 | 0.996 | 0.949 0.134 0.13 | 0917 0.170 0.17 | 0915 | 0.937 0.165 0.18 | 0.907 0.196 0.21
20 1 0.893 0.144 | 0.829 0.200 | 0.994 | 0.887 0.150 0.15 | 0.822 0.207 0.21 | 0.903 | 0.852 0.181 0.20 | 0.767 0.243 0.27
54 1 0.845 0.148 | 0.781 0.180 | 0.993 | 0.835 0.157 0.16 | 0.766 0.190 0.19 | 0.894 | 0.767 0.188 0.21 | 0.675 0.228 0.26
2 1 0.975 0.053 | 0.966 0.070 | 0.993 | 0.969 0.061 0.06 | 0.958 0.080 0.08 | 0.876 | 0.906 0.127 0.14 | 0.876 0.162 0.18
50 20 1 0.959 0.055 | 0.950 0.061 | 0.989 | 0.948 0.064 0.06 | 0.937 0.072 0.07 | 0.854 | 0.839 0.119 0.14 | 0.810 0.137 0.16
54 1 0.946 0.054 | 0.934 0.058 | 0.986 | 0.931 0.064 0.06 | 0917 0.069 0.07 | 0.842 | 0.802 0.107 0.13 | 0.777 0.114 0.14
2 1 0.992 0.017 | 0991 0.018 | 0.982 | 0.976 0.035 0.04 | 0.974 0.038 0.04 | 0.785 | 0.816 0.106 0.14 | 0.804 0.113 0.14
20 1 0.985 0.020 | 0.983 0.021 | 0.972 | 0.961 0.035 0.04 | 0.957 0.036 0.04 | 0.759 | 0.765 0.084 0.11 | 0.752 0.089 0.12
54 1 0.979 0.021 | 0.975 0.022 | 0.966 | 0.947 0.034 0.04 | 0941 0.035 0.04 | 0.748 | 0.742 0.073  0.10 | 0.731 0.077  0.10
2 1 0.963 0.088 | 0.939 0.128 | 0.996 | 0.960 0.096 0.10 | 0.935 0.137 0.14 | 0915 | 0.936 0.140 0.15 | 0.902 0.178 0.19
20 1 0.942 0.086 | 0.923 0.109 | 0.994 | 0.935 0.094 0.09 | 0911 0.122 0.12 | 0.903 | 0.877 0.139 0.15 | 0.827 0.182 0.20
54 1 0.938 0.078 | 0.922 0.088 | 0.993 | 0.928 0.087 0.09 | 0.910 0.099 0.10 | 0.894 | 0.854 0.129 0.14 | 0.816 0.149 0.17
2 1 0.987 0.028 | 0.985 0.032 | 0.993 | 0.981 0.035 0.04 | 0978 0.040 0.04 | 0.876 | 0.893 0.102 0.12 | 0.875 0.121 0.14
100 20 1 0.983 0.025 | 0.981 0.026 | 0.989 | 0.974 0.033 0.03 | 0.971 0.035 0.04 | 0.854 | 0.853 0.082 0.10 | 0.843 0.088 0.10
54 1 0.981 0.024 | 0.978 0.025 | 0.986 | 0.970 0.032 0.03 | 0.966 0.033 0.03 | 0.842 | 0.835 0.070 0.08 | 0.826 0.073  0.09
2 1 0.996 0.008 | 0.996 0.008 | 0.982 | 0.980 0.023 0.02 | 0.980 0.024 0.02 | 0.785 | 0.805 0.075 0.10 | 0.797 0.079 0.10
20 1 0.994 0.008 | 0.994 0.009 | 0.972 | 0.969 0.022 0.02 | 0.968 0.022 0.02 | 0.759 | 0.766 0.059 0.08 | 0.759 0.062 0.08
54 1 0.993  0.009 | 0.992 0.009 | 0.966 | 0.961 0.020 0.02 | 0.960 0.021 0.02 | 0.748 | 0.751 0.052 0.07 | 0.745 0.055 0.07
2 1 0.976 0.054 | 0.966 0.075 | 0.996 | 0.971 0.060 0.06 | 0.958 0.087 0.09 | 0915|0932 0.113 0.12 | 0.903 0.153 0.17
20 1 0.972 0.043 | 0.968 0.047 | 0.994 | 0.966 0.051 0.05 | 0.961 0.056 0.06 | 0.903 | 0.895 0.099 0.11 | 0.877 0.115 0.13
54 1 0.973 0.037 | 0.970 0.039 | 0.993 | 0.967 0.043 0.04 | 0.962 0.046 0.05 | 0.894 | 0.886 0.084 0.09 | 0.874 0.089 0.10
2 1 0.994 0.013 | 0.993 0.014 | 0.993 | 0.988 0.021 0.02 | 0987 0.022 0.02 | 0.876 | 0.885 0.077 0.09 | 0.875 0.086 0.10
200 20 1 0.992 0.012 | 0.992 0.012 | 0.989 | 0.984 0.018 0.02 | 0983 0.019 0.02 | 0.854 | 0.855 0.055 0.06 | 0.851 0.058 0.07
54 1 0.992 0.011 | 0992 0.011 | 0.986 | 0.982 0.017 0.02 | 0981 0.018 0.02 | 0.842 | 0.840 0.046 0.05 | 0.837 0.047 0.06
2 1 0.998 0.004 | 0.998 0.004 | 0.982 | 0.982 0.016 0.02 | 0981 0.016 0.02 | 0.785 | 0.799 0.054 0.07 | 0.793 0.056 0.07
20 1 0.997 0.004 | 0.997 0.004 | 0.972 | 0.971 0.014 0.01 | 0971 0.014 0.01 | 0.759 | 0.763 0.042 0.06 | 0.759 0.044 0.06
54 1 0.997 0.004 | 0.997 0.004 | 0.966 | 0.964 0.013 0.01 | 0.964 0.013 0.01 | 0.748 | 0.750 0.037 0.05 | 0.747 0.038  0.05
2 1 0.989 0.024 | 0.987 0.027 | 0.996 | 0.984 0.031 0.03 | 0982 0.036 0.04 | 0915 | 0.922 0.086 0.09 | 0.909 0.102 0.11
20 1 0.989 0.018 | 0.989 0.018 | 0.994 | 0.985 0.022 0.02 | 0.984 0.023 0.02 | 0.903 | 0.904 0.060 0.07 | 0.899 0.062 0.07
54 1 0.990 0.015 ] 0990 0.015 | 0.993 | 0985 0.019 0.02 | 0.985 0.019 0.02 | 0.894 | 0.893 0.047 0.05 | 0.891 0.048 0.05
2 1 0.998 0.005 | 0.997 0.005 | 0.993 | 0.991 0.012 0.01 | 0.991 0.012 0.01 | 0.876 | 0.879 0.051 0.06 | 0.874 0.054 0.06
500 20 1 0.997 0.005 | 0.997 0.005 | 0.989 | 0.988 0.010 0.01 | 0.988 0.010 0.01 | 0.854 | 0.854 0.034 0.04 | 0.853 0.034 0.04
54 1 0.997 0.004 | 0.997 0.004 | 0.986 | 0.986 0.009 0.01 | 0.986 0.009 0.01 | 0.842 | 0.841 0.028 0.03 | 0.840 0.028 0.03
2 1 0.999 0.002 | 0.999 0.002 | 0.982 | 0.982 0.010 0.01 | 0.981 0.010 0.01 | 0.785 | 0.793 0.035 0.04 | 0.789 0.036 0.05
20 1 0.999 0.002 | 0.999 0.002 | 0.972 | 0.972 0.008 0.01 | 0.972 0.008 0.01 | 0.759 | 0.761 0.027 0.04 | 0.759 0.028 0.04
54 1 0.999 0.001 | 0.999 0.002 | 0.966 | 0.965 0.007 0.01 | 0.965 0.007 0.01 | 0.748 | 0.748 0.024 0.03 | 0.747 0.024 0.03
1000 2 1 0.994 0.012 | 0.994 0.013 | 0.996 | 0.990 0.018 0.02 | 0.990 0.019 0.02 | 0915 | 0919 0.065 0.07 | 0913 0.073 0.08
20 1 0.995 0.009 | 0.995 0.009 | 0.994 | 0.990 0.013 0.01 | 0.990 0.013 0.01 | 0.903 | 0.903 0.039 0.04 | 0.902 0.040 0.04




54 1 0.995 0.007 | 0.995 0.007 | 0.993 | 0.991 0.011 0.01 | 0.990 0.011 0.01 | 0.894 | 0.895 0.030 0.03 | 0.894 0.030 0.03
2 1 0.999 0.003 | 0.999 0.003 | 0.993 | 0.992 0.008 0.01 | 0992 0.008 0.01 | 0.876 | 0.877 0.037 0.04 | 0.875 0.038 0.04
6 20 1 0.999 0.002 | 0.999 0.002 | 0.989 | 0.989 0.006 0.01 | 0989 0.006 0.01 | 0.854 | 0.854 0.023 0.03 | 0.853 0.023 0.03
54 1 0.999 0.002 | 0.999 0.002 | 0.986 | 0.986 0.006 0.01 | 0.986 0.006 0.01 | 0.842 | 0.842 0.019 0.02 | 0.841 0.019 0.02
2 1 1.000 0.001 | 1.000 0.001 | 0.982 | 0.982 0.007 0.01 | 0.982 0.007 0.01 | 0.785 | 0.790 0.025 0.03 | 0.788 0.026 0.03
8 20 1 1.000 0.001 | 1.000 0.001 | 0.972 | 0.972 0.006 0.01 | 0.972 0.006 0.01 | 0.759 | 0.760 0.019 0.03 | 0.758 0.019 0.03
54 1 1.000 0.001 | 1.000 0.001 | 0.966 | 0.966 0.005 0.01 | 0.965 0.005 0.01 | 0.748 | 0.748 0.017 0.02 | 0.747 0.020 0.03

Note. N = sample size; A = standardized factor loadings; df = degrees of freedom; p = interfactor correlations; pop. = the population values; mean =
the average sample estimates across replications; sd = the standard deviations of the sample estimates across replications; c.v. = the coefficient of

variation. CFLML = sample CFI computed using CFI ;. (Equation 15); CFL.FBC = sample CFI computed using CFI rsc (Equation 16)



Table 4: Empirical Rejection Rates using Conventional Cutoffs

Correctly Specified Models Close Fit Models Severely Misspecifed Models
N df p=1.0 p=09 p=0.6
RMSEA SRMR SRMR CFI RMSEA SRMR SRMR CFI RMSEA SRMR SRMR CFI
> 0.06 >0.08 >0.10x R? <0.95 >0.06 >0.08 >0.10x R? <0.95 > 0.06 >0.08 >0.10x R? <0.95
2 0.22 0.02 0.25 0.21 0.22 0.02 0.26 0.21 0.20 0.03 0.24 0.21
20 0.34 0.01 0.40 0.46 0.34 0.01 0.41 0.47 0.37 0.03 0.45 0.52
54 0.41 0.00 0.45 0.66 0.41 0.00 0.45 0.66 0.50 0.02 0.56 0.74
2 0.31 0.02 0.23 0.17 0.34 0.03 0.26 0.21 0.57 0.16 0.52 0.48
50 20 0.38 0.00 0.20 0.32 0.44 0.01 0.27 0.40 0.79 0.24 0.75 0.79
54 0.43 0.00 0.14 0.46 0.49 0.00 0.22 0.55 0.87 0.24 0.84 0.92
2 0.34 0.00 0.00 0.04 0.55 0.02 0.05 0.17 0.98 0.69 0.83 0.91
20 0.39 0.00 0.00 0.06 0.71 0.00 0.02 0.33 1.00 0.86 0.95 0.99
54 0.43 0.00 0.00 0.11 0.80 0.00 0.01 0.50 1.00 0.91 0.98 1.00
2 0.21 0.00 0.29 0.20 0.20 0.00 0.28 0.21 0.24 0.01 0.33 0.27
20 0.16 0.00 0.38 0.36 0.16 0.00 0.40 0.39 0.28 0.00 0.55 0.55
54 0.08 0.00 0.38 0.43 0.09 0.00 0.40 0.46 0.21 0.00 0.64 0.70
2 0.26 0.00 0.12 0.09 0.32 0.00 0.18 0.14 0.75 0.14 0.68 0.64
100 20 0.17 0.00 0.06 0.11 0.26 0.00 0.13 0.20 0.88 0.18 0.87 0.89
54 0.08 0.00 0.02 0.12 0.17 0.00 0.08 0.25 0.90 0.17 0.94 0.96
2 0.26 0.00 0.00 0.00 0.66 0.00 0.01 0.11 1.00 0.78 0.92 0.99
20 0.17 0.00 0.00 0.00 0.74 0.00 0.00 0.18 1.00 0.94 0.99 1.00
54 0.09 0.00 0.00 0.00 0.77 0.00 0.00 0.28 1.00 0.98 1.00 1.00
2 0.16 0.00 0.28 0.17 0.17 0.00 0.30 0.19 0.27 0.00 0.43 0.36
20 0.02 0.00 0.31 0.23 0.03 0.00 0.35 0.27 0.16 0.00 0.67 0.62
54 0.00 0.00 0.28 0.23 0.00 0.00 0.34 0.29 0.05 0.00 0.78 0.75
2 0.18 0.00 0.03 0.02 0.28 0.00 0.08 0.07 0.91 0.07 0.79 0.78
200 20 0.03 0.00 0.00 0.01 0.10 0.00 0.04 0.06 0.97 0.10 0.97 0.97
54 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.05 0.98 0.10 1.00 1.00
2 0.18 0.00 0.00 0.00 0.80 0.00 0.00 0.04 1.00 0.85 0.97 1.00
20 0.03 0.00 0.00 0.00 0.84 0.00 0.00 0.07 1.00 0.99 1.00 1.00
54 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.13 1.00 1.00 1.00 1.00
2 0.06 0.00 0.21 0.08 0.08 0.00 0.25 0.11 0.34 0.00 0.63 0.51
20 0.00 0.00 0.16 0.04 0.00 0.00 0.22 0.09 0.04 0.00 0.85 0.76
54 0.00 0.00 0.10 0.03 0.00 0.00 0.16 0.06 0.00 0.00 0.95 0.89
2 0.06 0.00 0.00 0.00 0.25 0.00 0.01 0.01 0.99 0.02 0.92 0.94
500 20 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.00 0.02 1.00 1.00
54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.03 1.00 1.00
2 0.06 0.00 0.00 0.00 0.95 0.00 0.00 0.01 1.00 0.94 1.00 1.00
20 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.01 1.00 1.00 1.00 1.00
54 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.03 1.00 1.00 1.00 1.00




2 0.01 0.00 0.10 0.02 0.03 0.00 0.16 0.04 0.37 0.00 0.75 0.63

4 20 0.00 0.00 0.04 0.00 0.00 0.00 0.10 0.01 0.01 0.00 0.96 0.89

54 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.00 1.00 0.98

2 0.01 0.00 0.00 0.00 0.20 0.00 0.00 0.00 1.00 0.00 0.98 0.99

1000 6 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00
54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00

2 0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.98 1.00 1.00

8 20 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00

54 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00

Note. N = sample size; A = standardized factor loadings; df = degrees of freedom; p = interfactor correlation; the results for SRMR and CFI were

based on SRMRu and CFI ;.



Table 5: Coverage Rates, Average and Median Widths of the 90% Confidence Intervals (CI)

90% CI Coverage Rates Average CI Widths Median CI Widths
N A df p=.90 p=.60 p=.90 p=.60 p=.90 p=.60
RMSEA SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFI RMSEA SRMR CFI

2 092 090 097 | 091 080 093 022 046 034| 022 058 039| 023 014 029| 023 0.14 034
4 20 08 090 081 | 0.89 097 0.83 0.12 007 033| 0.12 007 037| 013 006 031 | 0.13 006 0.34
54 0.82 083 059 | 0.83 095 0.61 0.10 005 029] 010 006 031]| 0.10 0.04 030] 0.0 0.06 0.32

2 091 087 099 | 091 087 0.79 025 048 0.17| 029 031 030 026 0.12 0.13 | 031 0.14  0.26
50 .6 20 087 094 094 | 088 083 0.5 0.12 006 0.18| 0.14 0.09 030 0.13 005 0.17| 014 0.09 0.30
54 080 091 085 | 082 084 0.79 010 004 0.18] 0.10 0.07 027 010 004 0.17] 0.09 0.08 0.27

2 090 088 093 | 0.89 094 0.78 028 0.17 0.08| 034 0.13 029]| 031 0.08 0.07| 034 0.13 030
8 20 08 080 097 | 0.83 0.88 0.83 0.14 004 0.10] 0.12 0.I11 024| 0.14 005 0.10]| 0.11 0.11 0.24
54 0.81 081 093 | 078 0.88 0.85 0.10 0.04 0.11 007 010 022] 0.10 004 0.d1] 0.07 0.10 0.21

2 091 088 098 | 092 083 092 0.16 027 026 0.17 025 034)| 0.17 0.10 021| 0.18 0.11 0.29
4 20 089 087 091 | 090 09 0.89 0.08 004 025] 009 005 032] 009 004 023| 0.09 005 030
54 08 080 083 | 0.88 0.66 0.82 0.06 003 021] 007 004 026| 0.07 003 0.19] 0.07 0.04 0.28

2 090 085 099 | 092 094 0.79 0.18 0.18 0.10| 023 0.14 027| 0.19 008 0.07| 024 0.10 025
100 .6 20 08 093 098 | 087 0.86 0.86 0.09 004 0.11] 009 006 024| 0.09 004 0.09| 0.09 006 0.24
54 087 088 096 | 0.84 0.86 0.86 0.07 003 010] 006 005 021] 0.07 003 0.09] 0.06 005 0.21

2 090 091 087 | 090 090 0.83 022 013 006| 024 009 024| 024 005 005| 024 0.09 023
8 20 087 08 093 | 0.82 0.86 0.86 0.10 003 0.07| 0.08 008 0.18| 0.10 0.03 0.07| 0.08 0.08 0.18
54 084 083 093 | 0.76 0.86 0.86 0.07 003 0.07] 005 007 016] 0.06 003 0.07]| 0.05 007 0.16

2 091 087 099 | 092 084 0.89 0.12 016 0.18| 0.13 0.17 028)| 0.12 007 0.14| 0.14 0.08 0.23
4 20 090 087 096 | 0.89 0.71 0.93 0.06 003 0.16| 007 0.04 025| 0.06 003 0.14| 007 0.04 025
54 089 080 095 | 0.89 075 0.0 0.04 002 0.14] 005 0.03 021 0.05 002 0.12] 005 0.03 0.22

2 090 083 098 | 090 096 0.82 0.13  0.11 0.06 | 017 0.07 022 0.14 006 0.04| 0.17 0.07 0.22
200 .6 20 089 092 099 | 0.85 0.88 0.87 0.06 003 0.06| 006 004 018| 0.07 003 0.05| 006 0.04 0.18
54 08 066 098 | 0.83 0.88 0.89 005 002 006] 004 004 015] 0.05 002 005]| 0.04 0.04 0.15

2 089 094 083 | 0.89 0.86 0.86 0.17 004 0.04| 0.17 006 0.18| 0.17 0.04 004]| 0.17 0.06 0.18
.8 20 08 086 090 | 0.80 084 0.87 0.06 002 005| 005 005 0.13] 0.06 002 005| 0.05 0.05 0.13
54 0.84 085 093 | 0.74 0.87 0.88 0.04 002 005] 003 005 012] 0.04 002 004] 0.03 0.05 0.12

2 090 08 099 | 091 091 0.82 0.08 010 0.09| 0.10 008 022] 0.08 005 0.07| 0.11 005 0.20
4 20 090 088 099 | 0.89 084 0.88 0.04 002 0.08| 004 003 0.18| 0.04 002 007| 0.04 0.03 0.18
54 089 083 098 | 0.88 0.84 0.89 0.03  0.01 0.07] 003 0.02 0.15] 003 0.02 0.06| 003 0.02 0.15

2 090 087 093 | 0.89 091 0.86 0.09 006 0.03] 011 004 0.16| 0.10 0.04 0.02| 0.11 0.04 0.16
500 .6 20 08 077 098 | 0.84 090 0.88 0.04 002 003| 003 003 0.11] 0.04 002 0.03] 0.03 003 0.11
54 08 078 097 | 0.81 090 0.90 003 001 003] 002 002 009] 003 001 0.03] 0.02 002 0.09

2 08 093 087 | 0.89 080 0.88 0.11 002 003} 010 004 0.12| 0.11 002 003| 010 0.04 0.12
8 20 08 088 090 | 0.81 085 0.89 0.04 001 003] 003 003 009| 004 001 003] 0.03 003 0.09
54 0.84 088 092 | 0.74 0.87 0.90 002 001 003] 002 003 008| 002 001 003] 002 0.03 0.08

2 08 083 099 | 090 094 0.82 0.06 010 0.05| 0.07 004 0.18| 0.06 003 004]| 0.08 0.03 0.17
4 20 090 090 099 | 088 0.88 0.90 0.03  0.01 0.04| 003 0.02 0.13| 003 0.02 004 003 0.02 0.13
1000 54 090 054 099 | 0.87 0.87 0.90 0.02  0.01 004 002 001 0.10] 002 001 0.03| 002 0.01 0.10

2 090 091 087 | 0.89 090 0.88 0.07 003 0.02| 007 003 0.12| 0.08 003 002]| 0.07 0.03 0.12
20 089 085 093 | 0.85 091 0.89 0.03  0.01 002] 002 0.02 0.08] 003 001 0.02] 002 0.02 0.08




54 08 084 093 | 0.82 090 0.90 002 001 002] 001 002 006] 002 001 0.02] 0.01 002 0.06
2 08 090 089 | 089 076 0.89 0.07 002 0.02| 007 003 0.08| 0.07 002 002| 007 0.03 0.08
8 20 08 089 090 | 0.80 0.86 0.89 0.02 001 002] 002 002 006| 002 001 0.02] 0.02 002 0.06
54 083 089 091 | 0.73 0.88 0.90 001 001 002] 001 002 006] 001 001 002] 0.01 0.02 0.06

Note. N = sample size; A = standardized factor loadings; df = degrees of freedom; p = interfactor correlation; the coverage rates between 0.85 to 0.95

are highlighted in bold.



Table 6: Empirical Rejection Rates of the Close Fit Test (o = .05)

N A df p=.90 p=.60
RMSEA SRMR CFI RMSEA SRMR CF1
2 0.02 0.01 0.03 0.01 0.01 0.03
4 20 0.07 0.10 0.19 0.06 0.03 0.17
54 0.16 0.17 0.41 0.15 0.05 0.39
2 0.04 0.02 0.01 0.02 0.01 0.02
50 .6 20 0.09 0.06 0.06 0.07 0.01 0.09
54 0.18 0.09 0.15 0.15 0.01 0.15
2 0.05 0.02 0.01 0.02 0.02 0.03
.8 20 0.09 0.02 0.03 0.07 0.03 0.05
54 0.16 0.03 0.07 0.13 0.03 0.07
2 0.02 0.02 0.02 0.02 0.01 0.02
4 20 0.06 0.13 0.09 0.05 0.04 0.11
54 0.10 0.20 0.17 0.08 0.06 0.18
2 0.04 0.03 0.01 0.02 0.02 0.02
100 .6 20 0.07 0.07 0.02 0.06 0.02 0.05
54 0.10 0.10 0.04 0.09 0.02 0.07
2 0.05 0.03 0.01 0.02 0.06 0.03
.8 20 0.07 0.03 0.02 0.06 0.07 0.03
54 0.10 0.04 0.03 0.10 0.06 0.04
2 0.04 0.03 0.01 0.02 0.01 0.01
4 20 0.05 0.13 0.04 0.05 0.05 0.06
54 0.07 0.20 0.05 0.07 0.06 0.08
2 0.05 0.03 0.00 0.04 0.03 0.02
200 .6 20 0.07 0.07 0.01 0.07 0.03 0.04
54 0.07 0.09 0.02 0.09 0.03 0.04
2 0.05 0.04 0.01 0.02 0.09 0.02
.8 20 0.07 0.04 0.02 0.07 0.09 0.04
54 0.09 0.05 0.03 0.11 0.08 0.04
2 0.05 0.04 0.01 0.03 0.03 0.02
4 20 0.05 0.12 0.01 0.06 0.05 0.04
54 0.06 0.17 0.02 0.07 0.06 0.04
2 0.05 0.04 0.01 0.04 0.04 0.02
500 .6 20 0.06 0.05 0.01 0.07 0.03 0.04
54 0.06 0.09 0.01 0.10 0.03 0.04
2 0.05 0.05 0.02 0.03 0.16 0.03
.8 20 0.06 0.04 0.03 0.08 0.10 0.04
54 0.08 0.06 0.03 0.11 0.09 0.04
2 0.05 0.04 0.00 0.04 0.04 0.02
4 20 0.05 0.10 0.01 0.06 0.04 0.03
54 0.05 0.14 0.01 0.07 0.06 0.03
2 0.05 0.04 0.01 0.05 0.04 0.03
1000 .6 20 0.06 0.05 0.01 0.08 0.04 0.04
54 0.06 0.08 0.02 0.09 0.04 0.04
2 0.05 0.05 0.03 0.03 0.21 0.02
.8 20 0.07 0.04 0.03 0.09 0.09 0.04
54 0.07 0.06 0.04 0.11 0.08 0.04

Note. N = sample size; A = standardized factor loadings; df = degrees of freedom; p = interfactor correlation;

empirical rejection rates between 0.02 to 0.08 are highlighted in bold.



Table 7: Descriptive Statistics for the Open-Book Closed-Book Data

Items Means Standard Deviations Skewness Kurtosis
1. Mechanics 38.95 17.49 -0.33 -0.46
2. Vectors 50.59 13.15 -0.23 0.32
3. Algebra 50.60 10.62 -0.32 1.30
4. Analysis 46.68 14.85 -0.64 -0.46

5. Statistics 42.31 17.26 0.47 -0.31




Figure 1: Population Values and Average Sample Estimates: RMSEA
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(c) Severely Misspecifed Models (p = 0.6)

Note. N = sample size; df = degrees of freedom. The horizontal lines indicate Hu & Bentler (1999)’s
conventional cutoff for sample RMSEA (i.e., 0.06).



Figure 2: Population Values and Average Sample Estimates: SRMR
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horizontal lines indicate Hu & Bentler (1999)’s conventional cutoff for sample SRMR (i.e., 0.08).
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Figure 3: Population Values and Average Sample Estimates: CFI

CFl

1.00=

- e = =

0.83
0.20—
0.85-
0.80—
0.75+

1.00-

---------
------

0.95
0.90—
085
0.804
073+

1.00—

0.95
0.90—
085
0.80=

0.75+

(-
=)
=
o
I=

(-
[
(=]
wn
I

9'0 ¥o

sBuipeor J032e 4

g8'0

(a) Correctly Specified Models (p = 1.0)

0P

-=-- NS0

- - -N100

— -N200
NS00

—— N1000



CFI

1

—

—

000+
B30
S00—
850+
800+

T3l
000-

8350
00+
850+
800

Fal—
000—

850
800+
830+
500
=y

.....

e

b=

20

24

df

(-

20 a4

(b) Close Fit Models (p = 0.9)

90 ro

sBuipeoT d03oe 4

g0

_pup

--=- NSO

- - -N100

= =MN200
Ma00

——N1000



—pup

-=-- N50

- - -N100
CFl.fbe - -N200

1.000+

MO0
—MN1000

B30
S00—
550+
B004
a0+

¥'o

—

000

B30
200+

CFl

550+
800
a0+

/{l’r‘
90
sBuipeor 1030e 4

1.000—

550
B00+
B30+
500+

750

g0

df

(c) Severely Misspecifed Models (p = 0.6)

Note. N = sample size; df = degrees of freedom. CFI.ml = sample CFI computed using CFI . (Equation 15);

CFI.fbc = sample CFI computed using CFI rzc (Equation 16); the horizontal lines indicate Hu & Bentler (1999)’s
conventional cutoff for sample CFI (i.e., 0.95).



Figure 4: Effect of df on the Empirical Standard Deviations of RMSEA, SRMR, and CFI (p = 1.0; N =100)
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Figure 5: Empirical Rejection Rates using Conventional Cutoffs
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Figure 6: Coverage Rates of the 90% Confidence Intervals
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Figure 7: The Average and Median Widths of the 90% Confidence Intervals: RMSEA

Factor Loadings

04 06 08

0.60]
0.509
0.407
0,30
0.207
010
0.00=

0,60
0.50
0.40
0.30]
0.204
010
0.00-

-
]
3

Width of the 90% CI

0.60
0.50
0.404
0.30
0.20
010

0.00=
MEAM MEDIAN MEAN MEDIAM MEAN MEDIAM

(a) p=0.9

Note. N = sample size; df = degrees of freedom

05

00l

00z

Harz
W20
Eafs4

Width of the 90% CI

04

Factor Loadings

06 08

0.60]
0.509
0.407
0,30
0.207
010
0.00=

0,60
0.50
0.40
0.30]
0.204
010
0.00-

-
-
3

0.60
0.50
0.404
0.30
0.20
010

0.00=

MEAM

MEDIAN

MEAN MEDIAM MEAN MEDIAM

(b) p=0.6

05

00l

00z

Harz
W20
Eafs4



Figure 8: The Average and Median Widths of the 90% Confidence Intervals: SRMR
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Figure 9: The Average and Median Widths of the 90% Confidence Intervals: CFI
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Figure 10: Empirical Rejection Rates of the Close Fit Test (o = .05)

0.6

Interfactor Correlations

0.30
0254
0.20+
0139
0.104

0.05+

0.00-

—
HEE

0.30]
Y 025+
a
E 0.20—
O 0154
=

D 010
(¥ 0.05-

il
o%

0.00+

e

0.304
0.25+
0.204
0154
0.10+

s

0.05+

|

0.00+

T
RMSEA

T
SRMR

Note. Reference lines indicate the range of acceptable rejection rates (i.e., between 0.02 and 0.08).

9'0 7o

sBulpeor J030e 4

g0



	Numerical Example: Open-Book Closed-Book Data

