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Abstract 

We examined the effect of estimation methods, maximum likelihood (ML), unweighted least 

squares (ULS) and diagonally weighted least squares (DWLS), on three population SEM fit 

indices: the Root Mean Square Error of Approximation (RMSEA), the Comparative Fit Index 

(CFI) and the Standardized Root Mean Square Residual (SRMR). We considered different types 

and levels of misspecification in factor analysis models: misspecified dimensionality, omitting 

cross-loadings, and omitting residual correlations. Estimation methods had substantial impacts 

on the RMSEA and CFI so that different cutoff values need to be employed for different 

estimators. In contrast, SRMR is robust to the method used to estimate the model parameters. 

The same criterion can be applied when using the SRMR to evaluate model fit, regardless of the 

choice of estimation method.  
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The Effects of Estimation Methods on SEM Fit Indices 

 In many applications of structural equation modeling (SEM), the model under 

consideration is to some degree misspecified, or in more plain terms, incorrect (Box, 1979; 

MacCallum, 2003). In these situations, it is of interest whether the model fits closely or, more 

precisely, whether the misfit is substantively ignorable (Shi, Maydeu-Olivares, & DiStefano, 

2018). A host of the goodness of fit indices have been developed in an attempt to assess the size 

of a model’s misfit. As MacCallum, Browne, and  Sugawara (1996, p. 131) put it, “if the model 

is truly a good model in terms of its fit in the population, we wish to avoid concluding that the 

model is a bad one. Alternatively, if the model is truly a bad one, we wish to avoid concluding 

that it is a good one”. However, in reality, the goodness of fit indices not only reflect the “size” 

of model misspecification in the population. Rather, fit indices are be influenced by other 

variables that are unrelated to the level of the model misfit (Saris, Satorra, & van der Veld, 

2009).  

One of these variables is the choice of estimation method (Beauducel & Herzberg, 2006; 

Savalei, 2017; Xia & Yang, 2019). When fitting SEM models with continuous outcomes, 

maximum likelihood (ML) is the most commonly used estimation method (Jöreskog, 1969; 

Maydeu-Olivares, 2017b). On the other hand, when the data are ordinal, estimators based on 

least squares, such as the unweighted least squares (ULS) and diagonally weighted least squares 

(DWLS) are generally recommended when ordinal data are present1 (Forero, Maydeu-Olivares, 

 
1 It is noted that full weighted least squares (WLS) is also an available choice for estimating SE 
models for ordinal outcomes. Despite its asymptotic elegance, previous studies have shown that 
full WLS only perform well when the sample size is very large, and the usage of full WLS is 
limited in real data analysis (Bandalos, 2014; DiStefano & Morgan, 2014; Flora & Curran, 
2004). Therefore, in the current study, we only focus on ULS and DWLS estimators.  
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& Gallardo-Pujol, 2009; Jöreskog & Sörbom, 1988; Muthén, 1993; Muthén, Toit, & Spisic, 

1997; Savalei & Rhemtulla, 2013; Shi, DiStefano, McDaniel, & Jiang, 2018). 

 Understanding the effect of estimation methods on SEM fit indices is important for when 

fitting SEM models to ordinal data for two reasons. First, conclusions and conventional cutoffs 

obtained using a estimator cannot be generalized to applications in which a different estimator 

has been used. Most previous studies on SEM fit indices used ML estimation, and conclusions 

and conventional cutoffs obtained using ML with continuous data (e.g., Hu & Bentler, 1999) 

cannot be generalized to situations where categorical estimation methods (e.g., ULS and DWLS) 

are used. Second, a number of studies (DiStefano & Morgan, 2014; Maydeu-Olivares, Cai, & 

Hernández, 2011; Rhemtulla, Brosseau-Liard, & Savalei, 2012) suggest that ordinal data with a 

large number of response categories (5 or more categories) can be treated approximately as 

continuous. In these situations, using ML estimation when treating data as continuous or least 

squares methods when treating the data as ordinal will lead to substantially different fit indices 

across estimators, even when the same structural model is fitted to the data2.  

 Previous studies (e.g., Beauducel & Herzberg, 2006; Savalei, 2017; Xia & Yang, 2019) 

have examined the impact of estimation methods on SEM fit indices. In particular, a recent study 

by Xia and Yang (2019, see also Xia, 2016) has systematically examined the behavior of the 

Root Mean Square Error of Approximation (RMSEA: Steiger, 1989, 1990; Steiger & Lind, 

1980) and the comparative fit index (CFI: Bentler, 1990) across estimation methods.  Using 

simulation and empirical examples, these authors found that DWLS and ULS consistently yield 

 
2 When ordinal data is estimated using polychoric correlations, there are two possible sources of 
mispecifications (Maydeu-Olivares, 2006; Muthén, 1993): distributional and structural. The 
model may not fit because the assumption of categorized multivariate normality is violated 
(distributional mispecification) and/or because the structural model (e.g., a one factor model) is 
incorrect. 



Estimation Methods 5 
 

smaller RMSEA and larger CFI than those obtained using ML, suggesting that the model fits 

better. The above pattern held at both the population and sample level. Based on the findings, the 

authors concluded that the RMSEA and CFI tell different stories depending on the estimation 

method; the ML-based conventional cutoffs should not be applied under categorical estimators.  

However, Xia and Yang (2019) did not consider in their study goodness of fit indices that may 

be unaffected by the choice of estimator, such as the Standardized Root Mean Square Residual  

(SRMR: Bentler, 1995; Jöreskog & Sörbom, 1988; Maydeu-Olivares, 2017a). The SRMR 

depends solely on the parameter estimates, and not on the fit function used. Under model 

misspecification, parameter estimates using the methods considered in this article are consistent 

as long as the fitted model is not too far from the true model (Satorra, 1990). As a result, 

provided that sample size is large enough, the estimated SRMR is expected to be relatively 

robust to the choice of estimation method. However, there is no empirical evidence to support 

this supposition.  

 To fill this gap in the literature, this paper aims to understand the effects of estimation 

methods on the SRMR under different types and levels of model misspecification. To avoid the 

confounding of sample fluctuations, the population SRMR is examined3. More specifically, the 

behavior of the population SRMR across three estimation methods (i.e., ML, ULS, and DWLS) 

is compared with that of two commonly used fit-function based indices: the RMSEA and CFI.  

The RMSEA, CFI and SRMR population parameters 

  The population RMSEA measures the discrepancy due to approximation per degree of 

freedom as follows:  

 
3 In addition, the SRMR can be estimated very accurately even in small samples (Maydeu-
Olivares et al., 2018; Shi, Maydeu-Olivares, et al., 2019). 
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 0FRMSEA
df

=  (1) 

where 0F  denotes the discrepancy between the fitted model and the data generating process, and 

df denote the degrees of freedom of the proposed model.  

In turn, the comparative fit index (CFI; Bentler, 1990) measures the improvement in fit of 

the postulated model in relation to a baseline model. The population CFI can be expressed as 

follows: 

 01
B

FCFI
F

= −  (2) 

where F0 and FB represent the fit function for the postulated model and the baseline model, 

respectively. The baseline model is the “worst possible” model. The usual convention for a 

baseline model is the independence model in which all observed variables are assumed to be 

uncorrelated. 

 Both the RMSEA and CFI are concomitant on the fit function (F) (i.e., estimation 

method) used. For example, when ML is applied to (mean centered) continuous outcomes, F0 

can be written as  

 ( )ln ln trMLF p− + −= -1
0 0Σ Σ ΣΣ  (3) 

where p is the number of observed variables in the fitted model, andΣ and 0Σ  denote the 

population and model implied covariance matrices, respectively.  

 When the data is treated as categorical, correlation structures are involved, instead of 

covariance structures. More specifically, the model is fitted to polychoric correlations. In this 

case, the population diagonally least squares (FDWLS) and unweighted least squares (FULS) fit 

functions can be expressed as:  
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 1( ( ))DWLS r rF diagε ε−′= Γ , (4) 

 ULS r rF ε ε′= , (5) 

where 0rε κ κ= −  denotes the difference between the population thresholds and polychoric 

correlations and those implied by the model and Γ is the probability limit of the covariance 

matrix of the estimated thresholds and polychoric correlations.  

 Therefore, the RMSEA and CFI are not uniquely defined; their population values change 

depending on the choice of estimation method. This idea has been emphasized by several 

researchers (e.g., Maydeu-Olivares, 2017a; Savalei, 2012).   

 In turn, the population SRMR is defined as  

 s sSRMR
t

ε ε′
= . (6)   

Here, sε  is the vector of the population standardized residual covariances and ( 1) / 2t p p= +  

indicates the number of unique elements in the residual covariance (correlation) matrix. The 

SRMR is a standardized effect size measure of model misfit and can be crudely interpreted as the 

average standardized residual covariance (Maydeu-Olivares, 2017a; Shi, Maydeu-Olivares, et al., 

2018).   

Simulation Study 

We conducted an extensive simulation study to investigate the effects of estimation methods 

on three population SEM fit indices (i.e., RMSEA, CFI, and SRMR) across different types and 

levels of model misspecification in factor analysis models. The population model was a 

confirmatory factor analysis (CFA) model with two correlated factors. We considered the 

following three types of model misspecification, which are commonly observed in practice when 

fitting CFA models.  
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a) Misspecified dimensionality. The population model has two correlated factors, but a one-

factor model was fit to the two-factor structure. 

b) Omitting cross-loadings. The population model has two correlated factors with 

independent clusters structure; however, one or multiple items cross-load on both factors. 

The fitted model assumed an independent clusters structure, where the cross-loading 

value(s) are incorrectly fixed to zero. 

c) Omitting residual correlations. One or multiple residual terms were correlated in the 

population model. In the fitted model, the residuals’ correlations were ignored and 

incorrectly fixed to zero.  

For all three types of model misspecification, the population factor variances were set to 

one. The error variances were set such that the population covariance matrices were in fact 

correlation matrices. This implies that all factor loadings (including cross-loadings) are on a 

standardized scale. Other characteristics that were manipulated are as follows:  

Magnitude of Factor Loadings. The population factor loadings (λ) included low (.40), 

medium (.60), and high (.80) values.  

Model size. The model size is indicated by the number of observed variables (p; 

Moshagen, 2012; Shi, Lee, & Terry, 2015, 2018). Model size (p) included 10, 20 and 30 

variables. An equal number of items loaded on each factor of the population model.  

Magnitude of Model Misspecification. Under misspecified dimensionality, the level of 

misspecification was manipulated by altering the inter-factor correlations (ρ) in the population 

model. The true correlation coefficients (ρ) considered in the current study included .60, .80 

and .90. Provided that the model was misspecified by ignoring the multidimensional structure, a 
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smaller inter-factor correlation indicated a greater level of misspecification. When the model 

misspecifications were introduced by omitting the cross-loading(s) or the correlated residual(s), 

the population correlation between the two factors was set to be .20, and the level of misfit was 

determined by the population value of the omitted parameters. The population values of the 

cross-loading (s) or residual correlation(s) included .20 or .40, with larger values indicating 

more severe model misspecification.  

It is noted that we considered a wide range of levels of model misspecification which 

might occur in real data analysis (Shi, Maydeu-Olivares & DiStefano, 2018). For example, most 

researchers would agree that the model misfit is substantively ignorable when fitting a one-

factor model to two-factor data with inter-factor correlation ρ = .90, or omitting a cross-loading 

or residual correlation of .20. On the other hand, most researchers will agree that fitting a one-

factor model to a two-dimensional structure with ρ = .60 or ignoring cross-loading(s) or residual 

correlation (s) of .40 cannot be substantively ignored. 

Number of Omitted Parameters. Under scenarios of omitting cross-loadings or residual 

correlations, we also manipulated the number of omitted parameters. Either one or four 

parameters were omitted from the fitted model.  

A total of 99 conditions were investigated (27 + 36 + 36). Under misspecified 

dimensionality, the number of conditions considered was 27 = 3 (factor loading levels) × 3 

(model size levels) × 3 (factor inter-correlation levels). For model misfit with cross-loadings or 

residual correlations, the number of conditions investigated was 36 = 3 (factor loading levels) × 

3 (model size levels) × 2 (magnitudes of omitted parameters) × 2 (number of omitted 

parameters).  
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For each simulated condition, we computed the population fit indices (i.e., RMSEA, CFI, 

and SRMR) using three different estimation methods, including maximum likelihood (ML), 

diagonally weighted least squares (DWLS), and unweighted least squares (ULS). All 

computations are conducted using the lavaan package in R (R Core Team, 2019; Rosseel, 2012). 

More specifically, when using ML and ULS, the population values of the fit indices were 

computed by fitting the misspecified model to the population correlation matrices. Under DWLS, 

however, the diagonal of the asymptotic covariance matrix (of thresholds and polychoric 

correlations) were utilized as the weight matrices in the fit function. Therefore, following the 

approach used in Xia (2016; see also Xia & Yang, 2018, 2019), the population values of the fit 

indices were approximated by fitting the misspecified model to a generated large sample (i.e., N 

= 1,000,000) data. It is noted that under DWLS, the population values of the fit indices may 

depend on the number of response categories (see Xia & Yang. 2018). In the current study, we 

used ordinal data with five response categories. We set the number of response categories to five 

to reflect the scenario where the data can be either treated as continuous or categorical. In 

addition, threshold values are required to calculate the weight matrix. In this study, we 

considered two types of threshold distributions: symmetric and asymmetric. The symmetric data 

with five categories were generated so that the expected areas under the curve4 were 7%, 24%, 

38%, 24%, and 7% of the response options 0 through 4, respectively. Under asymmetric 

conditions, 52%, 15%, 13%, 11%, and 9% of the normally distributed data fell into each 

category. The threshold values used were based on previous simulation studies in ordinal factor 

analysis (Rhemtulla, Brosseau-Liard & Savalei, 2012).  

 
4 Recall that the variance of each observed variable is one. 
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RMSEA results 

 The population values of RMSEA for all simulated conditions obtained using different 

estimation methods are reported in Tables 1- 3. Using the conventional cutoff (Browne & 

Cudeck, 1993), we highlighted cases where the population RMSEA was greater than 0.05 (i.e., 

the model did not fit closely). Across all simulated conditions, the population RMSEA ranged 

from .005 to .206 (ML), from .004 to .144 (ULS), and from .003 to .177 (DWLS). Consistent 

with findings from previous studies (Feinian et al., 2008; Kenny, Kaniskan, & McCoach, 2015; 

Maydeu-Olivares, Shi, & Rosseel, 2018; McNeish, An, & Hancock, 2018; Savalei, 2012; Shi, 

Lee, & Maydeu-Olivares, 2019), under all three estimation methods, the population RMSEA 

increased as the level of model misspecification increased, the magnitude of factor loadings 

increased, and the size of the model decreased.  

------------------------------------------- 

Insert Tables 1-3 here 

-------------------------------------------- 

 In addition, regardless of the types of model misspecification, keeping all other 

manipulated variables fixed, the population values for RMSEA can be noticeably different across 

estimation methods. For example, when fitting a one-factor model to a two-factor data with ρ 

= .90 (p = 30, λ = .80), the population values are .056 (ML), .033 (ULS), .045 (DWLS with 

asymmetric thresholds), and .046 (DWLS with asymmetric thresholds), respectively. It is noted 

that the direction of the effect of estimation methods on RMSEA was not consistent. That is, the 

ML-based RMSEA can be either smaller or greater than the population RMSEA obtained using 

least squares estimators (i.e., ULS or DWLS).  
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To better demonstrate the effect of estimation methods on the population RMSEA, we 

plotted the population RMSEAML vs. the population RMSEAs obtained using least squares 

estimation methods across all simulated conditions. The bivariate scatter plots are shown in 

Figure 1. There is large proportion of shared variability between RMSEAML and RMSEAULS (R2 

= 82.8%) and RMSEADWLS (R2 = 84.1% under asymmetric thresholds and R2 = 83.9% under 

asymmetric thresholds). However, we also observed in these plots that the relationship 

substantially weakened when RMSEAML > .05 and that the RMSEAML can be noticeably 

different from RMSEAULS and RMSEADWLS beyond this cut-off.  

------------------------------------------- 

Insert Figure 1 here 

--------------------------------------------- 

Finally, as shown in tables 1-3, the population values for RMSEA based on ULS and 

DWLS are closer than those obtained using ML. Nevertheless, ULS and DWLS can still yield 

noticeably different population RMSEA values. For example, when p = 10, λ = .60 and four 

cross-loadings of .40 were omitted, the population RMSEA under ULS and DWLS (with 

asymmetric thresholds) were .054 and .045, respectively. When using DWLS, the population 

RMSEA values are dependent on the distribution of the thresholds. That is, holding everything 

else constant, the population RMSEADWLS are consistently larger when thresholds are 

symmetric than when they are asymmetric.  

CFI results 

 Tables 4-6 summarize the behavior of the population CFI under the three estimation 

methods across the simulated conditions. We highlighted cases where the population CFI was 
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smaller than the commonly used cut-off for a close fit model (i.e., CFI < .95; Hu & Bentler, 

1999). Across all simulated conditions, the population CFI ranged from .464 to .999 (ML), 

from .658 to .999 (ULS), and from .643 to .999 (DWLS). As we expected, the population CFI 

decreased, suggesting the model fit worse, as the level of model misspecification increased.  

------------------------------------------- 

Insert Tables 4-6 here 

-------------------------------------------- 

The population CFI was also influenced by estimation methods. For the conditions 

considered in the current study, the ML-based CFIs were generally smaller than those obtained 

using ULS and DWLS. For example, when p = 10, λ = .60 and four cross-loadings of .40 were 

omitted, the ML-based population CFI was .892, implying that the model fits poorly. However, 

for the same condition, the population CFIs based on ULS and DWLS suggested that the model 

fits well: CFIULS = .965, CFIDWLS = .986 under symmetric thresholds and CFIDWLS = .988 under 

asymmetric thresholds. 

The bivariate relationships between the CFIML and the CFI based on ULS and DWLS are 

shown in Figure 2. The coefficient of determination (R2) between CFIML and CFIULS was 79.92%, 

between CFIML and CFIDWLS was 76.38% (under both asymmetric and asymmetric thresholds). 

As observed in the figures, for several conditions where the least squares based CFI suggested 

the model fit well (i.e., CFIULS or CFIDWLS was greater than .95), the CFIML could be below 

the .95 cutoff.  

Similar to what we found for the RMSEA, the difference between CFIULS and CFIDWLS 

was smaller than the differences observed between ML-based and least squares based CFI. Using 
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DWLS, in general, the population CFIDWLS under asymmetric thresholds are slightly larger than 

those computed under asymmetric thresholds. However, the differences were ignorable (in the 

third decimal place).  

------------------------------------------- 

Insert Figure 2 here 

--------------------------------------------- 

SRMR results 

 In Tables 7-9, we presented the impact of estimation methods on the population SRMR 

across the simulated conditions. To make it comparable with the RMSEA, we highlighted the 

cases where population SRMR values were larger than .05. Across all simulated conditions, the 

population SRMR ranged from .003 to .140 (ML), from .003 to .124 (ULS), and from .003 

to .130 (DWLS). We also plotted the bivariate relationships between the SRMRML and the 

SRMR based on ULS and DWLS in Figure 3. As shown in the tables, the population SRMR 

increased as the level of model misspecification increased, and as the magnitude of factor 

loadings increased. In addition, the population SRMR was less sensitive to misspecification 

introduced by omitting residual correlations. The above patterns are consistent with findings 

reported in previous studies (Maydeu-Olivares, Shi, & Rosseel, 2018; Shi, Maydeu-Olivares & 

DiStefano, 2018).  

------------------------------------------- 

Insert Tables 7-9 here 

-------------------------------------------- 

------------------------------------------- 
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Insert Figure 3 here 

--------------------------------------------- 

 The results showed that across all simulated conditions, the population values of SRMR 

are generally quite robust to the choice of different estimation methods. The R2 of population 

SRMR between any two of the estimation methods were larger than 99%. As shown in the tables 

and figures, under all simulated conditions, the differences of population SRMR across 

estimation methods were ignorable (in the third decimal place), except when the models were 

severely misspecified (SRMR ≥ .10). However, in general, the difference would not impact the 

practical interpretation of the model fit results. For example, when fitting a one-factor model to a 

two-factor data with ρ = .60 (p = 10, λ = .80), the population SRMR were .115 (ML), .115 

(ULS), .121 (DWLS with asymmetric thresholds), and .120 (DWLS with asymmetric 

thresholds), respectively; all population SRMR values suggested that the model fitted the data 

poorly.  

Discussion and Conclusions 

The current study examined the effect of estimation methods on the population SEM fit 

indices (i.e., RMSEA, CFI, and SRMR). Consistent with previous studies (Xia, 2016; Xia & 

Yang, 2018, 2019), our results showed that given the same type and level of model 

misspecification, the choice of estimation methods had an important impact on the population 

values of the RMSEA and CFI. Specifically, for the RMSEA, the population values based on 

ML can be either greater or smaller than those computed using least squares (i.e., ULS and 

DWLS). The RMSEAULS was found to be closer to RMSEADWLS than RMSEAML, but 

noticeable differences can still be observed between RMSEAULS and RMSEADWLS. When using 

DWLS, the population values of RMSEA also depend on the distribution of the thresholds; 
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RMSEADWLS in models with asymmetric thresholds are consistently larger than RMSEADWLS 

with symmetric thresholds.  

With regards to the CFI, across the simulated conditions considered in the current study, 

CFIML were generally smaller than those obtained using ULS or DWLS, suggesting that the 

model fit worse. The difference between CFIULS and CFIDWLS were smaller than the difference 

between CFIML and CFIULS (or between CFIML and CFIDWLS). Under DWLS, the impact of the 

distribution of thresholds on population CFI was negligible. 

The findings of the current study also expand on conclusions from previous 

methodological research regarding the influence of estimation methods on the SRMR. The 

results indicated that given the same type and level of model misspecification, the population 

values of SRMR are very similar across different estimation methods (i.e., ML, ULS, and 

DWLS). Why is population SRMR robust to the choice of different estimation methods? As 

discussed earlier, the population SRMR is computed based on the residual covariance, which is 

the difference between the population covariance matrix and the model implied covariance 

matrix. For any given population covariance matrix, the population SRMR depends on the model 

implied covariance matrix. Given the same misspecified model, the model implied covariance 

matrix, and thus the population SRMR is solely determined by the population parameter 

estimates. Methodological studies have shown that for the same model, the difference in 

parameter estimates across estimation methods (e.g., ML, ULS, and DWLS) can be trivial, even 

when the model is misspecified (e.g., Yang-Wallentin, Jöreskog, & Luo, 2010). As a result, the 

population SRMR is quite insensitive to choices of estimators.  

The results of the current research offer implications for empirical studies. Under the 

situations where the observed data can be treated either as continuous or ordinal (e.g., the 
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number of response categories ≥ 5), researchers should be aware that the model fit based on 

RMSEA and CFI can change substantially when different estimation methods are employed. An 

additional implication of this and previous studies is that the conventional cutoffs for RMSEA 

and CFI (based on ML) cannot be generalized to situations where categorical estimation methods 

(e.g., ULS and DWLS) are used. To address this issue, researchers have advocated a) developing 

different cut-off values when least squares methods are used (Beauducel & Herzberg, 2006), or 

b) computing RMSEAML and CFIML after least squares estimates have been obtained so that cut-

off values developed using ML may be used (Savalei, 2017). Our study suggested a third, 

simpler avenue to overcome this problem: to use the SRMR. We have found in this study that the 

population SRMR is generally robust to the choice of estimation methods. Therefore, the same 

population cutoff can be applied when using the SRMR to evaluate model fit, regardless of the 

choice of estimation method.  

This study is not without limitations. First, we only considered three types of model 

misspecification under factor analysis models. Additional studies should explore the 

generalizability of the findings to other types of misspecified SEM models. Additionally, we 

focused on behaviors of the fit indices at the population level. In practice, researchers would 

only obtain and interpret the sample estimates of the fit indices. Statistical theory enables 

researchers to construct confidence intervals and tests of close-fit for all three population 

parameters5. For example, researchers may test the hypothesis SRMR c≤ , where c is the 

reference cutoff in the population suggesting close fit.  

 
5 For the RMSEA, see Browne and Cudeck (1993); for the CFI, see Lai (2019); and for the 
SRMR, see Maydeu-Olivares (2017a).  
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An alternative, but less rigorous approach, is to directly compare the values on the fit 

indices with a fixed cutoff value at the sample level. As a reviewer pointed out, even though the 

population value SRMR is almost the same between ML applied to continuous data and ULS 

applied to ordinal data, the sample values can be different, because categorical data yield larger 

sample fluctuations than continuous data. In addition it is worth noting that for the RMSEA and 

CFI, when robust corrections are used (e.g., denoted as MLMV, ULSMV in Mplus; Asparouhov 

& Muthén, 2010; Satorra & Bentler, 1994) to adjust the chi-square test statistics, researchers 

should pay close attention to the selection of the formula used to compute the sample values. 

That is, using the current version of most SEM software (e.g., Mplus), the sample RMSEA and 

CFI based on ML, DWLS, and ULS estimation with robust corrections do not consistently 

estimate their population values, and they estimate different parameters. To produce relatively 

unbiased estimates, the unbiased (correct) formula should be used (Brosseau-Liard & Savalei, 

2014; Brosseau-Liard, Savalei, & Li, 2012; Gao, Shi, & Maydeu-Olivares, 2019; Li & Bentler, 

2006; Savalei, 2018; Xia, 2016). For the SRMR, an unbiased formula has also been developed, 

which yields more accurate estimates than the RMSEA (Maydeu-Olivares, 2017a; Maydeu-

Olivares et al., 2018; Shi, Maydeu-Olivares, & Rosseel, 2019). Future research should 

investigate the effects of estimation methods on sample SEM fit indices. 
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Table 1: The Impact of Estimation Methods on the population RMSEA: Misspecified 
Dimensionality 
 
p LD rho RMSEAML RMSEAULS RMSEADWLS_sym_ RMSEADWLS_asym 

10 

.40 
.90 0.010 0.009 0.008 0.007 
.80 0.020 0.018 0.017 0.015 
.60 0.038 0.036 0.034 0.029 

.60 
.90 0.029 0.020 0.021 0.018 
.80 0.053 0.041 0.041 0.035 
.60 0.094 0.081 0.081 0.070 

.80 
.90 0.078 0.036 0.050 0.043 
.80 0.131 0.072 0.095 0.081 
.60 0.206 0.144 0.177 0.151 

20 

.40 
.90 0.009 0.008 0.008 0.007 
.80 0.018 0.017 0.016 0.013 
.60 0.033 0.034 0.031 0.027 

.60 
.90 0.025 0.019 0.019 0.017 
.80 0.045 0.038 0.038 0.033 
.60 0.075 0.076 0.075 0.065 

.80 
.90 0.063 0.034 0.047 0.040 
.80 0.101 0.068 0.088 0.076 
.60 0.152 0.135 0.164 0.140 

30 

.40 
.90 0.009 0.008 0.008 0.007 
.80 0.017 0.017 0.015 0.013 
.60 0.030 0.033 0.031 0.027 

.60 
.90 0.023 0.019 0.019 0.016 
.80 0.040 0.037 0.038 0.032 
.60 0.065 0.075 0.074 0.063 

.80 
.90 0.056 0.033 0.046 0.039 
.80 0.087 0.066 0.087 0.075 
.60 0.128 0.133 0.161 0.138 

 

Notes: p = number of observed variables, LD = factor loadings, rho = inter-factor correlation 
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Table 2: The Impact of Estimation Methods on the population RMSEA: Omitting Cross-loadings 

p LD mg n RMSEAML RMSEAULS RMSEADWLS_sym_ RMSEADWLS_asym 

10 

.40 
.20 1 0.022 0.024 0.022 0.019 

4 0.031 0.031 0.029 0.025 

.40 1 0.041 0.041 0.038 0.033 
4 0.042 0.041 0.038 0.032 

.60 
.20 1 0.033 0.037 0.035 0.030 

4 0.053 0.054 0.052 0.045 

.40 1 0.069 0.069 0.068 0.058 
4 0.090 0.080 0.082 0.071 

.80 
.20 1 0.052 0.049 0.049 0.043 

4 0.086 0.077 0.083 0.071 

.40 1 0.129 0.095 0.105 0.090 
4 0.183 0.125 0.168 0.146 

20 

.40 
.20 1 0.017 0.017 0.015 0.013 

4 0.029 0.029 0.027 0.023 

.40 1 0.032 0.032 0.030 0.026 
4 0.047 0.047 0.043 0.037 

.60 
.20 1 0.026 0.026 0.024 0.021 

4 0.046 0.046 0.044 0.038 

.40 1 0.050 0.050 0.050 0.043 
4 0.081 0.081 0.084 0.072 

.80 
.20 1 0.034 0.034 0.034 0.029 

4 0.062 0.062 0.065 0.055 

.40 1 0.067 0.067 0.075 0.064 
4 0.115 0.115 0.156 0.135 

30 

.40 
.20 1 0.009 0.014 0.013 0.011 

4 0.017 0.025 0.023 0.020 

.40 1 0.019 0.027 0.025 0.022 
4 0.034 0.044 0.042 0.036 

.60 
.20 1 0.012 0.021 0.020 0.017 

4 0.022 0.039 0.037 0.032 

.40 1 0.026 0.041 0.041 0.035 
4 0.049 0.073 0.075 0.065 

.80 
.20 1 0.017 0.028 0.028 0.024 

4 0.033 0.052 0.054 0.046 

.40 1 0.047 0.055 0.061 0.053 
4 0.091 0.100 0.134 0.116 

 

Notes: p = number of observed variables, LD = factor loadings, mg = magnitude of the (omitted) 
cross-loading(s), n = number of (omitted) corss-loading(s) 
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Table 3: The Impact of Estimation Methods on the population RMSEA: Omitting Residual 
Correlations 
 
p LD mg n RMSEAML RMSEAULS RMSEADWLS_sym_ RMSEADWLS_asym 

10 

.40 
.20 1 0.031 0.028 0.026 0.022 

4 0.062 0.052 0.049 0.043 

.40 1 0.064 0.055 0.056 0.048 
4 0.128 0.104 0.105 0.090 

.60 
.20 1 0.029 0.021 0.020 0.017 

4 0.061 0.040 0.037 0.032 

.40 1 0.060 0.042 0.043 0.036 
4 0.126 0.080 0.079 0.068 

.80 
.20 1 0.028 0.012 0.011 0.010 

4 0.061 0.023 0.021 0.018 

.40 1 0.058 0.024 0.024 0.020 
4 0.125 0.045 0.044 0.038 

20 

.40 
.20 1 0.013 0.013 0.012 0.011 

4 0.025 0.025 0.024 0.021 

.40 1 0.026 0.026 0.027 0.023 
4 0.050 0.050 0.052 0.045 

.60 
.20 1 0.010 0.010 0.009 0.008 

4 0.019 0.019 0.018 0.016 

.40 1 0.020 0.020 0.020 0.017 
4 0.038 0.038 0.039 0.033 

.80 
.20 1 0.005 0.005 0.005 0.004 

4 0.011 0.011 0.010 0.009 

.40 1 0.011 0.011 0.011 0.009 
4 0.022 0.022 0.021 0.018 

30 

.40 
.20 1 0.010 0.008 0.008 0.007 

4 0.019 0.017 0.016 0.014 

.40 1 0.020 0.017 0.017 0.015 
4 0.040 0.033 0.034 0.029 

.60 
.20 1 0.009 0.006 0.006 0.005 

4 0.019 0.013 0.012 0.010 

.40 1 0.019 0.013 0.013 0.011 
4 0.039 0.025 0.025 0.022 

.80 
.20 1 0.009 0.004 0.004 0.003 

4 0.019 0.007 0.007 0.006 

.40 1 0.019 0.007 0.007 0.006 
4 0.039 0.014 0.014 0.012 

 

Notes: p = number of observed variables, LD = factor loadings, mg = magnitude of the (omitted) 
residual correlation(s), n = number of (omitted) residual correlation(s) 
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Table 4: The Impact of Estimation Methods on the population CFI: Misspecified Dimensionality 

p LD rho CFIML CFIULS CFIDWLS_sym_ CFIDWLS_asym 

10 

.40 
.90 0.994 0.997 0.997 0.997 
.80 0.975 0.988 0.987 0.988 
.60 0.898 0.939 0.939 0.939 

.60 
.90 0.988 0.997 0.997 0.997 
.80 0.955 0.988 0.988 0.988 
.60 0.847 0.939 0.940 0.940 

.80 
.90 0.968 0.997 0.997 0.997 
.80 0.906 0.988 0.988 0.988 
.60 0.752 0.939 0.949 0.949 

20 

.40 
.90 0.991 0.997 0.997 0.997 
.80 0.968 0.988 0.988 0.988 
.60 0.881 0.940 0.941 0.940 

.60 
.90 0.982 0.997 0.997 0.997 
.80 0.941 0.988 0.988 0.988 
.60 0.826 0.940 0.942 0.942 

.80 
.90 0.957 0.997 0.997 0.997 
.80 0.887 0.988 0.989 0.988 
.60 0.736 0.940 0.951 0.951 

30 

.40 
.90 0.989 0.997 0.997 0.997 
.80 0.962 0.988 0.988 0.988 
.60 0.870 0.940 0.941 0.940 

.60 
.90 0.978 0.997 0.997 0.997 
.80 0.932 0.988 0.988 0.988 
.60 0.814 0.940 0.942 0.943 

.80 
.90 0.951 0.997 0.997 0.997 
.80 0.878 0.988 0.989 0.988 
.60 0.729 0.940 0.952 0.952 

Notes: p = number of observed variables, LD = factor loadings, rho = inter-factor correlation 
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Table 5: The Impact of Estimation Methods on the population CFI: Omitting Cross-loadings 

p LD mg n CFIML CFIULS CFIDWLS_sym_ CFIDWLS_asym 

10 

.40 
.20 1 0.965 0.969 0.969 0.970 

4 0.949 0.965 0.967 0.967 

.40 1 0.897 0.924 0.925 0.924 
4 0.949 0.971 0.975 0.975 

.60 
.20 1 0.981 0.985 0.987 0.987 

4 0.959 0.974 0.978 0.977 

.40 1 0.923 0.952 0.956 0.957 
4 0.917 0.964 0.972 0.972 

.80 
.20 1 0.984 0.991 0.996 0.995 

4 0.963 0.982 0.990 0.990 

.40 1 0.914 0.969 0.982 0.982 
4 0.892 0.965 0.986 0.988 

20 

.40 
.20 1 0.981 0.981 0.982 0.982 

4 0.956 0.956 0.957 0.957 

.40 1 0.938 0.938 0.938 0.939 
4 0.923 0.923 0.927 0.928 

.60 
.20 1 0.991 0.991 0.993 0.993 

4 0.975 0.975 0.978 0.979 

.40 1 0.969 0.969 0.971 0.971 
4 0.939 0.939 0.944 0.944 

.80 
.20 1 0.995 0.995 0.998 0.998 

4 0.985 0.985 0.992 0.992 

.40 1 0.981 0.981 0.989 0.989 
4 0.956 0.956 0.972 0.974 

30 

.40 
.20 1 0.988 0.987 0.987 0.987 

4 0.959 0.962 0.963 0.962 

.40 1 0.949 0.954 0.953 0.953 
4 0.866 0.911 0.913 0.912 

.60 
.20 1 0.994 0.994 0.995 0.995 

4 0.979 0.981 0.983 0.983 

.40 1 0.972 0.978 0.979 0.979 
4 0.911 0.942 0.945 0.944 

.80 
.20 1 0.995 0.997 0.998 0.998 

4 0.982 0.989 0.994 0.994 

.40 1 0.965 0.987 0.992 0.992 
4 0.887 0.962 0.973 0.973 

 

Notes: p = number of observed variables, LD = factor loadings, mg = magnitude of the (omitted) 
cross-loading(s), n = number of (omitted) corss-loading(s) 
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Table 6: The Impact of Estimation Methods on the population CFI: Omitting Residual 
Correlations 
 
p LD mg n CFIML CFIULS CFIDWLS_sym_ CFIDWLS_asym 

10 

.40 
.20 1 0.928 0.955 0.953 0.955 

4 0.771 0.866 0.864 0.863 

.40 1 0.756 0.848 0.829 0.830 
4 0.464 0.658 0.645 0.643 

.60 
.20 1 0.984 0.994 0.995 0.995 

4 0.935 0.981 0.984 0.984 

.40 1 0.936 0.978 0.979 0.979 
4 0.772 0.931 0.935 0.935 

.80 
.20 1 0.995 0.999 0.999 0.999 

4 0.978 0.998 0.999 0.999 

.40 1 0.980 0.998 0.999 0.999 
4 0.914 0.992 0.996 0.996 

20 

.40 
.20 1 0.989 0.989 0.988 0.988 

4 0.958 0.958 0.957 0.957 

.40 1 0.957 0.957 0.947 0.948 
4 0.855 0.855 0.831 0.830 

.60 
.20 1 0.999 0.999 0.999 0.999 

4 0.995 0.995 0.996 0.996 

.40 1 0.995 0.995 0.995 0.995 
4 0.980 0.980 0.981 0.981 

.80 
.20 1 0.999 0.999 0.999 0.999 

4 0.999 0.999 0.999 0.999 

.40 1 0.999 0.999 0.999 0.999 
4 0.998 0.998 0.999 0.999 

30 

.40 
.20 1 0.986 0.995 0.995 0.995 

4 0.945 0.981 0.980 0.980 

.40 1 0.942 0.981 0.976 0.976 
4 0.802 0.928 0.913 0.914 

.60 
.20 1 0.996 0.999 0.999 0.999 

4 0.984 0.998 0.998 0.998 

.40 1 0.983 0.998 0.998 0.998 
4 0.935 0.991 0.992 0.991 

.80 
.20 1 0.999 0.999 0.999 0.999 

4 0.994 0.999 0.999 0.999 

.40 1 0.994 0.999 0.999 0.999 
4 0.975 0.999 0.999 0.999 

 

Notes: p = number of observed variables, LD = factor loadings, mg = magnitude of the (omitted) 
residual correlation(s), n = number of (omitted) residual correlation(s) 
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Table 7: The Impact of Estimation Methods on the population SRMR: Misspecified 
Dimensionality 
 
p LD rho SRMRML SRMRULS SRMRDWLS_sym_ SRMRDWLS_asym 

10 

.40 
.90 0.007 0.007 0.007 0.007 
.80 0.014 0.014 0.015 0.014 
.60 0.029 0.029 0.029 0.029 

.60 
.90 0.016 0.016 0.016 0.016 
.80 0.032 0.032 0.032 0.033 
.60 0.065 0.065 0.065 0.065 

.80 
.90 0.029 0.029 0.029 0.029 
.80 0.058 0.058 0.059 0.058 
.60 0.115 0.115 0.121 0.120 

20 

.40 
.90 0.008 0.008 0.008 0.008 
.80 0.015 0.015 0.015 0.015 
.60 0.030 0.030 0.030 0.030 

.60 
.90 0.017 0.017 0.017 0.017 
.80 0.034 0.034 0.034 0.034 
.60 0.068 0.068 0.069 0.068 

.80 
.90 0.030 0.030 0.031 0.031 
.80 0.061 0.061 0.062 0.062 
.60 0.122 0.122 0.127 0.127 

30 

.40 
.90 0.008 0.008 0.008 0.008 
.80 0.015 0.015 0.016 0.015 
.60 0.031 0.031 0.031 0.031 

.60 
.90 0.017 0.017 0.017 0.017 
.80 0.035 0.035 0.035 0.035 
.60 0.070 0.070 0.070 0.070 

.80 
.90 0.031 0.031 0.031 0.031 
.80 0.062 0.062 0.063 0.063 
.60 0.124 0.124 0.130 0.130 

Notes: p = number of observed variables, LD = factor loadings, rho = inter-factor correlation 
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Table 8: The Impact of Estimation Methods on the population SRMR: Omitting Cross-loadings 

p LD mg n SRMRML SRMRULS SRMRDWLS_sym_ SRMRDWLS_asym 

10 

.40 
.20 1 0.019 0.019 0.019 0.019 

4 0.025 0.024 0.024 0.024 

.40 1 0.033 0.032 0.032 0.033 
4 0.032 0.032 0.032 0.032 

.60 
.20 1 0.030 0.029 0.029 0.029 

4 0.046 0.042 0.042 0.043 

.40 1 0.058 0.054 0.054 0.054 
4 0.069 0.063 0.064 0.064 

.80 
.20 1 0.041 0.039 0.040 0.040 

4 0.068 0.060 0.063 0.063 

.40 1 0.084 0.075 0.078 0.077 
4 0.140 0.098 0.116 0.118 

20 

.40 
.20 1 0.015 0.015 0.015 0.015 

4 0.026 0.026 0.026 0.026 

.40 1 0.029 0.029 0.029 0.029 
4 0.042 0.042 0.042 0.042 

.60 
.20 1 0.023 0.023 0.023 0.023 

4 0.041 0.041 0.041 0.041 

.40 1 0.045 0.045 0.045 0.045 
4 0.073 0.073 0.074 0.074 

.80 
.20 1 0.031 0.031 0.031 0.031 

4 0.056 0.056 0.057 0.057 

.40 1 0.060 0.060 0.062 0.062 
4 0.103 0.103 0.118 0.119 

30 

.40 
.20 1 0.013 0.013 0.013 0.013 

4 0.024 0.023 0.023 0.023 

.40 1 0.026 0.025 0.025 0.025 
4 0.044 0.041 0.041 0.041 

.60 
.20 1 0.020 0.019 0.019 0.019 

4 0.038 0.036 0.036 0.036 

.40 1 0.039 0.038 0.038 0.038 
4 0.073 0.068 0.069 0.069 

.80 
.20 1 0.027 0.026 0.026 0.026 

4 0.051 0.049 0.050 0.049 

.40 1 0.054 0.051 0.052 0.052 
4 0.113 0.094 0.102 0.103 

Notes: p = number of observed variables, LD = factor loadings, mg = magnitude of the (omitted) 
cross-loading(s), n = number of (omitted) corss-loading(s) 
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Table 9: The Impact of Estimation Methods on the population SRMR: Omitting Residual 
Correlations 
 
p LD mg n SRMRML SRMRULS SRMRDWLS_sym_ SRMRDWLS_asym 

10 

.40 
.20 1 0.022 0.022 0.022 0.022 

4 0.041 0.041 0.041 0.041 

.40 1 0.043 0.043 0.044 0.044 
4 0.082 0.082 0.082 0.083 

.60 
.20 1 0.017 0.017 0.017 0.017 

4 0.032 0.031 0.031 0.031 

.40 1 0.034 0.033 0.034 0.033 
4 0.063 0.063 0.063 0.063 

.80 
.20 1 0.009 0.009 0.009 0.009 

4 0.018 0.018 0.018 0.018 

.40 1 0.019 0.019 0.019 0.019 
4 0.036 0.035 0.036 0.036 

20 

.40 
.20 1 0.011 0.011 0.012 0.012 

4 0.023 0.023 0.023 0.023 

.40 1 0.023 0.023 0.023 0.023 
4 0.045 0.045 0.045 0.045 

.60 
.20 1 0.009 0.009 0.009 0.009 

4 0.017 0.017 0.017 0.017 

.40 1 0.017 0.017 0.018 0.018 
4 0.034 0.034 0.035 0.035 

.80 
.20 1 0.005 0.005 0.005 0.005 

4 0.010 0.010 0.010 0.010 

.40 1 0.010 0.010 0.010 0.010 
4 0.019 0.019 0.019 0.019 

30 

.40 
.20 1 0.008 0.008 0.008 0.008 

4 0.015 0.015 0.015 0.015 

.40 1 0.016 0.015 0.016 0.016 
4 0.031 0.031 0.031 0.031 

.60 
.20 1 0.006 0.006 0.006 0.006 

4 0.012 0.012 0.012 0.012 

.40 1 0.012 0.012 0.012 0.012 
4 0.024 0.023 0.023 0.024 

.80 
.20 1 0.003 0.003 0.003 0.003 

4 0.007 0.007 0.007 0.007 

.40 1 0.007 0.007 0.007 0.007 
4 0.013 0.013 0.013 0.013 

 

Notes: p = number of observed variables, LD = factor loadings, mg = magnitude of the (omitted) 
residual correlation(s), n = number of (omitted) residual correlation(s) 
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Figure 1: The Relationships between the population RMSEAML, RMSEAULS and RMSEADWLS 
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Figure 2: The Relationships between the population CFIML, CFIULS and CFIDWLS 
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Figure 3: The Relationships between the population SRMRML, SRMRULS and SRMRDWLS 
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