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Abstract

In this study, we introduce an interval estimation approach based on Bayesian structural equation
modeling (BSEM) to evaluate factorial invariance. For each tested parameter, the size of non-
invariance with an uncertainty interval (i.e. highest density interval, HDI) is assessed via
Bayesian parameter estimation. By comparing the most credible values (i.e. 95% HDI) with a
region of practical equivalence (ROPE), the Bayesian approach allows researchers to 1) support
the null hypothesis of practical invariance, and 2) examine the practical importance of the non-
invariant parameter. Compared to the traditional likelihood ratio test (LRT), simulation results
suggested that the proposed Bayesian approach could offer additional insight into evaluating
factorial invariance, thus, leading to more informative conclusions. We provide an empirical
example to demonstrate the procedures necessary to implement the proposed method in applied
research. The importance of and influences on the choice of an appropriate ROPE are discussed.
Keywords: Bayesian SEM, Parameter Estimation, Factorial Invariance; Highest Density

Interval (HDI), Region of Practical Equivalence (ROPE)
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Evaluating Factorial Invariance: An Interval Estimation Approach using Bayesian
Structural Equation Modeling (BSEM):

Measurement invariance is concerned with whether relationships between latent
constructs and corresponding observed variables are the same across different groups (e.g., based
on nationality, culture, gender, time occasions; Millsap, 2011). Without establishing
measurement invariance, observed differences across groups may simply reflect the differences
related to the scale under use rather than actual group differences in the constructs that
researchers desire to measure. Therefore, in many disciplines, measurement invariance has been
increasingly recognized as a prerequisite for conducting cross-group comparisons.

In a structural equation modeling (SEM) framework, multiple-group confirmatory factor
analysis (MG-CFA; Joreskog, 1971; McGaw & Joreskog, 1971) has been widely used to test
measurement invariance by assessing the equivalence of factor models across groups, or factorial
invariance (Meredith, 1993). A standard multiple-group CFA model allows each parameter in the
factor model to be estimated freely for each group. The model can be expressed as

vy =10 4 AVED) 4 gD (1)
where j represents group membership for the vector of observed variables y, implying that all
parameters in the model can differ across the j groups, T represents the intercept vector, A
denotes the factor loading matrix, & is the latent score vector, and € represents the unique factor
vector.

Based on Equation 1, equivalence tests can be conducted on all factor model parameters,
including the factor loadings (A), intercepts (t) and variances of the unique factors (®).

Researchers have proposed different forms, or levels of factorial invariance (e.g. Byrne,

Shavelson, & Muthén, 1989; Horn & McArdle, 1992; Meredith, 1993; Millsap, 2011; Steenkamp
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& Baumgartner, 1998; Vandenberg & Lance, 2000). Configural invariance is the weakest form
of invariance and is met when the same factor structure (i.e., same number of factors and same
salient factor pattern) is found across groups. Three stricter levels of factorial invariance include
weak invariance, strong invariance, and strict invariance. These levels of invariance impose
increasing model constraints across groups. Weak invariance is achieved when there are equal
factor loadings across groups while strong invariance is present if there are both equal factor
loadings and equality of intercepts. Strict factorial invariance requires equal factor loadings,
intercepts and uniquenesses across groups; however, this is a rather restrictive condition and is
not often tested. In addition, achieving strict invariance is not necessary when conducting some
major cross-group comparisons (e.g. comparing mean structures, Meredith, 1993). Therefore, in
the current study, we only focus on evaluating strong invariance.

The equivalence of model parameters across groups can be tested by comparing the fit
between two nested models, one with the equality constraints imposed (M) and the other
without (Mo). For example, in a test of weak invariance, researchers first fit a baseline model
(Mo) where all parameters are freely estimated (except for those constrained for model
identification'). In addition, a more restricted model (M) is estimated in which the tested factor
loadings are constrained to be equal across groups and the fit between Moy and M; compared. The
tenability of the equality constraints is often tested statistically using the likelihood ratio test
(LRT) within the framework of conventional null hypothesis significance test (NHST).

That is, under the assumptions of multivariate normality a true null hypothesis (i.e., the
tested parameters are equal in the population), the chi-square difference (derived from likelihood
ratio) between the two nested models (i.e. Tair= To- T7) asymptotically follows a central chi-

square distribution with degrees of freedom dfair = dfi — dfo (Steiger, Shapiro, & Browne, 1985).
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Ty and T7 represent the chi-square statistics for the baseline model and the more restricted model,
respectively; dfo and dfi are the corresponding degrees of freedom. When the observed chi-square
exceeds a critical value, determined by both dfuir and the alpha level (e.g. a = .05), the null
hypothesis of invariance is rejected (i.e., non-invariant parameter(s) are detected). On the other
hand, if the chi-square difference test indicates non-significance, meaning the model with
constraints fits the data as well as the baseline model, researchers would “accept” the constrained
model and conclude that the tested parameters are invariant across groups.

Despite common use by applied researchers, the current practice of utilizing LRT to test
measurement invariance is may be adversely affected by several phenomena. In this paper, we
focus on two major issues that can affect the LRT. First, under the hypothesis testing framework,
if the hypothesis test is found to be significant, the null hypothesis of invariant parameters is
likely to be false. This is because the probability of making incorrect decision (i.e. Type I error)
is controlled by the set alpha level (e.g. a =.05). However, when the hypothesis test is non-
significant, the result may simply be due to lack of power to reject the null hypothesis (i.e. Type
II error). In other words, failing to reject does not provide any information regarding accepting
the null hypothesis (Cohen, 1994). In application of LRT to testing factorial invariance,
conventionally, the null hypothesis states that the tested invariance condition (i.e., the equality
constraint imposed) holds in the population. Therefore, if results indicate a non-significant chi-
square difference, one cannot confidently claim no cross-group differences on the tested
parameters, unless the power rate is sufficiently high. In reality, however, the LRT could possess
a relatively low level of power to identify non-invariant parameters, even when the magnitude of
non-invariance is rather noticeable and the sample size is large. Such results have been

demonstrated in the measurement invariance literature. For example, French and Finch (2006)
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found the power of detecting a non-invariant factor loading with a cross-group difference of 0.25
was 51.3% (0=.05), even when using a moderate sample size of N = 500. The results imply that
researchers would mistakenly conclude non-invariant factor loadings to be invariant in about half
of the time if LRT difference testing is used. Erroneously considering non-invariant parameters
to be equivalent could lead to some undesirable consequences, such as producing biased
estimates when conducting cross-group comparisons on latent means and latent variances
(French & Finch, 2016; Shi, Song, & Lewis, 2017).

Second, the LRT compares models with and without the imposed equality constraints,
and asks if there is no difference between the models in terms of fit. In other words, the
difference test is examining if the parameters of interest are exactly equal across groups.
Consequently, as sample size increases, any cross-group differences in the tested parameters will
yield statistically significant results. Thus, with sufficiently large samples, even if the non-
invariance is minor and practically negligible, the hypothesis of factorial invariance is very likely
to be rejected. Previous research has demonstrated this finding as well. For example, in the
context of Item Response Theory (IRT) models, Meade (2010) showed that even trivially small
levels of non-invariance? produced statistically significant LRT results when sample size reached
1,000.

Given that applying the conventional LRT to test factorial invariance is a pervasive
practice, the aforementioned two issues likely arise frequently, leading to questionable
conclusions. On the one hand, if a non-significant LRT is obtained (i.e., accepting the null
hypothesis), researchers are at risk of mistakenly claiming truly non-invariant parameter(s) as
invariant due to low power to detect the invariance. On the other hand, as sample size increases,

the LRT would eventually yield statistically significance if any negligible level of non-invariance
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exists. As a result, researchers may assert that a test does not measure the construct equivalently
and abandon the measure for cross-group investigations, when, in fact, the level of non-
invariance is practically negligible.

Methodological study has shed some light on overcoming the undesirable issues of LRT,
and a few alternative tests to factorial invariance have been proposed. As a response to the
aforementioned problems, Cheung and Rensvold (2002) recommended comparing practical
goodness of fit indices (e.g., the comparative fit index, CFI) of nested models to test factorial
invariance. Later researchers (Chen, 2007; Meade, Johnson, & Braddy, 2008) developed this
approach further by evaluating and proposing the cutoffs to detecting non-invariance for a few
commonly used fit indices, such as the comparative fit index (CFI) and the root mean squared
errors of approximation (RMSEA). The approach of using change in fit indices (e.g., ACFI) to
detect non-invariance has gained its popularity among empirical researchers. As of this writing,
the three articles noted above have received nearly 10,000 citations®. Despite the popularity of
using change in fit statistics to evaluate factorial invariance, there are also shortcomings in
applying this approach. One main concern is that the approach based on fit indices is largely
heuristic and is not grounded in statistical theory. That is, the procedures are conducted solely by
evaluating the differences in the estimated fit indices (i.e., sample statistic), whereas the
sampling variability of the statistic is blatantly ignored. Moreover, the cutoffs for determining
non-invariance were generated from simulation results. As simulation conditions can greatly
differ from empirical research situations, it is not easy to come up with reference points that can
be applied in general settings. For example, Cheung et al. (2002), Chen (2007), and Meade et al.
(2008) all recommend use of ACFI as the main criterion for testing factorial invariance; however,

the three groups of researchers suggested different cutoffs for this difference®.
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Recently, Yuan and Chan (2016) introduced an equivalence testing approach for
evaluating factorial invariance. Specifically, for assessing invariance, the null hypothesis of the
equivalence test is set as Ho: (Fo-F1) > €o. Fo and F1 are the values of the model fit function for
the baseline model and the more restricted model, respectively; ¢o is the maximum tolerable
model misspecification (caused by non-invariance). If the null hypothesis is rejected, the
researchers would conclude that the difference in model fit between the baseline model and the
more restricted model is no larger than some small number ¢o [Hi: (Fo-F1) <eo0]. In other words,
by constraining the tested parameter(s) to be equal across groups, the parameters are considered
equivalent if changes in model fit do not exceed an acceptable level of misfit (o). To better
define the acceptable level of misfit, Yuan et al. (2016) showed that the values of o can be linked
to and interpreted on the metric of RMSEA, a widely used fit index in SEM. Therefore, the
commonly used cutoffs for RMSEA (MacCallum, Browne, & Sugawara, 1996), as summarized
below, can be applied:

Excellent fit: <.01

Close fit: .01-.05

Fair fit: .05-.08

Mediocre fit: .08-.10

Poor: >.10
For example, after adding equality constraints on factor loadings to the baseline model, if the
equivalence test supports that the change of model fit is corresponding to the RMSEA of .02, the
fit of the baseline model and the more restricted model is deemed “fairly close”. The researchers
could gain statistical evidence and conclude that the weak invariance holds. However, it is noted
that the conventional cutoffs for RMSEA are believed to be overly stringent for the purpose of

assessing invariance. As such, Yuan and Chan (2016) proposed the formula and recommended to

use the adjusted cutoff values for assessing factorial invariance’.
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The equivalence testing approach offers the potential to overcome the above-mentioned
two problems of LRT in testing factorial invariance. Since the tests are conducted within the
framework of equivalence testing (see Dunnett & Gent, 1977; Wellek, 2010; Yuan, Chan,
Marcoulides, & Bentler, 2016; Marcoulides & Yuan, 2017), rejecting the null hypothesis could
provide statistical evidence to support that factorial invariance holds. In addition, the equivalence
testing approach explicitly informs researchers the size of model misspecifications (i.e., non-
invariance). Thus, the level of non-invariance can be explained and statistically tested based on
the metric of RMSEA, allowing researchers to evaluate the practical importance of the non-
invariance. Recently, the equivalence testing approach for testing factorial invariance has been
adopted in empirical applications (e.g., Testa et al., 2017; Contractor et al., 2018) and supported
by a simulation study (Finch & French, 2018).

Although the equivalence testing makes an important contribution to the methodology of
testing factorial invariance, there are a few limitations. First, as noted by Yuan and Chan (2016),
due to the way the null hypothesis is set, Type I error and power under the equivalence testing
framework have different implications from those under the conventional NHST. That is, if the
ultimate goal is to endorse factorial invariance, the equivalence testing approach would provide
statistical evidence to support the proposed invariant constraints with a low error rate (controlled
by the alpha level). On the other hand, failing to reject the null hypothesis only implies that there
is not enough evidence to endorse factorial invariance; researchers cannot confidently conclude
non-invariance is detected, especially when the sample size is small (i.e., power is low).

Second, the equivalence testing approach allows researchers to quantify the level of
misspecificaion (non-invariance) on the metric of RMSEA and thus to make more informative

decisions. However, it is noted that the values of RMSEA is impossible to interpret because it is
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in an unstandardized metric (Maydeu-Olivares, 2017; Shi, Maydeu-Olivares, DiStefano, 2018).
As Edwards (2013, p. 213) puts it “We do not know what a 0.01 difference in RMSEA values
means. We do not know that a model with an RMSEA of 0.12 is incapable of telling us
something useful about the world. We do not know that a model with an RMSEA of 0.01 is
telling us anything useful about the world.” Besides the level of model misspecification, the
RMSEA is dependent on other characteristics of the fitted model (i.e., “incidental parameters”,
Saris, Satorra, & van der Veld, 2009). For example, the same RMSEA (say 0.05) may hold a
different meaning in terms of the model misspecification when models differ in terms of the
magnitude of factor loadings and model size (Chen, Curran, Bollen, Kirby, & Paxton, 2008;
Savalei, 2012; Maydeu-Olivares, Shi, & Rosseel, 2018). Therefore, for testing factorial
invariance, the level of non-invariance may not be well communicated based on the metric of
RMSEA.

Methodologists have proposed a few effect size indices for the purpose of better
quantifying the magnitude of non-invariance. These proposed effect sizes have different
meanings and can serve different purpose for evaluating the consequences of non-invariance (see
Meade, 2010 for a review). For example, the effect size can be indicated by the standardized
differences in the metric of the tested parameters (Steinberg & Thissen, 2006). An alternative
effect size measure is to directly evaluate the consequences of non-invariance depending upon
the specific use of the test scores (e.g. the impact of non-invariance on selecting individuals;
Millsap & Kwok, 2004; Lai, Kwok, Yoon, & Hsiao, 2017). The usage of the effect size indices
allows researchers to communicate the magnitudes of non-invariance in an interpretable way.

However, the current practice of using effect size of non-invariance is mostly prestatistical. That
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is, the effect sizes are reported and interpreted solely depend on the sample estimates; very few,
if any statistical tests is available to make inference of the effect size parameters.

In the current study, we introduce an interval estimation approach to invariance testing
based on Bayesian structural equation modeling (BSEM) to address the two noted shortcomings
from LRT. The proposed approach quantifies the size of non-invariance in an interpretable
manner, with an uncertainty interval evaluated using the Bayesian parameter estimation.
Therefore, the Bayesian interval approach allows researchers to support the null hypothesis of
practical invariance, and examine the practical importance of the non-invariant parameter. The
article is organized into three sections. First, we present a detailed discussion of the Bayesian
interval estimation approach. Next, the performance of the proposed method is evaluated using
simulation. Finally, we provide an empirical example to demonstrate the use of the proposed
method using data from a depression study.

Bayesian Assessment of Null Values Via Parameter Estimation
In recent years, Bayesian approaches have been increasingly applied in latent variable
models (e.g. Lee, 2007; Lee & Song, 2012; Muthén & Asparouhov, 2012). Under a Bayesian
framework, let M be an arbitrary SEM model with the unknown parameters in a vector 0, and
let Y represent the observed data. A standard Bayesian approach requires the evaluation of the

posterior distribution of @ given Y (i.e., Pr(0|Y,M)). This can be obtained by
Pr(0|Y,M) < Pr(Y |0,M)Pr(0 | M) based on Bayes’ Theorem, where Pr(Y |0,M) is the
likelihood of observing data Y conditional on the parameters 0, and Pr(0|M) is the prior

probability of the parameters 0.

To analytically obtain a solution for the posterior distribution, Pr(0|Y,M), numerical

integration would be used to obtain the posterior mean and posterior variance for each model



Evaluating Factorial Invariance Using BSEM 12

parameter. However, when the model involves latent variables and many parameters, the high-
dimensional integration often has no closed form and consequently, the posterior mean and
variance cannot be obtained analytically. Markov chain Monte Carlo (MCMC) methods can
handle such otherwise intractable calculations. With MCMC, the basic idea is to repeatedly
draw random numbers from a (full or conditional) posterior distribution and empirically
summarize those draws (Martin, 2008, Gill, 2014). In Bayesian estimation of the measurement
model in SEM, a data augmentation technique is used (Tanner & Wong, 1987), by which factor
scores are treated as unknown parameters and the observed data is “augmented” with factor
scores to develop the Bayesian procedure. Ultimately, the posterior distributions of all model
parameters can be obtained. Differing from a “traditional” statistical perspective (i.e.,
frequentist) which typically treats parameters as constants, the Bayesian framework treats model
parameters as random variables. The parameter estimates are then obtained as the empirical
means, modes, or medians of a posterior distributions (Song & Lee, 2012).

Statistical inferences may be made directly via Bayesian parameter estimation, where the
credibility of the estimated parameter is obtained from its posterior distribution (Kruschke &
Liddell, 2017; Kruschke, 2011). For each parameter of interest, the uncertainty of estimation can
be captured by the highest density interval (HDI) given the representative observations from the
posterior distribution. The highest density interval indicates which points (i.e., possible
parameter values) are most credible. That is, parameter values within the HDI have higher
credibility than the values lying outside the interval. A more formal definition of HDI is given as
(Kaplan, 2014, Pg. 96):

Let p(0|y)be the posterior probability density function. A region R of the parameter space 0 is
called the 100(1-a) % highest density interval if

I.p(@eR|y)=1-a
2.For 6 eR and6, ¢ R, p(6,|y)= p(6,|y)
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In practice, the HDI can be interpreted in a probability manner. For example, it can be
stated that there is a 95% chance that a parameter falls in the 95% HDI, which is generally
believed to contain the most credible values of the parameter (given information from the data
and the specified prior). The HDI could be used as a hypothesis testing decision tool. That is, if a
tested null value (e.g., zero) is within the 95% HDI, the null value is not rejected; but, if the 95%
HDI does not include the null value, the null value is rejected (Kruschke, Aguinis, & Joo, 2012).

In addition, by providing a range of parameter values that cover most of the posterior
distribution, inferences regarding the practical effect size can be made. Specifically, a region of
practical equivalence (ROPE) is predetermined by the researcher, which indicates “a small range
of parameter values that are considered to be practically equivalent to the null value for purposes
of the particular application” (Kruschke, 2014, pg. 336). For example, considering a correlation
coefficient, a possible choice of ROPE is +.10, because values within the region -.10 to .10
indicate a very weak correlation that may be considered practically equal to zero for some
empirical applications. Statistical decisions can be made by comparing the researcher-determined
ROPE with the 95% HDI. The null value for the tested parameter is retained if the ROPE
determined by the researcher completely contains the 95% HDI, because all of the most credible
parameter values are practically equivalent to the null. By using the similar logic, when the 95%
HDI completely excludes values from the ROPE, the null value is rejected. Nevertheless, if the
95% HDI and ROPE partially overlap, neither of the above conditions are satisfied, and the
research is proven inconclusive (Kruschke & Liddell, 2017; Kruschke, 2014).

As shown above, the Bayesian parameter estimation framework can be used as a tool for
conducting statistical tests. By using ROPE, a Bayesian interval estimation approach could

provide richer information on the practical effect size with a given uncertainty interval. This
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approach has been applied in a few modeling settings, such as comparing group mean
differences (Kruschke, 2013) and testing parameters in regression models (Kruschke, 2014). In
this study, we utilize the Bayesian interval estimation approach in the context of a CFA model
and thereby propose a new method for evaluating factorial invariance.

An Interval Estimation Approach to Testing Factorial Invariance using BSEM

When considering invariance testing in a Bayesian interval estimation approach, we first
define a new parameter, dj, to represent the cross-group difference in a specific factor
parameter, 7, for an item, j. For example, di1 and du1 denote the cross difference in the factor
loadings (A) and intercepts (t) for item 1, such that

d/u = /,il(l) - /11(2) (2)

d,= Ty ~ i) (3),
with the numbers in parentheses representing group membership.

It is noted that the invariance tests typically compare factor model parameters on their
raw metrics. Therefore, the meaning of di; can be ambiguous depending on the scales of the
factors and/or the raw data. To avoid difficulty in interpretation, for both factor loadings and
intercepts, the raw differences can be standardized using the pooled standard deviation across
groups. The corresponding standardized parameters (D) are used as measures of effect size for
non-invariance.

For factor loadings, the standardized difference D, ;can be expressed as

S,
x—L, 4
S 4)

b/

D

A

d

AJ
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where S and S denote the pooled standard deviations for the latent factors and observed

variable (for item j), respectively, across groups. In the case of two groups, pooled standard

deviation values may be calculated as:

2 2
S, = Ny = DSy + Ny = Ds) (5)
(N(l) - 1) + (N(z) _1)
s - |Wo — Dy + Wy ~Dsyo , ©)
Y (N(1) _1)+(N(2) _1)

where N represents the group sample size, sj% represents the factor variance and sij is the

variance for the observed variable j. The standardized differences in the intercepts for item j

(D,;), using the same notation, can be expressed as:

D, =, (7

where the standardization process only considers the scale of the observed variables.

Provided that the multiple-group CFA model are identified and scaled by using the
correct metric®, if the tested factor parameter is truly invariant across groups, the corresponding
Dij is zero in the population. For a non-invariant parameter, however, the population D;; is non-
zero and the values of Dj; inform the size of the non-invariance. Specifically, a positive Dj
implies that the non-invariant parameter is larger in the first group and a negative D;; implies the
opposite. Larger |Djj| values suggest larger differences across groups, and a more acute level of
non-invariance. Furthermore, D;j serves as a standardized effect size of non-invariance. That is,
Dijcan be interpreted as the standardized difference of the tested parameters across groups, and

the values of D;; can be compared across items/tests and studies.
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In fitting BSEM model, for each tested parameter, the corresponding D;; can be
introduced as a new random variable (following Equations 4 and 7 above). Assuming there is no
prior evidence regarding invariance, non-informative priors are used for all estimated
parameters. Using these priors, the posterior distributions, thus the 95% HDI for all Dj; can then
be obtained simultaneously via Bayesian estimation. Therefore, the BSEM approach not only
provides an estimate of the size of non-invariance, but also, the sampling errors are taken into
consideration with an uncertainty interval.

By checking the posterior distributions and 95% HDIs for Dj;, researchers are allowed to
quantify the size of non-invariance as a “continuum”. However, from the applied perspective, a
subjective decision making procedure is usually unavoidable, because eventually the researchers
have to decide whether the test is useable (i.e., whether the tested parameter is practically
invariant), or not. Using the BSEM approach, more informative decisions on factorial invariance
can be obtained by incorporating the information from a region of practical equivalence (ROPE).
Here, the ROPE indicates a range of values for D;; that are considered to be practically ignorable,
as predetermined by researchers. Specifically, by examining the relationship between the 95%
HDI of Djjand the predetermined ROPE interval, four possible decisions regarding invariance
are obtained. Figure 1 summarizes the decision process using a flow chart. Specifically, four
decisions may be made. First, if the 95% HDI for Dj; falls completely within the ROPE interval,
the tested parameter is concluded to be practically invariant. Second, if the 95% HDI for Dj; falls
completely outside the ROPE interval, significant non-invariance is identified and the detected
non-invariance is practically important. Third, if the 95% HDI does not include zero, and
partially overlaps with the ROPE, the tested parameter is significantly non-invariant, but no

sufficient evidence can be provided regarding the practical importance of the non-invariance
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(vis-a-vis the selected ROPE). Finally, if the 95% HDI includes zero and it partially overlaps
with the ROPE, the result is inconclusive, and researchers should refrain from stating a decision.
It is noted that the selection of ROPE can be somewhat subjective but unavoidable. A
direct analogy is that when assessing SEM models, researchers could objectively compute the
RMSEA (and the confidence interval) based on the statistical theory; however, if a decision must
be made regarding the model fit, an agreed upon cut-off value has to be selected subjectively.
We argue that the choice of ROPE should be based on the notion of the substantively ignorable
non-invariance. Specifically, in this paper, we employ the standardized parameter difference (D)
to measure the size of non-invariance. Thus, we define a standardized difference (Dy) as
substantively ignorable if applied researchers would retain the restricted model (where the tested
parameters are fixed to be equal across groups) should they know what the true model is. For
instance, most researchers would agree that a standardized factor loading of .10 is small;
therefore, a model constraining two factor loadings with a standardized difference of .10 to be
equal is considered acceptable (although it is misspecified). In contrast, most researchers would
not fix the factor loadings to be equal should they know the standardized factor loading
difference is .40. As a result, a ROPE for D;; with limits of +.10 should be appropriate, not for
Dj;with limits of £.40. In this study, we used two ROPEs for D;; with limits of .10, and +.20.
The two selected ROPEs represent a relatively strict (£.10) and a more liberal criterion (+.20) for
practical invariance.
It is also worth mentioning that in this study, the effect size of non-invariance was
measured using the standardized parameter difference (D) for two considerations. First, the
standardized parameter difference (D;) could quantify the size of non-invariance for each model

parameter in an interpretable manner. Second, as the definitional function is simple, the



Evaluating Factorial Invariance Using BSEM 18

posterior distributions for Dj;is easy to obtained using the user-friendly software (e.g., Mplus),
even for applied researchers without much training in Bayesian statistics or programing.
Nevertheless, the Bayesian interval estimation approach described above can also be applied
with other effect size measures for non-invariance (Meade, 2010), depending on the purpose of

the measure. We will revisit this point in the discussion.

Monte Carlo Simulation

We examined the performance of the proposed approach in evaluating factorial
invariance through a simulation study.
Data Simulation

Multivariate normal data were generated based on a multiple-group CFA model. We
restricted the number of groups to two, and for each group, five items loaded on a common latent
factor. In both groups, the population factor mean and factor variance are set to be zero and one,
respectively; the error variances were set such that the standard deviations of all observed
variables equaled 1.0.

In group 1, all factor loadings were set to 0.80, and all intercepts were set to 0. In group
2, the first four items are invariant with factor loadings and intercepts equal to those of the first
group (i.e. factor loadings equal to 0.8 and intercepts equal to 0). Possible non-invariant
parameters are only manipulated in item 5; the population values for the non-invariant factor
loading and intercept in group 2 are determined according to different simulation scenarios.
Other characteristics that were manipulated are as follows:

Sample size. The two groups were generated with equal number of observations. Sample

sizes include 100, 200, 500, 1,000, 2,000, and 10,000 per group. The levels were chosen to

represent relatively small to very large samples in social sciences.



Evaluating Factorial Invariance Using BSEM 19

Source and Magnitude of non-invariance. Non-invariance was simulated either on the
factor loadings or intercepts. Four levels of non-invariance were considered: invariant, trivial,
small and large non-invariance. The invariant conditions imply no cross-group differences on
the factor model parameters (i.e. factor loadings and intercepts). For conditions with negligible
cross-group difference, factor loadings in the second group decreased by 0.05, or intercepts
increased by 0.05. Small cross-group differences occurred when the factor loadings in the
second group decreased by 0.2, or intercepts increased by 0.3. Under the large difference
conditions, factor loadings in the second group decreased by 0.4, or intercepts increased by 0.6.
The choices for the magnitudes are based on suggestions from previous literature (Kim, Yoon,
& Lee, 2012; Kim & Yoon, 2011; Meade & Lautenschlager, 2004).

The manipulated variables were fully crossed, 6 sample sizes x 2 source of non-
invariance * 4 magnitude of non-invariance, for a total of 48 conditions. For each simulation
condition, 500 replications were generated and analyzed with Mplus 7.11 (Muthén & Muthén,
1998-2012).

Data Analysis

A Bayesian multiple-group CFA model was fit to each simulated dataset. For model
identification, the first group is used as the reference group and its factor mean and factor
variance were fixed to be zero and one, respectively. The first item was selected as the reference
indicator, in which the factor loading and intercept for item one was constrained to be equal
across groups. All other parameters are freely estimated. Invariance was only evaluated for the
factor model parameters (i.e. factor loading or intercept) on item 5, where the corresponding D
was defined as a new variable. Non-informative priors were used for all estimated parameters.

By default, Mplus sets the priors of factor loadings, intercepts and the factor means to Normal (0,
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infinity); the priors for the residual variances and factor variances are set to be to Inverse-
Gamma (-1, 0). Since these settings are widely spread and therefore contain little information
about the distributions of the parameters, they are regarded as non-informative.

Two MCMC chains were utilized; each chain had 100,000 iterations where the first half
of iterations were discarded as burn-in. As a result, the final posterior distribution for each
estimated parameter was constructed from a total of 100,000 draws. There are multiple ways to
assess the convergence status of the MCMC chain. Perhaps the most popular one is Potential
Scale Reduction (PSR; Gelman & Rubin, 1992) which is obtained via diving the between-chain
variation by the total variation. When the PSR reaches to one, it indicates that the multiple chains
have converged to the same distribution and therefore the mixing process is sufficient. Mplus
provides the maximum PSR value of all parameters across iterations for the diagnosis of
convergence. Through a pilot investigation of 20 replications for each simulated conditions, it is
found that the maximum PSRs are be guaranteed to fall under 1.001 after approximately 10,000
iterations. Given the iteration number was set to 100,000 throughout the replications, it can be
trusted that the posteriors were yielded at a converged condition. In addition to the PSR, other
methods were proposed to assess Markov Chain convergence, for example, Geweke (1992)
compares means calculated from distinct segments of Markov chain, where Raftery and Lewis
(1992) estimates the minimum chain length needed to estimate a percentile to some precision.
Details about the convergence diagnosis can be found in Alkan (2017).

To evaluate factorial invariance, the posterior distributions of Dj; for the tested parameter

was examined. Flowing the default in Mplus, the median of the posterior distribution is used as
the point estimate, and the 95% HDI was also obtained. For each simulation condition, we

compute the average point estimates for Dj;, and compared them with the population values. The
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population coverage rates of the 95% HDI were also obtained, which is defined as the
probability of the 95% HDI including the population value of Dj;.

For making practical decisions, the 95% HDI was further compared with the ROPE
interval. Two different ROPEs were considered with limits of +.10, and +.20, respectively. For
each replication, we followed the rule discussed in the previous section, that is, a decision for
invariance was made by considering the four possible outcomes of the Bayesian interval
estimation approach.

We also performed the factorial invariance tests using the LRT, the goodness of fit
difference test (ACFI), and the equivalence test. Specifically, we compared the baseline model
(where equality constraints are only added on the reference indicator for identification purpose)
and the constrained model (where equality constraint is added to each tested parameter). Under
LRT, the tested parameter was either invariant (e.g. non-significant LRT) or non-invariant
(significant LRT). Using the goodness of fit difference test, ]ACFI >.01| indicated non-
invariance; whereas |ACFI <.01| implies invariance’. For the equivalence testing approach, we
adopted the adjusted cutoff values proposed by Yuan and Chan (2016), and the size of non-
invariance is categorized into five levels of fit based on the metric of RMSEA. The five levels
of fit included excellent, close, fair, mediocre, and poor. According to Finch and French (2018),
either excellent or close fit indicated practical invariance, and the category of poor fit generally
implied practical non-invariance. For the three alterative tests described above, maximum
likelihood (ML) estimation was used. The LRT and ACFI tests were conducted using Mplus;
the equivalence testing was conducted with the R (R Core Team, 2015) using the code provided

in the appendix of Yuan and Chan (2016). To evaluate and compare the performance among
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different approaches, for each simulation condition, the empirical probability of making all
possible decisions was computed across the 500 replications.
Results

Table 1 summarizes the average point estimates and the coverage rates for the 95% HDI
around the population value of Dj;. The results showed that across all simulated conditions, the
average point estimates were fairly close to the population values. In addition, the 95% HDI
performed well in terms of covering the true effect size (D), yielding coverage rates which
ranged from 0.93 to 0.97. Therefore, by examining the posterior distribution, the BSEM
approach could provide the unbiased estimation of the effect size of non-invariance (Dj) with an
accurate uncertainty interval.

We further investigated the performance of using the BSEM approach to make practical
conclusions regarding factorial invariance, and the performance was compared with the three
existing methods (i.e., the LRT, the A CFI test and the equivalence testing approach). In Table 2
and Table 3, we summarize the probabilities of making different conclusions for evaluating
invariance on factor loadings and intercepts, respectively.

The results suggested that when using the LRT approach, researchers would make
misguided conclusions under certain conditions. That is, in small samples, by groundlessly
claiming the parameters with non-significant chi-square differences are invariant, the LRT
approach was likely to lead to relatively high Type II errors. For example, when N = 200, there
was a 48% chance that researchers would conclude a non-invariant factor loading when there
was a true cross-group difference of 0.20. Even when the magnitude of non-invariance was very
large (Ds= .40), researchers still have 17% chance to conclude that the tested factor loading was

invariant if the sample size N = 100. On the other hand, with a sufficiently large sample size, the
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power of LRT approached one; any non-invariant parameter was eventually rejected by LRT,
even if the non-invariance was trivial. For example, as N increased to 10,000, the power rate for
rejecting the null with an intercept with trivial non-invariance (e.g. D= -.05) was 0.98.

As discussed above, the LRT was highly sensitive to sample size. The A CFI tests
overcame this issue of the LRT. It is noted from Tables 2-3 that when the tested parameter was
truly invariant, or the magnitude of non-invariance was trivial, by using the A CFI tests,
researchers would have almost zero probability to conclude the parameter was non-invariant,
even the sample size was very large (e.g., N = 10,000). However, in the presence of nonignorable
non-invariance, the A CFI tests can be underpowered. That is, the A CFI tests tended to fail to
detect the non-invariant parameters, especially when sample size was small. For example, using
the A CFI tests, when N = 200, the probability of mistakenly concluding that factor loadings with
small (D,=.20) and large (D,= .40) non-invariance as invariant were 92% and 34%.

Under the equivalence testing approach, researchers are allowed to quantify the size of
non-invariance into five categories based on the metric of RMSEA. As we can see from the
tables, the equivalence testing approach generally performed well in making accurate
conclusions, especially when the sample size was larger than 500. Specifically, when N > 500,
using the equivalence testing approach, the probability of concluding truly invariant parameters
or parameters with trivial non-invariance as practically invariant (i.e., under the columns of
excellent fit and close fit) was larger than 70% across all simulated conditions. Moreover, the
probability to detect noticeable non-invariance (i.e., under the column of poor fit) was generally
greater than 80% (N > 500). When sample size was small (i.e., N < 500), by applying the
equivalence testing approach, researchers might erroneously conclude truly invariant parameters

or parameters with trivial non-invariance as practically non-invariant. For example, when N =
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100, the probability to conclude that the truly invariant factor loading (D;= .00) and the trivially
non-invariant factor loading (D;= .05) to be practically non-invariant were 19% and 25%.

Four outcomes can be derived by applying the BSEM approach for testing invariance: 1)
practically invariant, 2) importantly non-invariant, 3) non-invariant with an uncertain practical
importance (vis-a-vis the selected ROPE), and 4) inconclusive. Results showed that the
probability of making an erroneous conclusion was very low for the BSEM approach across all
simulated conditions. Specifically, the probability of concluding a truly invariant parameter to be
non-invariant (i.e., either importantly non-invariant or non-invariant with uncertain practical
importance) was less than 6%. The BSEM approach also almost never suggested a trivial non-
invariance to be practically important, even in very large samples (e.g. N=10,000). Further, when
the non-invariance was noticeably large, the BSEM approach yielded almost zero chance to
“accept” such a parameter as practically invariant.

In addition, based on the relationship between the 95% HDI and the region of practical
equivalence (ROPE), the BSEM approach could offer additional insight into evaluating factorial
invariance, especially when sample size was larger than 500. That is, if the most credible values
of non-invariance (i.e. 95% HDI) were completely within the ROPE, the BSEM could provide
direct evidence to support that the tested parameter is practically invariant. For example, as
shown in Table 1, when N > 500, using a ROPE with limits £.20, the probability of “accept” the
truly invariant factor loading or trivially non-invariant factor loading (as practically invariant)
was larger than 70% across all simulated conditions. When some noticeable level of non-
invariance was present, the BSEM approach incorporated effect size information into the
decision, allowing researchers to determine whether the non-invariance is practically important.

For example, if using a cutoff of +.20 to denote practically important non-invariance, when N >
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500, the BSEM approach had no less than 87% chance to identify the factor loading with D;= .40
as importantly non-invariant. However, with the same ROPE (+.20) and sample sizes (N > 500),
if the standardized factor loading difference D= .20, which was right on the cutoff of ROPE; for
most of the time (with probabilities larger than 86%), the BSEM approach concluded that the
non-invariance was statistically significant, but researchers cannot determine its practical
importance.

It was not surprising to observe that for a given level of non-invariance, the conclusion
was dependent upon the choice of ROPE, as well as the sample size. When the ROPE had
narrower limits, more evidence (i.e., a larger sample) was required to confidently support a
stricter criterion for practical invariance. For example, given truly invariant factor loadings, by
applying ROPE with limits +.10, the BSEM approach could not provide support for practical
invariance when the sample size was small (i.e., N < 500), and instead of making unfounded
conclusions, inconclusive decisions were generated almost every time. As N increased to 2,000,
the probability of concluding the tested factor loading illustrated practical invariance (i.e.
|D;j|<.10) increased to 86%. Smaller samples, however, can offer sufficient support for a more
liberal definition of practical invariance. For example, when N = 500 and a wider ROPE with
limits +.20 was used, a truly invariant factor loading was accepted as practically invariant with a
probability of 82%.

On the other hand, if the goal was to reject the non-invariant parameters, for a fixed level
of non-invariance, a narrower ROPE yielded a higher probability of concluding the non-
invariance was practically important, especially when N was small. For example, when the cross-
group difference in the intercept was .30, N=100, and using +.1 as the limits for the ROPE, the

probability of concluding the non-invariant parameter practically important was 0.31. As the
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ROPE became wider (e.g. with limits +.20), the probability of concluding the same parameter
importantly non-invariant decreased to 10%. As we demonstrated earlier, in an extreme case,
where the magnitude of non-invariance is exactly at the limit of the ROPE (e.g. when the cross-
group difference on the factor loadings was .20, and a ROPE with limits +.20 was used), a
researcher could confidently claim the non-invariance is statistically important, but she/he cannot
determine whether such non-invariance is important (i.e., beyond the ROPE). However, if the
level of non-invariance was noticeably further from the limits of ROPE (i.e. cases with large
differences), and the sample size was relatively large (e.g. N > 500), the probability of claiming
the tested parameters were importantly non-invariant was generally greater than 90%, regardless
of choice for ROPE. It is also noted that when sample size was greater than 200, the probability
of concluding non-invariance under the BSEM approach (i.e. either important non-invariance or
non-invariance with uncertain practical importance) was approximately equal to the power rates
from the LRT approach.

Discussion

In this study, we introduced a Bayesian interval estimation approach for evaluating
factorial invariance. The standardized cross-group difference for each of the tested parameters
with a highest density interval (HDI) can be obtained via Bayesian parameter estimation.
Therefore, researchers may evaluate the invariance for each tested parameter using a single
BSEM model. Decisions about invariance are made by examining the relationship between the
95% HDI and a region of practical equivalence (ROPE) which is selected by the researcher.

Using a simulation study, we compared the performance of the BSEM approach with
three exciting methods. As compared to the LRT and A CFI test, which makes invariant/non-

invariant decision, the BSEM approach provided richer information with the effect size of non-
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invariance. Specifically, the Bayesian approach allows researchers to 1) support the null
hypothesis of practical invariance, and 2) examine the practical importance of the non-invariant
parameter. Therefore, under certain conditions, the BSEM approach could lead to more
informative conclusions, which cannot be addressed when using the “traditional” approach to
invariance testing.

In addition, results indicated that the BSEM approach showed comparable performance
to the recent developed equivalence testing approach when the sample size was large (N > 500).
That is, both approaches could yield similar probability to “accept” practical invariance and
detect parameters that are noticeably non-invariant. When sample size was small (N < 500), the
equivalence testing approach might erroneously conclude the truly invariant parameters and
parameters with trivial non-invariance as practical non-invariant (i.e., poor fit). As we discussed
earlier, these observations are due to the way the null hypothesis is set under the equivalence
testing. Since the null hypotheses state that the tested parameters are practically non-invariant,
failing to reject the null hypothesis only implies that there is not enough evidence to support
invariance; researchers cannot confidently conclude non-invariance is detected, particularly
when the sample size is small (i.e., power is low). We noted that the above observations do not
imply that the equivalence testing was wrong; as the ultimate goal of the equivalence testing
approach is to endorse factorial invariance (Yuan & Chan, 2016). In small samples (N < 500),
the Bayesian interval estimation approach, on the other hand, tended to generate more
conservative decisions. That is, if the evidence is not sufficient, the Bayesian approach proves
inconclusive and suggests that the researcher should withhold a decision.

Other differences are noted between the BSEM approach and the equivalence testing

approach. First, the equivalence testing approach quantifies the size of non-invariance in terms of
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the metric of RMSEA; whereas the BSEM approach uses the standardized parameter differences
as the effect size measure, which is more interpretable. Second, the proposed BSEM method
only works when the number of groups (j) is two. The equivalence testing approach can be
applied for invariance tests with many groups (j >3). Finally, to properly apply tests for factorial
invariance, the baseline model must be correctly, or closely specified (Yuan & Bentler, 2004;
Maydeu-Olivares & Cai, 2006), the close fit of the baseline model can be tested using
equivalence testing (see Yuan, Chan, Marcoulides, & Bentler, 2016; Marcoulides & Yuan, 2017;
Yuan & Chan, 2016). In practice, we recommend researchers to select the approach based on the
specific test situation they have (e.g., using the equivalence testing approach when the number of
groups is larger than three). Generally speaking, the equivalence testing approach and BSEM
approach showed similar performance when N > 500. In small samples (N < 500), the BSEM
approach can be more conservative, and has less chance to draw erroneously conclusion by
suggesting inconclusive evidence. In addition, researchers could apply one method to test
factorial invariance and check the results by practicing another approach. More confident

conclusion can be made if both approaches agree.

In applications of the BSEM approach, one crucial step is to select a ROPE. According to
Kruschke (2014), “the [choice of] ROPE limits ... cannot be uniquely ‘correct’, ...and the limits
of the ROPE depend on the practical purpose of the ROPE” (pg. 338). For evaluating factorial
invariance, we recommend researchers to choose a ROPE based on the notion of the
substantively ignorable non-invariance. In the current study, the effect size of non-invariance is
measured by the standardized parameter difference (Dj). We used two ROPEs for D; with limits
of £.10, and +.20. The two selected ROPEs represent a relatively strict (+.10) and a more liberal

criterion (+.20) for practical invariance. These choices of ROPEs and the obtained results could
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be used as reference points empirical researchers, but it is noted that these ROPEs for practical
invariance do serve as a fixed criteria. We acknowledge that this definition of substantively
ignorable non-invariance is subjective, but we believe that this is how it should be, as the choice
of ROPE on Dj reflects how researchers define practical invariance, and the tolerance level of
non-invariance depends on the purpose of the analysis. In practice, researchers may differ in
what they consider a practically invariant parameter, depending on factors such as the construct
under study, the purpose for using the test results, and the substantive theory related to the
nomological network.

It is also worth noting that decisions made by the Bayesian approach may be affected by
both the limits of the ROPE and the sample size. A narrower limit of ROPE implies a stricter
criterion for practical invariance, thereby more evidence (i.e. a larger sample) is needed. Based
on the results from the current study, roughly speaking, to confidently support an invariant
parameter with ROPE limits D;; = +.10, a sample of 2,000 observations is required.

When the size of non-invariant parameter is very close or equal to the one of the limits
for the selected ROPE, it is difficult for researchers to determine whether such non-invariance
was important (i.e. beyond ROPE) or not, even with large samples. Under such scenarios, in
addition to selecting a “final” decision from the four available options (e.g., the tested parameter
is non-invariant with uncertain practical importance), we recommend researchers always report
and interpret the 95% HDI, to communicate the specific credible interval for the detected non-
invariance.

A Pedagogical Example

we provide an empirical example to demonstrate evaluating factorial invariance using the

Bayesian interval estimation approach using items from the Center for Epidemiologic Studies
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Depression Scale (CES-D, Radloff, 1977). Data were obtained from the China Family Panel
Studies, a nationally representative longitudinal survey conducted by the Institute of Social
Science Survey of Peking University (funded by 985 Program of Peking University, Xie & Hu,
2014). Information from the 2012 wave of data was utilized and only participants who responded
to all 15 items were included in the analysis (N=31,235). The average age of participants was
45.24 years (SD=16.64 years). Males made up approximately 48.83% of the sample and females
comprised 51.17% of the sample.

Subjects are asked to utilize the CES-D to indicate how often they have felt depression
symptoms during the past week. Responses are made on a four-point Likert-type scale ranging
from zero (i.e., “Rarely or none of the time/Less than one day”) to three (i.e., “All of the time/5-7
days”). We recognize that since the number response categories was small (i.e., less than five), to
better account the ordinal nature of the data; ordinal factor analysis models (or polytomous IRT
models) should be used (DiStefano & Morgan, 2014; Rhemtulla, Brosseau-Liard & Savalei,
2012). For demonstration purpose, here, we treated the outcome variables as continuous and
fitted the ordinary CFA models in the example. The original version of the scale contains 20
items. For demonstration, a unidimensional set of 15 items was included in the analysis (see
Edwards, Cheavens, Heiy, and Cukrowicz, 2010 for more information about the 1-factor
structure). The 15 CES-D items used are provided in Table 4.

The factorial invariance test was conducted on the shortened version of CES-D across
gender (i.e., male and female). In fitting the multiple group CFA model, females were used as
the reference group, and their factor mean and factor variance were fixed to be zero and one,
respectively. Item 3 (i.e., “I felt that I could not shake off the blues even with help from my

family or friends”) was selected as the reference indicator, following the procedures proposed by
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Shi, Song, Liao, Terry, and Snyder (2017). For model identification, the factor loadings and
intercepts for item 3 were constrained to be equal across genders. All other parameters were
freely estimated.

The multiple-group BSEM model was fit by using Mplus commands
“TYPE=MIXTURE” and “KNOWNCLASS” (see Muthén & Asparouhov, 2012 for details).
Following Equations 1 and 2, the difference measure (D;) was defined as the difference between
the same parameters across groups on a standardized metric using the keyword “NEW” under the
“MODEL CONSTRAINT” option. The Mplus default non-informative priors were used for all
estimated parameters. The priors of factor loadings, intercepts and the factor means are set to be
Normal (0, infinity), and the priors for the residual variances and factor variances are set to be to
Inverse-Gamma (-1, 0). For each of the two MCMC chains, 100,000 iterations were generated
using the “FBITERATIONS” option. Under the “OUTPUT” command, “CINTERVAL (HPD)”
was used to construct the highest density intervals for all model parameters; the “TECHS8” option
gave the progression of PSR values for assessing convergence diagnostics for the MCMC
sampling. The “BPARAMETERS” option under “SAVEDATA” stored the Bayesian posterior
parameter values from each iteration.The complete Mplus syntax for the multiple-group BSEM
model is provided as supplementary material.

The convergence status for the MCMC sampling was accessed by the PSR. The “TECHS8”
output showed the PSR fall consistently under 1.005 after 50,000 iterations, implying that the
posteriors were yielded at a converged condition. In addition, we asked the trace plots (plots of
sampled MCMC values against iterations) for each estimated parameter using “TYPE=PLOT2”
under the “PLOT” command. The trace plots are useful to evaluate the stationarity of the marginal

posterior distribution. For item one, the trace plots of the standardized factor loading difference
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(D,,) and the standardized intercept difference (D, ) were shown in Figure 2 and Figure 3,

respectively. As we can see from the trace plots, the sequences for the difference parameters (D))
converged rapidly and the parallel chains mixed well together.

Factorial invariance was examined for all tested parameters simultaneously by checking
the posterior distributions of the corresponding difference measures (D). For all tested factor
loadings and intercepts, their posterior distributions (with corresponding 95% HDIs and the
ROPEs) were plotted in Figures 4 and Figure 5 using the BEST package in R (Kruschke &
Meredith, 2015; R Development Core Team, 2015). The mean of the posterior distributions, as
well as the 95% HDIs are reported in Table 5. In this example, we consider a relatively strict
criterion for practical non-invariance, thus, +.10 was used as the limits of the ROPE.

As seen from Table 5 and Figure 3, all tested factor loadings were found to be practically

invariant across gender, except for items 14 and 17. The cross-group difference of factor loading
for item 17 (i.e., “I had crying spells”) was practically important (DAW =.206; 95% HDI=
[.180, .234]). The large positive D implies that the association between depression and item 17

was noticeably higher for females than males. The factor loading in item 14 (i.e., “I felt lonely™)

illustrated significant non-invariance; but, using the set ROPE limits (i.e. £.10), we cannot
confidently claim the practical importance of the non-invariance (D,,, = —.079 ; 95% HDI=
[-.106, -.052]).

As shown in Table 5 and Figure 4, five items were found to have practically important

non-invariance on the intercepts. Specifically, females exhibited noticeably larger intercepts than

males for item 10 (i.e., “I felt fearful”; Iﬁﬂo =.147; HDI=[.122, .171] ), item 11(i.e., “My sleep

A

was restless”; D, =.127 ; HDI=[.102, .151]), and item 17 (i.e.,. “I had crying spells”;



Evaluating Factorial Invariance Using BSEM 33

lA)T17 =.298 ; HDI=[.275, .322]). On the contrary, the intercepts for item 9 (i.e., “I thought my life
had been a failure”;lA)T9 =.—125; HDI=[-.151, -.100]) and item 13 (i.e., “I talked less than
usual”; D_, =—.159 ; HDI= [-.184, -.134]) were noticeably smaller for females than for males.
Item intercepts for item 14 (i.e., “I felt lonely™; lA)T14 =-.092; HDI=[-.117, -.065]), item
18 (i.e. “I felt sad”; lA)T18 =.091; HDI=[.065, .116]), and item 19 (i.e. “I felt that people disliked

me.”; lA)T19 =—-.098 ; HDI=[-.124, -.072]) were significantly non-invariant across genders.

However, no sufficient evidence was provided to claim whether the non-invariance is beyond the
limit of ROPE (i.e.#.10). All other intercepts (i.e. Items 1, 2, 5, 6, 7 and 20) were found to be
practically invariant.
Future directions

A few possible extensions of the proposed BSEM approach and future research directions
are discussed. In the current study, the effect size of non-invariance was measured and
interpreted using the standardized parameter difference (Dj) cross-group (Steinberg & Thissen,
2006). For evaluating the practical importance of non-invariance, methodologists have developed
and proposed a few other effect size indices (see Meade, 2010; Nye & Drasgow, 2011). For
example, the effect size can be indicated by the cross-group differences on the expected observed
(raw) scores, either at the item level or the test (or scale) level (Meade, 2010; Nye & Drasgow,
2011; Stark, Chernyshenko, & Drasgow, 2004; Nye, Bradburn, Olenick, Bialko, & Drasgow,
2018). An alternative effect size measure is to evaluate the consequences of non-invariance
depending upon the specific use of the test scores (e.g. the impact of non-invariance on selecting
individuals; Millsap & Kwok, 2004; Lai, Kwok, Yoon, & Hsiao, 2017). According to Meade

(2010, pg. 730), different effect size measures could provide “slightly different, if generally
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overlapping, information about the magnitude and nature of the [non-invariance].”, and
researchers can “get a fuller understanding of the [non-invariance] present by examining several
indices rather than any one index alone”. One avenue of future investigation is to apply other
measures of effect size to the Bayesian interval estimation approach, and gain additional insight
into understanding the practical importance of non-invariance.

In addition, an important feature of the Bayesian statistics is the use of priors
(MacCallum, Edwards & Cai, 2012). Although many works have proved that Bayesian approach
can improve the estimation accuracy of SEM (Hox, van de Schoot, & Matthijsse, 2012; Kim,
Suh, Kim, Albanese, & Langer, 2013; Depaoli, 2014), inappropriate prior specifications,
especially the ones without sound supports, can lead to inaccurate results (Depaoli, 2013;
Depaoli, Yang, & Felt, 2017; Depaoli, 2013; Shi & Tong, 2017). As a safe strategy, which has
been widely adopted in Bayesian studies, when no pre-judgment or educated guessing is
available, non-informative priors are specified such that the posteriors can reflect as best as
possible the information about the parameters estimated through the data. When the sample size
of a dataset is sufficiently large, that priors being informative/non-informative produces less
influence on the posteriors. On the other hand, a low sample size of studies can be sensitive to
priors, particularly the ones being informative. Therefore, to investigate the robustness of
Bayesian estimations, sensitivity to the prior parameter specifications should be tested when it is
possible. In the present study, we assumed no prior evidence, therefore, non-informative priors
were used for all estimated parameters. Since such priors carry little or no information about the
parameter, estimation of parameters was predominately determined by the data. In applications,
useful prior knowledge in terms of the presence and the size of non-invariance may be available

based on results from previous studies (Kaplan & Depaoli, 2012; Muthén & Asparouhov, 2012;
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Zondervan-Zwijnenburg, Peeters, Depaoli, & Van de Schoot). Therefore, by using informative
priors, the Bayesian framework could offer methods for combining or incorporating evidence of
factorial invariance from multiple studies. This possible extension for using BSEM to study
factorial invariance deserves more attention.

Under the Bayesian framework, statistical inference can be conducted in several different
ways (Kruschke, 2011a). In this study, we focused on the interval estimation approach using the
posterior distribution. It is worth mentioning that within the Bayesian framework, some
alternative approaches are available, and can possibly offer direct evidence for supporting
factorial invariance. For example, traditionally, Bayesian hypothesis testing is based on a model
comparison approach. Here, the Bayes factor is computed. The Bayes factor conveys the
evidence of one model (e.g., Mo) as compared to another (e.g., M) given the data (D). This ratio
compares and quantifies the evidence in favor of or against the null model (Dienes, 2011;
Kruschke, 2011). For example, suppose the Bayes factor represents the ratio of the evidences in

Pr(D|M,)

favor of the null model as compared to the alternative: BF =
Pr(D[M,))

. If the Bayes factor is

substantially large (e.g. BF > 3.0), the null model is considered better than the alternative, thus
supporting the null hypothesis. If substantial evidence is found in favor of the alternative model
(e.g. BF < 1/3), the null hypothesis is rejected, and the alternative hypothesis is supported.
Verhagen, Levy, Millsap and Fox (2015) proposed tests based on Bayes factors to evaluate the
evidence in favor of the null hypothesis of invariance in IRT models. We expect future
investigations to compare the performance between the proposed Bayesian interval estimation
approach and the method based on Bayes factors in the context of testing factorial invariance.
Finally, the core idea of the interval estimation approach is to obtain the effect size of

non-invariance (Dj) with an accurate uncertainty interval. The interval estimation approach can
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be pursued within the Frequentist approach as well (Falk, 2018). Specifically, the confidence
interval (CI) for Dj;; can be possibly constructed using the maximum likelihood with robust
corrections to standard errors (Satorra & Bentler, 1988, 1994), or the nonparametric bootstrap
(Efron & Tibshirani, 1993; Bollen & Stine, 1990). The 100(1-a) % Cl is defined as the interval
that contains a population parameter (6) 100(1-a) % of the time, if researchers would use the
same sampling method to select different samples and computed the interval estimate for each
sample. It is noted that the interpretations of the Frequentist CI and Bayesian HDI (or Bayesian
Credible Interval) are fundamentally different, although under certain conditions, using different
intervals can provide similar results (Gelman, Stern, & Rubin, 2004). Future studies should
further explore the possibility to use the Frequentist CI for testing factorial invariance and
compare the results with the proposed Bayesian approach.

In summary, the Bayesian interval estimation approach could offer additional insight into
understanding factorial invariance. The richer information gained through the Bayesian approach
may lead to more insightful decisions about (non)invariance. We hope that this approach can

assist applied researchers to make more accurate decisions when conducting invariance tests.



1.
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Footnotes

Different procedures have been developed for conducting LRT. In the current study, we
focused on the procedure in which researchers first select at least one item as a reference
indicator, and fit the baseline model with all other parameters freely estimated. Then,
factorial invariance tests are conducted by fitting a series of models by imposing
increasingly restrictive equality constraints (i.e., the free baseline approach).
Alternatively, one can begin such tests by fitting a model with all of the parameters
constrained to be equal, and then progressively relaxing certain equality constraints (i.e.,
the constrained baseline approach). Further information on the constrained baseline
approach can be found in Stark, Chernyshenko, and Drasgow (2006) and Kim and Yoon
(2011). In addition, non-invariance can also be detected by applying the iterative
procedures (Cheung & Rensvold, 1998), in which each single item serves, in turn, as an
RI (see also Cheung & Lau, 2012).

i.e., the difficulty parameter () decreased by .1 in Group 2.

Using Google scholar, up to 04/09/2018, the number of citations of Cheung et al. (2002),
Chen (2007), and Meade et al. (2008) are 6595, 2125 and 584.

Cheung et al. (2002) recommended that |A CFI| > .01 implied non-invariance; Meade et al.
(2008) suggested that |A CFI| >.002 implied non-invariance. Chen (2007) proposed cutoffs
based on sample size; that is, the cutoffs for non-invariance were |A CFI| > .005 for N <
300, and |A CFI| > .01 for N > 300.

The revised cutoffs are larger than the conventional cutoffs for RMSEA, and are functions
of the number of groups (m), sample size (n), and degrees of freedom (df). The computation
details see Yuan and Chan (2016).

When fitting a CFA model, the metric of the latent variables must be set to identify the
model. In testing for factorial invariance, a common method for identification is to use (at
least) one item as a reference indicator (Cheung & Rensvold, 1999; Steiger, 2002;
Johnson, Meade, & DuVernet, 2009). Specifically, an arbitrary group is selected as the
reference group and its factor variance to set to one (for models with a mean structure,
the factor mean of the reference group should also be fixed to 0). In addition, the factor
loadings (as well as the intercepts for models with mean structures) of the RI(s) are
constrained to be equal across all groups. In so doing, there is only one set of estimated
coefficients that optimally reproduces the data. In other words, a multiple-group model is
identified. Meanwhile, since other parameters are estimated in reference to the
standardized factor in the reference group and selected RI(s), the scale of the multiple-
group model is set so that the corresponding parameters are comparable across groups.
(Cheung & Rensvold, 1999; Johnson, Meade, & DuVernet, 2009; Meade & Wright,
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2012). Research has shown when an inappropriate item is chosen to be a RI, severe Type
I or Type II errors are expected in testing factorial invariance; that is, truly invariant items
could be detected erroneously as non-invariant items and vice versa (Johnson, Meade, &
DuVernet, 2009; Yoon & Millsap, 2007). Selection of a RI determines whether the true
status of invariance could be detected using the multiple-group CFA method.
Methodologists have proposed a number of methods which allow researchers to select the
proper RI (see Woods, 2009; Rivas, Stark, & Chernshenko, 2009; Meade & Wright,
2012; Shi et al. 2017; Tang, Shi, & Song, 2018). It is noted that other approaches were
proposed, which allow researchers to test invariance without using any specific item as
RI (e.g., Raykov, Marcoulides, & Millsap, 2013). For the proposed BSEM approach, we
assume researchers could identify the multiple group model by selecting the proper RI.

7. We applied the cutoff suggested by Cheung et al. (2002) as it is the most cited criterion.
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Table 1: Average Point Estimates and Coverage Rates for Bayesian 95% HDI

Factor Loadings Intercepts

Mag N Population Ave. Est. CR Population Ave. Est. CR
100 0.00 -0.01 0.97 0.00 0.00 0.95

200 0.00 -0.02 0.95 0.00 0.00 0.93

NA 500 0.00 0.00 0.96 0.00 0.00 0.96
1,000 0.00 0.00 0.94 0.00 0.00 0.96

2,000 0.00 0.00 0.96 0.00 0.00 0.95

10,000 0.00 0.00 0.94 0.00 0.00 0.94

100 0.05 0.04 0.97 -0.05 -0.05 0.95

200 0.05 0.03 0.94 -0.05 -0.05 0.93

TR 500 0.05 0.05 0.96 -0.05 -0.05 0.96
1,000 0.05 0.05 0.94 -0.05 -0.05 0.95

2,000 0.05 0.05 0.96 -0.05 -0.05 0.95

10,000 0.05 0.05 0.94 -0.05 -0.05 0.94

100 0.20 0.19 0.96 -0.30 -0.29 0.95

200 0.20 0.19 0.94 -0.30 -0.30 0.93

SM 500 0.20 0.20 0.96 -0.30 -0.30 0.96
1,000 0.20 0.20 0.94 -0.30 -0.30 0.95

2,000 0.20 0.20 0.96 -0.30 -0.30 0.95

10,000 0.20 0.20 0.95 -0.30 -0.30 0.94

100 0.40 0.39 0.96 -0.60 -0.58 0.95

200 0.40 0.39 0.94 -0.60 -0.60 0.93

LG 500 0.40 0.40 0.95 -0.60 -0.60 0.96
1,000 0.40 0.40 0.94 -0.60 -0.60 0.95

2,000 0.40 0.40 0.96 -0.60 -0.60 0.95

10,000 0.40 0.40 0.95 -0.60 -0.60 0.94

Note. Mag=Magnitude of non-invariance; NA=truly invariant; TR=trivial non-invariance;
SM=small level of non-variance; LG=large level of non-invariance; Population= the population
values of the difference parameter (D;j); CR= coverage rate.
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Table 2: Probabilities of Making Different Conclusions for Evaluating Invariance on Factor Loadings

BSEM with ROPE [-.10,.10] BSEM with ROPE [-.20,.20] Equivalence Test LRT ACFI

M
ag N Prac. Imp. Non.  Incon. Prac. Imp.
Invar. Non. Invar. Non.

100 0.00 0.01 0.02 097 | 000 0.00 0.03 097 | 066 0.02 0.06 0.07 0.19| 096 0.04| 0.99 0.01
200  0.00 0.00 0.05 095 | 0.11 0.00 0.05 0.84 | 064 006 0.12 0.07 0.11| 094 0.06 | 1.00 0.00
NA 500 0.00 0.00 0.03 097 | 082 0.00 003 0.15 | 065 0.19 0.14 0.01 0.01 | 096 0.04| 1.00 0.00
D=00 1000 037 0.00 005 0.58 | 099 0.00 001 000 | 072 022 0.06 001 0.00| 095 0.05| 1.00 0.00
2000 0.87 0.00 0.04 0.09 | 1.00 0.00 0.00 0.00 | 0.81 0.18 0.01 0.00 0.00| 096 0.04 | 1.00 0.00
10000 1.00 0.00 0.00 0.00 | 1.00 0.00 0.00 0.00 | 1.00 0.00 0.00 0.00 0.00] 095 0.05] 1.00 0.00
100 0.00 0.01 0.04 096 | 000 0.00 0.04 096 | 063 0.02 0.06 0.05 025|092 0.08 | 0.99 0.01
200 0.00 0.00 006 093 | 008 0.00 0.07 086 057 008 0.12 009 0.14| 090 0.10| 1.00 0.00
TR 500 0.00 0.00 0.13 086 | 0.72 0.00 0.14 0.14 | 0.51 0.21 0.14 0.09 0.04| 085 0.15| 1.00 0.00
D=05 1000 0.16 0.00 022 062 | 093 0.00 0.07 0.00 [ 040 032 0.19 006 0.02| 0.76 0.24 | 1.00 0.00
2000 042 0.00 036 022 | 099 0.00 0.01 0.00 | 033 049 0.16 0.01 0.01]| 061 039 | 1.00 0.00
10000 096 0.00 0.04 0.00 | 1.00 0.00 0.00 0.00 | 0.89 0.09 0.00 0.02 0.00] 0.03 0.97 | 1.00 0.00
100 000 0.08 0.18 0.74 | 0.00 0.02 025 0.74 | 028 0.02 0.06 0.06 058]| 066 034 0.87 0.13
200 0.00 0.14 032 054 | 0.00 0.02 044 054 | 016 003 0.10 0.09 062| 048 0.52| 092 0.08
SM 500 0.00 035 054 0.12 | 0.02 0.02 086 0.09 | 0.01 0.03 0.08 0.10 0.78| 0.11 0.89 | 0.98 0.02
D=20 1000 0.00 0.64 036 0.00 | 0.03 0.03 094 0.00 | 0.00 0.00 0.03 006 091|000 1.00| 1.00 0.00
2000 0.00 090 0.10 0.00 | 0.02 0.01 096 0.00 | 0.00 000 0.00 0.02 098 0.00 1.00 | 1.00 0.00
10000 0.00 1.00 0.00 0.00 | 0.03 0.03 095 0.00 | 0.00 0.00 0.00 0.00 1.00] 0.00 1.00 | 1.00 0.00
100 000 051 024 025 | 000 028 047 025 | 0.04 000 0.01 0.01 094 0.17 0.83| 043 0.57
200 000 0.79 0.16 0.05 | 0.00 046 049 0.05 | 000 0.00 0.00 001 099] 0.03 097 034 0.66
LG 500 0.00 1.00 0.00 0.00 | 0.00 087 0.13 0.00 | 0.00 0.00 0.00 0.00 1.00| 000 1.00| 0.15 0.85
D=40 1000 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 0.00 0.00 0.00 1.00| 0.00 1.00| 0.05 0.95
2000 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 0.00 0.00 0.00 1.00| 0.00 1.00 | 0.01 0.99
10000 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 0.00 0.00 0.00 1.00] 0.00 1.00 | 0.00 1.00

Non. Incon. | Exce. Close Fair Medi. Poor | Invar. Non. | Invar. Non.

Note. Mag=Magnitude of non-invariance; NA=truly invariant; TR=trivial non-invariance; SM=small level of non-variance; LG=large
level of non-invariance; ROPE= region of piratical equivalence; Prac. Invar. = practically invariant; Imp. Non. = importantly non-
invariant; Non.

Uncer. = non-invariant with uncertain practical importance; Incon.= inconclusive; LRT=likelihood ratio test.



Evaluating Factorial Invariance Using BSEM 41

Table 3: Probabilities of Making Different Conclusions for Evaluating Invariance on Intercepts

BSEM with ROPE [-.10,.10] BSEM with ROPE [-.20,.20] Equivalence Test LRT ACFI

Mag N Prac.  Imp. Prac.  Imp.
Invar. Non. Non. Incon. Invar. Non.

100  0.00 0.00 005 095 | 000 0.00 0.05 095 | 068 0.03 005 005 0.18| 094 0.06 | 099 0.01

200 0.00 0.01 0.06 093 | 027 0.00 0.07 066 | 065 007 010 0.07 0.11| 092 0.08 | 1.00 0.00

NA 500  0.00 0.00 0.04 096 | 093 0.00 004 003 | 0.65 020 0.13 0.02 0.00| 096 0.04| 1.00 0.00
D=00 1000 049 0.00 0.04 046 | 1.00 0.00 0.00 0.00 | 0.67 028 0.04 0.01 0.00| 096 0.04| 1.00 0.00
2000 092 0.00 004 004 | 1.00 0.00 0.00 0.00 [ 0.80 0.19 0.00 0.00 0.00| 095 0.05| 1.00 0.00

10000 1.00 0.00 0.00 0.00 | 1.00 0.00 0.00 0.00 | 1.00 0.00 0.00 0.00 0.00| 095 0.05| 1.00 0.00

100 000 001 006 094 | 000 0.00 0.06 094 | 066 001 0.07 003 023|092 0.08 | 098 0.02

200 000 0.01 008 09 | 021 000 0.10 069 | 054 008 0.14 0.08 0.15| 089 0.11 | 099 0.01

TR 500  0.00 0.00 0.16 0.84 | 0.79 0.00 0.16 0.05 | 045 022 0.19 0.08 0.06 | 083 0.17 | 1.00 0.00
D=05 1000 025 0.00 0.24 051 | 099 0.00 0.01 0.00 | 036 036 022 0.04 0.01| 075 0.25]| 1.00 0.00
2000 047 0.00 043 0.10 | 1.00 0.00 0.00 0.00 | 0.26 0.50 0.19 0.04 0.01]| 055 045 | 1.00 0.00

10000 099 0.00 0.01 0.00 | 1.00 0.00 0.00 0.00 | 0.82 0.15 0.00 0.04 0.00| 0.02 0.98 | 1.00 0.00

100 0.00 029 036 035 | 000 0.10 055 035|006 001 002 002 089|029 0.71] 065 035

200 000 0.62 028 0.09 | 000 021 0.70 0.09 | 0.01 0.01 0.0 0.02 095]| 007 093] 057 043

SM 500  0.00 097 0.03 0.00 | 0.00 046 054 0.00 | 0.00 0.00 0.00 0.00 1.00| 0.00 1.00| 0.51 0.49
D=30 1000 0.00 1.00 0.00 0.00 | 0.00 0.71 0.29 0.00 | 0.00 0.00 0.00 0.00 1.00]| 0.00 1.00| 047 0.53
2000 0.00 1.00 0.00 0.00 | 0.00 0.97 003 0.00 | 0.00 0.00 0.00 0.00 1.00| 0.00 1.00| 041 0.59

10000 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 0.00 0.00 0.00 1.00| 0.00 1.00 | 0.22 0.78

100  0.00 097 002 001 | 000 0.8 0.11 0.01 [ 000 0.00 000 0.00 1.00| 0.00 1.00| 0.04 0.96

200 000 1.00 0.00 0.00 | 000 099 0.01 0.00 | 0.00 000 0.00 0.00 1.00]| 000 1.00| 0.01 0.99

LG 500  0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 0.00 0.00 0.00 1.00| 0.00 1.00| 0.00 1.00
D=60 1000 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 0.00 0.00 0.00 1.00| 0.00 1.00| 0.00 1.00
2000 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 0.00 0.00 0.00 1.00| 0.00 1.00| 0.00 1.00

10000 0.00 1.00 0.00 0.00 | 0.00 1.00 0.00 0.00 | 0.00 0.00 0.00 0.00 1.00| 0.00 1.00 | 0.00 1.00

Note. Mag=Magnitude of non-invariance; NA=truly invariant; TR=trivial non-invariance; SM=small level of non-variance; LG=large
level of non-invariance; ROPE= region of piratical equivalence; Prac. Invar. = practically invariant; Imp. Non. = importantly non-
invariant; Non.

Uncer. = non-invariant with uncertain practical importance; Incon.= inconclusive; LRT=likelihood ratio test.

Non. Incon. | Exce. Close Fair Medi. Poor | Invar. Non. | Invar. Non.
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Table 4: The 15-Item CES-D Scale

Item # Content

1 I was bothered by things that usually don't bother me.
2 I did not feel like eating; my appetite was poor.

3 I felt that I could not shake off the blues even with help from my family or friends.
5 I had trouble keeping my mind on what I was doing.
6 I felt depressed.

7 I felt that everything I did was an effort.

9 I thought my life had been a failure.

10 I felt fearful.

11 My sleep was restless.

13 I talked less than usual.

14 I felt lonely.

17 I had crying spells.

18 I felt sad.

19 I felt that people disliked me.

20 I could not get going.




Table 5: Results for Invariance Testing using BSEM
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Item # D,, (95% HDI) D, (95% HDI)
Item 1 0.003 [-0.024,0.029] 0.036 [0.011,0.061]
Item 2 -0.016 [-0.042,0.009] 0.055 [0.030,0.079]
Item 3 0 - 0 -
Item 5 -0.050 [-0.075,-0.023] -0.008 [-0.033,0.017]
Item 6 -0.031 [-0.059,-0.004] -0.009 [-0.036,0.017]
Item 7 -0.056 [-0.083,-0.030] -0.052 [-0.077,-0.026]
Item 9 -0.045 [-0.072,-0.018] -0.125 [-0.151,-0.100]
Item 10 0.057 [0.031,0.084] 0.147 [0.122,0.171]
Item 11 -0.024 [-0.049,0.002] 0.127 [0.102,0.151]
Item 13 -0.063 [-0.090,-0.038] -0.159 [-0.184,-0.134]
Item 14 -0.079% [-0.106,-0.052] -0.092% [-0.117,-0.065]
Item 17 0.206 [0.180,0.234] 0.298 [0.275,0.322]
Item 18 0.053 [0.024,0.081] 0.091* [0.065,0.116]
Item 19 -0.055 [-0.082,-0.029] -0.098* [-0.124,-0.072]
Item 20 0.042 [0.015,0.069] -0.036 [-0.061,-0.012]

Note. HDI= highest density interval. The point estimates are based on the means from the posterior distributions. Item 3 was used as the
reference indicator; importantly non-invariant parameters are in bold; asterisks (*) indicate non-invariant parameters with uncertain
practical importance; the rest tested parameters are practically invariant.
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Figure 1: Flowchart for Evaluating Factorial Invariance via Bayesian Parameter Estimation
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Figure 2: Trace plot of the standardized factor loading difference for item 1 (D, )
Figure 3: Trace plot of the standardized intercept difference for item 1 (D,,)

Figure 4: Posterior Distributions of the Cross-group Differences in the Tested Factor Loadings
Figure 5: Posterior Distributions of the Cross-group Differences in the Tested Intercepts

Notes for the Figures. HDI= highest density interval. ROPE= region of piratical equivalence
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Figure 3
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