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Abstract
Randomized methods can be competitive for the solution of problems with a large
matrix of low rank. They also have been applied successfully to the solution of large-
scale linear discrete ill-posed problems by Tikhonov regularization (Xiang and Zou in
Inverse Probl 29:085008, 2013). This entails the computation of an approximation of a
partial singular value decomposition of a large matrix A that is of numerical low rank.
The present paper compares a randomized method to a Krylov subspace method based
on Golub–Kahan bidiagonalization with respect to accuracy and computing time and
discusses characteristics of linear discrete ill-posed problems that make them well
suited for solution by a randomized method.
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1 Introduction

We are concerned with the solution of linear least-squares problems

min
x∈Rn

‖Ax − b‖, (1)

where A ∈ R
m×n is a large matrix, whose singular values “cluster” at the origin,

and b ∈ R
m . In particular, A has many “tiny” singular values of different orders of

magnitude. Least-squares problemwith a matrix of this kind commonly are referred to
as linear discrete ill-posed problems. They arise, for instance, from the discretization
of Fredholm integral equations of the first kind; see, e.g., [10,19]. Applications of
this kind of least-squares problems include image reconstruction and remote sensing.
Throughout this paper ‖ · ‖ denotes the Euclidean vector norm or the spectral matrix
norm. Both the situations when m ≥ n and when m < n will be considered.

The vector b in linear discrete ill-posed problems that arise in applications typically
represents measured data and is contaminated by a measurement error e ∈ R

m . Thus,

b = bexact + e, (2)

where bexact denotes the unknown error-free vector associatedwith b.We are interested
in determining the solution, xexact, ofminimal Euclidean normof the unavailable least-
squares problem

min
x∈Rn

‖Ax − bexact‖.

Due to the error e in b and the presence of small positive singular values of A, the
solution of (1) of minimal Euclidean norm typically is not a useful approximation
of xexact. To determine a meaningful approximation of xexact, one generally replaces
the minimization problem (1) by a nearby problem, whose solution is less sensitive
to the error e. This replacement is known as regularization. One of the most popular
regularization methods is due to Tikhonov. It replaces (1) by a penalized least-squares
problem of the form

min
x∈Rn

{‖Ax − b‖2 + μ‖Lx‖2}, (3)

where L ∈ R
p×n is a regularization matrix and μ ≥ 0 a regularization parameter. We

require that N (A) ∩ N (L) = {0}, where N (M) denotes the null space of the matrix
M . Then the penalized least-squares problem (3) has a unique solution

xμ = (AT A + μLT L)−1AT b (4)

for anyμ > 0; the superscript T denotes transposition. Common choices of regulariza-
tion matrices L include the identity matrix, denoted by I , and discrete approximations

123



Golub–Kahan vs. Monte Carlo: a comparison of…

of differential operators; see, e.g., [5,7,19,23]. The value of the regularization param-
eter μ > 0 determines how sensitive the vector (4) is to the error in b and how close
it is to the desired vector xexact.

We will determine μ with the aid of the discrepancy principle; see below. This
requires that a bound ε for the error e be known, i.e.,

‖e‖ ≤ ε, (5)

and that bexact ∈ R(A), where R(A) denotes the range of A. If these requirements
are not satisfied, then other methods, including the L-curve criterion and generalized
cross validation can be used to determine a suitable value ofμ; see, e.g., [11,25,26,29]
for discussions and illustrations.

The Tikhonov solution (4) is said to satisfy the discrepancy principle if

‖b − Axμ‖ = ηε, (6)

where η > 1 is a user-chosen parameter that is independent of ε. When ε in (5)
is known to be an accurate estimate of ‖e‖ and e represents white Gaussian noise,
then generally η is chosen to be close to unity. Equation (6) has a unique solution
μdiscr = μ > 0 for many reasonable values of ηε > 0; see, e.g., [2]. Several zero-
finders for determining μdiscr are described in [30]. A proof in a Hilbert space setting
that xμ → xexact as ε ↘ 0 can be found in [10].

It is the purpose of the present paper to compare a solution method for large-scale
Tikhonov minimization problems (3) based on partial Golub–Kahan bidiagonaliza-
tion of A to a randomized solution method. Partial Golub–Kahan bidiagonalization is
the basis for the possibly most popular Krylov subspace methods for the solution of
large-scale problems (3) with a nonsymmetric or symmetric indefinite matrix A; see,
e.g., [2,15,18,19,22,24] for discussions and illustrations of this solution approach. Iter-
ative solution methods that are based on the Arnoldi process instead of Golub–Kahan
bidiagonalization are competitive for certain problems, but may fail to determine accu-
rate approximations of xexact for some problems; see [6,14,15,27] for discussions and
applications of the Arnoldi process to large-scale linear discrete ill-posed problems.
We therefore focus on Golub–Kahan bidiagonalization in the present paper.

When solving (3) by application of � steps of Golub–Kahan bidiagonalization,
the matrix A is replaced by an approximation of rank at most �. Typically, 1 ≤
� 	 max{m, n} in applications. Thus, Golub–Kahan bidiagonalization applied to the
solution of (3) replaces A by a low-rank approximation of the matrix A, and then
solves the low-rank problem instead of (3).

Randomized solution methods for the solution of large-scale problems have
received considerable attention; see Halko et al. [17] for a survey. When applied
to the solution of (3), these methods also determine a low-rank approximation of
A. They compute an approximate solution of the original problem by replacing the
given matrix by its low-rank approximation, and then solve the low-rank problem so
obtained. Xiang and Zou [33,34] describe applications of this approach to the solution
of large-scale Tikhonov minimization problems (3). To the best of our knowledge,
very few comparisons of randomized and Krylov subspace-based solution methods
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for linear discrete ill-posed problems are available in the literature. It is quite natural
to compare these approaches to the solution of large-scale linear discrete ill-posed
problems, because they both determine low-rank approximations of the large matrix
A. Vatankhah et al. [32] show that randomized methods may be faster than Krylov
subspace methods based on Golub–Kahan bidiagonalization for certain problems. We
illustrate that, for some linear discrete ill-posed problems, methods based on Golub–
Kahan bidiagonalization are competitive and we seek to shed light on for which kinds
of linear discrete ill-posed problems Golub–Kahan bidiagonalization may be prefer-
able.

This paper is organized as follows. Section 2 reviews methods based on partial
Golub–Kahan bidiagonalization of the matrix A described in [2,22] for the solution of
large-scale Tikhonov regularization problems (3). Section 3 outlines the randomized
method proposed by Xiang and Zou [33]. The randomized method discussed in [34]
also is commented on. Section 4 presents computed results, and Sect. 5 contains
concluding remarks.

2 Solutionmethods based on Golub–Kahan bidiagonalization

This section reviews solution methods for the Tikhonov minimization problem
described in [2,22]. They are based on reducing the matrix A to a small bidiagonal
matrix by the application of 1 ≤ � 	 min{m, n} steps of Golub–Kahan bidiagonal-
ization to A. The number of steps is chosen as small as possible so that the computed
solution can satisfy the discrepancy principle. Thus, application of � steps of Golub–
Kahan bidiagonalization to A with initial vector b gives the decompositions

AV� = U�+1C̄�, ATU� = V�C
T
� , (7)

where the matrices U�+1 ∈ R
m×(�+1) and V� ∈ R

n×� have orthonormal columns,
U� ∈ R

m×� consists of the first � columns of U�+1, and

U�+1e1 = b/‖b‖. (8)

Here and throughout this paper e1 = [1, 0, . . . , 0]T denotes the first axis vector of
appropriate dimension. The range of V� is the Krylov subspace

K�(A
T A, AT b) = span{AT b, (AT A)AT b, . . . , (AT A)�−1AT b}. (9)

Further, the matrix

C̄� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ1 0
σ2 ρ2

. . .
. . .

σ�−1 ρ�−1
σ� ρ�

0 σ�+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(�+1)×�

123



Golub–Kahan vs. Monte Carlo: a comparison of…

is lower bidiagonal with positive entries σk and ρk , and C� ∈ R
�×� is obtained by

removing the last row of C̄�. We assume that � is small enough so that the decom-
positions (7) with the described properties exist. This is the generic situation. The
dominating computational effort required to determine the decompositions (7) is the
sequential evaluation of � matrix–vector products with each one the matrices A and
AT ; see, e.g., [16, Sect. 10.4.4] for an algorithm.

Following [22], we compute an approximate solution of (3) by minimizing over
the Krylov subspace (9) instead of over Rn . Thus, we solve

min
x∈K�(AT A,AT b)

{‖Ax − b‖2 + μ‖Lx‖2}, (10)

which, by using the representation x = V� y, and the relations (7) and (8), can be
expressed as

min
y∈R�

{‖C̄� y − e1‖b‖ ‖2 + μ‖LV� y‖2}. (11)

Denote the solution of (11) by yμ,�. Then xμ,� = V� yμ,� is an approximate solution
of (3). We point out that the problems (3) and (10) only differ in the spaces over which
they are minimized. The randomized method of Sect. 3 gives a minimization problem
that differs in several ways from the problem (3).

First consider the situation when L = I . Then it is shown in [1, Theorem 5.1] that

‖Axμ,� − b‖ = ‖C̄� yμ,� − e1‖b‖ ‖. (12)

It therefore suffices to choose μ > 0 so that the reduced problem on the right-hand
side satisfies the discrepancy principle; see [2] for details. It follows that it is quite
inexpensive to determine a value of μ > 0 such that the approximate solution xμ,� =
V� yμ,� of (3) with L = I satisfies (6). A discussion on how this can be done by using
Newton’s method can be found in [2]; other zero-finders are discussed in [30].

The expressions (12) decrease as � increases. This follows from the fact that the
dimension of the Krylov subspace in (10) increases with � and that the subspaces are
nested, i.e., K�(AT A, AT b) ⊂ K�+1(AT A, AT b) for � = 1, 2, . . . . We choose the
number of bidiagonalization steps, �, as small as possible to satisfy the discrepancy
principle for some 0 < μ < ∞, i.e., we choose � so that

‖C̄� yμ,� − e1‖b‖‖ < ηε ≤ ‖‖C̄�−1 yμ,�−1 − e1‖b‖ ‖.

Further details on the choice of � are described in [2].
We turn to the case when L �= I . This situation can be handled by several

approaches; see, e.g., [3,9,22]. In the numerical examples of Sect. 4, we will apply
the method described in [22]. Let L ∈ R

p×n and assume that � in (7) satisfies
1 ≤ � ≤ min{p, n}. Compute the QR factorization Q�R� = LV�, where Q� ∈ R

n×�

has orthonormal columns and R� ∈ R
�×� is upper triangular. Then (11) becomes

min
y∈R�

{‖C̄� y − e1‖b‖ ‖2 + μ‖R� y‖2}.
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Typically, the matrix R� is nonsingular and not very ill-conditioned. Then the change
of variables z = R� y results in the minimization problem

min
z∈R�

{‖C̄�R
−1
� z − e1‖b‖ ‖2 + μ‖z‖2}.

It can be shown that if μ is determined so that the solution zμ,� satisfies ‖C̄�R
−1
� z −

e1‖b‖ ‖ = ηε, then the associated approximate solution xμ,� = V�R
−1
� zμ,� satisfies

the discrepancy principle (6); see [22] for details. Hence, it is quite cheap to determine
an approximate solution of (3) that satisfies (6) also when L �= I .

3 Randomized solutionmethods

The reduced singular value decomposition (SVD) of the matrix A ∈ R
m×n , with

m ≥ n, is of the form

A = U�V T , (13)

where the matrices U ∈ R
m×n and V ∈ R

n×n have orthonormal columns, and

� = diag[σ1, σ2, . . . , σn] ∈ R
m×n, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

The diagonal entries σ j are known as the singular values of A. An analogous decom-
position is available when m < n; see, e.g., [16, Sect. 2.4] for details on the SVD of
a matrix.

The computation of the SVD (13) requires O(max{m, n}min{m, n}2) flops and,
therefore, is expensive whenm and n are large. Randomized SVDmethods determine
an approximation of the factorization (13) and are less expensive; see, e.g., Halko et
al. [17]. Xiang and Zou [33] describe how randomized SVDmethods can be applied to
the solution of large-scale Tikhonov minimization problems (3) when L = I . We will
outline their approaches and compare the performance of these randomized methods
to the Golub–Kahan bidiagonalization method of Sect. 2 in Sect. 4.

Xiang and Zou [34] also describe several randomized approaches to the solution
of Tikhonov regularization problems in general form (3). Some of these methods are
based on first transforming (3) to an equivalent problem with L = I , similarly as
outlined at the end of Sect. 2, while others apply a randomized generalized SVD. We
will not discuss the latter methods in the present paper.

We first describe the method proposed by Xiang and Zou [33] for the approximate
solution of (3) when m ≥ n and L = I . Let the entries of the matrix �� ∈ R

n×�,
where 1 ≤ � 	 n, be identically and normally distributed random numbers with zero
mean, and compute the QR factorization

Q�R� = A��,
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where Q� ∈ R
m×� has orthonormal columns and R� ∈ R

�×� is upper triangular. The
matrix R� is assumed to be nonsingular in [33] and we will, for now, assume the same.
Then the columns of Q� form an orthonormal basis for R(A��). Let B = QT

� A ∈
R

�×n and compute the reduced SVD,

B = Ŵ �̂V̂ T , (14)

where the matrices Ŵ ∈ R
�×� and V̂ ∈ R

n×� have orthonormal columns, and �̂ ∈
R

�×� is a diagonal matrix with nonnegative diagonal entries arranged in decreasing
order. The right-hand side of

Q�B = Q�Q
T
� A = Q�Ŵ �̂V̂ T (15)

is an approximation of the SVD of A (13). The decomposition (15) is much cheaper
to compute than (13) when m and n are large and 1 ≤ � 	 n ≤ m. The following
proposition provides bounds for the closeness of A and Q�QT

� A.

Proposition 1 Suppose that A ∈ R
m×n has the singular values σ1 ≥ σ2 ≥ · · · ≥

σmin{m,n} ≥ 0. Let �� ∈ R
n×� be a Gaussian matrix with � := k + p ≤ min{m, n}

and p ≥ 4. Let the columns of Q� form an orthonormal basis for R(A��). Then

σ�+1 ≤ ‖A − Q�Q
T
� A‖ ≤ (1 + 6

√
�p log p)σk+1 + 3(�� j>kσ

2
j )

1/2 (16)

with probability not less than 1 − 3p−p.

Proof The left-hand side inequality is a consequence of the Eckart and Young theorem
[8], and the right-hand side inequality is shown by Halko et al. [17, Corollary 10.9]. 
�

We will comment below on the significance of the upper bound (16). In order for
this bound to be small, we have to choose k large enough so that σk+1 is small, and
p large enough so that the right-hand side inequality (16) holds with high probability.
Common choices of p are 5 or 10.

The computational cost for determining the matrices Q�, Ŵ , �̂, and V̂ in (15) is
comprised of O(m�2) flops for determining Q� from ��, � matrix–vector product
evaluations with A (to form A��) and � matrix–vector product evaluations with AT

(to form B = QT
� A), as well as O(n�2) flops for the computation of the SVD of B

(14). Some of these computations can be implemented efficiently by using high-level
BLAS; see, e.g., [12] for a discussion on implementation issues.

We will use the decomposition (15) to determine an approximate solution of (3).
Replacing A by this decomposition in (3) gives

min
x∈Rn

{‖Q�Q
T
� Ax − Q�Q

T
� b‖2 + μ‖Lx‖2} + ‖(I − Q�Q

T
� )b‖2, (17)

which can be expressed as

min
x∈Rn

{‖Ŵ �̂V̂ T x − QT
� b‖2 + μ‖Lx‖2} + ‖(I − Q�Q

T
� )b‖2. (18)
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Since we would like a solution x of minimal Euclidean norm, it is natural to require
the solution to be of the form x = V̂ y for some y ∈ R

�. Substitution into (18) gives
the minimization problem

min
y∈R�

{‖�̂ y − Ŵ T QT
� b‖2 + μ‖LV̂ y‖2}. (19)

This problem differs from (3) in several ways: i) A is replaced by Q�QT
� A, ii) the term

‖(I − Q�QT
� )b‖2 in (18) is ignored, and iii) the space Rn is replaced by R(V̂ ). The

differences between the minimization problems (3) and (19) are small if p and k, and
therefore � = p + k, in Proposition 1 are sufficiently large. In particular, the choice
of k has to be large enough in relation to how quickly the singular values of A decay
to zero with increasing index.

Let x denote the solution of (17) with μ > 0 chosen so that x satisfies the discrep-
ancy principle (6). The discrepancy principle suggests that � be chosen large enough
so that

‖(A − Q�Q
T
� A)x‖ ≤ ‖A − Q�Q

T
� A‖‖x‖ ≤ η′ε,

where the parameter ε is the same as in (6), and 0 < η′ ≤ η is a user-chosen parameter
with η the same as in (6). An accurate upper bound for ‖A − Q�QT

� A‖ can be deter-
mined with high probability by evaluating ‖(A − Q�QT

� A)w‖ for sufficiently many
random vectors with normally distributed entries with zero mean; see [17, Eq. (4.3)
and Lemma 4.1]. The evaluation of such a bound increases the computational effort
required by the randomized method. Moreover, we would like � to be large enough so
that

‖(I − Q�Q
T
� )b‖ ≤ η′ε.

We illustrate in Sect. 4 that for some problems the parameters p and k in (16)
have to be chosen too large to make the randomized solution method of this section
competitive with the Krylov subspace method of Sect. 2.

There is a small probability that in a particular application of the randomized
method, columns of the matrix Q� are singular vectors associated with “tiny” singular
values of A. These singular vectors typically “oscillate” a lot, i.e., the vector entries
as a function of their index number can be thought of as the discretization of a highly
oscillatory function. The presence of such vectors in the solution subspace R(Q�)

typically would result in an a highly oscillatory, and therefore undesired, approximate
solution of (3). This phenomenon may be considered an instability of the randomized
method. However, we hasten to add that we have not observed this instability in any
one of numerous computed examples that we have carried out. The occurrence of this
instability, indeed, is rare.

When L = I , we have ‖LV̂ y‖ = ‖ y‖. Otherwise, we compute theQR factorization
Q̂ R̂ = LV̂ , where Q̂ ∈ R

p×� has orthonormal columns and R̂ ∈ R
�×� is upper

triangular. When the matrix R̂ is of full rank and fairly well-conditioned, we proceed
similarly as described at the end of Sect. 2.
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Now consider the case when, numerically, rank(A��) < �. This situation may
arises when the matrix A is of numerical rank less than �. Then we compute the SVD

R� = U���V
T
� ,

where the matricesU� = [u�,1, u�,2, . . . , u�,�] ∈ R
�×� and V� ∈ R

�×� are orthogonal
and �� ∈ R

�×� = diag[σ�,1, σ�,2, . . . , σ�,�] with σ�,1 ≥ σ�,2 ≥ · · · ≥ σ�,� ≥ 0. Let
σ�, j be the smallest numerically nonvanishing diagonal entry. Then, numerically, the
columns of Q�, j := Q�[u�,1, u�,2, . . . , u�, j ] ∈ R

m× j form an orthonormal basis for
R(A��), and we replace the matrix Q� in (15), (17), and (19) by Q�, j .

We turn to the situationwhenm < n. FollowingXiang andZou [33], let�� ∈ R
�×m ,

with 1 ≤ � 	 m, be a random matrix with the same kind of entries as above, and let
the columns of Q� ∈ R

n×� form an orthonormal basis for a linear space that contains
R((��A)T ). We compute Q� by evaluating the QR factorization of (��A)T . Then we
calculate the SVD of AQ�,

AQ� = Û �̂Ŵ T ,

where the matrices Û ∈ R
n×� and Ŵ ∈ R

�×� have orthonormal columns, and �̂ ∈
R

�×� is a diagonal matrix with nonnegative diagonal entries arranged in decreasing
order. The expression

AQ�Q
T
� = Û �̂Ŵ T QT

�

is an approximation of the SVD of A.
We determine an approximate solution of (3) by solving

min
x∈R(Qk )

{‖AQ�Q
T
� x − ÛÛ T b‖2 + μ‖Lx‖2}, (20)

which, with x = Q�Ŵ y, can be written as

min
y∈R�

{‖�̂ y − Û T b‖2 + μ‖LQ�Ŵ y‖2}. (21)

Finally, let R̃ ∈ R
�×� be the upper triangular matrix in a QR factorization of LQ�Ŵ .

Since, generally, R̃ is nonsingular and not very ill-conditioned, we may transform
the Tikhonov minimization problem (21) to standard from by the change of variables
z = R̃ y.

We conclude this section with a discussion on the application of the discrepancy
principle, and first consider the situation whenm ≥ n. Then we solve (17) by comput-
ing the solution of (19). Assume that the error e in b is normally distributed with zero
mean and variance ε2. Then, since Q�QT

� is an orthogonal projector, the variance of
Q�QT

� e is
�
m ε2. Therefore, when determining the regularization parameter μ for the

problem (17), we replace ε by
√

�
m ε in (6).
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When m < n, we solve (20) by computing the solution of (21). Since ÛÛ T is an
orthogonal projector, the variance of ÛÛ T e is �

n ε2. Therefore, when determining the

regularization parameter μ for the minimization problem (21), we replace ε by
√

�
n ε

in (6).
The value of � = p + k affects both the quality of the computed solution and

the computing time required. This value has to be large enough so that AQ�QT
� is a

sufficiently accurate approximations of A. The computed examples of the following
section illustrate this.

4 Computed examples

The examples reported in this section show the performance of the methods discussed
in the previous sections. All computations were carried out on a Windows computer
with an i7-8750H @2.2 GHz CPU and 16 GB of memory. The implementations were
done in MATLAB R2018b.

The noise level is defined by

δ = ‖e‖
‖bexact‖ .

In all experiments, the regularization parameter was determined with the aid of the
discrepancy principle and computed by Newton’s method as outlined above with
initial iterate μ0 = 0. More details on the application of Newton’s method can be
found in [2]. This method also was used to determine the regularization parameter in
the randomized SVD (RSVD) method in a similar way.

We consider several examples described inRegularizationTools byHansen [20] and
in IR Tools by Gazzola et al. [13]. Both Regularization Tools and IR Tools are program
packages written in MATLAB. Problems in both one and two space-dimensions will
be discussed. We compare the performance of the Krylov method of Sect. 2 and the
randomized SVD method of Sect. 3. The computed examples show that rapid decay
of the singular values to zero with increasing index number is essential for the success
of the randomized method. We will refer to the Krylov subspace-based Tikhonov
regularization method of Sect. 2 as “K-Tikhonov”, and to the Tikhonov regularization
method based on the randomized SVD technique as “R-Tikhonov”. Throughout this
section, � denotes the number of bidiagonalization steps carried out by the Golub–
Kahan bidiagonalization method, as well as the number of columns of the random
matrix �� when m ≥ n, or the number of rows of the random matrix when m < n;
see Sect. 3.

Before comparing the two methods, we would like to discuss the computational
cost of the K-Tikhonov and R-Tikhonov methods. Let us assume that � 	 n. Then
for K-Tikhonov, the computational cost is dominated by the � matrix–vector product
evaluations with A and the � matrix–vector product evaluations with AT . The R-
Tikhonov method requires the evaluation of A�� and AT Q�. The flop count for these
evaluations in K-Tikhonov and R-Tikhonov is the same, and of order O(mn�), but
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the evaluations in R-Tikhonov can be implemented as matrix–matrix products, while
this is not possible in K-Tikhonov, because in Golub–Kahan bidiagonalization the
columns of the matrices V� and U�+1 are determined sequentially one-by-one. As we
will illustrate in the following, when A is stored as a matrix, the matrix–matrix product
evaluations in R-Tikhonov are faster than the matrix–vector product evaluations in K-
Tikhonov. However, when A is not explicitly stored and it therefore is not possible
to evaluate the matrix–matrix products A�� and AT Q� efficiently, i.e., when we
need to compute 2� matrix–vector products (one for each column of �� and Q�), the
computing time required by K-Tikhonov and R-Tikhonov to evaluate the necessary
matrix–vector products is almost identical.
Shaw. We first consider the Shaw test problem described in [31]. It is an integral
equation of the first kind with a smooth kernel in one space-dimension. MATLAB
code that gives a discretization of this integral equation is provided in [20]. This code
gives the matrix A ∈ R

2048×2048 and a vector xexact ∈ R
2048, from which we compute

bexact = Axexact. We add a “noise vector” e ∈ R
2048 to bexact that models white

Gaussian noise with noise level δ = 0.01 to obtain the “available” noise-contaminated
data vector b; cf. (2). Themoderate dimension of this problem allows us to compute the
solution of the Tikhonov regularized problem also in the full space since it is possible
to explicitly compute the SVD of the matrix A. We refer to the latter approach as
“standard Tikhonov”. The regularization matrix L used in this example is the discrete
Laplacian in one space-dimension.

Weapply theK-Tikhonov andR-Tikhonovmethods for different dimensions �of the
solution subspace and compare the results obtained with those obtained with standard
Tikhonov, i.e., the solution of (3). In particular, we are interested in comparing the
quality of the computed approximations of xexact determined by the different methods,
as well as in the timings. Let x denote an approximate solution computed by one of
the methods considered. We define the relative reconstruction error

RRE(x) = ‖x − xexact‖
‖xexact‖ .

Figure 1 reports RREs and timings for the K-Tikhonov and R-Tikhonov methods.
The horizontal axes in the subfigures show the dimension, �, of the solution sub-
spaces for the K-Tikhonov and R-Tikhonov method. We can observe that the RRE
for R-Tikhonov is slightly smaller than for K-Tikhonov for � > 5. Moreover, the
CPU time required for the computation of the solution with R-Tikhonov is smaller
than the CPU time needed for the computation of the solution with K-Tikhonov for
solution subspaces of the same dimension. Finally, we note that the RRE obtained
with K-Tikhonov rapidly converges to the RRE of the solution determined by stan-
dard Tikhonov, while the RRE for the solutions determined by R-Tikhonov typically
is smaller. The difference in the quality of the computed solutions is made possibly
by the facts that the computed solutions are determined by the discrepancy principle
and live in different solution subspaces.

Figure 2 displays the singular values σ�+1 of A and the quantities ‖(I −Q�QT
� )A‖,

‖(I−Q�QT
� )A‖‖xexact‖, and ‖(I−Q�QT

� )b‖ of interest for Proposition 1 as functions
of �. We can observe in Fig. 2a that, since the singular values of A decay to zero
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Fig. 1 Shaw test problem, comparison between K-Tikhonov and R-Tikhonov: a RRE for solutions deter-
mined by K-Tikhonov (red dashed curve), R-Tikhonov (blue solid curve), and standard Tikhonov (black
dotted curve). The horizontal axes show the dimension, �, of the solution subspaces for K-Tikhonov and
R-Tikhonov. b CPU time in seconds for K-Tikhonov (red dashed curve) and R-Tikhonov (blue solid curve)
for different values of � (color figure online)

0 10 20 30 40 50 60 70 80 90 100
10-20

10-15

10-10

10-5

100

(a)
0 10 20 30 40 50 60 70 80 90 100

10-15

10-10

10-5

100

105

(b)

Fig. 2 Shaw test problem, bounds of Proposition 1: a Comparison of the approximation error ‖(I −
Q�Q

T
�

)A‖ (blue solid curve) and the optimal error, i.e., the singular values σ�+1 of the matrix A, (black

dotted curve) versus �. b Comparison of ‖(I − Q�Q
T
�

)A‖‖xexact‖ (blue solid curve), ‖(I − Q�Q
T
�

)b‖
(red dashed curve), and ηε (black dotted line) versus � (color figure online)

extremely fast with increasing index �, the matrix Q�QT
� A approximates A well; the

approximation error is very close to the optimal one, i.e., to σ�+1. Figure 2b shows
that the discrepancy principle already can be satisfied in a subspace of fairly small
dimension. We remark that, although the function � → ‖(I − Q�QT

� )b‖ appears to
be constant for � large enough, this function is decreasing very slowly as � increases
and vanishes for � = n.
Heat. We consider the heat test problem in [20]. It is described in [4]. This problem
models inverse heat conduction in one space-dimension. We use MATLAB code sup-
plied in [20]. This code requires a parameter κ , which is set to the default value 1.
Discretization gives a problem (1) with a matrix A ∈ R

2048×2048 and a vector xexact,
fromwhich we compute the exact data vector bexact = Axexact. We add an error vector
e that models white Gaussian noise and corresponds to a noise level of δ = 0.02 to
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Fig. 3 Heat test problem, comparison between K-Tikhonov and R-Tikhonov: a RRE for solutions deter-
mined by K-Tikhonov (red dashed curve), R-Tikhonov (blue solid curve), and standard Tikhonov (black
dotted curve). The horizontal axes show the dimension, �, of the solution subspaces for K-Tikhonov and
R-Tikhonov. b CPU time in seconds for K-Tikhonov (red dashed curve) and R-Tikhonov (blue solid curve)
for different values of � (color figure online)

bexact to obtain the error contaminated vector b in (1). Similarly as in the previous
example, we let L be the discrete Laplacian in one space-dimension, and we display
the RRE and CPU times for K-Tikhonov and R-Tikhonov.

Figure 3 shows the RRE and CPU times for several �-values. Similarly as in the
Shaw example, the computing times required for the computation of the R-Tikhonov
solutions are much smaller than the times required for K-Tikhonov for solution sub-
spaces of the same dimension. For the present example, the RRE-values obtained with
R-Tikhonov are slightly larger than those obtained with K-Tikhonov for solution sub-
spaces of the same dimension, at least for � < 23. However, the RREs are of the same
order of magnitude for both methods for solution subspaces of the same dimension.
Finally, we observe that, differently from the previous example, the RRE obtainedwith
the K-Tikhonov method is not the same, for � large, as for standard Tikhonov. This
is due to the fact that the discrepancy principle does not determine a unique solution;
the computed solution depends on the solution subspace used.

Like in the previous example, we report the singular values σ�+1 of A and the
quantities ‖(I − Q�QT

� )A‖, ‖(I − Q�QT
� )A‖‖xexact‖, ‖(I − Q�QT

� )b‖ in Fig. 4.
In the present example, the singular values of A decrease to zero slower than in the
previous example. Although the matrix Q�QT

� A is still a good approximation of A,
the approximation error is visibly larger than the optimal one, given by σ�+1. This is
illustrated by Fig. 4b. We observe that in order to satisfy the discrepancy principle, the
parameter � has to be larger than in the previous example.
Phillips. Our last example in one space-dimension is the phillips test problem from
[20], where MATLAB code is available. This code provides a discretization of a
convolution. A background for this problem is given in [28]. We generate the matrix
A and the noise-contaminated vector b in the samemanner as in the previous examples.
Thus, the noise is white Gaussian and corresponds to the noise level δ = 0.05. The
regularization matrix L is the discrete Laplacian in one space-dimension.
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Fig. 4 Heat test problem, bounds of Proposition 1: a Comparison of the approximation error ‖(I −
Q�Q

T
�

)A‖ (blue solid curve) and the optimal error, i.e., the singular values σ�+1 of the matrix A (black dot-

ted curve) as a function of �. bComparison of ‖(I −Q�Q
T
�

)A‖‖xexact‖ (blue solid curve), ‖(I −Q�Q
T
�

)b‖
(red dashed curve), and ηε (black dotted line) versus � (color figure online)

We report the results obtained with the K-Tikhonov and R-Tikhonov methods in
Fig. 5. These results are similar to the ones obtained for the Shaw test problem. Thus,
R-Tikhonov outperforms K-Tikhonov in terms of timings and RRE (for � sufficiently
large). Similarly to the Shaw test problem, the solutions computed with K-Tikhonov
give the same RRE as the solutions computed by standard Tikhonov already for small
subspace dimensions �, while the solution computed by R-Tikhonov provide a better
approximation of xexact.

As above we display the singular values σ�+1 of A and the norms ‖(I −Q�QT
� )A‖,

‖(I−Q�QT
� )A‖‖xexact‖, and ‖(I−Q�QT

� )b‖ as functions of � in Fig. 6. This example
behaves like the Heat example and we therefore can draw the same conclusions.
Nevertheless, let us observe that the decay of the singular values, even though it
is slower than in the Shaw example, is still fast enough to yield a fairly accurate
approximation of A using the randomized method.

The R-Tikhonov method performs well in all the above examples, even though the
matrices A in these examples have different properties. The matrix in the Shaw and
Phillips examples are symmetric, while in the Heat example, the matrix is very far
from a symmetric matrix. The singular values of the matrix decay to zero quite quickly
with increasing index in the Shaw and Heat test problems, while they do not for the
problem Phillips.

The above examples are discretizations of problems in one space-dimension. We
now turn to problems that are discretizations of ill-posed problems in two space-
dimensions. The relative performance of the methods in our comparison will be seen
to be different for this kind of problems.
Blur.We determine the matrix A with the MATLAB function blur(45,8,1) from
[20]. This function call generates a symmetric block-Toeplitz-Toeplitz-block (BTTB)
matrix A ∈ R

2025×2025, which models a Gaussian point spread function in two space-
dimensions. The parameter value 8 is the half-bandwidth of the Toeplitz blocks. Thus,
the matrix A is very sparse. It is stored in sparse matrix format. The regularization
matrix L is the discrete Laplacian in two space-dimensions.
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Fig. 5 Phillips test problem, comparison between K-Tikhonov and R-Tikhonov: a RRE for solutions deter-
mined by K-Tikhonov (red dashed curve), R-Tikhonov (blue solid curve), and standard Tikhonov (black
dotted curve). The horizontal axes show the dimension, �, of the solution subspace for K-Tikhonov and
R-Tikhonov. bCPU time for K-Tikhonov (red dashed curve) and R-Tikhonov (blue solid curve) for different
values of � (color figure online)
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Fig. 6 Phillips test problem, bounds of Proposition 1: a Comparison of the approximation error ‖(I −
Q�Q

T
�

)A‖ (blue solid curve) and the optimal error, i.e., the singular values σ�+1 of the matrix A (black

dotted curve), versus �. b Comparison of ‖(I − Q�Q
T
�

)A‖‖xexact‖ (blue solid curve), ‖(I − Q�Q
T
�

)b‖
(red dashed curve), and ηε (black dotted line) versus � (color figure online)

Let the entries of xexact be pixel values of an 45 × 45-pixel image, with the pixels
ordered column-wise. Then bexact = Axexact represents a blurred image associated
with xexact. Add a vector e that represents white Gaussian noise with noise level
δ = 0.03 to bexact to obtain the contaminated data vector b; cf. (2).

We compare RREs and CPU times for different values of � similarly as in the
previous examples. The results are reported in Fig. 7. The figure shows that the R-
Tikhonov method does not perform well in terms of the RRE. In fact, the RRE is very
large and does not decrease significantly as the dimension of the solution subspace,
�, increases. Moreover, since the matrix A is very sparse, the matrix–vector products
required by the K-Tikhonov method are not computational demanding. Therefore, the
computational cost of the two methods is about the same.
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Fig. 7 Blur test problem, comparison between K-Tikhonov and R-Tikhonov: a RRE for solutions deter-
mined by K-Tikhonov (red dashed curve), R-Tikhonov (blue solid curve), and standard Tikhonov (black
dotted curve). The horizontal axes show the dimension, �, of the solution subspaces for K-Tikhonov and
R-Tikhonov. b CPU time in seconds for K-Tikhonov (red dashed curve) and R-Tikhonov (blue solid curve)
for different values of � (color figure online)

Table 1 Blur test problem: RRE and CPU time in seconds for standard Tikhonov, K-Tikhonov, and R-
Tikhonov for selected values of k and �

standard
Tikhonov

K-Tikhonov
(� = 30)

R-Tikhonov
(� = 1000)

RRE 3.18 · 10−1 3.00 · 10−1 3.16 · 10−1

CPU time (sec.) – 2.00 · 10−2 1.21 · 100

The relatively poor performance of the R-Tikhonov method in this example is due
to the fact that the singular values of the matrix A decrease fairly slowly to zero with
increasing index and are not approximated well by the singular values of the reduced
matrix AQ30QT

30 used to compute the R-Tikhonov solution. To see this in more detail,
we plot in Fig. 8 the singular values of the matrices AQ30QT

30, C̄30, and A for all the
considered examples. We can observe that in all examples in one space-dimension, the
largest singular values of the matrix A are approximated well by the singular values of
AQ30QT

30 and C̄30. However, the singular values of AQ30QT
30 for the present example

are very poor approximations of the largest singular values of A. On the other hand, the
singular values of C̄30 match very well the largest singular values of A. This suggests
that the R-Tikhonov method may not be effective for the solution of linear discrete ill-
posed problems with a matrix A whose singular values decay fairly slowly with their
index number. To illustrate this, we choose the solution subspace for the R-Tikhonov
method to be � = 1000, and compare the error in the computed solution with the
errors in the solution determined by the K-Tikhonov method with � = 30 and by
standard Tikhonov. This comparison is reported in Table 1. We can see that even when
� = 1000, the R-Tikhonov method provides less accurate results than K-Tikhonov
with � = 30, and requires much more execution time (about 45 times as much).

These observations are corroborated by Fig. 9, which shows the singular values
σ�+1 of A and compares them to ‖(I − Q�QT

� )A‖ as functions of �. The figure also
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Fig. 8 The largest singular values of the matrices AQ30Q
T
30 (blue solid curve), C̄30 (red dashed curve),

and A (black dotted curve) as a function of the index for all the considered examples: a Shaw, b Heat, c
Phillips, d Blur (color figure online)

displays the norms ‖(I − Q�QT
� )A‖‖xexact‖ and ‖(I − Q�QT

� )b‖. We can observe
in Fig. 9a that since the singular values of A do not decay fast enough to zero with
increasing index �, the approximation error ‖(I − Q�QT

� )A‖ is extremely large even
for � = 100. Moreover, we can see that the discrepancy principle cannot be satisfied
for � ≤ 100. By visual inspection of Fig. 9b, we can deduce that a very large value of
� may be required to satisfy the discrepancy principle.
Hubble. We turn to a deblurring problem from [13]. Specifically, we consider the
deblurring problem obtained when the available image is blurred by a medium speckle
PSF and, in addition, is contaminated by 5% white Gaussian noise. The size of the
image is 512 × 512 pixels; see Fig. 10. We impose periodic boundary conditions.
Then the blurring matrix A ∈ R

n×n , with n = 5122, is block circulant with circulant
blocks (BCCB). Thus, A can be diagonalized by the bidimensional Fourier matrix.
We can compute the eigenvalues of A in O(n log n) flops with the aid of the fast
Fourier transform (FFT) algorithm; see, e.g., [21] for a discussion on image deblurring
and boundary conditions. By choosing L as the discretization of the bidimensional
Laplacian with periodic boundary conditions, we can solve (3) inO(n log n) flops for
each value of the regularization parameter μ. This allows us to compute the solution
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Fig. 9 Blur test problem, bounds ofProposition 1:aComparisonof the approximation error‖(I−Q�Q
T
�

)A‖
(blue solid curve) and the optimal error, i.e., the singular values σ� of the matrix A (black dotted curve),
versus �. bComparison of ‖(I−Q�Q

T
�

)A‖‖xexact‖ (blue solid curve), ‖(I−Q�Q
T
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)b‖ (red dashed curve),
and ηε (black dotted line) against � (color figure online)

by standard Tikhonov regularization and to compare results obtained in this manner
with those determined by the K-Tikhonov and R-Tikhonov methods.

Similarly as above, we apply both the R-Tikhonov and K-Tikhonov methods for
different values of �, and compare results in terms of CPU time and accuracy. The
matrix A is not explicitly formed; instead we evaluate matrix–vector products with
A and AT by using the FFT algorithm. Hence, in R-Tikhonov the matrices A�� and
AT Q� are computed by evaluating � matrix–vector products with A and � matrix–
vector products with AT . We therefore expect the computing time for R-Tikhonov
and K-Tikhonov to be about the same. This is confirmed by the graphs of Fig. 11b.
On the other hand, we can see from Fig. 11a and d that the R-Tikhonov method fails
to accurately determine the largest singular values of A, and that the restored image
determined by R-Tikhonov is of very poor quality; see Fig. 12b. This is due to the fact
that, as we can see in Fig. 11c, the singular values of A do not decrease very fast to
zero.

Figure 12 displays the reconstructed images obtained with standard Tikhonov, R-
Tikhonov, andK-Tikhonov.Visual inspection shows thatK-Tikhonov is able to provide
a reconstruction of similar quality as standard Tikhonov, while R-Tikhonov fails to
determine an accurate approximation of xexact.

5 Conclusion

The application of randomized algorithms to the solution of large-scale problems has
received considerable attention. This paper compares their performance with a Krylov
subspace method when applied to the solution of linear discrete ill-posed problems
by Tikhonov regularization. The singular values of linear discrete ill-posed problems
“cluster” at the origin, however, their rate of decay towards zero with increasing
index is problem dependent. The randomized method is found to be competitive for
the solution of linear discrete ill-posed problems in one space-dimension, for which
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Fig. 10 Hubble test case: a true image (512 × 512 pixels), b PSF (512 × 512 pixels), c blurred and noisy
image with 5% of white Gaussian noise (512 × 512 pixels)
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Fig. 11 Hubble test problem: Comparison between K-Tikhonov and R-Tikhonov: a RRE for solutions
determined by K-Tikhonov (red dashed curve), R-Tikhonov (blue solid curve), and standard Tikhonov
(black dotted curve). The horizontal axis shows � for K-Tikhonov and k for R-Tikhonov, b CPU times for
K-Tikhonov (red dashed curve) and R-Tikhonov (blue solid curve) for different values of � and k, c singular
values of the blurring matrix A, d the largest singular values of the matrices AQ50Q

T
50 (blue solid curve),

C̄50 (red dashed curve), and A (black dotted curve) as a function of their index (color figure online)
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Fig. 12 Hubble test case reconstructions: a Tikhonov, b R-Tikhonov (k = 50), c K-Tikhonov (� = 50)

the singular values decay to zero fast enough with increasing index. However, when
the singular values do not decrease quickly enough, the Krylov method considered
outperforms the randomized method. This depends on that Krylov methods determine
more appropriate solution subspaces of low dimensions for linear discrete ill-posed
problems than the randomized method when the singular values do not decay to zero
sufficiently rapidly.

We only consider one Krylov subspace method, Golub–Kahan bidiagonalization,
in this paper. However, our conclusions carry over to other Krylov subspace solution
methods, such as the Arnoldi method, as well, at least when the matrix A is not too
far from symmetric. When A is far from symmetric, solution methods for discrete
ill-posed problems based on the Arnoldi process are known not to provide satisfactory
results; see, e.g., [6,14] an illustration.
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