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a b s t r a c t

It is desirable that a quadrature rule be internal, i.e., that all nodes of the rule live in the

convex hull of the support of the measure. Then the rule can be applied to approximate

integrals of functions that have a singularity close to the convex hull of the support of

the measure. This paper investigates whether generalized averaged Gauss quadrature

formulas for modified Chebyshev measures of the first kind are internal. These rules

are applied to estimate the error in Gauss quadrature rules associated with modified

Chebyshev measures of the first kind. It is of considerable interest to be able to assess the

error in quadrature rules in order to be able to choose a rule that gives an approximation

of the desired integral of sufficient accuracy without having to evaluate the integrand at

unnecessarily many nodes. Some of the generalized averaged Gauss quadrature formulas

considered are found not to be internal. We will show that some truncated variants of

these rules are internal, and therefore can be applied to estimate the error in Gauss

quadrature rules also when the integrand has singularities on the real axis close to the

interval of integration.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Gauss quadrature rules

Let dλ be a nonnegative measure with infinitely many points of support on the interval [a, b] on the real axis, and
assume that all moments are well defined.

By {Pk}∞k=0 we denote the set of monic orthogonal polynomials associated with the measure dλ, where the degree of
Pk equals k. Recall that the polynomials Pk satisfy a three-term recurrence relation of the form

Pk+1(x) = (x − αk)Pk(x) − βkPk−1(x), k = 1, 2, . . . , (1)

where P−1(x) ≡ 0 and P0(x) ≡ 1, and βk > 0 for all k ≥ 1; see, e.g., [1,2] for many properties and examples of orthogonal
polynomials.
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It is well known that among all interpolatory quadrature rules with n nodes for approximating the integral

I(f ) =
∫ b

a

f (x) dλ(x), (2)

the rule with maximum degree of exactness is the n-node Gauss quadrature rule with respect to the measure dλ,

Q G
n (f ) =

n∑

i=1

w
(n)
i f (x

(n)
i ) (3)

Its degree of exactness is 2n − 1, that is, Q G
n (p) = I(p) whenever p ∈ P

2n−1, where P
2n−1 denotes the set of polynomials

of degree at most 2n − 1.

The nodes x
(n)
i , i = 1, 2, . . . , n, of the Gauss rule Q G

n are the zeros of the monic orthogonal polynomial Pn with respect

to dλ and lie in the convex hull of the support of dλ. The weights w
(n)
i , i = 1, 2, . . . , n, are known to be positive; see [1,2]

for proofs.

In fact, the nodes x
(n)
i are the eigenvalues of the n × n Jacobi matrix

Jn =




α0

√
β1 0√

β1 α1

√
β2

. . .
. . .

. . .√
βn−2 αn−2

√
βn−1

0 √
βn−1 αn−1




, (4)

determined by the first 2n − 1 nontrivial recursion coefficients (1), whereas the weights w
(n)
i are the square of the first

component of suitably normalized eigenvectors; see [1,3] for details. Thus, the matrix (4) together with the moment

µ0 =
∫ b

a
dλ(x) determine the Gauss rule Q G

n . This observation is the basis for the Golub–Welsch algorithm for computing

the nodes and weights of an n-node Gauss rule from the 2n−1 first recursion coefficients (1) in O(n2) arithmetic floating

point operations (flops); see [4].

1.2. Estimating the error in Gauss rules

It is important to be able to estimate the magnitude of the quadrature error

εn(f ) = |(I − Q G
n )(f )|, (5)

because this helps to determine a suitable value of n when applying the rule Q G
n to approximate the integral (2). An

unnecessarily large value of n requires the computation of needlessly many nodes and weights, as well as the evaluation

of the integrand f at excessively many nodes, while a too small value of n does not yield desired accuracy. The development

of methods for estimating the error (5) therefore has received considerable attention over many years.

A popular approach to estimate the error (5) is to use another quadrature rule, Aℓ, with ℓ > n nodes and a degree of

exactness higher than 2n − 1. One then can use the difference

|(Aℓ − Q G
n )(f )|

as an estimate for (5).

Although letting Aℓ be the Gauss rule Q G
n+1, whose degree of exactness is 2n + 1, appears to be a natural choice, the

error estimate |(Q G
n+1 − Q G

n )(f )| is known to be unreliable; see [5] for a discussion. This has lead to the development of

other quadrature formulas for estimating the error (5), among them Gauss–Kronrod rules; see [1] for a discussion of this

kind of quadrature rules.

The Gauss–Kronrod quadrature rule associated with the n-node Gauss rule (3) is a nested formula with 2n+1 nodes -

n of the nodes are those of (3), and the remaining nodes are zeros of a Stieltjes polynomial of degree n+1. Under suitable

conditions, such as when dλ(x) = dx, the zeros of the Stieltjes polynomial are real and are interlaced by the zeros of the

Gauss rule (3). Thus, the Gauss–Kronrod rule requires only n + 1 new function values, in addition to those required to

compute Q G
n (f ), and it can be shown to be exact for all polynomials in P

3n+1.

However, for many measures, Gauss–Kronrod rules do not have real nodes. This is the case for Gauss–Laguerre and

Gauss–Hermite measures (see [6]) and for the Jacobi weight functions wα,β (x) = (1 − x)α(1 + x)β for min(α, β) > 0 and

max(α, β) > 5/2 if n is large enough (see [7]). Numerical illustrations can be found in [8]. We refer to [9] for a nice

discussion on Gauss–Kronrod rules.
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1.3. The averaged rule Q L
2n+1 and the generalized averaged rule Q S

2n+1

Another approach to determine a suitable quadrature rule Aℓ to estimate the error (5) is to construct a new (n+1)-node

quadrature formula Uθ
n+1 for approximating the functional

Iθ (f ) = I(f ) − θQ G
n (f ),

for some θ ∈ R, where I(f ) is the integral (2), and use the ‘‘stratified’’ (2n + 1)-node quadrature formula (i.e. a linear

combination of two formulas)

Q2n+1 = θQ G
n + Uθ

n+1 (6)

to estimate the error (5); see [10,11] for discussions of this approach. Then the computation of Q2n+1(f ) requires the

evaluation of the integrand f at only n + 1 extra nodes, in addition to the evaluation of f at the Gauss nodes x
(n)
i .

Laurie [12] introduced the (n + 1)-node anti-Gauss rule Q A
n+1 as the Gauss rule approximating Iθ for θ = 1

2
. Thus

(I − Q A
n+1)(p) = −(I − Q G

n )(p) whenever p ∈ P
2n+1. This yields the averaged rule, also introduced in [12]:

Q L
2n+1 = 1

2
(Q G

n + Q A
n+1).

This rule is exact for all polynomials in P
2n+1 and its n + 1 extra nodes are zeros of

Fn+1 = Pn+1 − β̄n+1Pn−1, (7)

for β̄n+1 = βn, with βn a recursion coefficient (1).

For the Laguerre and Hermite weight functions, Ehrich [13] varied θ so as to increase the degree of exactness. By using

results in [14] on positive quadrature formulas, Spalević [15,16] proposed a simple numerical method for constructing

such a formula for a general nonnegative measure dλ for which all required moments exist. This formula, which we will

refer to as the generalized averaged rule Q S
2n+1, is the optimal formula of type (6), having the degree of exactness (at least)

2n + 2. Its n + 1 extra nodes are the zeros of the polynomial (7) for β̄n+1 = βn+1. Differently from Gauss–Kronrod rules,

the quadrature formulas Q L
2n+1 and Q S

2n+1 are guaranteed to exist, and have real nodes and positive weights. Furthermore,

for certain measures dλ the rules Q L
2n+1 and Q S

2n+1 are exact for all polynomials in P
3n+1 and, thus, coincide with the

Gauss–Kronrod formulas; see [17,18] for examples.

The construction described in [15,16] is as follows. For 0 6 r < n we introduce the ‘‘reverse’’ symmetric tridiagonal

(n−r) × (n−r) matrix

J
∗(r)
n−r =




αn−1

√
βn−1 0√

βn−1 αn−2

√
βn−2

. . .
. . .

. . .√
βr+2 αr+2

√
βr+1

0 √
βr+1 αr




,

and the concatenated symmetric tridiagonal (2n+1−r) × (2n+1−r) matrix

Ĵ
(n−r)
2n+1−r =




Jn
√

βnen 0√
βne

T
n αn

√
β̄n+1e

T
1

0
√

β̄n+1e1 J
∗(r)
n−r


 , (8)

where ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes the jth axis vector of suitable dimension and the superscript T stands for

transposition. Then the matrix (8) together with the moment µ0 =
∫ b

a
dλ determine the quadrature rules Q S

2n+1 and

Q L
2n+1 when β̄n+1 = βn+1 and β̄n+1 = βn, respectively.

We also refer to [12] for a more efficient method for constructing the rules Q L
2n+1, as well as to [19], where a similarly

efficient method for constructing the rules Q S
2n+1 recently was proposed.

However, the quadrature rules Q L
2n+1 and Q S

2n+1 are not guaranteed to be internal, i.e., they may have nodes outside the

convex hull H of the support of the measure dλ. This means that they may yield poor accuracy, or may not be applicable,

when the integrand has a singularity close to H . A possible solution to this issue is the truncated generalized averaged Gauss

rules Q
(n−r)
2n+1−r determined by the matrix Ĵ

(n−r)
2n+1−r when β̄n+1 = βn+1, obtained by ‘‘truncating’’ the Jacobi matrix of Q S

2n+1.

Just like the generalized averaged rule Q S
2n+1, they are exact for all polynomials in P

2n+2, have real nodes and positive

weights. Note that the nodes of Q
(n−i)
2n+1−i interlace those of Q

(n+1−i)
2n+2−i for i = 1, 2, . . . , r .

In the present paper, we are concerned with the case r = n − 1. Then (8) together with the moment µ0 define the

quadrature rule Q
(1)

n+2 with n + 2 nodes, introduced in [20]. Due to the interlacing property, the truncated rule Q
(1)

n+2 may

be internal when Q S
2n+1 is not, as illustrated in Section 3.
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As noted in [12,15,21], only the two outermost nodes of the rules Q S
2n+1, Q

L
2n+1, and Q

(1)

n+2 may be exterior. For certain
measures, the internality of these rules is investigated in [17,18,21]. In this paper we discuss the internality of these
quadrature rules for modifications of Chebyshev measures of the first kind. Section 2 considers Chebyshev measures of
the first kind with a linear divisor and Section 3 is concerned with Chebyshev measures of the first kind with a linear
divisor and a linear factor. A few computed examples are presented in Sections 3 and 4 and concluding remarks are
provided in Section 5.

2. Modifications by a linear divisor

Henceforth, we let

dλ(x) = dx√
1 − x2

for − 1 < x < 1 (9)

denote the Chebyshev measure of the first kind. The monic orthogonal polynomials associated with this measure are the
polynomials T0(x) = 1 and 1

2n−1 Tn(x), n = 1, 2, . . . , where the Tn are Chebyshev polynomials of the first kind, characterized
by

Tn(cos ξ ) = cos nξ .

Note that Tn(±1) = (±1)n. The recursion coefficients (1) for the polynomials 1

2n−1 Tn are

αk = 0 (k > 0) and β1 = 1

2
, βk = 1

4
(k > 2);

see, e.g., [1].
This section considers quadrature rules with respect to measures obtained by modifying the measure (9) by a linear

divisor. Thus, for a constant c ∈ R\{0}, define the modified Chebyshev measure

d̃λ(x) = dx

(x − δ)
√
1 − x2

for − 1 < x < 1, (10)

where δ = − 1
2
(c + c−1). Due to symmetry, we may assume that c > 0 (switching the signs of c and x yields the same

measure). We introduce

ć = min{c, c−1}, so that δ = −1

2
(ć + ć−1).

Everything in this section will be expressible solely in terms of ć.
The moment

µ0 =
∫ 1

−1

d̃λ(x) = 2π ć

1 − ć2

is not defined for c = 1, so we must assume that c 6= 1. Then δ < −1.

2.1. Monic orthogonal polynomials

Let dλ and d̃λ be measures that satisfy

d̃λ = dλ

x − δ
.

Given the monic orthogonal polynomials Pk and recurrence coefficients αk, βk (1) for the measure dλ, Gautschi
[1, eqs. (2.4.24–25)] gives an algorithm for computing the orthogonal polynomials P̃k and recurrence coefficients α̃k, β̃k

(1) for the measure d̃λ. The algorithm involves the values

rk = ρk+1

ρk

, where ρk = −
∫ 1

−1

Pk(x)

x − δ
dλ(x) for k > 0, ρ−1 = 1,

and expresses the polynomials P̃k as

P̃k(x) = Pk(x) − rk−1Pk−1(x), k > 1.

For the particular measures (9) and (10), we obtain the relations

rk = δ − 1

4rk−1

(k > 2),

α̃k = rk − rk−1 (k > 1),

β̃k = rk−1

4rk−2

(k > 3),

4
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with the initial values r0 = −ć , r1 = − 1
2
ć ,

α̃0 = −ć, and β̃1 = 1

2
(1 − ć2), β̃2 = 1

4
.

An easy induction gives us rk = − 1
2
ć for all k > 1.

Theorem 1. The recurrence coefficients for the monic orthogonal polynomials associated with the measure d̃λ (10) are

α̃0 = −ć, α̃1 = 1
2
ć, α̃k = 0 for k > 2,

β̃1 = 1
2
(1 − ć2), β̃k = 1

4
for k > 2.

The (monic) orthogonal polynomials P̃k with respect to d̃λ are

P̃k(x) = 1

2k−1

(
Tk(x) + ć Tk−1(x)

)
for k > 2, (11)

with P̃0(x) = 1 and P̃1(x) = x + ć . �

2.2. Internality of generalized averaged Gauss rules and truncated variants

Since the coefficients α̃k = 0 and β̃k = 1
4
are constant for k > 2, we obtain as a direct consequence of [22, Theorem

3.1] that:

Theorem 2. The averaged Gauss formula Q L
2n+1 and the generalized averaged Gauss formula Q S

2n+1 associated with the measure

d̃λ given by (10) both coincide with the Gauss–Kronrod formulas for n > 3. Consequently, the polynomials Fn+1 in (7) are the
Stieltjes polynomials.

For n = 1 the formulas Q L
2n+1 and Q S

2n+1 do not coincide, whereas for n = 2 they coincide, but differ from the
Gauss–Kronrod rule.

For n > 2, the quadrature rule Q2n+1 = Q L
2n+1 = Q S

2n+1 has n Gauss nodes (3) and n+ 1 nodes that are the zeros of the
polynomial

Fn+1(x) = P̃n+1(x) − 1

4
P̃n−1(x)

= 1

2n

(
Tn+1(x) − Tn−1(x) + ć (Tn(x) − Tn−2(x))

)
;

cf. (7). Since Fn+1(±1) = 0, the outermost zeros of Fn+1 are at ±1. This yields the following result.

Theorem 3. For n > 2, the averaged quadrature rule Q2n+1 associated with the measure d̃λ given by (10) is internal. The
truncated variants of Q2n+1 then have all nodes in the open interval (−1, 1) and are thus internal as well.

For n = 1, the smallest node of Q L
3 for all c , as well as the smallest node of Q S

3 for 1
2

< c < 2, is smaller than −1. On

the other hand, the formula Q S
3 is internal when c 6

1
2
or c > 2.

3. Modifications by a linear divisor and a linear factor

We consider the measure

d̂λ(x) = (x − γ ) d̃λ(x) = (x−γ ) dx

(x−δ)
√
1−x2

for − 1 < x < 1, (12)

where γ = −( 1
2
c + c−1) and δ = − 1

2
(c + c−1). Again, switching the signs of c and x if needed, we may assume that c > 0.

3.1. Monic orthogonal polynomials

Let d̃λ and d̂λ be any measures satisfying

d̂λ(x) = (x − γ ) d̃λ(x).

Denote by P̃k, α̃k, β̃k, resp. P̂k, α̂k, β̂k, the monic orthogonal polynomials and the recurrence coefficients for the measure
d̃λ, resp. d̂λ.

The polynomials P̂k are related to the polynomials P̃k (k > 0) by the following equality from [1, Theorem 1.55]:

P̂k(x) = P̃k+1(x) − rkP̃k(x)

x − γ
, where rk = P̃k+1(γ )

P̃k(γ )
, (13)

under the assumption that P̃k(γ ) 6= 0 for all k.

5
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Gautschi [1, eqs. (2.4.12–13)] gives an algorithm for computing the recursion coefficients for the measure d̃λ, given
the recursion coefficients for d̂λ. With rk as in (13), we obtain

r0 = γ − α̃0, β̂0 = −r0β̃0,

as well as

rk = γ − α̃k − β̃k/rk−1 (k > 0),

α̂k = α̃k+1 + rk+1 − rk,

β̂k = β̃krk/rk−1 (k > 0).

For the particular measures (10) and (12), the initial quantities rk are given by

r0 = c2−2

2c
, r1 = − 2

c(2−c2)
, r2 = − c4+2c2+8

8c
if 0 < c < 1,

r0 = − c

2
, r1 = − c4+c2+2

2c3
, r2 = − c6+2c4+4c2+4

2c(c4+c2+2)
if c > 1,

with

rk = γ − 1

4rk−1

(k > 2). (14)

The initial recursion coefficients are then



α̂0 = − c

2−c2
,

α̂1 = c(c4+4)

8(2−c2)
,

β̂1 = 2(1−c2)

(2−c2)2
,

β̂2 = (2−c2)(c4+2c2+8)

64
,

if 0 < c < 1,





α̂0 = − 1

c3
,

α̂1 = c4+4

2c3(c4+c2+2)
,

β̂1 = c6+c2−2

2c6
,

β̂2 = c2(c6+2c4+4c2+4)

4(c4+c2+2)2
,

if c > 1,

with

α̂k = rk+1 − rk (k > 1), β̂k = rk

4rk−1

(k > 2). (15)

In order to describe all sequences (rk) that satisfy the recurrence relation (14), we introduce

z = c2 + 2 +
√
c4 + 4

2c
, (16)

so that z−1 = c2+2−
√

c4+4

2c
. Note that z >

√
2 + 1, with equality for c =

√
2.

Theorem 4. Every sequence (rk)
∞
k=1 that satisfies (14) with r1 6= − 1

2
z−1 is of the form

rk = −1

2
· z

k−1 − Az1−k

zk−2 − Az2−k
, (17)

where A is a real constant. If r1 = − 1
2
z−1, then rk = − 1

2
z−1 for all k. This corresponds to A = ∞.

Proof. We will show (17) by induction over k. Letting

A = 1 + 2z−1r1

1 + 2zr1
(18)

shows that (17) holds for k = 1. Let k > 2, assume that (17) holds for k− 1, and use (14) with γ = − 1
2
(z + z−1). We then

obtain

rk = −1

2
(z + z−1) + 1

2
· z

k−3 − Az3−k

zk−2 − Az2−k
= −1

2
· z

k−1 − Az1−k

zk−2 − Az2−k
.

The initial value r1 = − 1
2
z−1, obtained by letting A → ∞, clearly gives rk = − 1

2
z−1 for all k. �

In our case, (18) yields

A =
{

1
4
z−4

(
c2 +

√
c4 + 4

)2
if c < 1,

1
4
z−2

(√
c4 + 4 − c2

)2
if c > 1.

(19)

6
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In either case,

0 < A < z−2 < 1. (20)

From (15) and (17) we obtain the following result.

Theorem 5. The recursion coefficients for the monic orthogonal polynomials associated with the measure (12) are given by

α̂k = − A(z − z−1)2

2(zk − Az−k)(zk−1 − Az1−k)
,

β̂k = 1

4
+ A(z − z−1)2

4(zk−1 − Az1−k)2
,

where z and A are defined by (16) and (19). �

3.2. The averaged Gauss formula Q L
2n+1

The two outermost nodes of the quadrature formula Q L
2n+1 are the smallest zero xπ

1 and the largest zero xπ
n+1 of the

polynomial

πn+1(x) = P̂n+1(x) − β̂nP̂n−1(x). (21)

The formula Q L
2n+1 is internal if and only if −1 6 xπ

1 and xπ
n+1 6 1. These conditions are equivalent to xn+1πn+1(x) > 0 for

x = ±1; see, e.g., [12] for an analogous discussion. It follows that Q L
2n+1 is internal if and only if

P̂n+1(x)

P̂n−1(x)
> β̂n for x = ±1. (22)

Theorem 6. The quadrature rule Q L
2n+1 associated with measure d̂λ (12) has one external node, namely the smallest node.

Proof. Let n > 2. By (11), (13) and (15), condition (22) reduces to

1

2n+1

(
Tn+2(x) + ć Tn+1(x)

)
− rn+1

2n

(
Tn+1(x) + ć Tn(x)

)

1

2n−1

(
Tn(x) + ć Tn−1(x)

)
− rn−1

2n−2

(
Tn−1(x) + ć Tn−2(x)

) >
rn

4rn−1

.

For x = 1 and x = −1, this inequality becomes

1 − 2rn+1

1 − 2rn−1

>
rn

rn−1

(23a)

and
1 + 2rn+1

1 + 2rn−1

>
rn

rn−1

, (23b)

respectively. Substituting (17) into (23a) and simplifying, we obtain

zn−1 − Az−n

zn−3 − Az2−n
>

(zn−1 − Az1−n)2

(zn−2 − Az2−n)2
,

which reduces to the trivial inequality A > −z2n−3; recall that z > 0 and A > 0; cf. (20). On the other hand, (23b) reduces

to A > z2n−3, which is false by (19) whenever n > 2.

The above statement remains valid for n = 1, as can be shown by some straightforward computations. �

Example 1. Table 1 shows the outermost nodes of the averaged Gauss quadrature rule Q L
2n+1 for the measure d̂λ (12).

The computations for this and the following tables are carried out in Mathematica with high precision arithmetic. The

quadrature nodes are computed with the QR algorithm applied to the symmetric tridiagonal matrix associated with the

quadrature rule. As expected, the smallest node xπ
1 is outside the interval [−1, 1], while the largest node xπ

n+1 is inside.

3.3. The generalized averaged Gauss formula Q S
2n+1

As in the previous subsection, the two outermost nodes of the quadrature rule Q S
2n+1 are the smallest zero xF1 and the

largest zero xFn+1 of the polynomial

Fn+1(x) = P̂n+1(x) − β̂n+1P̂n−1(x). (24)

These zeros lie in the interval [−1, 1] if and only if xn+1Fn+1(x) > 0 for x = ±1; see also [15].

7
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Table 1

The smallest zero xπ
1 and the largest zero xπ

n+1 of the polynomial (21).

c n xπ
1 xπ

n+1

5 −1 − 1.0481(−13) 1 − 8.7604(−14)

10 −1 − 5.0201(−27) 1 − 4.1536(−27)

0.1 15 −1 − 3.1937(−40) 1 − 2.6335(−40)

20 −1 − 2.2835(−53) 1 − 1.8797(−53)

30 −1 − 1.3823(−79) 1 − 1.1360(−79)

5 −1 − 5.5711(−13) 1 − 3.7461(−13)

10 −1 − 2.5196(−23) 1 − 1.6938(−23)

10 15 −1 − 1.5192(−33) 1 − 1.0212(−33)

20 −1 − 1.0305(−43) 1 − 6.9268(−44)

30 −1 − 5.6191(−64) 1 − 3.7770(−64)

Table 2

The smallest zero xF1 and the largest zero xFn+1 of the polynomial (24).

c n xF1 xFn+1

5 −1 − 2.0018(−12) 1 + 1.8485(−12)

10 −1 − 9.5884(−26) 1 + 8.7641(−26)

0.1 15 −1 − 6.1000(−39) 1 + 5.5567(−39)

20 −1 − 4.3616(−52) 1 + 3.9664(−52)

30 −1 − 2.6402(−78) 1 + 2.3969(−78)

5 −1 − 5.1254(−12) 1 + 4.1956(−12)

10 −1 − 2.3180(−22) 1 + 1.8971(−22)

10 15 −1 − 1.3976(−32) 1 + 1.1438(−32)

20 −1 − 9.4803(−43) 1 + 7.7580(−43)

30 −1 − 5.1695(−63) 1 + 4.2302(−63)

Theorem 7. The two outermost nodes of the quadrature formula Q S
2n+1 for the measure d̂λ given by (12) are both external.

Proof. In this case, the internality of the nodes xF1 and xFn+1 is equivalent to

1 − 2rn+1

1 − 2rn−1

>
rn+1

rn
(25a)

and
1 + 2rn+1

1 + 2rn−1

>
rn+1

rn
, (25b)

respectively. The inequality (25a) for n > 2 reduces to

zn−1 − Az−n

zn−3 − Az2−n
>

zn−1 − Az1−n

zn−3 − Az3−n
· (z

n − Az−n)(zn−2 − Az2−n)

(zn−1 − Az1−n)2
,

which, when expanded, simplifies to the clearly false inequality A 6 −z2n−3. Similarly, (25b) reduces to A > z2n−3, which

is false as well. �

For n = 1, it can be shown that the largest node is internal, whereas the smallest node is external for c approximately

between 0.706581 and 1.

Example 2. Table 2 shows the outermost nodes of the generalized averaged Gauss quadrature rule Q S
2n+1 for the measure

d̂λ (12), computed for several values of n and c . As expected, both outermost nodes xF1 are xFn+1 lie outside the interval

[−1, 1].

3.4. The truncated generalized averaged Gauss formula Q
(1)

n+2

The quadrature rule Q
(1)

n+2 is internal if the smallest zero xt1 and the largest zero xtn+2 of the polynomial

tn+2(x) = (x − α̂n−1 )̂Pn+1(x) − β̂n+1P̂n(x), (26)

belong to the interval [−1, 1]; see [21] for a related discussion.

Theorem 8. For n > 3, the truncated rule Q
(1)

n+2 associated with the measure d̂λ given by (12) is internal.

8
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Proof. The conditions xt1 > −1 and xtn+2 6 1 reduce to

−(1 + α̂n−1 )̂Pn+1(−1)

β̂n+1P̂n(−1)
= 2(1+rn−rn−1) · rn

rn+1

· 1+2rn+1

1+2rn
> 1 (27a)

and

(1 − α̂n−1 )̂Pn+1(1)

β̂n+1P̂n(1)
= 2(1−rn+rn−1) · rn

rn+1

· 1−2rn+1

1−2rn
> 1, (27b)

respectively. We first verify (27a). Since

1 + rn − rn−1 = 1 + Az2n−7(z2 − 1)2

2(z2n−4 − A)(z2n−6 − A)
> 1,

it suffices to show that

rn

rn+1

· 1 + 2rn+1

1 + 2rn
>

1

2
,

i.e., that

1 − rn

rn+1

· 1 + 2rn+1

1 + 2rn
= Az2n−3(z2 − 1)(z + 1)

(z2n − A)(z2n−3 + A)
6

1

2
.

The bounds (20), together with 2A < 1 and z > 1, imply that

(z2n − A)(z2n−3 + A) > (z2n − 1)z2n−3

= z2n−3(z2 − 1)(z2n−2+ · · · +z2+1)

> 2Az2n−3(z2 − 1)(z + 1).

This shows that xt1 is internal.
Turning to (27b), we have

rn

rn+1

· 1 − 2rn+1

1 − 2rn
= (z2n−2 − A)(z2n−1 − A)

(z2n − A)(z2n−3 − A)
= 1 + Az2n−3(z + 1)(z − 1)2

(z2n − A)(z2n−3 − A)
>1.

It remains to show that 1 − rn + rn−1 >
1
2
, i.e., that

rn − rn−1 = Az2n−7(z2 − 1)2

2(z2n−4 − A)(z2n−6 − A)
6

1

2
.

Using (20) again, we obtain

(z2n−4 − A)(z2n−6 − A) > z−4(z2n−2 − 1)(z2n−4 − 1)

> z−4 · z2n−4(z2 − 1) · z2n−6(z2 − 1)

= z2n−5 · z−2z2n−7(z2 − 1)2 > Az2n−7(z2 − 1)2.

Therefore, xtn+2 is internal as well. �

For n = 2, the rule Q
(1)

n+2 is not necessarily internal: its largest node xtn+2 = xt4 is external for c approximately between
0.94 and 1.06.

Example 3. Table 3 shows the outermost nodes of the truncated generalized averaged Gauss quadrature rule Q
(1)

n+2 for the

measure d̂λ (12), computed for several values of n and c . As expected, both outermost nodes xt1 and xtn+2 lie inside the
interval [−1, 1].

4. Numerical performances of the quadrature rules

The following examples illustrate the application of the quadrature rules Q L
2n+1, Q

S
2n+1, and Q

(1)

n+2 for estimating the

quadrature error (5) in the Gauss quadrature rule Q G
n . We will compute the integral

I(f ) =
∫ 1

−1

f (x) d̂λ(x), (28)

for two integrands, where the measure d̂λ is given by (12), and tabulate the error estimates

EAG = |Q L
2n+1(f ) − Q G

n (f )|,
EGA = |Q S

2n+1(f ) − Q G
n (f )|,

ETGA = |Q (1)

n+2(f ) − Q G
n (f )|

9
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Table 3

The smallest zero xt1 and the largest zero xtn+2 of the polynomial (26).

c n xt1 xtn+2

5 −9.79038030279709(−1) 9.73871633423194(−1)

10 −9.92337134094587(−1) 9.91236852047087(−1)

0.5 15 −9.96058828954681(−1) 9.95661314900172(−1)

20 −9.97604558839063(−1) 9.97418577192209(−1)

30 −9.98845880825367(−1) 9.98784587481856(−1)

5 −9.77280686318141(−1) 9.74518141939028(−1)

10 −9.91951057460943(−1) 9.91363145322045(−1)

2 15 −9.95917096768783(−1) 9.95705465436250(−1)

20 −9.97537626155382(−1) 9.97438877010355(−1)

30 −9.98823592963473(−1) 9.98791158453879(−1)

Table 4

The error estimates and the actual Error (5).

c n EAG EGA ETGA Error I(f )

5 5.7858 5.7858 5.7394 5.7855

10 3.5777(−4) 3.5777(−4) 3.5792(−4) 3.5777(−4)

0.1 15 7.0202(−11) 7.0202(−11) 7.0205(−11) 7.0202(−11) 1.1220

20 4.2854(−19) 4.2854(−19) 4.2854(−19) 4.2854(−19)

30 1.1955(−38) 1.1955(−38) 1.1955(−38) 1.1955(−38)

5 2.9498 2.9498 2.9202 2.9497

10 1.8355(−4) 1.8355(−4) 1.8361(−4) 1.8355(−4)

10 15 3.5798(−11) 3.5798(−11) 3.5799(−11) 3.5798(−11) 5.9317(-1)

20 2.1753(−19) 2.1753(−19) 2.1753(−19) 2.1753(−19)

30 6.0363(−39) 6.0363(−39) 6.0363(−39) 6.0363(−39)

Table 5

The error estimate ETGA and the actual Error (5).

c n ETGA Error I(f )

5 6.8789(−8) 7.6155(−8)

10 4.5475(−10) 6.3826(−10)

0.5 15 2.2961(−11) 3.9905(−11) 11.9094

20 2.6705(−12) 5.5638(−12)

30 1.2312(−13) 3.4303(−13)

5 3.5371(−8) 3.8968(−8)

10 2.1419(−10) 2.9828(−10)

2 15 1.0378(−11) 1.7892(−11) 8.8666

20 1.1779(−12) 2.4358(−12)

30 5.2821(−14) 1.4625(−13)

for several values of n and c > 0. ‘‘Error’’ denotes the actual value of error, estimated using the Gauss quadrature rule

with a large number of nodes.

Example 4. Table 4 lists the error estimates when the integrand f in (28) is the entire function

f (t) = e3t sin 10t.

All three error estimates are very accurate.

Example 5. Table 5 shows results for the integral (28) with the integrand

f (t) = 999.1log10(1+ε+t), where ε = 10−100.

This integrand has a discontinuity at t = −1 − ε, very close to the support of the measure.

Since the rules Q L
2n+1 and Q S

2n+1 themselves have a node smaller than −1−ε, they are practically useless in this case. On

the other hand, the truncated rule Q
(1)

n+2, which is internal, provides error estimates with the correct order of magnitude.
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5. Conclusion

In this paper, we discuss quadrature rules for two kinds of modifications of the Chebyshev measure of the first kind. We

study the internality of averaged Gauss rules, generalized averaged Gauss rules, as well as truncated generalized averaged

Gauss rules.

Computed examples illustrate the theory, and show the quality of the computed error estimates. The error estimates

are found to be very accurate when the integrand does not have a singularity close to the support of the measure. When

the integrand has a singularity very close to the support of the measure, the accuracy of the error estimates is reduced.
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