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a b s t r a c t

Many functionals of a large symmetric matrix of interest in science and engineering can
be expressed as a Stieltjes integral with a measure supported on the real axis. These
functionals can be approximated by quadrature rules. Golub and Meurant proposed
a technique for computing upper and lower error bounds for Stieltjes integrals with
integrands whose derivatives do not change sign on the convex hull of the support
of the measure. This technique is based on evaluating pairs of a Gauss quadrature
rule and a suitably chosen Gauss–Radau or Gauss–Lobatto quadrature rule. However,
when derivatives of the integrand change sign on the convex hull of the support of
the measure, this technique is not guaranteed to give upper and lower error bounds
for the functional. We describe an extension of the technique by Golub and Meurant
that yields upper and lower error bounds for the functional in situations when only
some derivatives of the integrand do not change sign on the convex hull of the support
of the measure. This extension is based on the use of pairs of Gauss, and suitable
generalized Gauss–Radau or Gauss–Lobatto rules. New methods to evaluate generalized
Gauss–Radau and Gauss–Lobatto rules also are described.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The need to evaluate matrix functionals of the form

F (A) := v
T f (A)v, (1.1)

where A ∈ R
n×n is a large symmetric matrix, v ∈ R

n, f is a function that is defined on the convex hull of the spectrum of A,
and the superscript T denotes transposition arises in many applications, including in Tikhonov regularization and network
analysis; see, e.g., [1–5] for illustrations. For notational simplicity, we will assume that ‖v‖ = 1. Here and throughout this
paper ‖ · ‖ denotes the Euclidean vector norm.

Golub and Meurant [6,7] describe a technique for computing upper and lower error bounds for matrix functionals of
the form (1.1) based on the connection between the Lanczos process, orthogonal polynomials, and Gauss-type quadrature
rules. Their technique considers the expression (1.1) as a Stieltjes integral with integrand f . This indicates that Gauss-type
quadrature rules can be applied to compute approximations of (1.1). Assuming that derivatives of the integrand f do not
change sign in the convex hull of the spectrum of A, Golub and Meurant [6,7] observed that pairs of Gauss, and suitable
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Gauss–Radau or Gauss–Lobatto rules, provide upper and lower bounds for (1.1). This follows straightforwardly from the

sign of the remainder terms for these quadrature rules.

When derivatives of the integrand f change sign in the convex hull of the spectrum of A, the technique developed by

Golub and Meurant [6,7] is not guaranteed to provide upper and lower error bounds for (1.1).

Example 1.1. Let A ∈ R
200×200 be the symmetric Toeplitz matrix with first row [2/3, 2/5, . . . , 2/401]. Its largest and

smallest eigenvalues are given by λmin = 0.19175 and λmax = 8.0626, respectively. Consider the approximation of the

functional

F (A) := v
T exp(−

A

4
) sin(

A

4
)v. (1.2)

and define the integrand

f (x) := exp(−
x

4
) sin(

x

4
). (1.3)

Some derivatives of this integrand change sign on the interval [λmin, λmax]. We illustrate in Example 4.1 of Section 4 that

pairs of Gauss and Gauss–Radau rules, or pairs of Gauss and Gauss–Lobatto rules, do not furnish upper and lower error

bounds for (1.2).

We are interested in exploring whether the technique of Golub and Meurant can be extended to give upper and lower

error bounds for (1.1) also in situations when some derivatives of the integrand f change sign in the convex hull of

the spectrum of A. Specifically, we will show that pairs of Gauss rules and suitably chosen generalized Gauss–Radau or

generalized Gauss–Lobatto rules give upper and lower error bounds for (1.1) in some situations when pairs of Gauss and

(standard) Gauss–Radau or Gauss–Lobatto rules are not guaranteed to furnish upper and lower bounds.

Generalized Gauss–Radau rules are Gauss–Radau-type rules, in which the fixed node has multiplicity larger than one;

similarly, generalized Gauss–Lobatto rules are Gauss–Lobatto-type rules, in which at least one of the fixed nodes has

multiplicity larger than one. Generalized Gauss–Radau and Gauss–Lobatto rules have received considerable attention;

see, e.g., [8–14]. Applications of these quadrature rules include the computation of spline approximations that reproduce

as many consecutive moments of the integrand f as possible; see Gautschi [15, Section 3.3] for details.

This paper is organized as follows: Section 2 reviews generalized Gauss–Radau quadrature rules, and describes a novel

way to evaluate these quadrature rules. Generalized Gauss–Lobatto rules are considered in Section 3, and a few computed

examples are presented in Section 4. Concluding remarks can be found in Section 5.

We conclude this section by discussing how the matrix functional (1.1) is related to a Stieltjes integral. The develop-

ment follows Golub and Meurant [6,7]. Introduce the spectral factorization

A = SΛST , Λ = diag[λ1, λ2, . . . , λn],

with the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and S ∈ R
n×n an orthogonal matrix, whose columns are eigenvectors. Then we

define

f (A) = Sf (Λ)ST ;

see, e.g., [16,17] for discussions on the definition of matrix functions. Introduce the row vector [ν1, ν2, . . . , νn] := v
T S.

Then the functional (1.1) can be written as

F (A) = v
T Sf (Λ)STv =

n
∑

j=1

f (λj)ν
2
j . (1.4)

The right-hand side can be expressed as a Stieltjes integral

If :=
∫ b

a

f (x)dλ(x), (1.5)

where the distribution function λ associated with the measure dλ can be chosen to be piece-wise constant and defined

by

λ(x) :=











0, if x < a = λ1,
∑i

j=1 ν2
j , if λi ≤ x < λi+1, i = 1, 2, . . . , n − 1,

∑n
j=1 ν2

j , if b = λn ≤ x.

The m-point (standard) Gauss quadrature rule associated with the measure dλ(x) is of the form

Gmf :=
m

∑

i=1

wif (xi),

2
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and is characterized by the property that

If = Gmf , ∀f ∈ P
2m−1,

where P
2m−1 denotes the set of polynomials of degree at most 2m − 1. The nodes xi of the quadrature rule are distinct

and known to be the zeros of an mth degree orthogonal polynomial with respect to the inner product

(f , g) := I(fg). (1.6)

When the integrand f is 2m times continuously differentiable in the interval [a, b], the error in the quadrature rule

can be expressed as

Emf := (I − Gm)f =
f (2m)(xG)

(2m)!
·
∫ b

a

m
∏

i=1

(x − xi)
2dλ(x), (1.7)

for some xG ∈ [a, b], where f (2m)(x) denotes the 2mth derivative; see, e.g., [7,15] for proof.

We will approximate the integral (1.5), and therefore the functional (1.1), by Gauss-type quadrature rules. Under

suitable conditions, the sign of the quadrature error can be inferred from the remainder terms of the quadrature rules

used. While our discussion focuses on functionals of the form (1.1), a generalization to functionals u
T f (A)v with u ∈ R

n

different from v is straightforward by using the identity

u
T f (A)v =

1

4

(

(u + v)T f (A)(u + v) − (u − v)T f (A)(u − v)
)

.

2. Generalized Gauss–Radau formulas

This section considers generalized Gauss–Radau rules of the form

Gm,r f =
m

∑

i=1

wif (xi) +
r−1
∑

j=0

w
(0)
j f (j)(x0) (2.1)

for approximating the integral (1.5), where the xi, 1 ≤ i ≤ m, are ‘‘free’’ distinct nodes in the open interval (a, b), and

x0 is a prescribed node of multiplicity r ≥ 2 outside this interval. Let int(a, b, x0) denote the convex hull of the set

{a, b, x0}, where −∞ < x0 ≤ a or b ≤ x0 < ∞. We assume that f and its required derivatives (see below) are defined

in int(a, b, x0). Many properties of generalized Gauss–Radau rules are discussed in [8–15]. Here we recall that the nodes

x1, x2, . . . , xm are the zeros of the mth degree orthogonal polynomial with respect to the measure (x − a)r dλ(x). The

generalized Gauss–Radau quadrature rule satisfies

If = Gm,r f , ∀f ∈ P
2m+r−1; (2.2)

see, e.g., [15] for details.

When the integrand f is 2m + r times continuously differentiable in int(a, b, x0), the error in the generalized

Gauss–Radau quadrature rule (2.1) can be expressed as

Em,r f := (I − Gm,r )f =
f (2m+r)(xGR)

(2m + r)!
·
∫ b

a

(x − x0)
r

m
∏

i=1

(x − xi)
2dλ(x), (2.3)

for some xGR ∈ int(a, b, x0); see, e.g., [18] for a proof of (2.3). If the derivative f (2m+r) is of known constant sign in

int(a, b, x0), then we can tell the sign of Em,r f . For instance, when f (2m+r)(x) ≤ 0 for x ∈ int(a, b, x0), and x0 = a, the

quadrature rule Gm,r f furnishes an upper bound for If .

Gautschi [8–10] describes several ways of computing the nodes and weights of generalized Gauss–Radau rules (2.1). We

will describe a new approach to evaluate these quadrature rules that is convenient to use when the measure is implicitly

defined by a sum (1.4). Our approach does not require the explicit evaluation of the nodes and weights.

Application of m + r steps of the Lanczos process to the matrix A with initial unit vector v gives the Lanczos

decomposition

AUm+r = Um+r Jm+r +
√

βm+rum+r+1e
T
m+r , (2.4)

where the matrix Um+r = [u1, u2, . . . , um+r ] ∈ R
n×(m+r) and vector um+r+1 ∈ R

n satisfy u1 = v, UT
m+rUm+r = Im+r ,

‖um+r+1‖ = 1, and UT
m+rum+r+1 = 0. Throughout this paper ej = [0, . . . , 0, 1, 0, . . . , 0]T is the jth axis vector of suitable

3
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dimension, and Ij stands for the identity matrix of order j. Moreover, βm+r ∈ R+ and the matrix

Jm+r :=



















α0

√
β1√

β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βm+r−1√

βm+r−1 αm+r−1



















∈ R
(m+r)×(m+r).

is symmetric and tridiagonal. The Lanczos procedure is a discrete analogue of the Stieltjes procedure in the sense that
the former is applied to a matrix and a vector; it requires the support of the measure to be a finite discrete point set.
Of course, continuous analogues of the Lanczos procedure can be defined, in which case the matrix A is replaced by a
symmetric operator. The Stieltjes procedure is described, e.g., by Gautschi [15] and the (discrete) Lanczos procedure is
discussed by Golub and Meurant [6,7]. Typically, 1 < m + r ≪ n in computations. We tacitly assume that m + r is small
enough so that the decomposition (2.4) with the stated properties exists. This is the generic situation. In the rare event
that the Lanczos process breaks down before m + r steps have been carried out, the computations simplify. We will not
dwell on the ramification of breakdown.

The dominant computational effort required for the calculation of the decomposition (2.4) by the Lanczos process is
the evaluation of m+ r matrix–vector products with the matrix A; see, e.g., [6,7]. Each matrix–vector product evaluation
with A requires O(cn) arithmetic floating-point operations (flops), where c is the average number of nonvanishing entries
of A per row.

The relation (2.4) shows that the columns uj of Um+r can be expressed as

uj = pj−1(A)v, j = 1, 2, 3, . . . , (2.5)

for certain polynomials pj−1 ∈ P
j−1.

It follows from the orthonormality of the vectors uj and (2.5) that

(pj−1, pk−1) =
∫ b

a

pj−1(x)pk−1(x)dλ(x) = v
T Spj−1(Λ)pk−1(Λ)STv

= v
Tpj−1(A)pk−1(A)v = u

T
j uk =

{

0, j 6= k,
1, j = k.

Thus, the polynomials pj are orthonormal with respect to the inner product (1.6).
The decomposition (2.4) defines a recurrence relation for the columns uj of Um+r , which, in view of (2.5), gives the

following recurrence relation for the polynomials pj,
√

β1p1(x) = (x − α0)p0(x), p0(x) = 1,
√

βjpj(x) = (x − αj−1)pj−1(x) −
√

βj−1pj−2(x), 2 ≤ j ≤ m + r,
(2.6)

where

αj−1 = (pj−1, xpj−1). j = 1, 2, . . . ,m + r,

and the βj > 0 are determined by the requirements (pj, pj) = 1 for all j.
Introduce the vector

p(x) =









p0(x)
p1(x)

...

pm+r−1(x)









.

Then the recurrence relation (2.6) can be written in the form

x p(x) = Jm+rp(x) +
√

βm+r pm+r (x)em+r , (2.7)

which shows that the eigenvalues of Jm+r are the zeros of the polynomial pm+r . It can be shown that the (m + r)-node
(standard) Gauss quadrature rule associated with the measure dλ in (1.5) can be expressed as

Gm+r f = e
T
1 f (Jm+r )e1. (2.8)

Here we have used the fact that the vector v in (1.4) is of unit norm; see [7] for details. Note that the Gauss rule (2.8)
can be computed by evaluating the function f of the generally fairly small matrix Jm+r , without explicitly calculating the
nodes and weights of the Gauss rule. Many algorithms for evaluating functions of a small to moderately-sized matrix are
described and analysed by Higham [17].

4
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We now show how the generalized Gauss–Radau rule (2.1) can be evaluated without explicitly computing its nodes

and weights. Let π0, π1, π2, . . . be orthonormal polynomials with respect to the inner product

(f , g)r =
∫ b

a

f (x)g(x)(x − x0)
rdλ(x), (2.9)

where the measure dλ is the same as in (1.5). Thus,

(πi, πj)r =
{

1, i = j,
0, i 6= j,

and πi ∈ P
i. Define the polynomial qm+r (x) = πm(x)(x − x0)

r . Then

xpm+r−1(x) =
m+r−1
∑

i=0

dipi(x) + sm+rqm+r (x), (2.10)

for suitable coefficients di and sm+r . The orthonormality of the polynomials pi with respect to the inner product (1.6) gives,

for i = 0, 1, . . . ,m + r − 1,

di =
∫ b

a

xpm+r−1(x)pi(x)dλ(x) − sm+r

∫ b

a

πm(x)pi(x)(x − x0)
rdλ(x).

Now using the orthogonality of the polynomials pi with respect to the inner product (1.6) and the orthogonality of the

polynomials πj with respect to the inner product (2.9) shows that di = 0 for 0 ≤ i < m. It follows that (2.10) simplifies

to

xpm+r−1(x) =
m+r−1
∑

i=m

dipi(x) + sm+rqm+r (x). (2.11)

We obtain analogously to (2.7) the relation

x p(x) = JRm+r p(x) + sm+rqm+r (x) em+r , (2.12)

where the matrix JRm+r ∈ R
(m+r)×(m+r) is obtained from Jm+r by replacing the last row by the vector

[0, . . . , 0, dm, dm+1, . . . , dm+r−1].

It follows from (2.7) that the nodes x0, x1, . . . , xm of the quadrature rule (2.1) are eigenvalues of JRm+r , and the vectors

p(xi), i = 0, 1, . . . ,m, are corresponding eigenvectors. We will show below that the eigenvalue x0 has algebraic multiplicity

r and geometric multiplicity 1.

Let p
(j)
i denote the jth derivative of the polynomial pi. The nontrivial entries of the last row of JRm+r can be determined

by solving the linear system of equations

x0p
(j)
m+r−1(x0) + jp

(j−1)
m+r−1(x0) =

m+r−1
∑

i=m

dip
(j)
i (x0), j = 1, . . . , r − 1, (2.13)

which is obtained by differentiating (2.11) and using the fact that q
(j)
m+r (x0) = 0 for j = 0, 1, . . . , r − 1.

We next verify that the Gauss–Radau rule (2.1) can be expressed as

Gm,r f = e
T
1 f (J

R
m+r )e1. (2.14)

This formula is analogous to (2.8). We show (2.14) by deriving the Jordan decomposition of the matrix JRm+r ; see

[19, Section 4] for details for more general situations. Differentiating equation (2.12) j times yields

x p(j)(x) + j p(j−1)(x) = JRm+r p
(j)(x) + sm+r q

(j)
m+r (x) em+r , j = 1, 2, . . . , r − 1,

where p(j)(x) denotes j times component-wise differentiation of p(x) with respect to x. Dividing the right-hand side and

left-hand side by j! and setting x = x0 gives

(JRm+r − x0I)
1

j!
p(j)(x0) =

1

(j − 1)!
p(j−1)(x0),

i.e., p(j)(x0)/(j!), j = 1, . . . , r − 1, are principal (generalized eigen-) vectors of JRm+r . Introduce the (m+ r)× (m+ r) matrix

W = [p(x1), . . . , p(xm), p(x0), p(1)(x0), . . . ,
1

(r − 1)!
p(r−1)(x0)]. (2.15)

5
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We have derived the Jordan factorization

JRm+rW = WΛ, Λ =



























x1
. . .

xm
x0 1

x0 1

. . .
. . .

x0 1
x0



























. (2.16)

Thus, the matrix Λ ∈ R
(m+r)×(m+r) has a leading m×m diagonal block matrix and a trailing r × r Jordan block associated

with the eigenvalue x0.
Our proof of the representation (2.14) requires explicit formulas for the entries in the first column of W−1. Introduce

the matrix V ∈ R
(m+r)×(m+r), whose ith row is v

T
i , where

vi = wip(xi), i = 1, 2, . . . ,m,

vm+s =
r−1
∑

u=s−1

u! w(0)
u p(u+1−s)(x0), s = 1, 2, . . . , r.

Denote the ith row of W by aTi = [a1, a2, . . . , am+r ], and the jth column of V by bj = [b1, b2, . . . , bm+r ]T . We will show
that

aTi bj = Gm+r (pi−1pj−1).

Note that

ak = pi−1(xk), bk = wkpj−1(xk), k = 1, 2, . . . ,m

and

am+s =
1

(s − 1)!
p
(s−1)
i−1 (x0), bm+s =

r−1
∑

u=s−1

u! w(0)
u

pj−1
(u+1−s)(x0)

(u + 1 − s)!
, s = 1, 2, . . . , r.

It follows that

m+r
∑

k=1

akbk =
m

∑

k=1

wkpi−1(tk)pj−1(xk) +
r

∑

s=1

r−1
∑

u=s−1

p
(s−1)
i−1 (x0)

(

u

s − 1

)

w(0)
u pj−1

(u+1−s)(x0)

=
m

∑

k=1

wkpi−1(xk)pj−1(xk) +
r−1
∑

ℓ=0

w
(0)
ℓ

ℓ
∑

q=0

(

ℓ

q

)

p
(q)
i−1(x0)p

(ℓ−q)
j−1 (x0)

=
m

∑

k=1

wk(pi−1pj−1)(xk) +
r−1
∑

ℓ=0

w
(0)
ℓ (pi−1pj−1)

(ℓ)(x0)

= Gm,r (pj−1pi−1). (2.17)

In view of (2.2), we have for i + j − 2 ≤ 2m + r − 1 that

Gm,r (pj−1pi−1) =
{

1, i = j,
0, i 6= j.

It now follows from (2.17) that the first m+1 columns of the matrix V are the first m+1 columns of W−1. In particular,

W−1
e1 = [w1, w2, . . . , wm, w

(0)
0 , . . . , (r − 1)!w(0)

r−1]
T . (2.18)

We obtain from (2.15) that

W T
e1 = [1, 1, . . . , 1, 0, . . . , 0]T . (2.19)

Finally, Eqs. (2.16), (2.18), and (2.19) give

e
T
1 f (J

R
m+r )e1 = e

T
1Wf (Λ)W−1

e1 = Gm,r f ,

which shows (2.14).

6
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We conclude that the generalized Gauss–Radau rule Gm,r f can be evaluated by using either (2.1) or (2.14). Which one

of these expressions is most convenient to compute depends on whether software for computing the integrand f at the

small matrix JRm+r is available or easily can be written. This is the case, for instance, for the exponential function, logarithm,

square root, and rational expressions. When the form (2.1) is used, the nodes and weights have to be evaluated. This can

be done with software written by Gautschi [20].

We note that if the moments µi :=
∫ b

a
xidλ(x), i = 0, 1, 2, . . . , are explicitly known, which is the case for many

classical positive measures on the real line, the modified moments

νi =
∫ b

a

xi(x − x0)
rdλ(x), i = 0, 1, 2, . . . ,

can be easily computed. Then the coefficients di in (2.13) can be evaluated without solving linear systems of equations.

Taking f (x) = (x − x0)
rP(x), where P(x) ∈ P

2m−1, in (2.1) we verify that the first sum on the right-hand side in (2.1) is

actually the (standard) m-point Gauss quadrature for the integral

Ĩf =
∫ b

a

f (x)dλ̃(x), dλ̃(x) = (x − x0)
rdλ(x).

Thus the quadrature Gm,r f can be written in the form

Gm,r f = m̃0e
T
1 f (J̃m)e1 +

r−1
∑

j=0

w
(0)
j f (j)(x0),

where J̃m is the Jacobi matrix of dimension m×m associated with the modified positive measure dλ̃(x), and m̃0 =
∫ b

a
dλ̃(x).

This formula can be used for the computation of the generalized Gauss–Radau quadrature when the measure dλ(x) is

explicitly known, but not in the case when dλ(x) is implicitly defined by the matrix A and the vector v.

3. Generalized Gauss-Lobatto formulas

This section discusses the application and computation of generalized Gauss–Lobatto rules

Gm,r,sf =
r−1
∑

j=0

w
(0,1)
j f (j)(x0,1) +

m
∑

i=1

wif (xi) +
s−1
∑

j=0

w
(0,2)
j f (j)(x0,2) (3.1)

for the approximation of the functional (1.1) or, equivalently, of the Stieltjes integral (1.5). Here the xi, 1 ≤ i ≤ m, are ‘‘free’’

distinct nodes in the open interval (a, b), −∞ < x0,1 ≤ a is a prescribed node of multiplicity r ≥ 1, and b ≤ x0,2 < ∞
is a prescribed node of multiplicity s ≥ 1. We assume that max{r, s} ≥ 2 to avoid discussing ‘‘standard’’ Gauss–Lobatto

rules. The nodes x1, x2, . . . , xm are the zeros of the mth degree orthogonal polynomial πm with respect to the modified

measure

(x − x0,1)
r (x0,2 − x)s dλ(x).

Many properties of generalized Gauss–Lobatto rules are discussed in [8–13,15,18]. For instance, it is shown that

If = Gm,r,sf , ∀f ∈ P
2m+r+s−1. (3.2)

Moreover, let int(a, b, x0,1, x0,2) denote the convex hull of the set {a, b, x0,1, x0,2} and let the integrand f be 2m + r + s

times continuously differentiable in int(a, b, x0,1, x0,2). Then analogously to (2.3), the error in the quadrature rule (3.1)

can be expressed as

Em,r,sf := (I − Gm,r,s)f

=
f (2m+r+s)(xGL)

(2m + r + s)!
·
∫ b

a

(x − x0,1)
r (x − x0,2)

s

m
∏

i=1

(x − xi)
2dλ(x),

where xGL ∈ int(a, b, x0,1, x0,2). If f (2m+r+s) is of constant sign in int(a, b, x0,1, x0,2), then the sign of Em,r,sf can be

determined by choosing suitable multiplicities r and s.

We derive a formula analogous to (2.14) for the evaluation of Gm,r,sf . Our derivation is similar to the one for (2.14).

We therefore only provide an outline. Application of m + r + s steps of the Lanczos process to the matrix A with initial

unit vector v gives the Lanczos decomposition

AUm+r+s = Um+r+sJm+r+s +
√

βm+r+sum+r+s+1e
T
m+r+s. (3.3)

7
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This decomposition is analogous to (2.4). Here we only note for future reference that the (m+ r + s)× (m+ r + s) matrix

Jm+r+s :=



















α0

√
β1√

β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βm+r+s−1√

βm+r+s−1 αm+r+s−1



















is symmetric and tridiagonal; we assume that m + r + s is small enough so that the decomposition (3.3) exists. Using
(2.5) and defining

p(x) =









p0(x)
p1(x)

...

pm+r+s−1(x)









,

we can express (3.3) in the form

x p(x) = Jm+r+s p(x) +
√

βm+r+s pm+r+s(x) em+r+s.

Introduce the inner product

(f , g)r,s =
∫ b

a

f (x)g(x)(x − x0,1)
r (x0,2 − x)sdλ(x),

and let the polynomials π0, π1, π2, . . . be orthonormal polynomials with respect to this inner product, i.e.,

(πi, πj)r,s =
{

1, i = j,
0, i 6= j,

and πi ∈ P
i. Define the polynomial

qm+r+s(x) = πm(x)(x − x0,1)
r (x0,2 − x)s.

Then

xpm+r+s−1(x) =
m+r+s−1

∑

i=0

dipi(x) + τm+r+sqm+r+s(x), (3.4)

for suitable coefficients di and τm+r+s. Using the orthogonality property of the pi, we obtain

di =
∫ b

a

xpm+r+s−1(x)pi(x)dλ(x) − τm+r+s

∫ b

a

πm(x)pi(x)(x − x0,1)
r (x0,2 − x)sdλ(x),

for i = 0, 1, . . . ,m + r + s − 1. Using the orthonormality properties of the polynomials pi and πm gives that di = 0 for
0 ≤ i < m. Thus, the relation (3.4) simplifies to

xpm+r+s−1(x) =
m+r+s−1

∑

i=m

dipi(x) + τm+r+sqm+r+s(x). (3.5)

The coefficients dm, dm+1, . . . , dm+r−1 can be determined by solving the linear system of equations

x0,1p
(j)
m+r+s−1(x0,1) + jp

(j−1)
m+r+s−1(x0,1) =

m+r−1
∑

i=m

dip
(j)
i (x0,1), j = 1, . . . , r − 1, (3.6)

and the coefficients dm+r , dm+r+1, . . . , dm+r+s−1 are similarly obtained by solving the linear system of equations

x0,2p
(j)
m+r+s−1(x0,2) + jp

(j−1)
m+r+s−1(x0,2) =

m+r+s−1
∑

i=m+r

dip
(j)
i (x0,2), j = 1, . . . , s − 1. (3.7)

We remark that the systems (3.6) and (3.7) are obtained from (3.5) by using the fact that q
(j)
m+r+s(x0,1) = 0 for j =

0, 1, . . . , r − 1, and q
(j)
m+r+s(x0,2) = 0 for j = 0, 1, . . . , s − 1.

Let the matrix JLm+r+s ∈ R
(m+r+s)×(m+r+s) be determined from Jm+r+s by replacing the last row by

[0, . . . , 0, dm, dm+1, . . . , dm+r+s−1].
8
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This gives the relation

x p(x) = JLm+r+s p(x) + τm+r+s qm+r+s(x) em+r . (3.8)

It follows from this expression that the nodes x1, x2, . . . , xm, x0,1, x0,2 in the quadrature rule (3.1) are eigenvalues of JLm+r+s,
and that p(x1), p(x2), . . . , p(xm), p(x0,1), p(x0,2) are corresponding eigenvectors. Differentiation of (3.8) gives

x p(j)(x) + j p(j−1)(x) = JLm+r p
(j)(x) + τm+r+s q

(j)
m+r (x) em+r , j = 1, 2, . . . , r − 1.

Dividing the above equation by j! and setting x = x0,1 gives

(JLm+r+s − x0,1I)
1

j!
p(j)(x0,1) =

1

(j − 1)!
p(j−1)(x0,1), j = 1, 2, . . . , r − 1.

Similarly, differentiating (3.8) component-wise and setting x = x0,2 yields

(JLm+r+s − x0,2I)
1

j!
p(j)(x0,2) =

1

(j − 1)!
p(j−1)(x0,2), j = 1, 2, . . . , s − 1.

Hence, p(j)(x0,1)/(j!), 1 ≤ j < r , and p(j)(x0,2)/(j!), 1 ≤ j < s, are principal vectors of JLm+r+s associated with the eigenvalues
x0,1 and x0,2, respectively.

We are in a position to discuss the Jordan decomposition of Jm+r+s. Define the matrix

W =
[

p(x1), . . . , p(xm), p(x0,1), p
(1)(x0,1), . . . ,

1

(r − 1)!
p(r−1)(x0,1),

p(x0,2), p
(1)(x0,2), . . . ,

1

(s − 1)!
p(s−1)(x0,2)

]

, (3.9)

and let

Λ =















































x1
. . .

xm
x0,1 1

x0,1 1

. . .
. . .

x0,1 1
x0,1 0

x0,2 1
x0,2 1

. . .
. . .

x0,2 1
x0,2















































.

Thus, the matrix Λ ∈ R
(m+r+s)×(m+r+s) is bidiagonal with a leading m × m principal diagonal matrix, which is followed

by a Jordan block associated with the eigenvalue x0,1 of order r , and another Jordan block associated with the eigenvalue
x0,2 of order s. We have the Jordan factorization

JLm+r+s W = W Λ.

Similarly as at the end of Section 2, we need the first row of the matrix W and the first column of W−1 to define
an expression for the quadrature rule (3.1) that does not require explicit knowledge of the nodes and weights. It follows
from (3.9) that the first row of W is of the form

[1, . . . , 1, 0, . . . , 0, 1, 0, . . . , 0];
the ones are in the positions where there is no derivative. To determine the first column of W−1, we define the matrix
V , whose rows are v

T
i , i = 1, 2, . . . ,m + r + s, are defined as follows:

vk = wkp(xk), k = 1, 2, . . . ,m,

vm+k =
r−1
∑

u=k−1

u! w(0,1)
u

p(u+1−k)(x0,1)

(u + 1 − k)!
, k = 1, 2, . . . , r,

vm+r+k =
r−1
∑

u=k−1

u! w(0,2)
u

p(u+1−k)(x0,2)

(u + 1 − k)!
, k = 1, 2, . . . , s.

9
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Denote the ith row of W by aTi = [a1, . . . , am+r+s], and the jth column of V by bj = [b1, . . . , bm+r+s]T . We will show that

aTi bj = Gm,r,s(pi−1pj−1).

Note that, in view of (3.2),

Gm,r,s(pi−1pj−1) =
∫ b

a

pi−1(x)pj−1(x)dλ(x) =
{

1, i = j,
0, i 6= j,

for i + j − 2 ≤ 2m + r + s − 1. We have

ak = pi−1(xk), bk = wkpj−1(xk), k = 1, 2, . . . ,m,

am+k =
1

(k − 1)!
p
(k−1)
i−1 (x0,1), k = 1, 2, . . . , r,

bm+k =
r−1
∑

u=k−1

u! w(0,1)
u

pj−1
(u+1−k)(x0,1)

(u + 1 − k)!
, k = 1, 2, . . . , r,

am+r+k =
1

(k − 1)!
p
(k−1)
i−1 (x0,2), k = 1, 2, . . . , s,

bm+r+k =
s−1
∑

u=k−1

u! w(0,2)
u

pj−1
(u+1−k)(x0,2)

(u + 1 − k)!
, k = 1, 2, . . . , s.

After some computations similar to those at the end of Section 2, we obtain

m+r+s
∑

k=1

akbk =
m

∑

k=1

wk(pi−1pj−1)(xk) +
r−1
∑

ℓ=0

w
(0,1)
ℓ (pi−1pj−1)

(ℓ)(x0,1)

+
s−1
∑

h=0

w
(0,2)
h (pi−1pj−1)

(h)(x0,2) = Gm+r+s(pj−1pi−1).

It follows similarly as in Section 2 that

W−1
e1 =

[

w1, w2, . . . , wm, w
(0,1)
0 , . . . , (r − 1)!w(0,1)

r−1 , w
(0,2)
0 , . . . , (s − 1)!w(0,2)

s−1

]T

.

We finally obtain the desired representation of the quadrature rule,

e
T
1 f (J

L
m+r+s)e1 = e

T
1Wf (Λ)W−1

e1 = Gm,r,s(f ). (3.10)

Similarly as at the end of Section 2, we conclude that the generalized Gauss–Lobatto rule Gm,r,af can be evaluated by using
either (3.1) or (3.10). Which one of these expressions is most convenient to use depends on the integrand.

4. Computed examples

In this section, we present three examples to illustrate the performance of the generalized Gauss–Radau and gen-
eralized Gauss–Lobatto quadrature rules. The examples show pairs of a Gauss rule and a generalized Gauss–Radau or
generalized Gauss–Lobatto rule to provide upper and lower error bounds for the expression (1.1) in situations when pairs
of Gauss rules and standard Gauss–Radau or standard Gauss–Lobatto rules do not. All computations were carried out
using MATLAB R2017b on a 64-bit MacBook Pro personal computer with about 15 significant decimal digits.

Example 4.1. This example continues the discussion of Example 1.1. Thus, we would like to determine an approximation
of the functional (1.2) with the matrix A defined as in Example 1.1. The vector v has normally distributed entries with
zero mean and is normalized to be of unit norm. The exact value is F (A) ≈ 0.1183.

We first consider the approximation of (1.2) by pairs of a Gauss rule and a standard or generalized Gauss–Radau rule
with a fixed node x0 = λmin, and by pairs of a Gauss rule and standard or generalized Gauss–Lobatto rule with fixed
nodes x0,1 = λmin and x0,2 = λmax. Let Gm,1f and Gm,1,1f denote (standard) Gauss–Radau and Gauss–Lobatto quadrature
rules, respectively. We observe that the derivatives f (2m+r) and f (2m+r+s) of the integrand (1.3) change sign on the interval
[λmin, λmax] when m = 2k and r = s = 1. This implies that pairs of the Gauss rule Gmf and the standard Gauss–Radau rule
Gm,1f , or pairs of the Gauss rule Gmf and the standard Gauss–Lobatto rule Gm,1,1f , are not guaranteed to bracket the value
F (A). Indeed, for m = 2 we have F (A) − Gm,1f = −2.991 · 10−5 and F (A) − Gm,1,1f = −1.021 · 10−6. Table 4.1 shows that
F (A) − Gmf also is negative. Thus, the value F (A) is not bracketed by Gm,1f and Gm,1,1f . We conclude that the technique
described in [6,7] for bounding F (A) based on evaluating pairs of Gauss and (standard) Gauss–Radau or Gauss–Lobatto
quadrature rules fails to yield upper and lower bounds for the expression (1.2). These quadrature rules therefore are not
useful for assessing the errors in Gm,1f or Gm,1,1f .

10
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Table 4.1

Example 4.1: Errors for computed approximations of F (A) := v
T exp(− A

4
) sin( A

4
)v,

A a symmetric Toeplitz matrix, r = 4 in Gm,r , and r = s = 2 in Gm,r,s .

Errors m = 2 m = 4 m = 6

F (A) − Gmf −1.900 · 10−3 2.112 · 10−7 −1.653 · 10−13

F (A) − Gm,r f 3.312 · 10−5 −1.143 · 10−10 2.636 · 10−16

F (A) − Gm,r,sf 1.050 · 10−6 −4.096 · 10−11 5.134 · 10−16

Table 4.2

Example 4.2: Errors for computed approximations of F (A) :=
v
T exp(A)(cos(A) − sin(A))v, A a symmetric Toeplitz matrix, r = 4 in

Gm,r , and r = s = 2 in Gm,r,s .

Errors m = 3 m = 5

F (A) − Gmf 3.862 · 10−5 −1.331 · 10−10

F (A) − Gm,r f −1.735 · 10−8 1.054 · 10−14

F (A) − Gm,r,sf −3.993 · 10−9 4.662 · 10−15

The derivatives f (4ℓ) in (1.7), when ℓ is odd, are of negative sign in the interval [λmin, λmax]. This yields errors of negative
sign and therefore the quadrature rule provides an upper bound for If . In addition, the derivatives f (4ℓ), when ℓ is even,
are of positive sign in the interval [λmin, λmax]. In this case, we have a positive error and the quadrature rule furnishes a
lower bound for If . However, note that the derivatives f (4ℓ+1) and f (4ℓ+2) change sign in the interval [λmin, λmax]. Therefore,
pairs of a Gauss rule and a (standard) Gauss–Radau or Gauss–Lobatto rule are not guaranteed to give upper and lower
error bounds for (1.2).

The above discussion suggests that pairs of suitable Gauss and generalized Gauss–Radau or generalized Gauss–Lobatto
rules may be used to bracket (1.2). Let r = 4 and x0 = λmin for the generalized Gauss–Radau rules Gm,r f , and let r = 2,
s = 2, x0,1 = λmin, and x0,2 = λmax, for the generalized Gauss–Lobatto rules Gm,r,sf . Then pairs of Gauss rules and these
generalized Gauss–Radau or generalized Gauss–Lobatto rules bracket (1.2). This is illustrated by Table 4.1.

Example 4.2. We consider the approximation of the functional

F (A) := v
T exp(A)(cos(A) − sin(A))v, (4.1)

where A = 1
6
(B + 3π

7
I) ∈ R

200×200 with B ∈ R
200×200 a symmetric Toeplitz matrix with first row [1, 1/2, . . . , 1/200].

The vector v has normally distributed entries with zero mean and is normalized to be of unit norm. The exact value
is F (A) ≈ 0.7343. In this example, the extreme eigenvalues of A are λmin = 0.28878 and λmax = 1.7141. Consider the
integrand

f (x) := exp(x)(cos(x) − sin(x)).

We compute approximations of (4.1) by pairs of Gauss rules and standard or generalized Gauss–Radau rules with a fixed
node x0 = λmin, and by pairs of Gauss rules and standard or generalized Gauss–Lobatto rules with fixed nodes x0,1 = λmin

and x0,2 = λmax.
The derivatives f (2m+r) and f (2m+r+s) of the integrand change sign on the interval [λmin, λmax] when m = 2k + 1 and

r = s = 1. This indicates that pairs of Gauss rules Gmf and standard Gauss–Radau rules Gm,1f , or pairs of Gauss rules
Gmf and standard Gauss–Lobatto rules Gm,1,1f , are not guaranteed to bracket (4.1). For instance, we find for m = 5 that
F (A)− Gm,1f = −6.452 · 10−13 and F (A)− Gm,1,1f = −6.246 · 10−11. Comparison with results of Tables 4.2 shows that the
pairs of rules {Gmf , Gm,1f } and {Gmf , Gm,1,1f } do not bracket the value (4.1).

Note that the derivatives f (4ℓ+2) are positive in the interval [λmin, λmax] when ℓ is odd. This shows that the errors
are positive, and then the quadrature rule yields a lower bound for If . Moreover, the derivatives f (4ℓ+2) are negative in
the interval [λmin, λmax] when ℓ is even. Hence, we have negative errors and the quadrature rule yields an upper bound
for If . We therefore can determine upper and lower error bounds for (4.1) by suitable pairs of Gauss and generalized
Gauss–Radau or generalized Gauss–Lobatto rules. Let r = 4 and x0 = λmin for the generalized Gauss–Radau rules Gm,r f ,
and let r = 2, s = 2, x0,1 = λmin, and x0,2 = λmax for the generalized Gauss–Lobatto rules Gm,r,sf . Table 4.2 shows pairs of
Gauss rules and these generalized Gauss–Radau or generalized Gauss–Lobatto rules to bracket (4.1).

Example 4.3. We would like to compute an approximation of the functional

F (A) := v
T exp(−

A

7
) cos(

A

7
)v, (4.2)

where A ∈ R
2114×2114 is the symmetric adjacency matrix for the Yeast network; see [21,22]. This matrix is available at [23].

We let the vector v have normally distributed entries with zero mean and to be of unit norm. The extreme eigenvalues

11
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Table 4.3

Example 4.3: Errors for computed approximations of F (A) := v
T exp(−A

7
) cos( A

7
)v, A

a symmetric adjacency matrix for the Yeast network, r = 4 in Gm,r , and r = s = 2

in Gm,r,s .

Errors m = 2 m = 4 m = 6

F (A) − Gmf −1.600 · 10−3 2.555 · 10−7 −1.083 · 10−11

F (A) − Gm,r f 2.621 · 10−5 −7.180 · 10−10 6.106 · 10−15

F (A) − Gm,r,sf 2.310 · 10−6 −4.266 · 10−11 2.220 · 10−16

of A are λmin = −7.5159 and λmax = 7.5412. Introduce the integrand

f (x) := exp(−
x

7
) cos(

x

7
). (4.3)

We consider the approximation of (4.2) by pairs of Gauss rules and standard or generalized Gauss–Radau rules with a
fixed node x0 = λmin, and by pairs of Gauss rules and standard or generalized Gauss–Lobatto rules with fixed nodes
x0,1 = λmin and x0,2 = λmax. We observe that the derivatives f (2m+r) and f (2m+r+s) of the integrand (4.3) change sign on
the interval [λmin, λmax] when m = 2k and r = s = 1. Therefore, pairs of Gauss rules Gmf and standard Gauss–Radau rules
Gm,1f , or pairs of Gauss rules Gmf and standard Gauss–Lobatto rules Gm,1,1f , are not guaranteed to bracket the value (4.2).
For instance, we obtain for m = 4 that F (A) − Gm,1f = 2.672 · 10−8 and F (A) − Gm,1,1f = 1.499 · 10−6. Comparison with
results of Table 4.3 shows that the pairs of rules {Gmf , Gm,1f } and {Gmf , Gm,1,1f } do not bracket (4.2).

However, note that the derivatives f (4ℓ)(x) are of a negative sign in the interval [λmin, λmax] when ℓ is odd, and of a
positive sign when ℓ is even. This observation allows us to compute upper and lower error bounds for (4.2) by suitable
pairs of Gauss and generalized Gauss–Radau or generalized Gauss–Lobatto rules. Let r = 4 and x0 = λmin for the
generalized Gauss–Radau rules Gm,r f , and let r = 2, s = 2, x0,1 = λmin, and x0,2 = λmax for the generalized Gauss–
Lobatto rules Gm,r,sf . Table 4.3 and shows that pairs of Gauss rules and these generalized Gauss–Radau or generalized
Gauss–Lobatto rules bracket (4.2).

5. Conclusion

Golub and Meurant [6,7] described a technique for computing upper and lower error bounds for a Stieltjes integral
by evaluating pairs of Gauss, and suitable Gauss–Radau or Gauss–Lobatto quadrature rules. However, this technique is
not guaranteed to furnish upper and lower error bounds when certain derivatives of the integrand f change sign on
the convex hull of spectrum of A. This paper extends the technique by Golub and Meurant by using pairs of Gauss, and
suitable generalized Gauss–Radau or generalized Gauss–Lobatto rules, to determine upper and lower error bounds for
Stieltjes integrals with an integrand f , some of whose derivatives change sign on the convex hull of the support of
the measure. New methods for evaluating generalized Gauss–Radau and Gauss–Lobatto rules are described. Computed
examples illustrate the benefit of using these quadrature rules.
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