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a b s t r a c t

The Arnoldi process can be applied to inexpensively approximate matrix functions of
the form f (A)v and matrix functionals of the form v∗(f (A))∗g(A)v, where A is a large
square non-Hermitian matrix, v is a vector, and the superscript ∗ denotes transposition
and complex conjugation. Here f and g are analytic functions that are defined in suitable
regions in the complex plane. This paper reviews available approximation methods and
describes new ones that provide higher accuracy for essentially the same computational
effort by exploiting available, but generally not used, moment information. Numerical
experiments show that in some cases the modifications of the Arnoldi decompositions
proposed can improve the accuracy of v∗(f (A))∗g(A)v about as much as performing an
additional step of the Arnoldi process.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let A ∈ C
N×N be a large, possibly sparse, non-Hermitian matrix, and let v ∈ C

N\{0}. Applying 1 ≤ n ≪ N steps of the
Arnoldi process to the matrix A with initial vector v gives the Arnoldi decomposition

AVn = VnHn,n + v̂n+1e
T
n, (1)

where Vn = [v1, v2, . . . , vn] ∈ C
N×n and v̂n+1 ∈ C

N satisfy V ∗
n Vn = In, V

∗
n v̂n+1 = 0, v1 = v/‖v‖, and Hn,n = [hi,j]ni,j=1 ∈ C

n×n

is an upper Hessenberg matrix, i.e., entries hi,j below the subdiagonal are zero. Here and throughout this paper In ∈ R
n×n

denotes the identity matrix, ej is the jth column of an identity matrix of suitable order, and ‖ · ‖ stands for the Euclidean

vector norm. The superscript ∗ denotes transposition and complex conjugation; the superscript T stands for transposition
only. We assume that the number of Arnoldi steps, n, is small enough so that the decomposition (1) with the stated
properties exists, and that the vector v̂n+1 is nonvanishing. This is the generic situation; see, e.g., [1, Section 10.5.1] or
[2, Chapter 6] for discussions on the Arnoldi process. In applications of interest to us, n is much smaller that N . We
will comment on the rare situation when the Arnoldi process breaks down below. An algorithm for the Arnoldi process is
provided in Section 2. Here, we only note that the computation of the decomposition (1) requires n matrix–vector product
evaluations with the matrix A, which is typically the dominating computational work for small n; see Section 2 for details.

We are concerned with the approximation of matrix functions of the form

f (A)v (2)
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and of positive semidefinite quadratic forms

〈f , g〉 = v∗(f (A))∗g(A)v. (3)

Assume for the moment that the functions f and g are analytic in sufficiently large simply connected regions in
the complex plane. Then f (A) and g(A) can be represented in terms of Cauchy integrals in the complex plane, see, e.g.,
[1, Section 9.2.7], [3, Section 1.2.3], and [4]. These representations show that (3) can be expressed as the double integral

〈f , g〉 = 1

4π2

∫

Γ

∫

Γ

f (z1)g(z2)v
∗(z1I − A∗)−1(z2I − A)−1v dz1 dz2, (4)

where the contour of integration Γ contains the spectrum of A in its interior and the bar denotes complex conjugation.
The approximations of (3) that we will determine by using the Arnoldi decomposition (1) may be considered quadrature
rules for the approximation of (4). We therefore refer to these approximations as Arnoldi quadrature rules.

The need to evaluate expressions of the forms (2) and (3) arises in many applications, such as in the solution of partial
differential equations, network analysis, and the solution of linear discrete ill-posed problems; see [5–11]. We will discuss
applications to network analysis in Section 4.

When the matrix A is large, the evaluation of (2) by first computing f (A), or evaluating (3) by first computing f (A) and
g(A), may be prohibitively expensive both in terms of computing time and computer memory. The memory requirement
may be substantial, because even when the matrix A is sparse and requires little computer memory, the matrices f (A)
and g(A), in general, are not. This is, for instance, the case, when f (t) = exp(t). In addition, the evaluation of f (A) requires
considerable computational effort when A is large. These difficulties can be circumvented by observing that neither f (A)
nor g(A) are explicitly required to compute approximations of (2) and (3), only approximations of f (A)v and g(A)v are
needed.

A commonly used approximation of (2) based on (1) is furnished by

fn = Vnf (Hn,n)e1‖v‖. (5)

This approximation requires that f (Hn,n) be well defined. For instance, it suffices that f , as well as appropriate derivatives,
if Hn,n has nontrivial Jordan blocks, are defined at the eigenvalues of Hn,n; see [3, Definition 1.1]. Alternatively, f (Hn,n) can
be defined with a Cauchy integral analogously to (4).

Let Pn−1 denote the set of all polynomials of degree at most n − 1. It is well known that

f (A)v = Vnf (Hn,n)e1‖v‖ ∀f ∈ Pn−1; (6)

see, e.g., [6,11–14]. This result can easily be established by observing that

Aiv = ‖v‖VnH
i
n,ne1 for 1 ≤ i ≤ n − 1,

which can be shown by induction over i. We remark that the evaluation of f (Hn,n) is much cheaper than the calculation
of f (A) when n ≪ N; see, e.g., [3] for the discussion of many methods for the evaluation of matrix functions.

Freund and Hochbruck [13], and more recently Calvetti et al. [6], considered the approximation of (3) by the Arnoldi
quadrature rule

〈f , g〉n = ‖v‖2e∗
1(f (Hn,n))

∗g(Hn,n)e1. (7)

Properties of this and related approximations of (3) are provided in Section 3 as well as in [6,13]. Freund and
Hochbruck [13] showed by induction that the Arnoldi quadrature rule (7) is exact for {f , g} ∈ Wn−1,n, where

Wn−1,n = (Pn−1 ⊕ Pn) ∪ (Pn ⊕ Pn−1);
a proof is also provided in [6]. Here Pn−1 ⊕Pn denotes the set of all pairs {f , g}, where f ∈ Pn−1 and g ∈ Pn. Hence, Wn−1,n

is the set of polynomial pairs, where one polynomial is of degree at most n and the other polynomial is of degree at most
n − 1.

The computation of the approximations (5) and (7) requires n steps of the Arnoldi process to be carried out and,
therefore, demands the evaluation of n matrix–vector products with the matrix A; see Algorithm 1. If the matrix A is large
and not very sparse, then each matrix–vector product evaluation is expensive. In addition, if the matrix A is very large, then
each orthogonalization step in the algorithm is expensive, too. It is therefore advantageous to keep the number of Arnoldi
steps as small as possible to determine approximations of (2) and (3) of desired accuracy, and to avoid unnecessarily
many matrix–vector product evaluations and orthogonalization steps.

Example 1.1. In this example we will demonstrate that matrix–vector products can be very expensive.
We are interested in finding the capacity of a capacitor. We will use the Laplace equation for the electric potential.

To solve this equation efficiently a boundary element method can be employed. To this end we need the single layer
potential

φ(x) =
∫

A

σ (ξ )

4πǫ0‖x − ξ‖ dξ,
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where φ is the electric potential, A the surface of all electrodes, σ (ξ ) the density of the charge on the surface A, and ǫ0
the vacuum electric permittivity. Switching to a weak formulation and discretization leads to a symmetric, dense matrix

K |ij =
∫

A

∫

A

vj(x)vi(ξ )

4πǫ0‖x − ξ‖ dξ dx.

The entry Ckℓ of the capacity matrix associated with the capacity between electrodes k and ℓ is wT
k f (K )wℓ, where f (x) = 1

x
and wk is the vector with

wk|i =
{
1, supp(vi)(x) ⊂ Ωk,

0, else,

with Ωk the surface of electrode k. This matrix can be expensive to store and handle. Employing a hierarchical compression
with H

2-matrices reduces the required storage to O(N), with a large constant hidden in the O(·), and allows matrix–vector
products in O(N) flops [15].

A very fine discretization with 262,146 nodes results in a large, dense matrix of size 246, 146 × 246, 146. For our
computations here we used the H2Lib library [16] and based this example on one of the standard examples provided
with the library. Without compression 512 GB would be needed to store the matrix. On an Intel Core i710710U CPU with
16 GB of RAM it took 1103 s to assemble the matrix K in the compressed H

2-matrix format. The matrix required 15.45 GB
of storage. Thus almost all the available RAM. Performing one matrix–vector product required 1596 s, that is 44% more
than for assembling the matrix. The reason is that the O(N) flops require a significant amount of communication between
faster and slower computer memory. �

This paper derives new expressions for approximating (2) and new quadrature rules for the approximation of (3) that
require the same number of matrix–vector product evaluations as the expressions (5) and (7), and are exact for functions
in larger sets than Pn−1 and Wn−1,n, respectively.

Generically, the vector v̂n+1 in (1) is nonvanishing.1 Assume this to be the case. Then we can define the positive scalar
hn+1,n = ‖v̂n+1‖, the normalized vector vn+1 = v̂n+1/hn+1,n, as well as the matrices Vn+1 = [Vn, vn+1] ∈ C

N×(n+1) and
Hn+1,n ∈ C

(n+1)×n, where the latter matrix is obtained by appending the row hn+1,ne
T
n to Hn,n. The decomposition (1) then

can be expressed as

AVn = Vn+1Hn+1,n. (8)

The matrix Hn+1,n contains one more nontrivial entry, hn+1,n than Hn,n. This entry can be interpreted as a moment. We
would like to use this moment when computing an approximation of f (A), because using it may provide a more accurate
approximation of f (A) than f (Hn,n). We will show that adding a column of zeros to Hn+1,n not only makes the matrix
square, and thus allows the easy evaluation of f at this matrix, but also gives an approximation of f (A)v that is more
accurate than (1). Of course, we may extend Hn+1,n to a square matrix by appending a nonvanishing column. This is
discussed in Section 2.2.

An approach that has been advocated by Saad [11] is described in Section 2.1. Saad only considered the approximation
of (2) when f (t) is the exponential function. We discuss the approximation of more general functions and show that this
approach is equivalent to zero-padding of Hn+1,n.

In the special case when f (t) ≡ 1, the functional (3) simplifies to

I(g) = v∗g(A)v. (9)

For g(x) = 1/x, this problem has been investigated by Strakoš and Tichý [17] and Fika et al. [18]. The approximation
of expressions of the form (9) has received considerable attention when the matrix A is Hermitian; see, e.g., [19–22]
for methods that exploit the connection between the Hermitian Lanczos process, orthogonal polynomials, and Gauss
quadrature rules. When the matrix A is non-Hermitian, the functional (9) can be approximated by methods that are
based on the non-Hermitian Lanczos process [19,21]. Techniques that use extrapolation are developed in [18,23,24]. A
careful comparison of all these methods is outside the scope of the present paper. Here we only note that approximation
methods that are based on the non-Hermitian Lanczos process require the evaluation of matrix–vector products with both
the matrices A and A∗.

The methods considered in the present paper only demand the evaluation of matrix–vector products with A. This is
beneficial when it is easy to compute matrix–vector products with A but not with A∗. For instance, this is the case when A

approximates a Fredholm integral operator of the first or second kinds and matrix–vector products with A are evaluated
by a multipole method. Then A is not explicitly formed and matrix–vector products with A∗ are difficult to compute; see,
e.g., [25] for a discussion on the multipole method.

This paper is organized as follows. Section 2 describes new approaches to approximate expressions of the form (2).
New quadrature rules for the approximation of (3) are discussed in Section 3. A few computed examples are presented
in Section 4 and concluding remarks can be found in Section 5.

1 If v̂n+1 is zero, then v is a vector in an n-dimensional invariant subspace of A. We will comment on this situation in Proposition 1.
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2. New matrix function approximations based on the Arnoldi decomposition

This section describes new approaches to approximate expressions of the form (2). Section 2.1 shows how the Arnoldi
decomposition (8) can be modified to yield higher accuracy. This approach has previously been advocated by Saad [11] for
the matrix exponential. We consider more general functions f . Section 2.2 discusses appending a column to the matrix
Hn+1,n to obtain a square upper Hessenberg matrix, that allow us to determine more accurate approximations of f (A)
than (5).

For future reference we provide an algorithm for the Arnoldi process (Algorithm 1). We assume that the number of
steps, n, is sufficiently small so that breakdown due to division by zero in line 9 does not occur. These events are rare but
fortuitous; see Proposition 1.

The following implementation of the Arnoldi process is based on modified Gram–Schmidt orthogonalization of the
columns of the matrix Vn+1.

Algorithm 1 The Arnoldi process

1: Input: A ∈ C
N×N , v ∈ C

n\{0}, number of steps n.

2: v1 := v/‖v‖
3: for j = 1 to n

4: w := Avj

5: for k = 1 to j

6: hk,j := v∗
kw

7: w := w − vkhk,j

8: end for

9: hj+1,j := ‖w‖; vj+1 := w/hj+1,j

10: end for

11: Output: upper Hessenberg matrix Hn+1,n = [hk,j] ∈ C
(n+1)×n matrix

12: Vn+1 = [v1, v2, . . . , vn+1] ∈ C
N×(n+1) with orthonormal columns

The methods described in this section are not required in the event that the Arnoldi process breaks down. This is
discussed in the following proposition.

Proposition 1. Assume that Algorithm 1 breaks down at step ℓ ≥ 1, that is hj+1,j > 0 for 1 ≤ j < ℓ, and hℓ+1,ℓ = 0. Let
Hℓ,ℓ ∈ R

ℓ×ℓ be the upper Hessenberg matrix determined by Algorithm 1. Let f (Hℓ,ℓ) and g(Hℓ,ℓ) be well defined. Then

f (A)v = Vℓf (Hℓ,ℓ)e1‖v‖, (10)

〈f , g〉 = 〈f , g〉ℓ. (11)

Proof. The relation (10) follows from the observations that any matrix function f (A) is a polynomial in A ∈ C
N×N of

degree at most N − 1, see, e.g., [3, Section 1.2], and that breakdown implies that the Krylov subspace spanned by the
columns of Vℓ is invariant under A. The relation (11) can be shown similarly. �

2.1. Modification of the function f

Let t0 ∈ C be in the domain of the function f and express f as

f (t) = f (t0) + (t − t0)f1(t), f1(t) := f (t) − f (t0)

t − t0
(12)

for t in the domain of f ; to permit t = t0, we require f to be continuously differentiable at t = t0. The expression (12)
allows us to replace the determination of an approximation of f by computing an approximation of f1. Our reason for
doing this will become apparent shortly. Thus, we will approximate f1(A)v by using the right-hand side of (5) with f

replaced by f1. This gives

f (A)v ≈ f (t0)v + (A − t0I)Vnf1(Hn,n)e1‖v‖, (13)

where

f1(Hn,n) = (f (Hn,n) − f (t0)In)(Hn,n − t0In)
−1.

We remark that if t0 belongs to the spectrum of Hn,n, then we can use the Schur factorization of Hn,n and define f1 by
continuity.

4
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Theorem 1. Let f ∈ Pn. Then equality holds in (13).

Proof. It suffices to show that equality holds in (13) for f (t) = (t − t0)
k for k = 0, 1, . . . , n. Consider the case k = n. Then

f1(t) = (t − t0)
n−1 and the right-hand side of (13) becomes, when substituting t by A and t0 by t0I ,

(A − t0I)Vnf1(Hn,n)e1‖v‖ = (A − t0I)f1(A)v = (A − t0I)
nv. (14)

where the first equality follows from (6). The left-hand side of (14) equals the right-hand side of (13) because f (t0) = 0.

The result for k < n can be shown similarly. �

Theorem 2. Let the matrices Hn+1,n, Vn, and Vn+1 be defined by the decomposition (8), let the matrix Ĥn+1,n+1 ∈ C
(n+1)×(n+1)

have the leading (n+1)×n submatrix Hn+1,n and vanishing last column, and let the matrix Hn,n be the leading n×n submatrix

of Hn+1,n. Let t0 = 0 and assume that f is defined at Ĥn+1,n+1 and t0, and that the function f1, given by (12), is defined at Hn,n.

Then

Vn+1f (Ĥn+1,n+1)e1 = f (t0)v1 + AVnf1(Hn,n)e1.

Hence, using the approximation of f in the right-hand side of (13) with t0 = 0 is equivalent to extending the matrix Hn+1,n by

zero-padding.

Proof. The expression f (Ĥn+1,n+1) is a polynomial in Ĥn+1,n+1 of degree at most n; see, e.g., [3, Section 1.2.2]. Using the

power series representation f (Ĥn+1,n+1) =
∑n

i=0 ciĤ
i
n+1,n+1, we obtain

Vn+1f (Ĥn+1,n+1)e1 = c0v1 + Vn+1

n∑

i=1

ciĤ
i
n+1,n+1e1, (15)

where the vector v1 is the first column of Vn+1. Substituting

Ĥ i
n+1,n+1 =

[
H i

n,n 0

hn+1,ne
T
nH

i−1
n,n 0

]
for i = 1, 2, . . . , n,

where ‘‘0’’ in the first row of the matrix denotes the zero vector in C
n and the ‘‘0’’ in the bottom row of the matrix is a

scalar, into (15) gives

Vn+1f (Ĥn+1,n+1)e1 = c0v1 + Vn+1

n∑

i=1

ci

[
H i

n,n

hn+1,ne
T
nH

i−1
n,n

]
e1

= c0v1 + Vn+1

[
Hn,n

hn+1,ne
T
n

] n∑

i=1

ciH
i−1
n,n e1

= c0v1 + AVnf1(Hn,n)e1,

where the last equality follows from (8). This shows the theorem. �

2.2. Extension of the matrix Hn+1,n

In the last subsection we used zero-padding of Hn+1,n to obtain a square matrix. However, performing n + 1 steps of

the Arnoldi process leads to a matrix

Hn+1,n+1 =




h1,1 h1,2 · · · h1,n h1,n+1

h2,1 h2,2 · · · h2,n h2,n+1

. . .
. . .

...
...

hn,n−1 hn,n hn,n+1

O hn+1,n hn+1,n+1




∈ C
(n+1)×(n+1) (16)

that in general has a non-zero last column. Thus, in this section we will investigate padding Hn+1,n by a non-zero (n+1)st

column. Several choices of vectors for the (n + 1)st column will be discussed. Theorem 3 shows that zero-padding is not

necessary to achieve exact approximation for f ∈ Pn.

Replacing the last column of Hn+1,n+1 by a vector

ĥ = [̂h1,n+1, ĥ2,n+1, . . . , ĥn+1,n+1]T ∈ C
n+1

5
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gives the matrix

Ĥn+1,n+1 =




h1,1 h1,2 · · · h1,n ĥ1,n+1

h2,1 h2,2 · · · h2,n ĥ2,n+1

. . .
. . .

...
...

hn,n−1 hn,n ĥn,n+1

O hn+1,n ĥn+1,n+1




∈ C
(n+1)×(n+1). (17)

If the last column is not obtained through the Arnoldi process, then only n Arnoldi steps are required. This is the reason
for our interest in this matrix. The following result generalizes (6).

Theorem 3. Let the first n columns of the matrix (17) agree with the corresponding columns of (16) and let the last column
of the matrix (17) be arbitrary. Then

f (A)v = Vn+1f (Ĥn+1,n+1)e1‖v‖ ∀f ∈ Pn. (18)

Proof. This result has been shown by, for instance, Paige et al. [26, Lemma 1] and later by van den Eshof et al.
[27, Lemma 3] for the situation when the matrix A is Hermitian and the first n columns of the matrix (17) are generated
by the Hermitian Lanczos process, and therefore form a tridiagonal matrix with an n × n Hermitian leading principal
submatrix. The present theorem can be shown in the same manner. A more general version of the theorem has recently
be shown by Frommer et al. [28, Theorem 2.7].

We provide a proof for completeness for exactly the statement needed here.
Eq. (18) is equivalent to

Akv1 = Vn+1Ĥ
k
n+1,n+1e1, 0 ≤ k ≤ n,

where v1 is the first column of Vn+1. Using the Arnoldi decomposition (1) and the fact that the matrix Ĥn+1,n+1 is of upper
Hessenberg form, we obtain

Akv1 = Vn+1Ĥ
k
n+1,n+1e1, k = 1, 2, . . . , n,

where v1 is the first column of Vn+1. This shows (18). The entries of the vectors Ĥk
n+1,n+1e1, 1 ≤ k ≤ n, are independent

of the last column of Ĥn+1,n+1. �

Remark 4. The vector Hn+1,n+1e1 lives in the subspace span{e1, e2}. Furthermore, Hk
n+1,n+1e1 is an element of span{e1, . . . ,

ek+1} if k < n. Thus, for the first k powers of Hn+1,n+1 only the entries of the leading (k + 1) × k submatrix are relevant
for computing Hk

n+1,n+1e1.

The computation of the right-hand side of (18) requires the evaluation of the matrix function f (Ĥn+1,n+1). Typically,

the matrix Ĥn+1,n+1 is fairly small in applications of interest to us. Assume that the spectral factorization

Ĥn+1,n+1 = Ŝn+1,n+1Λ̂n+1,n+1̂S
−1
n+1,n+1

exists. Thus, the eigenvalues of Ĥn+1,n+1 are the diagonal entries of Λ̂n+1,n+1 = diag[̂λ1, λ̂2, . . . , λ̂n+1] and the columns of

Ŝn+1,n+1 ∈ C
(n+1)×(n+1) are the associated eigenvectors. Assume further that the matrix Ŝn+1,n+1 is not very ill-conditioned.

Then it may be attractive to compute f (Ĥn+1,n+1) by using

f (Ĥn+1,n+1) = Ŝn+1,n+1diag[f (̂λ1), f (̂λ2), . . . , f (̂λn+1)]̂S−1
n+1,n+1.

Several choices of the last column of Ĥn+1,n+1 are possible. Using MATLAB-like notation, we denote this column by
Ĥn+1,n+1(1 : n + 1, n + 1). For instance, zero-padding yields

Ĥn+1,n+1(1 : n + 1, n + 1) = [0, . . . , 0]T . (19)

Then (at least) one of the eigenvalues, say λ̂n+1, of Ĥn+1,n+1 vanishes. Hence, this choice of the last column requires that
f (t) is well defined at t = 0. In particular, this choice cannot be used when f (t) = ln(t). In this situation, we may be able
to choose the last column

Ĥn+1,n+1(1 : n + 1, n + 1) = [0, . . . , 0, λ]T , (20)

where λ ∈ C\{0}. Then the matrix Ĥn+1,n+1 has an eigenvalue λ.
The quality of the approximation (5) of (2) may improve by letting the last column of Ĥn+1,n+1 be an accurate

approximation of the (unknown) last column of the matrix (16). The entries of the matrix (16) for many matrices A
decrease smoothly with increasing column index and fixed row index. This suggests that the last column be a multiple
of the penultimate column, i.e.,

Ĥn+1,n+1(1 : n + 1, n + 1) = γHn+1,n(1 : n + 1, n)

6
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for some scalar γ . We found the choice

γ = 0.9
‖Hn,n(1 : n, n)‖

‖Hn,n(1 : n, n − 1)‖ (21)

to give fairly accurate approximations of (3) for various analytic functions f and g , and matrices A. The matrix Ĥn+1,n+1

so defined is singular. If we prefer Ĥn+1,n+1 to have a specified eigenvalue λ 6= 0, then we may choose

Ĥn+1,n+1(1 : n + 1, n + 1) = [γ ĥ1,n, . . . , γ ĥn−1,n, γ (̂hn,n − λ), γ ĥn+1,n + λ]T .
We conclude this section with some comments on two problems that are somewhat related to the one discussed

in this subsection. Let A be Hermitian and f be a function that is defined on the convex hull of the spectrum of A.
Application of n steps of the Arnoldi process with initial vector v to A gives, assuming that breakdown does not occur, the
decomposition (8). The matrix Hn+1,n ∈ C

(n+1)×n in this decomposition is tridiagonal with a Hermitian leading principal
n× n submatrix. We can append a column to Hn+1,n to determine a Hermitian matrix Hn+1,n+1 ∈ C

(n+1)×(n+1). This matrix
is uniquely defined except for the last diagonal entry. This entry can be chosen so that the matrix Hn+1,n+1 has a specified
eigenvalue. This forms the basis for computing a Gauss–Radau quadrature rule with a specified node (which equals the
specified eigenvalue) for the approximation of v∗f (A)v; see [22] for details. Recently, Frommer et al. [29] applied Gauss–
Radau rules in the context of a restarted Hermitian Lanczos method. A discussion of the choice of the last diagonal entry
in Hn+1,n+1 when this matrix is not required to have a specified eigenvalue can be found in [20].

The need to choose the last column of Ĥn+1,n+1 also arises in the pole placement problem in control theory. This
problem is concerned with modifying a row or column of a square matrix so that all eigenvalues of the new matrix
obtained have negative real part; see, e.g., [30]. Generically, the last column of Ĥn+1,n+1 can be chosen to make the matrix
have desired eigenvalues. Discussions on the solvability and numerical aspects of the pole placement problem can be
found in [31–33].

3. New quadrature rules based on the Arnoldi decomposition

We turn to the approximation of the bilinear form (3) and define the quadrature rule

〈f , g〉n+1 = ‖v‖2e∗
1(f (Ĥn+1,n+1))

∗g(Ĥn+1,n+1)e1, (22)

where Ĥn+1,n+1 is one of the matrices introduced above. While the result (18) holds independently of the choice of the

last column of Ĥn+1,n+1, the difference between the right-hand side and left-hand side of (18) for functions f 6∈ Pn may
depend on this choice. The choice (19) is possible when f is defined at the origin. The last column (20) typically also
performs well when |λ| is not very large and f is defined at λ. Independently of the choice of the last column of this
matrix, we have the following result.

Corollary 1. Let the first n columns of the matrix (17) agree with the corresponding columns of (16) and let the last column

be arbitrary. Then the quadrature rule (22) satisfies

〈f , g〉 = 〈f , g〉n+1 ∀f , g ∈ Wn,n,

where

Wn,n = (Pn ⊕ Pn) ∪ (Pn ⊕ Pn).

Proof. The result follows from Theorem 3. �

We note that the set Wn,n contains the set Wn−1,n = (Pn−1 ⊕ Pn) ∪ (Pn ⊕ Pn−1) used in [6,13].

Corollary 2. Let f , g ∈ Pn, let the function f1 be defined by (12), and let the function g1 be defined analogously with the point

t1 playing the role of t0. Then, for all (f , g) ∈ Wn,n,

〈f , g〉 = ‖v‖2(f (t0)g(t1)

+ e∗
1(f1(Hn,n))

∗(Hn+1,n − t0In+1,n)
∗(Hn+1,n − t1In+1,n)g1(Hn,n)e1),

where the matrix In+1,n consists of the first n columns of In+1.

Proof. The result follows from Theorem 1. �

4. Numerical examples

This section presents a few computed examples that illustrate the approximations described. All computations were
carried out in double precision arithmetic using MATLAB R2016b on a 64-bit Lenovo personal computer.
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Table 1

Example 4.1: Relative errors of computed approximations of vT f (A)g(A)v for A ∈ R
N×N a

nonsymmetric Toeplitz matrix, f (t) = g(t) = exp(t), and v = [1, 1, . . . , 1]T .
N Error

n = 5 n = 10

200 n Arnoldi steps 5.7852 · 10−4 6.1095 · 10−9

Scaled nth column 1.0360 · 10−4 4.0040 · 10−10

Zero padding 5.9115 · 10−4 6.1096 · 10−9

n + 1 Arnoldi steps 7.3238 · 10−5 4.6439 · 10−10

2000 n Arnoldi steps 2.2440 · 10−3 2.6904 · 10−7

Scaled nth column 1.4752 · 10−4 2.1246 · 10−8

Zero padding 2.3146 · 10−3 2.6908 · 10−7

n + 1 Arnoldi steps 4.5982 · 10−4 3.4749 · 10−8

10000 n Arnoldi steps 3.4127 · 10−3 1.1003 · 10−6

Scaled nth column 6.7299 · 10−4 8.4472 · 10−8

Zero padding 3.5232 · 10−3 1.1007 · 10−6

n + 1 Arnoldi steps 8.5160 · 10−4 1.7492 · 10−7

We first consider the quadrature rules of Section 3. At the end of this section we show errors for the approximations
of Section 2. For the quadrature rules, we tabulate the relative errors

Error = |〈f , g〉 − 〈f , g〉i|
|〈f , g〉| , i ∈ {n, n + 1},

where 〈f , g〉 denotes the exact value (3), 〈f , g〉n stands for the approximation (7) used in [6,13], and 〈f , g〉n+1 denotes

approximations of the form (22) determined by several choices of the matrix Ĥn+1,n+1.
We compare four different methods: (1) We use n steps of the Arnoldi process. This is the baseline for a method

requiring n matrix–vector products. (2) We use an (n + 1) × (n + 1) matrix obtained by adding a scaled copy of the last
column of Hn+1,n as (n + 1)st column,

Ĥn+1,n+1 =




h1,1 h1,2 · · · h1,n γ h1,n

h2,1 h2,2 · · · h2,n γ h2,n

. . .
. . .

...
...

hn,n−1 hn,n γ hn,n

O hn+1,n γ hn+1,n




, (23)

with γ defined by (21). Experiments with γ = 1 gave worse accuracy for all examples and are not shown below. (3) We
use the approximation described in (13), which is equivalent to zero padding Hn+1,n. (4) For comparison, we also display
the error obtained after n + 1 steps of the Arnoldi process. This is the only method that requires n + 1 matrix–vector
product evaluations with A.

Example 4.1. Let A ∈ R
N×N with N ∈ {200, 2000, 10 000} be nonsymmetric Toeplitz matrices with first row

[1, 1/2, . . . , 1/N] and first column [1, 1/22, . . . , 1/N2]. We apply n steps of the Arnoldi process to A with initial
vector v = [1, . . . , 1]T ∈ R

N . Table 1 shows results for the functions f (t) = exp(t) and g(t) = exp(t). We expect that
the approximation obtained after n + 1 Arnoldi steps to be a more accurate approximation of 〈f , g〉 than what we get
after n steps only. In the present example, the approximation using zero padding, gives a slightly larger error than just
using Hn,n. The smallest error among the methods that require only n Arnoldi steps is achieved by the approximation
(23), that is using a scaled copy of the nth column as (n + 1)st column. This holds for all three values of N tested. In
fact, the error in these approximations is smaller than the error in the approximation based on n + 1 Arnoldi steps for
N ∈ {2000, 10 000}. As the following experiments show this could be a fluke. In any case we are not able to provide upper
error bounds that show that (23) is superior to an additional Arnoldi step. �

Example 4.2. We now choose f (t) = g(t) =
√
t + 1. The matrix A, vector v, and orders N , and steps n are the same

as in Example 4.1. Table 2 lists the relative errors for the different approximations of 〈f , g〉. Also for this example, the
approximations (23) perform well. �

Example 4.3. This example uses the same functions f and g as Example 4.1, and the same initial vector v, but a different
matrix. The matrix A of the present example is a nearly symmetric Toeplitz matrix with first row [1/2, 1/2, 1/3, . . . , 1/N]
and first column [1/2, 1/3, . . . , 1/(N + 1)]. Results are shown in Table 3. The approximations (23) of 〈f , g〉 are seen to
give smaller errors than the approximations based on n Arnoldi steps, but not as small as achieved by n+1 Arnoldi steps.
The results of this example are more in line with what we expect in general. �

8
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Table 2

Example 4.2: Relative errors of computed approximations of vT f (A)g(A)v for A ∈ R
N×N a

nonsymmetric Toeplitz matrix, f (t) = g(t) =
√
1 + t , and v = [1, 1, . . . , 1]T .

N Error

n = 5 n = 10

200 n Arnoldi steps 3.3922 · 10−6 5.7095 · 10−9

Scaled nth column 2.2259 · 10−7 1.9204 · 10−10

Zero padding 3.3680 · 10−6 5.7098 · 10−9

n + 1 Arnoldi steps 8.9522 · 10−7 1.6797 · 10−9

2000 n Arnoldi steps 2.3013 · 10−6 1.0501 · 10−8

Scaled nth column 1.4437 · 10−7 2.7235 · 10−10

Zero padding 2.2726 · 10−6 1.0503 · 10−8

n + 1 Arnoldi steps 7.1245 · 10−7 3.9296 · 10−9

10000 n Arnoldi steps 1.3860 · 10−6 8.5499 · 10−9

Scaled nth column 7.3021 · 10−8 1.7912 · 10−10

Zero padding 1.3672 · 10−6 8.5531 · 10−9

n + 1 Arnoldi steps 4.4929 · 10−7 3.4425 · 10−9

Table 3

Example 4.3: Relative errors of computed approximations of vT f (A)g(A)v for A ∈ R
N×N a

nonsymmetric Toeplitz matrix, f (t) = g(t) = exp(t), and v = [1, 1, . . . , 1]T .
N Error

n = 5 n = 10

200 n Arnoldi steps 1.1236 · 10−5 9.7413 · 10−11

Scaled nth column 8.8070 · 10−6 8.7963 · 10−12

Zero padding 1.1310 · 10−5 9.7413 · 10−11

n + 1 Arnoldi steps 1.8919 · 10−6 5.7866 · 10−12

2000 n Arnoldi steps 8.4251 · 10−6 1.4688 · 10−9

Scaled nth column 2.5821 · 10−5 1.1130 · 10−9

Zero padding 7.9549 · 10−6 1.4694 · 10−9

n + 1 Arnoldi steps 8.3296 · 10−8 1.0640 · 10−10

10000 n Arnoldi steps 3.3744 · 10−5 1.6263 · 10−9

Scaled nth column 7.4965 · 10−5 1.1720 · 10−9

Zero padding 3.2586 · 10−5 1.6281 · 10−9

n + 1 Arnoldi steps 2.6019 · 10−6 5.5610 · 10−10

In our next example, the matrix A = [ai,j] ∈ R
N×N is an adjacency matrix for a directed unweighted graph with N nodes

and without multiple edges and self-loops. Then ai,j = 1 if there is an edge from node i to node j, and ai,j = 0 otherwise.

Since the graph is directed the adjacency matrix is not symmetric. Typically, the number of edges is much smaller than

N2. This makes the adjacency matrix A sparse. A walk of length k in a graph is a sequence of vertices νi1 , νi2 , . . . , νik+1

such that there is an edge from vertex νij to vertex νij+1
for j = 1, 2, . . . , k. Vertices and edges in a walk may be repeated.

The entry [a(ℓ)i,j ] of the matrix Aℓ = [a(ℓ)i,j ] is equal to the number of walks of length ℓ starting at node i and ending at node

j. Short walks are considered more important than long walks. This motivates the use of matrix functions in network

analysis; see [34,35] for nice introductions. The exponential

f (A) =
∞∑

ℓ=0

Aℓ

ℓ!

is commonly used. The total communicability is defined as v∗f (A)v, where v = [1, 1, . . . , 1]T . A large value indicates that it

is easy to communicate or travel within the network that is represented by the graph; see [5] for details. We will compute

approximations of the total communicability for a graph that models air traffic.

The matrix

Ĥn+1,n+1 =




h1,1 h1,2 · · · h1,n 0
h2,1 h2,2 · · · h2,n 0

. . .
. . .

...
...

hn,n−1 hn,n hn+1,n

O hn+1,n 0




(24)

is an extension of Hn+1,n using the last row also as last column. This idea is inspired by the treatment of undirected graphs

with symmetric adjacency matrices [20]. A closest Hermitian matrix in C
(n+1)×(n+1) with leading (n + 1) × n submatrix

9
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Table 4

Example 4.4: Relative error of computed approximations of v∗f (A)v for A ∈ R
500×500 of

the Air500 network, f (x) = exp(x), and v = [1, 1, . . . , 1]T .
N Error

n = 5 n = 10

500 n Arnoldi steps 2.3853 · 10−2 8.5168 · 10−7

Scaled nth column 7.8598 · 10−2 5.1654 · 10−7

Transposed (n + 1)st row 6.0149 · 10−4 8.0304 · 10−7

Zero padding 2.3691 · 10−2 8.5168 · 10−7

n + 1 Arnoldi steps 8.0514 · 10−4 7.1425 · 10−8

Hn+1,n and arbitrary last column v ∈ C
n+1 in the matrix Frobenius norm ‖ · ‖F is obtained by solving the minimization

problem

min
v∈Cn+1

‖[Hn+1,n, v] − [Hn+1,n, v]∗‖F .

Choosing the last entry of v to be zero, we obtain the solution

v = [0, . . . , 0, h̄n+1,n, 0]T ∈ C
n+1.

In the present example Hn+1,n ∈ R
(n+1)×n.

The extension (24) of the matrix Hn+1,n is meaningful when the latter matrix has a leading n×n principal submatrix that
is nearly symmetric. The determination of the entries of the matrix (24) requires the evaluation of n steps of the Arnoldi
process. This matrix delivers approximations of 〈f , g〉 of higher accuracy for Example 4.4 than any of the Hessenberg
matrices that can be determined with n steps of the Arnoldi process and were used in the previous examples. We remark
that the matrix (24) does not outperform the other matrices that require n Arnoldi steps in the previous computed
examples.

Example 4.4. Let the nonsymmetric matrix A = [ai,j] ∈ R
500×500 be the adjacency matrix for the Air500 network that

describes flight connections between the top 500 airports within one year from July 1, 2007, to June 30, 2008; see [36,37].
Thus, the airports are nodes and the flights are edges in the graph determined by the network. The matrix A has the
entry ai,j = 1 if there is a flight from airport i to airport j. Generally, but not always, ai,j = 1 implies that aj,i = 1. This
makes A close to symmetric. Table 4 displays computed approximations of the total communicability for the network. The
approximation of the total communicability determined with the matrix (24) is more accurate than the approximations
determined by the other approaches that require the evaluation of n steps of the Arnoldi process. �

The computed examples above illustrate that for several matrices A and functions f and g , more accurate approxima-
tions of 〈f , g〉 than those obtained by using the matrix Hn,n in (1) can be determined with the same number of steps with
the Arnoldi process. Numerous computed examples, some of which are shown above, suggest that the matrix (23) often
yields good results, except when the matrix A is very close to symmetric.

In the remainder of this section, we consider approximations of matrix functions of the form (2) described in Section 2.
We measure the relative error

Error = ‖f (A)v − fapprox(A)v‖
‖f (A)v‖ , (25)

where f (A)v is the exact value (2) and fapprox(A)v stands for one of the approximants described in Section 2.

Example 4.5. Let A ∈ R
N×N for N ∈ {200, 2000, 10 000} be the nonsymmetric Toeplitz matrices defined in Example 4.1,

let v = [1, 1, . . . , 1]T and f (t) = exp(t). Table 5 displays the relative errors (25) achieved by some of the approximations
of f (A)v described in of Section 2. Among the methods that require the evaluation of n steps of the Arnoldi process, the
method equivalent to zero padding is seen to yield the most accurate approximations of f (A)v for both n = 5 and n = 10
Arnoldi steps and all but the largest value of N . The method based on the matrix (23) determines approximations of about
the same accuracy. Both these methods give approximations of higher accuracy than the standard approximation method
that uses the matrix (1), but of lower accuracy compared to an additional Arnoldi step. �

Example 4.6. This example is concerned with an approximation problem that arises in network analysis. Let A ∈ R
500×500

be the adjacency matrix for the graph of Example 4.4. The importance of a node as a receiver and broadcaster of
information can be determined by evaluation of the entries of exp(A)v and exp(A∗)v, respectively, for a suitable vector
v ∈ R

500; see [5,8]. The choice v = [1, 1, . . . , 1]T is commonly used, and we use it in this example. Node j of the graph is an
important receiver of information in the network if the jth entry of the vector exp(A)v is relatively large. We approximate
this vector by using the techniques described in Section 2. Table 6 shows the relative errors in these approximations.
The approximation of f (A)v determined by the matrix (24) gives the highest accuracy among all methods that require n
Arnoldi steps. �
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Table 5

Example 4.5: Relative errors of computed approximations of f (A)v for A ∈ R
N×N a

nonsymmetric Toeplitz matrix, f (t) = exp(t), and v = [1, 1, . . . , 1]T .
N Error

n = 5 n = 10

200 n Arnoldi steps 5.03510 · 10−3 3.13885 · 10−7

Scaled nth column 1.95280 · 10−3 6.37350 · 10−8

Zero padding 1.76493 · 10−3 6.02077 · 10−8

n + 1 Arnoldi steps 9.80516 · 10−4 3.05590 · 10−8

2000 n Arnoldi steps 1.40923 · 10−2 8.40692 · 10−6

Scaled nth column 7.21887 · 10−3 2.53102 · 10−6

Zero padding 6.70142 · 10−3 2.49285 · 10−6

n + 1 Arnoldi steps 4.06182 · 10−3 1.38556 · 10−6

10000 n Arnoldi steps 1.95631 · 10−2 2.81242 · 10−5

Scaled nth column 1.11112 · 10−2 9.91392 · 10−6

Zero padding 1.05464 · 10−2 1.00081 · 10−5

n + 1 Arnoldi steps 6.55416 · 10−3 5.68982 · 10−6

Table 6

Example 4.6: Relative errors of computed approximations of f (A)v for the adjacency

matrix A ∈ R
500×500 of the Air500 network, f (t) = exp(t), and v = [1, 1, . . . , 1]T .

N Error

n = 5 n = 10

500 n Arnoldi steps 2.23385 · 10−2 1.51927 · 10−6

Scaled nth column 3.97069 · 10−2 4.01892 · 10−7

Transposed n + 1st row 4.75809 · 10−3 4.60743 · 10−7

Zero padding 1.49107 · 10−2 5.22552 · 10−7

n + 1 Arnoldi steps 3.16756 · 10−3 2.17088 · 10−7

The performance of the Arnoldi process when applied to a large non-Hermitian matrix A ∈ C
N×N depends on the

structure of the matrix, its spectrum, and on the initial vector v ∈ C
N . The Arnoldi process has been studied in detail

in the context of the FOM and GMRES iterative methods for the solution of large linear systems of equations; see [38]
and [39] for recent discussions and references. In particular, it is difficult to predict how quickly the iterates determined
by FOM and GMRES will converge to the desired solution when these methods are applied to the solution of a linear
system of equations with a fairly general non-Hermitian matrix.

Similarly, the quality of the approximations of (2) and (3) determined by the expressions in the right-hand side of
(18) and (22), respectively, depends on the structure of the matrix A, its spectrum, the initial vector v, the function f , and
the choice of the last columns of the Hessenberg matrix Ĥn+1,n+1. A detailed analysis is difficult and outside the scope of
the present paper. Numerous numerical examples, some of which are reported above, showed the approximation (13),
which is equivalent to zero padding, and the approximations obtained when using the matrix (23) to perform well. For
matrices that are close to symmetric, that is ‖A − A∗‖F is small, the approximation determined by using the last row as
last column, (24), typically also gave high accuracy.

5. Conclusion

The paper discusses the approximation of matrix functions and quadrature rules based on the Arnoldi process. New
methods are proposed that provide more accurate approximations, in the sense that more moments are matched for es-
sentially the same computational effort, as available methods. When the moments matched dominate the approximation,
the new methods proposed are more accurate than the available approximation schemes based on the use of the matrix
Hn,n in (1). In addition, we generalize a method proposed by Saad [11] and show its equivalence to zero-padding of the
rectangular matrix Hn+1,n in the Arnoldi decomposition (8).
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