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Abstract: The U.S. Department of Agriculture’s (USDA) Cropland Data Layer (CDL) is a 30 m 

resolution crop-specific land cover map produced annually to assess crops and cropland area across 

the conterminous United States. Despite its prominent use and value for monitoring agricultural 

land use/land cover (LULC), there remains substantial uncertainty surrounding the CDLs’ 

performance, particularly in applications measuring LULC at national scales, within aggregated 

classes, or changes across years. To fill this gap, we used state- and land cover class-specific accuracy 

statistics from the USDA from 2008 to 2016 to comprehensively characterize the performance of the 

CDL across space and time. We estimated nationwide area-weighted accuracies for the CDL for 

specific crops as well as for the aggregated classes of cropland and non-cropland. We also derived 

and reported new metrics of superclass accuracy and within-domain error rates, which help to 

quantify and differentiate the efficacy of mapping aggregated land use classes (e.g., cropland) 

among constituent subclasses (i.e., specific crops). We show that aggregate classes embody 

drastically higher accuracies, such that the CDL correctly identifies cropland from the user's 

perspective 97% of the time or greater for all years since nationwide coverage began in 2008. We 

also quantified the mapping biases of specific crops throughout time and used these data to generate 

independent bias-adjusted crop area estimates, which may complement other USDA survey- and 

census-based crop statistics. Our overall findings demonstrate that the CDLs provide highly 

accurate annual measures of crops and cropland areas, and when used appropriately, are an 

indispensable tool for monitoring changes to agricultural landscapes. 

Keywords: accuracy assessment; accuracy metrics; map bias; confidence; crop maps; Cropland Data 

Layer; land use/land cover change; remote sensing products 

 

1. Introduction 

Mapping and monitoring crops and croplands can generate powerful insights about 

our environment and agricultural production systems [1–3]. Because satellite-based 

remote sensing products are able to efficiently capture land use/land cover (LULC) and 

their variations across space and time, these data are increasingly chosen as the basis for 

agricultural and environmental decision making, including policy creation, evaluation, 

and enforcement [4–8]. With the increased availability and use of detailed remotely sensed 

land cover products, however, there is a growing need to understand their accuracy and 

reliability for different applications [9–12]. 

In the United States, the Department of Agriculture’s (USDA) Cropland Data Layer 

(CDL) is frequently utilized to monitor agricultural land due to its nationwide coverage, 

agricultural focus, and annual frequency [13–16]. Produced by the National Agricultural 

Statistics Service (NASS), this satellite-derived map has provided complete coverage of 

the conterminous U.S. each year since 2008. Since it tracks specific crops at field-relevant 

resolutions, it is an ideal tool to detect geographic trends and changes in cultivation. 

Previous studies have used the CDL to track crop rotations and planting patterns [17–20], 

evaluate Farm Bill policies such as crop insurance and the Sodsaver program [8,21,22], 

and assess the environmental outcomes of various land management systems [20,23,24], 

among many other applications. Estimates of cropland area from the CDL are also used 

internally by NASS for a variety of reports and survey applications as well as considered 

by other government organizations such as the Environmental Protection Agency, for 

example, to monitor compliance with land protections in renewable energy policies [4,25].  

(http://creativecommons.org/licenses

/by/4.0/). 
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To characterize the CDL’s performance, NASS calculates land cover class-specific 

accuracies at the state level and releases them with each annual state CDL product [26]. 

These estimates are based on a comparison with parcel level data from the USDA Farm 

Service Agency (FSA) [27] and another land cover map, the National Land Cover Dataset 

(NLCD) [28,29]. While these comparisons provide insights into the accuracy of the CDL 

for a given state and year, applications of the CDL product typically extend well beyond 

this scope; many analyses utilize modifications of the original CDL datasets, compare 

across the state products, and/or estimate changes in LULC over time [30–34]. Despite the 

prevalence of these applications, the performance of the CDLs in many of these extensions 

has not been evaluated. 

Given this lack of evaluation, several articles have questioned the reliability of 

analyses that use CDL data to identify recent agricultural trends, citing concerns about 

both the CDL’s accuracy and its appropriateness for measuring changes to the landscape 

[35–40]. Such critiques often cite low reported accuracies for the CDLs when mapping 

certain crops in specific regions or when depicting nonagricultural land covers such as 

grasslands. Despite the potential validity of these concerns, all such critiques to date have 

lacked a systematic nationwide assessment of the CDL accuracy beyond comparisons 

with coarse data, thereby leaving substantial uncertainty surrounding the CDL’s ultimate 

dependability. Furthermore, select approaches for measuring LULC change using the 

CDL and other land cover products may help overcome some of the CDL’s limitations 

and improve analysis outcomes [41], though the efficacy of these techniques has not yet 

been fully quantified. For example, aggregating specific land cover classes into broader 

domains, such as cropland and non-cropland, can help address low classifier accuracies 

of specific cover classes by eliminating errors associated with distinguishing different crop 

types and among various non-cropland covers, such as the many grassland categories 

historically delineated in the CDL [30,40,42].  

In this paper, we comprehensively quantified the accuracy of the CDL at the national 

scale and evaluated the outcomes relevant for applications of the CDL for mapping crops 

and cropland. First, we investigated the benefits of consolidating classes within remote 

sensing products and quantified the CDL's ability to distinguish between crop and non-

cropland covers at multiple spatial scales and thematic resolutions. Then, we calculated 

nationwide accuracies for both specific and aggregate classes of the CDL and mapped the 

spatial variation in accuracies across the U.S. based on congruence with FSA and NLCD 

data. We then explored the use of pixel-level classifier confidence information to provide 

additional higher-resolution understanding of thematic certainty. Finally, we estimated 

the annual bias in mapping specific crops within the CDL and derived new, bias-adjusted 

area estimates for the major crop types. We conclude with a discussion of the implications 

of these analyses with a particular focus on recommendations for improving LULC 

change analyses. 

2. Materials and Methods 

2.1. Overview of Assessed and Reference Datasets 

The Cropland Data Layer is a crop-specific land cover map produced annually by the 

USDA National Agricultural Statistics Service (NASS). Complete coverage of the 

conterminous United States dates back to 2008, while some states and years predate the 

nationwide product. Primary satellite imagery inputs for the CDL vary according to 

availability and effectiveness but have included the Resourcesat-1 Advanced Wide Field 

Sensor (AWiFS), Resourcesat-2 Linear Imaging Self Scanning (LISS), Landsat-5 Thematic 

Mapper (TM), Landsat-7 Enhanced TM Plus (ETM+), Landsat-8 Optical Land Imager 

(OLI), Sentinel-2 A/B, and Deimos-1 and UK-2 from the Disaster Monitoring 

Constellation. Input images are collected and used internally by NASS throughout the 

growing season, and the final, publicly released CDL is intended to capture the area and 

geospatial distribution of crops in midsummer. Data processing and classification 
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generally occur independently at the state level by NASS analysts, and the nationwide 

CDL mosaic that results contains up to 155 classes of cultivated crops and 23 classes of 

non-cropland covers. Most states, however, contain a smaller subset of applicable classes, 

typically fewer than 30 crops and a dozen non-crop covers [26].  

In producing the CDL, NASS uses supplementary information from both the FSA 

and the USGS. Specifically, NASS leverages a selection of data from the FSA’s Common 

Land Unit (CLU) administrative database to train all cultivated crop classes of the CDL 

and assess their accuracy. CLU data are collected and confirmed by USDA County Field 

Service Centers and constitute a comprehensive geospatially tagged database of all land 

owned by agricultural producers who participate in an FSA program [27]. This represents 

the most complete dataset on U.S. agricultural land use, but is not available to the public 

[16]. 

For training and assessing non-cropland cover categories, NASS uses the USGS-led 

NLCD as a reference [26,43]. The NLCD is a nationwide 30-meter resolution, 20-class land 

cover map that follows a modified Anderson level I/II classification system [44]. The 

product’s mapping emphasizes non-cropped vegetative areas, and was historically 

produced for 5-year epochs, though the most recent product release has improved 

coverage to 2–3-year intervals. It should be noted that while the NLCD is used as an input 

in training the CDL classifier, the CDL does not simply revert to the NLCD in non-crop 

locations. Instead, the CDL incorporates the NLCD and other data to generate its own 

unique mapping of non-crop areas. 

During the assessment of the CDL, NASS produces and publishes online the 

confusion matrices used to determine the reported accuracies. Referred to as the "error 

supermatrices," these datasets are generated each year at the state or multistate level and 

report the number of times specific CDL classes were mapped either consistently or 

inconsistently against CLU data from the FSA for all cultivated crops, or against the NLCD 

for non-cultivated land covers [26,27]. While the FSA data and NLCD provide valuable 

references for comparison, each differs from traditional reference data used for land cover 

map evaluation. In particular, the FSA data are not selected via a probability sampling 

design. In addition, because the dataset is generated for other USDA programmatic 

purposes, its classes do not always align perfectly with the classes of the CDL, leading to 

potential mismatch between the target and reference data. Nevertheless, the FSA dataset 

represents an incredibly rich and extensive source of reference information that is of a 

quality rarely available for remote sensing accuracy assessments. The NLCD, as a satellite-

based land cover map, is not fully independent nor necessarily more accurate than the 

CDL. The NLCD is also not produced annually, such that the closest NLCD product 

available at the time of CDL production must be utilized, leading to potential temporal 

mismatch between the target and reference data. Despite these limitations, these two 

datasets provide powerful points of comparison for understanding how CDL 

performance varies across space and time.  

2.2. Investigating Effects of Aggregation: Superclass and Consolidated Class Accuracies  

We used the data reported in the CDL error supermatrices to derive supplemental 

accuracy metrics useful for characterizing and understanding the CDL across scales and 

applications. A summary and example of each accuracy metric we assessed is presented 

in Table 1, with further details of their derivation described in the section below. 

Table 1. Accuracy metrics, measured classes, and associated examples. The table describes each of the four main metrics 

reported in this paper and provides an example of each metric from the producer’s accuracy and user’s accuracy 

perspectives. 

Metric: Reported For: 
Measures Accuracy 

of Identifying: 
Producer's Example User's Example 
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Class Accuracy Specific classes Specific classes 
The likelihood that actual 

corn is mapped as corn 

The likelihood an area mapped 

as corn is actually corn  

Superclass  

Accuracy 
Specific classes 

An aggregated 

domain 

The likelihood that actual 

corn is mapped as cropland 

The likelihood an area mapped 

as corn is actually cropland 

Consolidated 

Class Accuracy 

An aggregated 

domain 

An aggregated 

domain 

The likelihood that actual 

cropland is mapped as 

cropland 

The likelihood an area mapped 

as cropland is actually cropland 

Average Class 

Accuracy 

An aggregated 

domain 
Specific classes 

The likelihood that any crop 

is mapped as that specific 

crop 

The likelihood that any mapped 

crop is actually that crop 

 

Initially, NASS treats their reference data as a simple random sample and calculates 

the class accuracies for all specific land cover classes within each state according to the 

general formula: 

𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥 =
𝑃𝑖𝑥𝑒𝑙𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑥

𝑃𝑖𝑥𝑒𝑙𝑠 𝑡𝑜𝑡𝑎𝑙𝑥
 (1) 

for each specific crop x, where pixels correct is the number of mapped pixels that match the 

reference data in a given region, and pixels total is either the total number of reference data 

observations (for calculating producer’s accuracy) or mapped pixels (for calculating user’s 

accuracy) for each class. Producer's accuracies reflect errors of omission; they indicate how 

likely a feature is to be correctly captured by the remote sensing product. User's accuracies 

reflect errors of commission, and indicate how likely a mapped class correctly resembles 

features on the landscape [45]. 

Aggregating land cover classes to broader thematic classes increases accuracy by 

lowering thematic specificity [28,46]. To understand how well the CDL can distinguish 

general cropland from non-cropland areas, we assessed the accuracy of aggregated 

cropland and non-cropland domains as delineated in Lark et al. (2015), based on original 

NASS distinctions [16,26]. The aggregated cropland category includes all annually 

cultivated row, closely planted, and horticultural crops as well as tree crops and actively 

tilled fallow (Appendix Table A1). The non-cropland domain includes all remaining CDL 

classes. 

First, we calculated how frequently each specific class of the CDL is mapped as any 

class within the correct cropland or non-cropland domain. We refer to this as the 

superclass accuracy for each specific class, and derived it as 

𝑆𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶,𝑥 =  
𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑜𝑚𝑎𝑖𝑛𝐶

𝑃𝑖𝑥𝑒𝑙𝑠 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑𝑥
 (2) 

for each specific class x included in the domain C (e.g., cropland or non-cropland). For the 

cropland domain, the superclass producer’s accuracy indicates how frequently a specific 

crop on the landscape (e.g., corn) was mapped by the CDL as any type of crop in the 

cropland domain. The corresponding superclass user’s accuracy represents how likely a 

pixel mapped as a specific crop was actually any type of crop (i.e., cropland) on the 

landscape.  

From the relationship between specific class accuracy and superclass accuracy, it is 

possible to quantify the relative number of mapping errors where confusion occurs with 

another class within the same broader domain. We define this metric, which we refer to 

as the within-domain error rate, as the difference between a class’s error rate and its 

superclass error rate, normalized by the class error rate. It can also be derived directly 

from the previously calculated accuracy metrics as 

𝑊𝑖𝑡ℎ𝑖𝑛 𝐷𝑜𝑚𝑎𝑖𝑛 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒𝐶,𝑥 =  
𝑆𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶,𝑥 − 𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥  

1 − 𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥
 (3) 



Remote Sens. 2021, 13, 968 6 of 31 
 

 

for each specific class x included in the domain C. 

Then, we calculated the overall consolidated class accuracy for the entire cropland 

domain according the following equation: 

𝐶𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒𝑑 𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶 =  
∑ (𝑎𝑟𝑒𝑎𝑥𝑥𝜖𝐶  ×  𝑆𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶,𝑥) 

∑ (𝑎𝑟𝑒𝑎𝑥𝑥𝜖𝐶 )
 (4) 

where x is each specific class belonging to the set of all classes in domain C, area is the area 

of class x, and superclass accuracy is the value calculated in Equation (2) above. Because the 

superclass accuracies give the likelihood that a specific class will correctly identify the 

broader domain, taking the area-weighted mean of the superclass accuracies across all 

classes within a domain depicts the likelihood that any class in a domain will correctly 

identify the broader domain. For the consolidated cropland domain, this calculation 

generates a single value that represents the accuracy with which the CDL can identify 

cropland in a given state and year. The user’s accuracy for consolidated cropland 

represents the likelihood that any randomly selected pixel mapped as cropland in the CDL 

is actually cropland on the landscape. The producer’s accuracy for consolidated cropland 

is the likelihood that cropland on the landscape is correctly mapped as cropland in the 

CDL. In similar fashions, Equations (2) and (4) can be used to calculate superclass 

accuracies for each specific non-crop class and for the single consolidated non-cropland 

domain.  

For thoroughness and comparison, we also calculated the average specific class 

accuracy for each domain, according to the following equation: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶 =  
∑ (𝑎𝑟𝑒𝑎𝑥𝑥𝜖𝐶  ×  𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶,𝑥) 

∑ (𝑎𝑟𝑒𝑎𝑥𝑥𝜖𝐶 )
 (5) 

The average specific class accuracy indicates how accurately, on average across the 

full domain, a randomly selected class is mapped in a given year. Tracking the average 

specific class accuracy across several years can thus indicate how well the CDL historically 

performed and improved over time at delineating specific crops.  

2.3. Calculating Nationwide Accuracies 

We next estimated nationwide accuracies for each original CDL class as well as for 

the newly derived aggregated metrics. To calculate nationwide accuracies, we weighed 

each state accuracy to account for disproportionate class areas and reference observations. 

For specific class accuracies of the original CDL, we normalized according to the following 

equation: 

𝑁𝑎𝑡𝑖𝑜𝑛𝑤𝑖𝑑𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥 =  
∑ (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥,𝑖𝑖𝜖𝑆  ×  𝑎𝑟𝑒𝑎𝑥,𝑖) 

∑ (𝑎𝑟𝑒𝑎𝑥,𝑖𝑖𝜖𝑆 )
 (6) 

where S is the set of states or multistate regions for which data are produced in a given 

year, Area is the total area of class x mapped within the state or region i, and accuracy is 

the user's or producer's accuracy (Equation 1) for region i. Similarly, Equation 6 was used 

to calculate the nationwide superclass accuracies for each crop by replacing the specific 

class accuracies with the appropriate superclass accuracies derived from Equation 2 

above.  

To derive the nationwide accuracies for consolidated land cover classes, we also area-

weighed by each constituent class. This accounted for unequal areas of each class within 

the consolidated domain and ensured proportional contributions to the accuracy of the 

combined class. We considered only classes for which accuracy data existed when 

summing class accuracies and areas, since failure to exclude the area of classes without 

data would falsely skew the nationwide mean values. Using the available data, we 

calculated nationwide accuracies for consolidated classes using the following formula: 
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𝑁𝑎𝑡𝑖𝑜𝑛𝑤𝑖𝑑𝑒 𝐶𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶 =  
∑ (𝑁𝑎𝑡𝑖𝑜𝑛𝑤𝑖𝑑𝑒 𝑆𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥𝑥𝜖𝐶  ×  𝑛𝑎𝑡𝑖𝑜𝑛𝑤𝑖𝑑𝑒 𝑎𝑟𝑒𝑎𝑥) 

∑ (𝑛𝑎𝑡𝑖𝑜𝑛𝑤𝑖𝑑𝑒 𝑎𝑟𝑒𝑎𝑥𝑥𝜖𝐶 )
 (7) 

Using the specific class accuracy in this formula gives the nationwide-specific class 

accuracy averaged across all land covers in the broader domain. Specifically: 

𝑁𝑎𝑡𝑖𝑜𝑛𝑤𝑖𝑑𝑒 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶 =  
∑ (𝑁𝑎𝑡𝑖𝑜𝑛𝑤𝑖𝑑𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥𝑥𝜖𝐶  ×  𝑛𝑎𝑡𝑖𝑜𝑛𝑤𝑖𝑑𝑒 𝑎𝑟𝑒𝑎𝑥) 

∑ (𝑛𝑎𝑡𝑖𝑜𝑛𝑤𝑖𝑑𝑒 𝑎𝑟𝑒𝑎𝑥𝑥𝜖𝐶 )
 (8) 

2.4. Mapping Spatial Patterns of CDL Accuracy and Confidence 

We mapped a composite of all state- and class-level users’ and producers’ accuracies 

for each specific crop and non-cropland cover to better understand how the accuracy of 

CDL data varies spatially across the U.S. To generate these maps, each original CDL pixel 

was assigned the value of its specific class accuracy for that state and year and rounded 

to the nearest integer to facilitate storage as an eight-bit raster. We also mapped and 

delineated crop and non-crop components of the CDL confidence layer, which was 

provided courtesy of USDA NASS. The confidence layer is a coproduct of the remote 

sensing classification process and provides a measure of how well a specific pixel fits 

within the decision tree ruleset used to classify it [26,47]. A unique benefit of the 

confidence dataset is that it provides an independent value for each individual pixel, 

rather than a single value for all pixels of a given class within a state. It thus varies at the 

pixel level, enabling improved spatial understanding of expected errors within the CDL 

product [26].  

We then combined the assessed accuracy and classifier confidence data into a single 

metric of CDL certainty to better understand the spatial variation in CDL performance. 

By integrating the pixel-resolution confidence layer into the state- and class-resolution 

accuracy estimates, a combined metric may offer additional insight or improved spatial 

representation of expected errors compared to standalone accuracy indicators. This is 

similar to the approach of using posterior probability spaces in change vector analysis 

[48]. 

We considered several ways to combine the accuracy and confidence data, including 

multiplying the two components (Equation 9), averaging them (Equation 10), and 

additional more elaborate combinations (e.g., Equation 11): 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =  𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ×  𝑃𝑖𝑥𝑒𝑙 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (9) 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =  
(𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑃𝑖𝑥𝑒𝑙 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)

2  
(10) 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =  𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [1 +
(𝑃𝑖𝑥𝑒𝑙 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒) − (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑎𝑠𝑠 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑎𝑠𝑠 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)
]
 

(11) 

The approaches of Equations 9 and 10 benefit from their simplicity and intuitiveness. 

In Equation 11, the confidence data are used as a scalar multiplier to modify the class-level 

accuracy: if a pixel is mapped more confidently than the average of the other pixels in its 

class, then its certainty value will be greater than its class accuracy; if a pixel is mapped 

less confidently than average, then its certainty value will be lower than its class accuracy. 

Ultimately, the selection of a formula should be based on the needs of the specific 

application [48]. Thus, we present results only from the simple product combination 

(Equation 9) in order to illustrate the concept and potential value of combining accuracy 

and confidence data but leave further investigation to future work and specific 

applications. 

2.5. Estimating Map Biases and Bias-Adjusted Crop Acreages 
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Due to misclassifications within remote sensing products, area estimates derived 

directly from pixel counts are likely to be incorrect and either over- or under-predict actual 

class area. Using data derived from confusion matrices, it is possible to quantify this bias 

relative to the reference data and subsequently make bias-adjusted area estimates 

accordingly [10,49]. While best practices in accuracy assessment stipulate the use of bias 

adjusted estimators with a probability sampling design [12,50], a simplified estimate of 

map bias and adjusted area estimates may still be derived and useful for products such as 

the CDL, where a large and high quality—though non-probabilistic—reference dataset is 

available. To illustrate this, we calculated the nationwide relative bias of each crop using 

the producer’s and user’s accuracy: 

𝑆𝑖𝑚𝑝𝑙𝑒 𝐵𝑖𝑎𝑠𝑥 =
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥

𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥
− 1 (12) 

for each class x where the producer's and user's accuracies were those derived in Eq 6. 

This indicator of bias is equivalent to the number of assessed pixels mapped as class x 

divided by the number of assessed pixels classified as class x in the reference data, such 

that it reflects the relative over- or under-mapping of a class compared to the reference 

data. We then calculated bias-adjusted area estimates for each class x by scaling the raw 

CDL acreage estimates by the amount of over or underprediction suggested by the bias: 

𝐵𝑖𝑎𝑠 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝑟𝑒𝑎𝑥 = 𝐶𝑙𝑎𝑠𝑠 𝐴𝑟𝑒𝑎𝑥 − (𝐶𝑙𝑎𝑠𝑠 𝐴𝑟𝑒𝑎𝑥 × 𝑆𝑖𝑚𝑝𝑙𝑒 𝐵𝑖𝑎𝑠𝑥) (13) 

where Class Area is the area estimate for each class x derived from pixel counting and the 

Simple Bias is that derived in Equation 12.  

3. Results 

We first present results from our nationwide analysis of specific class accuracies, 

followed by nationwide results for the aggregated superclass and consolidated class 

metrics. Throughout the results section, we focus on data for the year 2012 as an example 

because it represents an intermediate year within the CDL’s modern era of nationwide 

coverage, it was used in multiple applications [22,35,51], and it aligns well with the Census 

of Agriculture, the Natural Resources Inventory, and other intermittent data sources often 

used for comparisons with the CDL. The year 2012 was also particularly challenging for 

mapping agricultural LULC—moderate resolution imagery was limited, and a severe 

drought impacted crop development in many regions—such that our findings should be 

considered a conservative estimate of the performance of the CDL. For completeness, 

results were also generated for all years of nationwide CDL coverage 2008–2016 and have 

been reposited online as companion datasets at https://doi.org/10.5281/zenodo.4579863. 

3.1. Nationwide Accuracy of Specific CDL Classes  

Nationwide area-weighted accuracies for the major crop classes of the CDL are 

generally very high. In 2012, corn, soybeans, and winter wheat—the three largest crops 

by area—were mapped correctly 95, 94, and 92% of the time from both the producer’s and 

user’s perspectives. The top 20 CDL land cover classes by area and their associated 

producer and user accuracies for 2012 are presented in Table 2, with accuracies for all 130 

assessed land cover classes for 2012 included in Appendix Table A2.  
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Table 2. Nationwide class accuracies of major individual land covers in the 2012 Cropland Data Layer (CDL). Table shows 

area-weighted national average accuracies for the 20 most common classes by area in the 2012 CDL, calculated according 

to Equation (6), based on data from USDA National Agricultural Statistics Service (NASS). National accuracies of all crops 

and land covers for 2012 are listed in Appendix Table A2. 

Class Name ID 
Producer 

Accuracy 

Omission 

Error 

User 

Accuracy 

Commission 

Error 

Corn 1 95% 5% 95% 5% 

Cotton 2 91% 9% 89% 11% 

Soybeans 5 94% 6% 94% 6% 

Spring Wheat 23 89% 11% 87% 13% 

Winter Wheat 24 92% 8% 92% 8% 

Alfalfa 36 75% 25% 80% 20% 

Other Hay/No Alfalfa 37 57% 43% 57% 43% 

Fallow/Idle Cropland 61 69% 31% 79% 21% 

Open Water 111 90% 10% 81% 19% 

Developed/Open Space 121 89% 11% 61% 39% 

Developed/Low Intensity 122 83% 17% 74% 26% 

Developed/Med Intensity 123 84% 16% 81% 19% 

Barren 131 74% 26% 75% 25% 

Deciduous Forest 141 88% 12% 75% 25% 

Evergreen Forest 142 87% 13% 73% 27% 

Mixed Forest 143 44% 56% 51% 49% 

Shrubland 152 87% 13% 71% 29% 

Grassland/Pasture 176 79% 21% 50% 50% 

Woody Wetlands 190 70% 30% 63% 37% 

Herbaceous Wetlands 195 61% 39% 47% 53% 

Average of All Crops N/A 88.7% 11.3% 90.3% 9.7% 

Average of All Non-Crops N/A 82.4 % 17.6% 69.4% 30.6% 

 

Overall, 10 crops had nationwide producer’s accuracies of 90% or greater in 2012. 

These included sugarcane (97%); rice (96%); corn (95%); soybeans (94%); sugarbeets (94%); 

canola (94%); winter wheat (92%); cotton (91%); almonds (91%); and cranberries (91%). 

Five additional crops had class producer’s accuracies higher than the average for all crops, 

88.7%, and the remaining 90 crops with computable accuracies fell below the average class 

accuracy. In the same year, 17 crops had nationwide user’s accuracies of 90% or greater 

(Appendix Table A2). The remaining 88 crops had user’s accuracies below the average of 

90.3%. The disproportionate number of crops with below-average accuracy reinforces 

observations that the CDL performs best for major crops (defined by area) and less so for 

minor crops. To this end, the 10 crops with the highest producer’s accuracies made up 

71.5% of the total mapped crop area.  

Reported accuracies of specific non-crop classes of the CDL were generally lower 

than those of major crops (Table 2). However, it is important to acknowledge that the 

reported figures do not represent congruence with a verified ground or truth dataset of 

non-cropped areas, but rather are assessed against a reference dataset consisting of both 

FSA administrative crop data and the NLCD, itself a remotely sensed land cover map 

subject to misclassifications. Nonetheless, the lower levels of reported accuracy in the CDL 

non-crop classes suggest higher levels of uncertainty and potential error in the product 

and/or reference data, particularly when compared to the high-performance crop classes. 

The specific categories of open-, low-, and medium-intensity developed land as well as 

deciduous and coniferous forest, shrubland, and open water were all mapped with 

nationwide accuracies of greater than 80 percent, whereas specific classes of herbaceous 
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and woody wetlands and grassland/pasture had lower nationwide performance that 

ranged from 47–79% (Table 2).  

3.2. Consolidated Cropland and Non-Cropland Accuracies 

Specific land cover classes of the CDLs are often combined into aggregated categories 

for applications such as measuring cropland area or conversion between major land cover 

types. As an example of aggregation, we assessed the accuracy of consolidated cropland 

and non-cropland domains across the U.S. from 2008–2016.  

The area- and class-weighted nationwide accuracies for consolidated cropland in 

2012 were 95.0% (producer’s) and 97.4% (user’s). Accuracies for the consolidated non-

cropland domain were 97.8 and 88.8%, respectively. Consolidated classes also performed 

consistently well across time (Table 3). For example, in 2008—the oldest year for which 

nationwide data were produced—cropland user and producer accuracies were 95% and 

98%, respectively. 

Table 3. Average specific class and consolidated class accuracies for each year of the CDL. Data from USDA NASS (2016) 

based on the comparison of CDL with data from Farm Service Agency (FSA) and National Land Cover Dataset (NLCD) 

and processed according to equations 7 and 8. Cropland and non-cropland domains based on class distinctions in 

Appendix Table 1. 

Metric Type 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Average Crop Accuracy 
Prod: 88% 89% 89% 89% 89% 89% 90% 90% 92% 

User: 90% 90% 91% 91% 90% 91% 92% 91% 92% 

Average Non-Crop Accuracy 
Prod: 82% 82% 81% 82% 82% 82% 81% 85% 85% 

User: 63% 64% 65% 61% 69% 67% 69% 82% 82% 

Consolidated Cropland Accuracy 
Prod: 95% 95% 95% 95% 95% 96% 96% 96% 98% 

User: 98% 98% 97% 98% 97% 99% 99% 98% 99% 

Consolidated Non-Cropland Accuracy 
Prod: 97% 97% 98% 98% 98% 98% 97% 99% 99% 

User: 84% 85% 89% 82% 89% 87% 89% 98% 98% 

 

In 2012, 30 of the 40 state or multistate assessment regions of the CDL had 

consolidated cropland producer's accuracies of 90% or greater (Appendix Table A3). On 

the user’s sides, all but two states—New York and Pennsylvania—mapped cropland 

correctly 90% of the time or greater. Oklahoma (OK) and Arizona (AZ)—more arid states 

where cropland contrasts with the surrounding landscape and is often irrigated—had the 

highest cropland user’s accuracies, with values over 99%. More broadly, states with 

greater amounts of cropland typically had higher consolidated cropland accuracies 

(Figure 1), though this effect appeared to saturate beyond a certain threshold of crop area 

(e.g., 5 million acres). Similar trends were also observed when assessed by proportion 

(rather than total area) of cropland within each state [16,35].  
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Figure 1. Plot of consolidated cropland user and producer accuracies for each state for 2012. Accuracies plotted against 

total crop area in each state. States with greater amounts of cropland typically had higher consolidated cropland 

accuracies. Plotting accuracy against the proportion of cropland within each state generated similar trends (data not 

shown). 

3.3. Superclass Accuracies of Specific Crops and Land Covers 

Within the aggregated domains, certain classes are more (or less) likely to align with 

their broader domain. Among crops mapped in the CDL with greater than one million 

acres, rice was the most accurate predictor of cropland on the landscape and most likely 

to be correctly identified as cropland, having superclass user's and producer’s accuracies 

both over 99% in 2012 (Table 4). Areas of corn, the most prevalent crop, were labeled as 

cropland by the CDL 98% of the time in 2012 (superclass producer’s accuracy), and pixels 

mapped as corn in the CDL were actually cropland on the landscape 98.5% of the time 

(superclass user’s). Fields of alfalfa, oats, and fallow/idle cropland, on the other hand, 

were correctly labeled as cropland by the CDL just over 80% of the time. On the user’s 

side, alfalfa was the only low outlier, yet still had an 86% superclass user’s accuracy for 

the cropland domain. 
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Table 4. Superclass producer and user accuracies for the top 20 classes by area in the cropland domain in 2012 as well as 

the relative rate of within-domain errors. Superclass accuracy is the likelihood that a given crop is identified correctly as 

cropland. Percentage of errors within domain is the proportion of errors in the original CDL where the confusion occurs 

among two crops within the cropland domain, rather than between a crop and non-cropland cover. 

CDL ID Crop Class CDL Acreage 

Superclass Accuracy % of Errors within Domain 

Producer’s  User’s  
Omission 

Errors 

Commission 

Errors 

1 Corn 94,983,301 98% 99% 57% 73% 

2 Cotton 13,114,321 98% 100% 77% 96% 

3 Rice 2,671,894 99% 100% 84% 95% 

4 Sorghum 6,262,444 96% 99% 81% 95% 

5 Soybeans 69,810,086 98% 99% 65% 76% 

6 Sunflower 1,595,069 94% 99% 52% 79% 

10 Peanuts 1,657,438 98% 99% 88% 93% 

21 Barley 2,852,300 94% 99% 78% 92% 

22 Durum Wheat 1,860,552 98% 99% 92% 97% 

23 Spring Wheat 12,303,171 96% 99% 64% 92% 

24 Winter Wheat 34,784,199 97% 99% 55% 88% 

26 Dbl WinWht/Soybeans 5,311,121 97% 98% 73% 87% 

28 Oats 1,285,192 81% 93% 67% 84% 

31 Canola 1,700,926 97% 99% 53% 86% 

36 Alfalfa 16,167,152 80% 86% 27% 40% 

41 Sugarbeets 1,238,159 99% 100% 77% 94% 

42 Dry Beans 1,743,309 97% 99% 84% 94% 

61 Fallow/Idle Cropland 24,395,076 80% 92% 35% 67% 

69 Grapes 1,136,718 96% 98% 69% 82% 

75 Almonds 1,155,344 98% 99% 78% 94% 

 

Within the non-cropland domain, most superclass accuracies were high, with only a 

few exceptions (Table 5). Developed/Open Space was incorrectly mapped in locations that 

were actually cropland 25% of the time in 2012. Grassland/Pasture had an even lower 

user’s accuracy and was mapped in cropped locations 32% of the time that year. 

Furthermore, the high ratio of superclass producer’s accuracy to superclass user’s 

accuracy—indicative of bias—in each of these classes suggests they are both considerably 

overmapped in locations that are actually cropland. 

Table 5. Superclass producer and user accuracies for all 16 classes in the non-cropland domain in 2012. Superclass accuracy 

is the likelihood a given class is correctly identified as non-cropland. Percentage of errors within domain is the proportion 

of errors in the original CDL where the confusion occurs among two land covers within the non-cropland domain, rather 

than between a crop and non-cropland cover. 

CDL ID Land Cover Class CDL Acreage 

Superclass Accuracy % of Errors within Domain 

Producer’s  User’s 
Omission 

Errors 

Commission 

Errors 

37 Other Hay/Non Alfalfa 23,881,755 89% 86% 68% 62% 

92 Aquaculture 203,750 87% 84% 58% 17% 

111 Open Water 32,373,788 99% 95% 89% 76% 

112 Perennial Ice/Snow 427,601 100% 99% 100% 97% 

121 Developed/Open Space 64,041,431 97% 75% 72% 41% 

122 Developed/Low Intensity 28,380,971 99% 91% 96% 69% 

123 Developed/Med Intensity 11,279,299 100% 96% 98% 81% 

124 Developed/High Intensity 3,900,690 100% 98% 99% 87% 



Remote Sens. 2021, 13, 968 13 of 31 
 

 

131 Barren 20,800,191 99% 96% 96% 87% 

141 Deciduous Forest 239,843,277 100% 97% 94% 89% 

142 Evergreen Forest 249,399,532 100% 99% 99% 96% 

143 Mixed Forest 29,952,005 100% 99% 100% 98% 

152 Shrubland 429,532,225 99% 89% 89% 64% 

176 Grassland/Pasture 383,816,367 93% 68% 66% 37% 

190 Woody Wetlands 75,447,681 99% 93% 97% 83% 

195 Herbaceous Wetlands 23,005,862 94% 86% 88% 75% 

 

Overall, the high superclass accuracies of non-crop classes compared to their low 

specific class accuracies reported in Table 2 suggests that a sizable portion of the mapping 

errors result from within-domain confusion among the various non-crop classes, rather 

than between non-cropland covers and crops. To quantify this, we calculated the relative 

within-domain error rate for each CDL class. This metric indicates what percentage of 

mapping errors were a result of confusion within the same domain. For example, corn 

had a relative within-domain omission error rate of 57% in 2012, which means that slightly 

more than half of the missed (i.e., omitted) corn fields were mapped as another crop in 

the CDL, rather than mapped as a non-cropland cover (Table 4). The within-domain 

proportion of commission errors for corn was 73%, which indicates that roughly three-

quarters of all pixels that were incorrectly mapped as corn in the CDL were actually 

another crop on the landscape rather than a non-cropland cover. 

Nationwide, most crops had within-domain error proportions greater than 50%, 

which signifies that they were most frequently confused with another crop when mapped 

incorrectly. Two notable exceptions were alfalfa and fallow/idle cropland, which had 

within-domain omission error rates of 27 and 35%, respectively. Thus, alfalfa and fallow 

fields that were incorrectly captured by the CDL were most frequently classified as a non-

cropland cover. Alfalfa’s within-domain commission error rate was also less than 50%, 

which suggests that pixels incorrectly mapped as alfalfa in the CDL were most likely to 

be non-cropland covers on the landscape.  

The proportion of within-domain errors for errors of omission for all non-cropland 

covers were greater than 50%, indicating that misclassified non-cropland covers were 

most likely to be labeled as another non-crop cover by the CDL. However, aquaculture, 

developed/open space, and grassland/pasture all had low within-class rates of errors of 

commission, which indicates that when incorrect, these land covers were frequently 

mapped in locations that were actually cropland.  

3.4. Spatial Patterns of CDL Accuracy, Confidence, and Certainty 

CDL accuracy for specific crops varied greatly across the U.S. In general, most crop 

accuracies in 2012 were highest within major cropping regions such as the Corn Belt, 

Central Plains, and Mississippi Delta (Figure 2a; Appendix Figure A1). Conversely, crop 

accuracies were lower along the periphery of these core production zones and in less 

dominant agricultural regions of the eastern, southern, and western parts of the U.S. These 

locations with lower accuracy have a higher prevalence of less common crops (e.g., crops 

other than corn and soybeans), which are typically mapped less accurately due to more 

limited reference and training data from FSA and a charter by USDA to focus mapping 

efforts on major program crops [15,41]. In addition, a greater mixture of crop and non-

cropland covers in these areas generates more opportunities for misclassification.  

Non-crop classes had the highest levels of reported disagreement between mapped 

and reference sources in the northern and southern plains (Figure 2b). Most western 

states, on the other hand, had a clearer identification of non-cropland cover types, 

particularly across the vast non-cultivated areas in the region. Mid-Atlantic states and the 

eastern Corn Belt also contained relatively high non-crop accuracies considering their 

diverse composition of land cover classes.  
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The visual inspection of confidence layers suggests that the locations of mixed 

pixels—map units which fall across two or more land covers—are often mapped with 

lower confidence than adjacent single cover pixels. For example, in heavily cultivated 

regions of the country such as Iowa, mixed pixels commonly occur between adjacent fields 

and along roadways, where they are often the cause of misclassification in the CDL and 

other remote sensing products [52,53]. In forested regions of the U.S., confidence levels 

were also low, even across large uninterrupted swaths of forest land cover. In these such 

locations, the low confidence reflects difficulty by the classification algorithm in 

delineating the specific type of forest cover—i.e., deciduous, coniferous, mixed forest, or 

woody wetland. 

Regionally, CDL confidence levels are high across the Midwest and west, and lowest 

in the southeast, northeast, and Great Lakes regions (Figure 2c,d). Within specific regions 

of similar land cover, there is also variation. For example, in the cultivated region of the 

Texas panhandle, cotton and corn on the western edge are both mapped with lower 

confidence, perhaps due to a greater amount of land use change and intermittent cropping 

patterns in that area. Across the North and South Dakota, crops tend to be consistently 

mapped with lower confidence the farther west they are located (Appendix Figure A2). 
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Figure 2. Panel of the user’s accuracy (a,b), confidence layer (c,d), and combined product of user’s accuracy and confidence 

layer (e,f) delineated for crop (a,c,e) and non-crop (b,d,f) classes of the CDL for 2012. . 

To extract further insights about the within-class spatial variation of CDL 

performance, we combined the classifier confidence data with assessed class accuracy into 

a single measure of CDL certainty. Figure 2e,f shows an example of the combined accuracy 

x confidence product at the national scale. Integrating pixel resolution spatial variation 

from the confidence layer into the existing state and class resolution accuracy estimates is 

particularly applicable to nationwide and multistate analyses since the confidence data 

have greater continuity among state products.  
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In addition to helping normalize certainty across regions, the use of both accuracy 

and confidence information independently or in combination may provide improved 

insights into local uncertainty. Figure 3 shows an example of an agriculturally intensive 

region of southern Iowa. Here, accuracy data help demarcate field-sized tracts of land that 

have low class accuracies (Figure 3a), which are locations that data users may wish to 

withhold from analyses due to the large uncertainty associated with their classification. 

Alternatively, the confidence layer captures finer levels of uncertainty due to mixed pixels 

or other contributors to local uncertainty such as topography or ambiguity among land 

covers (Figure 3b) but fails to consider the likelihood of the mapped class being incorrect. 

Considering both accuracy and confidence data (Figure 3c) thus provides insights into 

multiple dimensions of uncertainty and may be valuable for improving the certitude of 

mapping and map applications.  
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Figure 3. Maps of CDL user’s accuracy (a), confidence levels (b), and a combined layer of 

certainty, shown as the product of accuracy and confidence (c). 

3.5. Measured Biases and Adjusted Crop Area Estimates 

Adjusted estimates of crop area informed by map biases can improve upon raw pixel-

count area estimates by calibrating them against the reference data used for assessment. 

Table 6 presents the simple map biases (Equation (12)) and associated adjusted acreage 

estimates (Equation (13)) for the 18 largest crop classes for the CDL for which there are 

also relevant data from official USDA acreage estimates. Given that the CDL represents 
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mid-summer estimates of crop extent, we include NASS data for both planted and 

harvested areas, as well as the average of these two metrics. For ten of the 16 crops with 

comparable NASS planted and harvested data, the simple bias-adjusted acreage estimate 

was closer than the raw pixel-count estimate to the average of NASS planted and 

harvested areas. As such, the adjusted results provide refined measures of crop area that 

are independent of (but more consistent with) other acreage estimates such as the NASS 

Surveys or Census of Agriculture and could be used to complement or replace raw CDL 

pixel count area estimates in various applications.  

Table 6. Simple bias and bias-adjusted acreage estimates for major crops for 2012. CDL area represents the summed area 

of all pixels in the CDL. CDL bias and bias-adjusted acreage were calculated for each crop according to equations 12 and 

13 using the producer’s and user’s accuracy data of Appendix Table A2. NASS planted and harvested areas are from the 

annual NASS acreage report, released on June 29, 2012. Harvested cotton from 2012 October production report. All area 

values are reported in acres. 

Crop Name CDL Area CDL Bias 
Bias-Adjusted 

Acreage 

NASS Planted 

Area 

NASS Harvested 

Area 

NASS 

Ave 

Corn 94,983,301 0.43% 94,572,035 96,405,000 88,851,000 92,628,000 

Soybeans 69,810,086 −0.03% 69,829,899 76,080,000 75,315,000 75,697,500 

Winter Wheat 34,784,199 −0.22% 34,860,122 41,819,000 35,023,000 38,421,000 

Fallow/Idle Cropland 24,395,076 −12.24% 27,382,251 *14,145,567 **36,382,032 n/a 

Alfalfa 16,167,152 −5.52% 17,059,748 19,213,000 18,827,000 19,020,000 

Cotton 13,114,321 1.88% 12,868,014 12,635,000 10,443,400 11,539,200 

Spring Wheat 12,303,171 2.97% 11,937,985 11,995,000 11,681,000 11,838,000 

Sorghum 6,262,444 −6.60% 6,675,868 6,210,000 5,238,000 5,724,000 

Dbl WinWht/Soybeans 5,311,121 2.85% 5,159,595 *** *** *** 

Barley 2,852,300 −12.90% 3,220,316 3,678,000 3,268,000 3,473,000 

Rice 2,671,894 −1.51% 2,712,326 2,661,000 2,640,000 2,650,500 

Durum Wheat 1,860,552 −9.80% 2,042,794 2,203,000 2,122,000 2,162,500 

Dry Beans 1,743,309 −6.65% 1,859,213 1,632,700 1,573,600 1,603,150 

Canola 1,700,926 −2.23% 1,738,835 1,631,500 1,593,100 1,612,300 

Peanuts 1,657,438 −1.42% 1,680,900 1,526,000 1,486,000 1,506,000 

Sunflower 1,595,069 −8.79% 1,735,327 1,804,500 1,735,400 1,769,950 

Oats 1,285,192 −33.81% 1,719,707 2,746,000 1,091,000 1,918,500 

Sugarbeets 1,238,159 −0.55% 1,244,915 1,244,100 1,215,900 1,230,000 

*Estimate of fallow cropland area from the 2012 Census of Agriculture. 

**Estimate of idle cropland area from the 2012 Census of Agriculture. 

***Double cropped winter wheat / soybean area from the CDL may be added to both CDL soybeans and CDL winter wheat 

areas to facilitate comparison with NASS estimates for each individual crop. 

Assessing the changes in mapped biases over time may also aid in understanding the 

true dynamic compositions of crops on the landscape. Figure 4 charts the simple bias of 

four major crops over time. According to the estimates, the mapping of both corn and 

soybeans by the CDL relative to their reference data have increased only slightly, and in 

tandem, over time. In contrast, alfalfa has gone from being under-mapped by 12.6% 

relative to the reference data in 2008 to being under-mapped by only 1.6% in 2016, which 

marks a considerable change over time. As a result, estimates of alfalfa area based on 

direct CDL pixel counts could embody a sizeable artificial increase.  
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Figure 4. Mapping bias of select crops over time. The biases represent the relative over-representation (positive values) or 

under-representation (negative values) of crops by the CDL in each year according to comparison with the products’ 

reference data. 

4. Discussion 

The Cropland Data Layer currently provides the only annual information on 

agricultural land use/land cover across the United States that is geographically 

comprehensive, spatially explicit, and crop specific. Despite its prominent use and 

application, the accuracy of the CDL had not been well characterized at national scales 

nor across common aggregated classes. To fill this gap, we derived and analyzed multiple 

metrics of certainty for the CDL across space and time to better understand its 

performance and associated implications for measuring LULC and its change. 

4.1. CDL Performance 

Based on nationwide assessment, it is evident that the CDL consistently identifies 

specific major crops like corn and soybeans with very high accuracy. On the other hand, 

select land cover classes such as alfalfa and grassland/pasture are captured correctly only 

about 75% of the time, which reflects the CDL’s generally lower performance outside of 

the major crop classes, a point frequently discussed in state and regional evaluations 

[35,40]. 

To accommodate low accuracies, specific classes can be aggregated into broader land 

cover domains such as cropland or non-cropland. Our results spatially and numerically 

quantify the effectiveness of this approach and show that across the U.S., cropland areas 

are mapped correctly by the CDL at least 97% of the time for all years. These findings 

confirm the CDL’s acuity of identification and demonstrate its validity for monitoring 

cropland locations and associated shifts over time.  

Mapping the spatial variation in class accuracies across the United States reveals clear 

geographic trends and patterns in the CDL’s performance. In general, specific crop 

accuracies are highest within core agricultural areas and among major USDA program 

crops. Cropland superclass and consolidated cropland accuracies, however, are 
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consistently high across the country, and further illustrate the value of aggregating to 

broader domains when attempting to measure land cover across large areas or across all 

CDL classes, particularly on the margins of major crop zones.  

The use of map bias information to adjust area estimates provides a quantitative 

means to improve crop area calculations based on remote sensing products [10,50]. 

Similarly, the simplified bias-adjusted approach for estimating crop area reported here 

improved upon raw CDL pixel-based estimates by correcting for misclassifications and 

also provides a more comprehensive accounting of cropland than the FSA reference data 

would provide on its own, since that data source only captures land with crops that 

participate in FSA programs. Our approach thus combines desirable features of both the 

CDL and FSA datasets, while remaining independent of other USDA data sources like the 

NASS surveys or Census of Agriculture that are occasionally used for calibration or 

comparison. 

4.2. Improvements over Time  

For most metrics, we reported on the performance of the 2012 CDL, although 

variability exists across years. Overall, CDL accuracy has improved over time, due in part 

to use of additional satellite input (more sources and more images per year), a more robust 

classification process (an ensemble decision tree instead of maximum likelihood 

methodology), and increasing amounts of training data from the FSA and elsewhere [41]. 

As a result, average class-specific accuracy for all crop classes has improved from 87% in 

2008 to 92% in 2016. By 2016, a total of 17 crops were mapped with 90% or higher 

producer’s accuracy, up from just 10 crops in 2008. Aggregate metrics, including 

consolidated and superclass accuracies for the cropland and non-cropland domains, have 

also improved. However, the magnitude of their increases is more limited due to their 

already high performance across time. 

The annual changes in performance of the CDL can have important ramifications for 

CDL-based analyses. If the bias or relative over- or under-mapping of a class changes over 

time, it can induce false signals of LULC change or skew estimates of crop area change. 

Lark et al. (2017) explore the implications from the change in total cropland bias and 

suggest potential solutions [41]. Here, we show that there are also sizable changes in bias 

for specific crop types. These changes, if disregarded, may influence the results of analyses 

of those crops over time. For example, unadjusted estimates of the increase in corn acreage 

following the biofuels boom could be affected by artificial changes in corn mapping across 

time. However, the magnitude and direction of impact depends on the specific years of 

analysis and may be counterbalanced by parallel biases in soybeans and other crops. Thus, 

analyses that focus on the relationship among corn, soybeans, and cropland—or any 

classes that have experienced synchronized changes in bias—likely remain valid despite 

potential eccentricities in the underlying data. Nonetheless, it is important to consider the 

biases of mapped data in applied analyses, particularly when results may influence 

industry and policymaking.  

4.3. Implications for Measuring LULC Change 

The use of aggregated classes to measure LULC change benefits from the high acuity 

of the product to detect a broader domain while avoiding challenges of delineating 

spectrally similar land covers within the same domain. When measuring conversions 

between cropland and non-cropland, the consolidated classes can thus be used to initially 

detect change, followed by subsequent identification of the specific land cover or crop 

planted before and after the conversion [22]. The assessment of crop specificity after 

detecting change maintains the thematic richness of the original CDL dataset without 

adversely affecting detection of a conversion between the aggregated domains. In 

practice, this isolates the known uncertainty in specific class identification and removes it 

from the change detection process. 



Remote Sens. 2021, 13, 968 21 of 31 
 

 

Using this two-stage approach, the likelihood that a conversion occurred becomes a 

function of the highly accurate aggregated classes, whereas the certainty of which specific 

land cover class preceded and followed a conversion (given that the conversion was 

correctly identified) is dependent upon the land cover’s specific class accuracy. Thus, for 

cropland conversion estimates such as Lark et al. (2015) or Morefield et al. (2016), the class 

accuracies reported in our Table 2 most closely represent the likelihood that a given crop 

was planted on newly converted land, rather than directly indicate the likelihood that a 

conversion occurred [22,54]. 

The challenges of mapping less-common specific crops and the ease of mapping 

aggregate cropland have additional implications for CDL-based applications. For 

example, it might be argued that the CDL is more appropriate for detecting broad land 

use changes (e.g., conversion between cropland and non-cropland) than for identifying 

nuanced changes among specific crops (e.g., identifying crop rotations) unless the focus 

of rotations remains on major crop types [18,19,55]. Crop-specific applications should also 

consider each class’s prevalence and accuracy and how such factors may influence results. 

Our findings can also be used to guide how specific crops should be treated within 

analyses. Alfalfa, for example, is often cited as a problem crop due to its semi-perennial 

nature, spectral similarity to non-cropland covers, and occasional interplanting within 

mixed species hay and pasture. The crop was incorrectly mapped in non-cultivated areas 

14% of the time in 2012. By 2016, this superclass error rate dropped to just 8%. From a 

producer's perspective, alfalfa was mapped as a non-cultivated land cover 20% of the time 

in 2012, but this error rate dropped to 8% by 2016. Overall, the lower superclass accuracies 

for alfalfa relative to other crops reinforce precautions of past analyses, such as the 

exclusion by Morefield et al. (2016) of all non-crop to alfalfa conversions from their change 

analysis and the exclusion by Lark et al. (2015) of grassland-to-alfalfa conversion. The 

relative within-domain error rates (Table 4) further highlight the challenge of including 

alfalfa in the cropland domain, since the crop is more frequently confused with non-

cropland covers than with other crop classes. However, the latest improvements in alfalfa 

accuracy suggest that analyses of more recent CDL data may want to consider including 

the forage crop in their analyses. 

Visual mapping of specific and aggregate accuracies can help users identify hotspots 

and problem areas within the country and understand how they vary across space and 

time. Coupling accuracy data with its spatial location on the landscape thus offers 

opportunities unafforded by the nonspatial structure of the NASS metadata tables and 

confusion matrices for each state and year. For example, rather than excluding entire land 

cover classes from analyses, such as the exclusions of alfalfa by Morefield et al. (2016) and 

Lark et al. (2015), the spatial mapping of the accuracy of individual classes would allow 

the empirical removal of just those pixels with low mapped accuracy in certain state–year 

combinations, while retaining those with a higher likelihood of being correct. The value 

of this spatial approach is greatest in analyses that consider multiple years of CDL data, 

where the number of state, class, and year combinations is multiplicative. For example, 

for an assessment of change between two years, there are typically over a million unique 

combinations of state and class pairs, each with its own likelihood of being correct (e.g., 

50 classes times 40 states for year one multiplied by 50 classes times 40 states for the second 

year yields four million combinations). The manual selection of which specific LULC class 

combinations to include or exclude based on accuracy thus becomes intractable, whereas 

the spatial accuracy maps can be used to easily select only those combinations that meet 

a quantitative accuracy threshold. 

The integration of confidence layer data with assessed accuracy data may also 

improve spatial insights. For example, in many CDL-based change detection analyses, 

post-classification processes such as spatial filters and minimum mapping units have been 

used to indiscriminately remove areas of apparent change that are likely falsely mapped 

due to mixed pixels or misclassifications. Alternatively, accuracy and confidence data 

could be used to set a threshold of certitude below which any identified potential change 
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is flagged for removal. Probability information from the remote sensing process has 

previously been used to improve vector-based detection of land cover change using 

unclassified Landsat data [48]. Here, we suggest that confidence information from the 

remote sensing process could similarly help improve the post-classification detection of 

LULC change using land cover products. While we have not quantified the impact of such 

an approach, it has since been used in other studies to set a higher threshold of certainty 

for change detection [56]. 

Confidence layer data could also be used in concert with accuracy information to 

spatially allocate error adjustments. For example, here we modified area estimates for 

each crop using an accuracy-derived indicator of bias (Table 6). However, such area 

adjustments typically do not spatially correct pixels on the map, unless this issue of 

reconciliation is specifically addressed [57]. To help achieve this reconciliation in post-

classification environments, confidence data could similarly be used to select the pixels 

with the lowest confidence as candidates for reclassification. For example, if the CDL 

overestimated corn area by 500 pixels in a given state, the 500 pixels of corn with the 

lowest confidence could be removed to make a spatially explicit, bias-adjusted map of 

corn that was consistent with the reference data estimates of area. 

4.4. Limitations, Representativeness, and Uncertainty of Results 

The class consolidation techniques described here do not modify the underlying 

performance of the remote sensing product, but rather improve the representativeness of 

the accuracy at which the product maps aggregate domains. Of note, aggregating classes 

improves accuracy by lowering the product’s thematic resolution or specificity—thus 

improvements are made by accommodating errors rather than by correcting them. The 

greatest benefits are therefore achieved when the thematic resolution of the product 

matches the desired application. When using aggregated remote sensing products in 

applications, it is important to quantify these associated changes in accuracy so that the 

reported metrics and critiques reflect the actual data used.  

There may also be variation in the representativeness of the CDL’s reported accuracy 

statistics. The FSA reference data used to assess the CDL are not based on a probabilistic 

sample, but rather on an availability approach, with the majority coming from 10 key 

USDA program crops. As a result, the reported consolidated class accuracies are most 

representative for those crops, and less characteristic for specialty crops and non-crop 

covers. Similarly, the distribution of crop sample data across geographic regions are in 

some places disproportionate to the amount of crop produced there. Therefore, the 

accuracies of certain regions are more reliable than others due to differing levels of 

reference data available for assessment. 

To maintain the highest level of representativeness while calculating national 

average crop accuracies, we weighted the accuracy of each crop in each state by the total 

acreage of that crop in that state. For example, Iowa produced 14% of all corn in the nation 

in 2012; thus, its accuracy was weighted to contribute 14% of the national accuracy for 

corn. An alternative method for calculating nationwide accuracies is to sum all national 

reference observations without regard to spatial distributions of the data, and such an 

approach has recently been implemented by NASS to report nationwide accuracies for 

select years in the online CDL metadata [26]. Here, we choose to area-weight by class 

prevalence, such that the nationwide estimates reflect that of a pixel selected at random 

and are unskewed by nonrepresentatively sampled reference data.  

Uncertainty can also stem from errors in the reference data or a mismatch between 

reference and evaluated data. For example, the FSA CLU classifications of grasslands are 

often inconsistent across states and time, and occasionally they do not align with CDL 

land cover designations. Thus, analysts at NASS make a judgement for each state and year 

on how to best utilize the FSA data for training and assessing accuracy. Discrepancies in 

how the FSA data are reported and incorporated can thus occasionally lead to apparent 

differences in error rates across states and years, when in reality the inconsistencies 
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between the CDL and the landscape are much smaller. Similarly, errors exist in the NLCD 

data used for training and assessing non-crop areas of the CDLs, which in turn affect their 

production and assessment. It is possible that some CDL non-crop classes are more correct 

than the associated NLCD classes on which they are based and evaluated, given that the 

CDL is updated and improved annually, it includes exclusive confidential FSA training 

data, and it generates higher accuracies for cultivated areas. Thus, the reported non-crop 

accuracies of the CDL (based on comparison with the NLCD) may underestimate the true 

performance of those CDL classes. 

5. Conclusions 

The CDL is a powerful and unrivaled tool for the exploration of agricultural 

landscapes and is poised to remain the premier remotely sensed agricultural LULC map 

in the U.S. due to its annual availability, crop-specific detail, and exclusive access to 

expansive and robust ground-based reference datasets from the USDA. We show that the 

CDL identifies major crops and certain land covers with high accuracy across the U.S., 

and that this ability holds true for all years of nationwide data coverage. Our findings also 

confirm that the CDL exhibits extremely high acuity at discerning the aggregated classes 

of cropland and non-cropland across spatial and thematic scales. Explicitly considering 

the bias within specific classes and incorporating confidence layer data provide two 

additional opportunities to further improve CDL performance and its use in LULC change 

assessments and other applications. 

While the original CDL dataset can indeed provide challenges for applications that 

are beyond its original intent of mapping annual crop locations, it is the responsibility of 

its users to apply the data in ways that do not compromise results. The CDL’s consistent 

and reliable performance in mapping crops and cropland nationwide and across time 

clearly demonstrates that many of the critiques and concerns regarding the underlying 

accuracy of the product are unfounded or dissipate when thoroughly assessed at 

appropriate scales. Furthermore, the substantial uncertainty and resource costs of 

alternative methods for monitoring crops and croplands, such as through ground surveys 

or air photo interpretations, underscores the need for approaches that can systematically 

identify continental scale LULC change in an automated, reproducible, and verifiable 

manner. While many products based on remote sensing seek to fill this gap, the CDL is a 

dataset proven to be well suited for the task. When used appropriately, the CDL is a valid 

and indispensable tool for studying LULC and a crucial asset for monitoring 

contemporary cropland dynamics across the United States. 
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Appendix A 

Table A1. List of CDL codes and class names and whether they were included in the cropland or non-cropland domain in 

the analyses of superclass and consolidated class accuracies. Domain delineations follow that of Lark et al. (2015) based 

on original NASS distinctions [16,22]. 

Cropland Non-Cropland 

ID Class Name ID Class Name ID Class Name ID Class Name 

1 Corn 48 Watermelons 216 Peppers 37 Other Hay/Non Alfalfa 

2 Cotton 49 Onions 217 Pomegranates   

3 Rice 50 Cucumbers 218 Nectarines 63 Forest 

4 Sorghum 51 Chickpeas 219 Greens 64 Shrubland 

5 Soybeans 52 Lentils 220 Plums 65 Barren 

6 Sunflower 53 Peas 221 Strawberries 81 Clouds/No Data 

10 Peanuts 54 Tomatoes 222 Squash 82 Developed 

11 Tobacco 55 Caneberries 223 Apricots 83 Water 

12 Sweet Corn 56 Hops 224 Vetch 87 Wetlands 

13 Pop or Orn Corn 57 Herbs 225 Dbl Crop WinWht/Corn 88 Nonag/Undefined 

14 Mint 58 Clover/Wildflowers 226 Dbl Crop Oats/Corn 92 Aquaculture 

21 Barley 59 Sod/Grass Seed 227 Lettuce 111 Open Water 

22 Durum Wheat 60 Switchgrass 229 Pumpkins 112 Perennial Ice/Snow  

23 Spring Wheat 61 Fallow/Idle 230 Dbl Crop Lettuce/Durum Wht 121 Developed/Open Space 

24 Winter Wheat 66 Cherries 231 Dbl Crop Lettuce/Cantaloupe 122 Developed/Low Intensity 

25 Other Small Grains 67 Peaches 232 Dbl Crop Lettuce/Cotton 123 Developed/Med Intensity 

26 Dbl WinWht/Soy 68 Apples 233 Dbl Crop Lettuce/Barley 124 Developed/High Intensity 

27 Rye 69 Grapes 234 Dbl Crop Durum Wht/Sorghum 131 Barren 

28 Oats 70 Christmas Trees 235 Dbl Crop Barley/Sorghum 141 Deciduous Forest 

29 Millet 71 Other Tree Crops 236 Dbl Crop WinWht/Sorghum 142 Evergreen Forest 

30 Speltz 72 Citrus 237 Dbl Crop Barley/Corn 143 Mixed Forest 

31 Canola 74 Pecans 238 Dbl Crop WinWht/Cotton 152 Shrubland 

32 Flaxseed 75 Almonds 239 Dbl Crop Soybeans/Cotton   

33 Safflower 76 Walnuts 240 Dbl Crop Soybeans/Oats 176 Grassland/Pasture 

34 Rape Seed 77 Pears 241 Dbl Crop Corn/Soybeans   

35 Mustard 204 Pistachios 242 Blueberries 190 Woody Wetlands 

36 Alfalfa 205 Triticale 243 Cabbage 195 Herbaceous Wetlands 

38 Camelina 206 Carrots 244 Cauliflower 
  

39 Buckwheat 207 Asparagus 245 Celery 
  

41 Sugarbeets 208 Garlic 246 Radishes 
  

42 Dry Beans 209 Cantaloupes 247 Turnips 
  

43 Potatoes 210 Prunes 248 Eggplants 
  

44 Other Crops 211 Olives 249 Gourds 
  

45 Sugarcane 212 Oranges 250 Cranberries 
  

46 Sweet Potatoes 213 Honeydew Melons 254 Dbl Crop Barley/Soybeans 
  

47 Misc Vegs and Fruits 214 Broccoli     
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Table A2. Nationwide area, producer’s accuracy, and user’s accuracy for each crop type in the 2012 CDL. Sorted in order 

of descending producer’s accuracy. 

CDL ID Crop Name CDL Acreage Producer's Accuracy User's Accuracy 

45 Sugarcane 1,026,752 96.52% 94.44% 

3 Rice 2,671,894 95.54% 97.01% 

1 Corn 94,983,301 95.23% 94.82% 

5 Soybeans 69,810,086 93.82% 93.85% 

41 Sugarbeets 1,238,159 93.67% 94.18% 

31 Canola 1,700,926 93.51% 95.64% 

24 Winter Wheat 34,784,199 92.18% 92.38% 

2 Cotton 13,114,321 91.06% 89.39% 

75 Almonds 1,155,344 91.04% 91.56% 

250 Cranberries 36,040 91.02% 95.23% 

23 Spring Wheat 12,303,171 89.47% 86.89% 

212 Oranges 1,019,334 89.24% 91.45% 

54 Tomatoes 353,534 89.24% 89.60% 

51 Chickpeas 1,838 89.19% 84.44% 

43 Potatoes 1,083,450 88.98% 92.66% 

69 Grapes 1,136,718 87.39% 89.89% 

26 Dbl Crop WinWht/Soybeans 5,311,121 86.70% 84.30% 

230 Dbl Crop Lettuce/Durum Wht 39,776 86.08% 80.01% 

68 Apples 444,242 85.67% 88.41% 

56 Hops 24,903 84.53% 96.44% 

6 Sunflower 1,595,069 84.09% 92.20% 

10 Peanuts 1,657,438 81.17% 82.33% 

42 Dry Beans 1,743,309 79.97% 85.66% 

204 Pistachios 201,944 78.50% 85.69% 

46 Sweet Potatoes 84,332 77.54% 87.22% 

4 Sorghum 6,262,444 77.43% 82.91% 

77 Pears 28,048 77.36% 80.67% 

36 Alfalfa 16,167,152 75.40% 79.81% 

245 Celery 2,460 74.95% 93.43% 

76 Walnuts 341,480 74.80% 79.49% 

52 Lentils 388,352 74.57% 82.45% 

22 Durum Wheat 1,860,552 73.30% 81.26% 

49 Onions 139,769 72.90% 78.67% 

66 Cherries 199,450 72.70% 78.60% 

211 Olives 45,218 72.58% 90.34% 

21 Barley 2,852,300 72.41% 83.14% 

247 Turnips 1,990 72.37% 79.65% 

53 Peas 774,135 72.14% 83.45% 

208 Garlic 17,233 71.20% 84.66% 

61 Fallow/Idle Cropland 24,395,076 69.29% 78.96% 

32 Flaxseed 284,228 68.10% 81.77% 

59 Sod/Grass Seed 797,216 68.00% 82.93% 

57 Herbs 104,376 67.07% 86.46% 

14 Mint 8,429 67.00% 77.65% 

50 Cucumbers 32,698 65.44% 78.26% 

12 Sweet Corn 301,474 65.35% 80.95% 
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244 Cauliflower 1,956 64.25% 79.31% 

226 Dbl Crop Oats/Corn 109,775 63.82% 62.71% 

234 Dbl Crop Durum Wht/Sorghum 4,095 63.24% 66.43% 

47 Misc Vegs and Fruits 47,159 62.89% 78.30% 

225 Dbl Crop WinWht/Corn 402,067 61.81% 69.33% 

71 Other Tree Crops 68,927 61.69% 75.22% 

27 Rye 453,504 61.47% 72.91% 

254 Dbl Crop Barley/Soybeans 113,764 61.24% 78.16% 

72 Citrus 139,758 60.68% 81.33% 

33 Safflower 148,336 59.74% 80.07% 

11 Tobacco 112,733 59.62% 79.97% 

232 Dbl Crop Lettuce/Cotton 7,770 58.53% 69.78% 

213 Honeydew Melons 6,430 58.09% 75.87% 

231 Dbl Crop Lettuce/Cantaloupe 3,833 57.97% 85.54% 

242 Blueberries 90,911 57.70% 74.20% 

248 Eggplants 357 57.69% 68.18% 

227 Lettuce 28,621 57.45% 66.98% 

58 Clover/Wildflowers 146,851 57.21% 70.80% 

209 Cantaloupes 18,325 57.00% 72.44% 

217 Pomegranates 20,652 56.79% 76.84% 

216 Peppers 19,796 55.46% 67.81% 

207 Asparagus 19,258 54.93% 78.11% 

74 Pecans 398,572 53.68% 83.55% 

29 Millet 457,674 53.43% 64.84% 

221 Strawberries 43,438 52.63% 80.70% 

39 Buckwheat 22,586 52.11% 78.32% 

246 Radishes 10,175 50.75% 70.24% 

235 Dbl Crop Barley/Sorghum 12,071 49.65% 50.19% 

67 Peaches 53,255 49.19% 68.69% 

35 Mustard 32,734 48.15% 78.68% 

241 Dbl Crop Corn/Soybeans 16,998 48.07% 75.59% 

60 Switchgrass 10,684 47.62% 56.33% 

220 Plums 53,436 46.92% 65.53% 

55 Caneberries 11,633 46.19% 85.35% 

206 Carrots 42,670 45.93% 70.76% 

229 Pumpkins 23,094 43.87% 72.29% 

70 Christmas Trees 65,800 43.65% 75.04% 

243 Cabbage 18,368 43.03% 59.38% 

38 Camelina 4,977 42.94% 69.91% 

214 Broccoli 11,202 41.89% 63.04% 

28 Oats 1,285,192 41.18% 62.21% 

238 Dbl Crop WinWht/Cotton 324,242 41.14% 70.23% 

48 Watermelons 37,670 40.78% 62.93% 

219 Greens 15,028 40.62% 54.26% 

13 Pop or Orn Corn 120,463 40.33% 91.15% 

223 Apricots 3,760 39.37% 71.61% 

222 Squash 20,832 37.05% 61.87% 

237 Dbl Crop Barley/Corn 37,530 36.55% 70.59% 

236 Dbl Crop WinWht/Sorghum 386,258 34.26% 60.55% 
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224 Vetch 4,595 33.12% 69.06% 

44 Other Crops 171,449 32.93% 63.82% 

205 Triticale 156,684 32.74% 67.26% 

218 Nectarines 2,589 32.16% 70.51% 

25 Other Small Grains 5,008 28.18% 73.07% 

34 Rape Seed 3,211 23.92% 58.74% 

239 Dbl Crop Soybeans/Cotton 7,388 20.90% 66.57% 

240 Dbl Crop Soybeans/Oats 17,928 19.50% 62.42% 

30 Speltz 2,811 16.32% 60.80% 

249 Gourds 150 10.00% 100.00% 

 

Table A3. Accuracy of CDL-derived consolidated cropland and non-cropland classifications for each U.S. state or 

multistate region for 2012. Results calculated according to equation 4 and consolidated according to Appendix Table A1. 

 Cropland Non-Cropland 

State 
Producer's 

Accuracy 

User's 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy 

AL 84% 93% 98% 94% 

AR 97% 100% 99% 89% 

AZ 91% 97% 99% 95% 

CA 96% 98% 99% 93% 

CO 93% 98% 98% 90% 

CT_MA_ME_NH_RI_VT 87% 93% 100% 99% 

DE_MD_NJ 93% 94% 98% 96% 

FL 89% 95% 98% 92% 

GA 86% 91% 98% 93% 

IA 97% 99% 95% 77% 

ID 93% 96% 99% 95% 

IL 98% 97% 92% 95% 

IN 98% 97% 94% 96% 

KS 97% 99% 99% 95% 

KY 92% 99% 97% 84% 

LA 95% 98% 98% 90% 

MI 96% 95% 95% 90% 

MN 98% 98% 97% 93% 

MO 98% 96% 97% 98% 

MS 94% 98% 98% 92% 

MT 91% 95% 99% 98% 

NC 91% 95% 97% 93% 

ND 95% 98% 97% 90% 

NE 97% 100% 95% 67% 

NM 88% 98% 99% 87% 

NV 88% 96% 100% 99% 

NY 86% 88% 98% 95% 

OH 96% 97% 96% 95% 

OK 97% 100% 96% 62% 

OR 93% 97% 98% 93% 

PA 83% 82% 98% 96% 

SC 86% 92% 98% 94% 

SD 95% 97% 98% 97% 
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TN 95% 99% 98% 90% 

TX 92% 100% 96% 56% 

UT 90% 98% 99% 94% 

VA_WV 92% 94% 99% 98% 

WA 97% 98% 100% 97% 

WI 95% 97% 93% 84% 

WY 88% 98% 99% 93% 

 

 

Figure A1. Map of 2012 state level user’s accuracies for specific crop classes of the CDL for the conterminous U.S. Data 

from USDA NASS (2016) based on the comparison of CDL with FSA reference data for crop classes. An arbitrary grading 

scale of “A”–“F” was assigned to accuracy intervals to help users easily identify where the CDL crop map excels versus 

where additional caution may be warranted. 
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Figure A2. Confidence of pixels mapped as corn in the 2012 CDL. Within a specific state, there can be large spatial variation 

in the degree of certainty with which specific crops are mapped. In South Dakota and North Dakota, corn is mapped more 

confidently in the eastern parts of the states (dark blue), where the crop is more prevalent, and is mapped less confidently 

(green to yellow) as one moves westward and the crop becomes less prominent. 
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