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Abstract: The U.S. Department of Agriculture’s (USDA) Cropland Data Layer (CDL) is a 30 m
resolution crop-specific land cover map produced annually to assess crops and cropland area across
the conterminous United States. Despite its prominent use and value for monitoring agricultural
land use/land cover (LULC), there remains substantial uncertainty surrounding the CDLs’
performance, particularly in applications measuring LULC at national scales, within aggregated
classes, or changes across years. To fill this gap, we used state- and land cover class-specific accuracy
statistics from the USDA from 2008 to 2016 to comprehensively characterize the performance of the
CDL across space and time. We estimated nationwide area-weighted accuracies for the CDL for
specific crops as well as for the aggregated classes of cropland and non-cropland. We also derived
and reported new metrics of superclass accuracy and within-domain error rates, which help to
quantify and differentiate the efficacy of mapping aggregated land use classes (e.g., cropland)
among constituent subclasses (i.e., specific crops). We show that aggregate classes embody
drastically higher accuracies, such that the CDL correctly identifies cropland from the user's
perspective 97% of the time or greater for all years since nationwide coverage began in 2008. We
also quantified the mapping biases of specific crops throughout time and used these data to generate
independent bias-adjusted crop area estimates, which may complement other USDA survey- and
census-based crop statistics. Our overall findings demonstrate that the CDLs provide highly
accurate annual measures of crops and cropland areas, and when used appropriately, are an
indispensable tool for monitoring changes to agricultural landscapes.

Keywords: accuracy assessment; accuracy metrics; map bias; confidence; crop maps; Cropland Data
Layer; land use/land cover change; remote sensing products

1. Introduction

Mapping and monitoring crops and croplands can generate powerful insights about
our environment and agricultural production systems [1-3]. Because satellite-based
remote sensing products are able to efficiently capture land use/land cover (LULC) and
their variations across space and time, these data are increasingly chosen as the basis for
agricultural and environmental decision making, including policy creation, evaluation,
and enforcement [4-8]. With the increased availability and use of detailed remotely sensed
land cover products, however, there is a growing need to understand their accuracy and
reliability for different applications [9-12].

In the United States, the Department of Agriculture’s (USDA) Cropland Data Layer
(CDL) is frequently utilized to monitor agricultural land due to its nationwide coverage,
agricultural focus, and annual frequency [13-16]. Produced by the National Agricultural
Statistics Service (NASS), this satellite-derived map has provided complete coverage of
the conterminous U.S. each year since 2008. Since it tracks specific crops at field-relevant
resolutions, it is an ideal tool to detect geographic trends and changes in cultivation.
Previous studies have used the CDL to track crop rotations and planting patterns [17-20],
evaluate Farm Bill policies such as crop insurance and the Sodsaver program [8,21,22],
and assess the environmental outcomes of various land management systems [20,23,24],
among many other applications. Estimates of cropland area from the CDL are also used
internally by NASS for a variety of reports and survey applications as well as considered
by other government organizations such as the Environmental Protection Agency, for
example, to monitor compliance with land protections in renewable energy policies [4,25].
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To characterize the CDL’s performance, NASS calculates land cover class-specific
accuracies at the state level and releases them with each annual state CDL product [26].
These estimates are based on a comparison with parcel level data from the USDA Farm
Service Agency (FSA) [27] and another land cover map, the National Land Cover Dataset
(NLCD) [28,29]. While these comparisons provide insights into the accuracy of the CDL
for a given state and year, applications of the CDL product typically extend well beyond
this scope; many analyses utilize modifications of the original CDL datasets, compare
across the state products, and/or estimate changes in LULC over time [30-34]. Despite the
prevalence of these applications, the performance of the CDLs in many of these extensions
has not been evaluated.

Given this lack of evaluation, several articles have questioned the reliability of
analyses that use CDL data to identify recent agricultural trends, citing concerns about
both the CDL’s accuracy and its appropriateness for measuring changes to the landscape
[35-40]. Such critiques often cite low reported accuracies for the CDLs when mapping
certain crops in specific regions or when depicting nonagricultural land covers such as
grasslands. Despite the potential validity of these concerns, all such critiques to date have
lacked a systematic nationwide assessment of the CDL accuracy beyond comparisons
with coarse data, thereby leaving substantial uncertainty surrounding the CDL’s ultimate
dependability. Furthermore, select approaches for measuring LULC change using the
CDL and other land cover products may help overcome some of the CDL’s limitations
and improve analysis outcomes [41], though the efficacy of these techniques has not yet
been fully quantified. For example, aggregating specific land cover classes into broader
domains, such as cropland and non-cropland, can help address low classifier accuracies
of specific cover classes by eliminating errors associated with distinguishing different crop
types and among various non-cropland covers, such as the many grassland categories
historically delineated in the CDL [30,40,42].

In this paper, we comprehensively quantified the accuracy of the CDL at the national
scale and evaluated the outcomes relevant for applications of the CDL for mapping crops
and cropland. First, we investigated the benefits of consolidating classes within remote
sensing products and quantified the CDL's ability to distinguish between crop and non-
cropland covers at multiple spatial scales and thematic resolutions. Then, we calculated
nationwide accuracies for both specific and aggregate classes of the CDL and mapped the
spatial variation in accuracies across the U.S. based on congruence with FSA and NLCD
data. We then explored the use of pixel-level classifier confidence information to provide
additional higher-resolution understanding of thematic certainty. Finally, we estimated
the annual bias in mapping specific crops within the CDL and derived new, bias-adjusted
area estimates for the major crop types. We conclude with a discussion of the implications
of these analyses with a particular focus on recommendations for improving LULC
change analyses.

2. Materials and Methods
2.1. Overview of Assessed and Reference Datasets

The Cropland Data Layer is a crop-specific land cover map produced annually by the
USDA National Agricultural Statistics Service (NASS). Complete coverage of the
conterminous United States dates back to 2008, while some states and years predate the
nationwide product. Primary satellite imagery inputs for the CDL vary according to
availability and effectiveness but have included the Resourcesat-1 Advanced Wide Field
Sensor (AWIFS), Resourcesat-2 Linear Imaging Self Scanning (LISS), Landsat-5 Thematic
Mapper (TM), Landsat-7 Enhanced TM Plus (ETM+), Landsat-8 Optical Land Imager
(OLI), Sentinel-2 A/B, and Deimos-1 and UK-2 from the Disaster Monitoring
Constellation. Input images are collected and used internally by NASS throughout the
growing season, and the final, publicly released CDL is intended to capture the area and
geospatial distribution of crops in midsummer. Data processing and classification
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generally occur independently at the state level by NASS analysts, and the nationwide
CDL mosaic that results contains up to 155 classes of cultivated crops and 23 classes of
non-cropland covers. Most states, however, contain a smaller subset of applicable classes,
typically fewer than 30 crops and a dozen non-crop covers [26].

In producing the CDL, NASS uses supplementary information from both the FSA
and the USGS. Specifically, NASS leverages a selection of data from the FSA’s Common
Land Unit (CLU) administrative database to train all cultivated crop classes of the CDL
and assess their accuracy. CLU data are collected and confirmed by USDA County Field
Service Centers and constitute a comprehensive geospatially tagged database of all land
owned by agricultural producers who participate in an FSA program [27]. This represents
the most complete dataset on U.S. agricultural land use, but is not available to the public
[16].

For training and assessing non-cropland cover categories, NASS uses the USGS-led
NLCD as a reference [26,43]. The NLCD is a nationwide 30-meter resolution, 20-class land
cover map that follows a modified Anderson level I/II classification system [44]. The
product’s mapping emphasizes non-cropped vegetative areas, and was historically
produced for 5-year epochs, though the most recent product release has improved
coverage to 2-3-year intervals. It should be noted that while the NLCD is used as an input
in training the CDL classifier, the CDL does not simply revert to the NLCD in non-crop
locations. Instead, the CDL incorporates the NLCD and other data to generate its own
unique mapping of non-crop areas.

During the assessment of the CDL, NASS produces and publishes online the
confusion matrices used to determine the reported accuracies. Referred to as the "error
supermatrices,” these datasets are generated each year at the state or multistate level and
report the number of times specific CDL classes were mapped either consistently or
inconsistently against CLU data from the FSA for all cultivated crops, or against the NLCD
for non-cultivated land covers [26,27]. While the FSA data and NLCD provide valuable
references for comparison, each differs from traditional reference data used for land cover
map evaluation. In particular, the FSA data are not selected via a probability sampling
design. In addition, because the dataset is generated for other USDA programmatic
purposes, its classes do not always align perfectly with the classes of the CDL, leading to
potential mismatch between the target and reference data. Nevertheless, the FSA dataset
represents an incredibly rich and extensive source of reference information that is of a
quality rarely available for remote sensing accuracy assessments. The NLCD, as a satellite-
based land cover map, is not fully independent nor necessarily more accurate than the
CDL. The NLCD is also not produced annually, such that the closest NLCD product
available at the time of CDL production must be utilized, leading to potential temporal
mismatch between the target and reference data. Despite these limitations, these two
datasets provide powerful points of comparison for understanding how CDL
performance varies across space and time.

2.2. Investigating Effects of Aggregation: Superclass and Consolidated Class Accuracies

We used the data reported in the CDL error supermatrices to derive supplemental
accuracy metrics useful for characterizing and understanding the CDL across scales and
applications. A summary and example of each accuracy metric we assessed is presented
in Table 1, with further details of their derivation described in the section below.

Table 1. Accuracy metrics, measured classes, and associated examples. The table describes each of the four main metrics
reported in this paper and provides an example of each metric from the producer’s accuracy and user’s accuracy

perspectives.

Metric:

Reported For:

M A
casures BCCUrAY  Producer's Example User's Example
of Identifying:
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The likelih h 1 The likelih
Class Accuracy  Specific classes  Specific classes ¢ likelihood that actua ¢ likelihood an area mapped

corn is mapped as corn as corn is actually corn
Superclass e An aggregated  The likelihood that actual ~The likelihood an area mapped
Specific classes . . .
Accuracy domain corn is mapped as cropland  as corn is actually cropland

The likelihood that actual
cropland is mapped as
cropland

Consolidated  An aggregated An aggregated
Class Accuracy domain domain

The likelihood an area mapped
as cropland is actually cropland

The likelihood that any crop
Specific classes  is mapped as that specific
crop

Average Class  An aggregated
Accuracy domain

The likelihood that any mapped
crop is actually that crop

Initially, NASS treats their reference data as a simple random sample and calculates
the class accuracies for all specific land cover classes within each state according to the
general formula:

Pixels correct,
Class Accuracyx = ———

1

Pixels total,

for each specific crop x, where pixels correct is the number of mapped pixels that match the
reference data in a given region, and pixels total is either the total number of reference data
observations (for calculating producer’s accuracy) or mapped pixels (for calculating user’s
accuracy) for each class. Producer's accuracies reflect errors of omission; they indicate how
likely a feature is to be correctly captured by the remote sensing product. User's accuracies
reflect errors of commission, and indicate how likely a mapped class correctly resembles
features on the landscape [45].

Aggregating land cover classes to broader thematic classes increases accuracy by
lowering thematic specificity [28,46]. To understand how well the CDL can distinguish
general cropland from non-cropland areas, we assessed the accuracy of aggregated
cropland and non-cropland domains as delineated in Lark et al. (2015), based on original
NASS distinctions [16,26]. The aggregated cropland category includes all annually
cultivated row, closely planted, and horticultural crops as well as tree crops and actively
tilled fallow (Appendix Table Al). The non-cropland domain includes all remaining CDL
classes.

First, we calculated how frequently each specific class of the CDL is mapped as any
class within the correct cropland or non-cropland domain. We refer to this as the
superclass accuracy for each specific class, and derived it as

Pixels in correct domain,
Superclass Accuracyc, =

()

Pixels assessed,,

for each specific class x included in the domain C (e.g., cropland or non-cropland). For the
cropland domain, the superclass producer’s accuracy indicates how frequently a specific
crop on the landscape (e.g., corn) was mapped by the CDL as any type of crop in the
cropland domain. The corresponding superclass user’s accuracy represents how likely a
pixel mapped as a specific crop was actually any type of crop (i.e., cropland) on the
landscape.

From the relationship between specific class accuracy and superclass accuracy, it is
possible to quantify the relative number of mapping errors where confusion occurs with
another class within the same broader domain. We define this metric, which we refer to
as the within-domain error rate, as the difference between a class’s error rate and its
superclass error rate, normalized by the class error rate. It can also be derived directly
from the previously calculated accuracy metrics as

Superclass Accuracy. , — Class Accuracy,

Within Domain Error Ratec, = 1= Class Accuracy (3)
X
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for each specific class x included in the domain C.
Then, we calculated the overall consolidated class accuracy for the entire cropland
domain according the following equation:

Yxec(area, X Superclass Accuracyc )
erc(areax)

where x is each specific class belonging to the set of all classes in domain C, area is the area
of class x, and superclass accuracy is the value calculated in Equation (2) above. Because the
superclass accuracies give the likelihood that a specific class will correctly identify the
broader domain, taking the area-weighted mean of the superclass accuracies across all
classes within a domain depicts the likelihood that any class in a domain will correctly
identify the broader domain. For the consolidated cropland domain, this calculation
generates a single value that represents the accuracy with which the CDL can identify
cropland in a given state and year. The user’s accuracy for consolidated cropland
represents the likelihood that any randomly selected pixel mapped as cropland in the CDL
is actually cropland on the landscape. The producer’s accuracy for consolidated cropland
is the likelihood that cropland on the landscape is correctly mapped as cropland in the
CDL. In similar fashions, Equations (2) and (4) can be used to calculate superclass
accuracies for each specific non-crop class and for the single consolidated non-cropland
domain.

For thoroughness and comparison, we also calculated the average specific class
accuracy for each domain, according to the following equation:

Consolidated Class Accuracy; =

(4)

Yxec(area, x Class Accuracyc )
erc(areax)

The average specific class accuracy indicates how accurately, on average across the
full domain, a randomly selected class is mapped in a given year. Tracking the average
specific class accuracy across several years can thus indicate how well the CDL historically
performed and improved over time at delineating specific crops.

Average Class Accuracy, =

®)

2.3. Calculating Nationwide Accuracies

We next estimated nationwide accuracies for each original CDL class as well as for
the newly derived aggregated metrics. To calculate nationwide accuracies, we weighed
each state accuracy to account for disproportionate class areas and reference observations.
For specific class accuracies of the original CDL, we normalized according to the following
equation:

Yies(Accuracy, ; X areay;)

Nationwide Accuracy, = Y.s(area, ;) ©)
LE. X,

where S is the set of states or multistate regions for which data are produced in a given
year, Area is the total area of class x mapped within the state or region 7, and accuracy is
the user's or producer's accuracy (Equation 1) for region i. Similarly, Equation 6 was used
to calculate the nationwide superclass accuracies for each crop by replacing the specific
class accuracies with the appropriate superclass accuracies derived from Equation 2
above.

To derive the nationwide accuracies for consolidated land cover classes, we also area-
weighed by each constituent class. This accounted for unequal areas of each class within
the consolidated domain and ensured proportional contributions to the accuracy of the
combined class. We considered only classes for which accuracy data existed when
summing class accuracies and areas, since failure to exclude the area of classes without
data would falsely skew the nationwide mean values. Using the available data, we
calculated nationwide accuracies for consolidated classes using the following formula:
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Y vec(Nationwide Superclass Accuracy, X nationwide area,.)

Nationwide Consolidated Accuracy; = 7

Ye Y rec(nationwide area,.) @

Using the specific class accuracy in this formula gives the nationwide-specific class
accuracy averaged across all land covers in the broader domain. Specifically:

) . Y rec(Nationwide Accuracy, X nationwide area,)
Nationwide Average Class Accuracy; =

(8)

Y ec(nationwide area,)

2.4. Mapping Spatial Patterns of CDL Accuracy and Confidence

We mapped a composite of all state- and class-level users” and producers’ accuracies
for each specific crop and non-cropland cover to better understand how the accuracy of
CDL data varies spatially across the U.S. To generate these maps, each original CDL pixel
was assigned the value of its specific class accuracy for that state and year and rounded
to the nearest integer to facilitate storage as an eight-bit raster. We also mapped and
delineated crop and non-crop components of the CDL confidence layer, which was
provided courtesy of USDA NASS. The confidence layer is a coproduct of the remote
sensing classification process and provides a measure of how well a specific pixel fits
within the decision tree ruleset used to classify it [26,47]. A unique benefit of the
confidence dataset is that it provides an independent value for each individual pixel,
rather than a single value for all pixels of a given class within a state. It thus varies at the
pixel level, enabling improved spatial understanding of expected errors within the CDL
product [26].

We then combined the assessed accuracy and classifier confidence data into a single
metric of CDL certainty to better understand the spatial variation in CDL performance.
By integrating the pixel-resolution confidence layer into the state- and class-resolution
accuracy estimates, a combined metric may offer additional insight or improved spatial
representation of expected errors compared to standalone accuracy indicators. This is
similar to the approach of using posterior probability spaces in change vector analysis
[48].

We considered several ways to combine the accuracy and confidence data, including
multiplying the two components (Equation 9), averaging them (Equation 10), and
additional more elaborate combinations (e.g., Equation 11):

Certainty = Class Accuracy X Pixel Confidence 9)
Class Accuracy + Pixel Confidence
Certainty = ( 24 2 f ) (10)
. (Pixel Confidence) — (Average Class Confidence)
Certainty = Class Accuracy |1+ (11)

(Average Class Confidence)

The approaches of Equations 9 and 10 benefit from their simplicity and intuitiveness.
In Equation 11, the confidence data are used as a scalar multiplier to modify the class-level
accuracy: if a pixel is mapped more confidently than the average of the other pixels in its
class, then its certainty value will be greater than its class accuracy; if a pixel is mapped
less confidently than average, then its certainty value will be lower than its class accuracy.
Ultimately, the selection of a formula should be based on the needs of the specific
application [48]. Thus, we present results only from the simple product combination
(Equation 9) in order to illustrate the concept and potential value of combining accuracy
and confidence data but leave further investigation to future work and specific
applications.

2.5. Estimating Map Biases and Bias-Adjusted Crop Acreages
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Due to misclassifications within remote sensing products, area estimates derived
directly from pixel counts are likely to be incorrect and either over- or under-predict actual
class area. Using data derived from confusion matrices, it is possible to quantify this bias
relative to the reference data and subsequently make bias-adjusted area estimates
accordingly [10,49]. While best practices in accuracy assessment stipulate the use of bias
adjusted estimators with a probability sampling design [12,50], a simplified estimate of
map bias and adjusted area estimates may still be derived and useful for products such as
the CDL, where a large and high quality —though non-probabilistic—reference dataset is
available. To illustrate this, we calculated the nationwide relative bias of each crop using
the producer’s and user’s accuracy:

Producer's Accuracy,

Simple Bias, = (12)

User's Accuracy,
for each class x where the producer's and user's accuracies were those derived in Eq 6.
This indicator of bias is equivalent to the number of assessed pixels mapped as class x
divided by the number of assessed pixels classified as class x in the reference data, such
that it reflects the relative over- or under-mapping of a class compared to the reference
data. We then calculated bias-adjusted area estimates for each class x by scaling the raw
CDL acreage estimates by the amount of over or underprediction suggested by the bias:

Bias Adjusted Area, = Class Area, — (Class Area, X Simple Bias,) (13)

where Class Area is the area estimate for each class x derived from pixel counting and the
Simple Bias is that derived in Equation 12.

3. Results

We first present results from our nationwide analysis of specific class accuracies,
followed by nationwide results for the aggregated superclass and consolidated class
metrics. Throughout the results section, we focus on data for the year 2012 as an example
because it represents an intermediate year within the CDL’s modern era of nationwide
coverage, it was used in multiple applications [22,35,51], and it aligns well with the Census
of Agriculture, the Natural Resources Inventory, and other intermittent data sources often
used for comparisons with the CDL. The year 2012 was also particularly challenging for
mapping agricultural LULC—moderate resolution imagery was limited, and a severe
drought impacted crop development in many regions —such that our findings should be
considered a conservative estimate of the performance of the CDL. For completeness,
results were also generated for all years of nationwide CDL coverage 2008-2016 and have
been reposited online as companion datasets at https://doi.org/10.5281/zenodo0.4579863.

3.1. Nationwide Accuracy of Specific CDL Classes

Nationwide area-weighted accuracies for the major crop classes of the CDL are
generally very high. In 2012, corn, soybeans, and winter wheat—the three largest crops
by area—were mapped correctly 95, 94, and 92% of the time from both the producer’s and
user’s perspectives. The top 20 CDL land cover classes by area and their associated
producer and user accuracies for 2012 are presented in Table 2, with accuracies for all 130
assessed land cover classes for 2012 included in Appendix Table A2.
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Table 2. Nationwide class accuracies of major individual land covers in the 2012 Cropland Data Layer (CDL). Table shows
area-weighted national average accuracies for the 20 most common classes by area in the 2012 CDL, calculated according
to Equation (6), based on data from USDA National Agricultural Statistics Service (NASS). National accuracies of all crops
and land covers for 2012 are listed in Appendix Table A2.

Producer Omission User Commission
Class Name ID
Accuracy Error Accuracy Error
Corn 1 95% 5% 95% 5%
Cotton 91% 9% 89% 11%
Soybeans 5 94% 6% 94% 6%
Spring Wheat 23 89% 11% 87% 13%
Winter Wheat 24 92% 8% 92% 8%
Alfalfa 36 75% 25% 80% 20%
Other Hay/No Alfalfa 37 57% 43% 57% 43%
Fallow/Idle Cropland 61 69% 31% 79% 21%
Open Water 111 90% 10% 81% 19%
Developed/Open Space 121 89% 11% 61% 39%
Developed/Low Intensity 122 83% 17% 74% 26%
Developed/Med Intensity 123 84% 16% 81% 19%
Barren 131 74% 26% 75% 25%
Deciduous Forest 141 88% 12% 75% 25%
Evergreen Forest 142 87% 13% 73% 27%
Mixed Forest 143 44% 56% 51% 49%
Shrubland 152 87% 13% 71% 29%
Grassland/Pasture 176 79% 21% 50% 50%
Woody Wetlands 190 70% 30% 63% 37%
Herbaceous Wetlands 195 61% 39% 47% 53%
Average of All Crops N/A 88.7% 11.3% 90.3% 9.7%
Average of All Non-Crops N/A 82.4 % 17.6% 69.4% 30.6%

Overall, 10 crops had nationwide producer’s accuracies of 90% or greater in 2012.
These included sugarcane (97%); rice (96%); corn (95%); soybeans (94%); sugarbeets (94%);
canola (94%); winter wheat (92%); cotton (91%); almonds (91%); and cranberries (91%).
Five additional crops had class producer’s accuracies higher than the average for all crops,
88.7%, and the remaining 90 crops with computable accuracies fell below the average class
accuracy. In the same year, 17 crops had nationwide user’s accuracies of 90% or greater
(Appendix Table A2). The remaining 88 crops had user’s accuracies below the average of
90.3%. The disproportionate number of crops with below-average accuracy reinforces
observations that the CDL performs best for major crops (defined by area) and less so for
minor crops. To this end, the 10 crops with the highest producer’s accuracies made up
71.5% of the total mapped crop area.

Reported accuracies of specific non-crop classes of the CDL were generally lower
than those of major crops (Table 2). However, it is important to acknowledge that the
reported figures do not represent congruence with a verified ground or truth dataset of
non-cropped areas, but rather are assessed against a reference dataset consisting of both
FSA administrative crop data and the NLCD, itself a remotely sensed land cover map
subject to misclassifications. Nonetheless, the lower levels of reported accuracy in the CDL
non-crop classes suggest higher levels of uncertainty and potential error in the product
and/or reference data, particularly when compared to the high-performance crop classes.
The specific categories of open-, low-, and medium-intensity developed land as well as
deciduous and coniferous forest, shrubland, and open water were all mapped with
nationwide accuracies of greater than 80 percent, whereas specific classes of herbaceous
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and woody wetlands and grassland/pasture had lower nationwide performance that
ranged from 47-79% (Table 2).

3.2. Consolidated Cropland and Non-Cropland Accuracies

Specific land cover classes of the CDLs are often combined into aggregated categories
for applications such as measuring cropland area or conversion between major land cover
types. As an example of aggregation, we assessed the accuracy of consolidated cropland
and non-cropland domains across the U.S. from 2008-2016.

The area- and class-weighted nationwide accuracies for consolidated cropland in
2012 were 95.0% (producer’s) and 97.4% (user’s). Accuracies for the consolidated non-
cropland domain were 97.8 and 88.8%, respectively. Consolidated classes also performed
consistently well across time (Table 3). For example, in 2008 —the oldest year for which
nationwide data were produced —cropland user and producer accuracies were 95% and
98%, respectively.

Table 3. Average specific class and consolidated class accuracies for each year of the CDL. Data from USDA NASS (2016)
based on the comparison of CDL with data from Farm Service Agency (FSA) and National Land Cover Dataset (NLCD)
and processed according to equations 7 and 8. Cropland and non-cropland domains based on class distinctions in

Appendix Table 1.
Metric Type 2008 2009 2010 2011 2012 2013 2014 2015 2016
Prod: 88% 89% 89% 89% 89% 89% 90% 90% 92%
Average Crop Accuracy

User: 90% 90% 91% 91% 90% 91% 92% 91% 92%

Average Non-Crop Accuracy

Prod: 82% 82% 81% 82% 82% 82% 81% 85% 85%
User: 63% 64% 65% 61% 69% 67% 69% 82% 82%

Consolidated Cropland Accuracy

Prod: 95% 95% 95% 95% 95% 96% 96% 96% 98%
User: 98% 98% 97% 98% 97%  99% 9%  98%  99%

Consolidated Non-Cropland Accuracy User-

Prod: 97% 97% 98% 98% 98% 98% 97% 99%  99%
84% 85% 89% 82% 89% 87% 89% 98%  98%

In 2012, 30 of the 40 state or multistate assessment regions of the CDL had
consolidated cropland producer's accuracies of 90% or greater (Appendix Table A3). On
the user’s sides, all but two states—New York and Pennsylvania—mapped cropland
correctly 90% of the time or greater. Oklahoma (OK) and Arizona (AZ)—more arid states
where cropland contrasts with the surrounding landscape and is often irrigated —had the
highest cropland user’s accuracies, with values over 99%. More broadly, states with
greater amounts of cropland typically had higher consolidated cropland accuracies
(Figure 1), though this effect appeared to saturate beyond a certain threshold of crop area
(e.g., 5 million acres). Similar trends were also observed when assessed by proportion
(rather than total area) of cropland within each state [16,35].
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Figure 1. Plot of consolidated cropland user and producer accuracies for each state for 2012. Accuracies plotted against
total crop area in each state. States with greater amounts of cropland typically had higher consolidated cropland
accuracies. Plotting accuracy against the proportion of cropland within each state generated similar trends (data not
shown).

3.3. Superclass Accuracies of Specific Crops and Land Covers

Within the aggregated domains, certain classes are more (or less) likely to align with
their broader domain. Among crops mapped in the CDL with greater than one million
acres, rice was the most accurate predictor of cropland on the landscape and most likely
to be correctly identified as cropland, having superclass user's and producer’s accuracies
both over 99% in 2012 (Table 4). Areas of corn, the most prevalent crop, were labeled as
cropland by the CDL 98% of the time in 2012 (superclass producer’s accuracy), and pixels
mapped as corn in the CDL were actually cropland on the landscape 98.5% of the time
(superclass user’s). Fields of alfalfa, oats, and fallow/idle cropland, on the other hand,
were correctly labeled as cropland by the CDL just over 80% of the time. On the user’s
side, alfalfa was the only low outlier, yet still had an 86% superclass user’s accuracy for
the cropland domain.
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Table 4. Superclass producer and user accuracies for the top 20 classes by area in the cropland domain in 2012 as well as
the relative rate of within-domain errors. Superclass accuracy is the likelihood that a given crop is identified correctly as
cropland. Percentage of errors within domain is the proportion of errors in the original CDL where the confusion occurs
among two crops within the cropland domain, rather than between a crop and non-cropland cover.

Superclass Accuracy

% of Errors within Domain

CDLID Crop Class CDL Acreage , ; Omission Commission
Producer’s User’s
Errors Errors
1 Corn 94,983,301 98% 99% 57% 73%
2 Cotton 13,114,321 98% 100% 77% 96%
3 Rice 2,671,894 99% 100% 84% 95%
4 Sorghum 6,262,444 96% 99% 81% 95%
5 Soybeans 69,810,086 98% 99% 65% 76%
6 Sunflower 1,595,069 94% 99% 52% 79%
10 Peanuts 1,657,438 98% 99% 88% 93%
21 Barley 2,852,300 94% 99% 78% 92%
22 Durum Wheat 1,860,552 98% 99% 92% 97%
23 Spring Wheat 12,303,171 96% 99% 64% 92%
24 Winter Wheat 34,784,199 97% 99% 55% 88%
26 Dbl WinWht/Soybeans 5,311,121 97% 98% 73% 87%
28 Oats 1,285,192 81% 93% 67% 84%
31 Canola 1,700,926 97% 99% 53% 86%
36 Alfalfa 16,167,152 80% 86% 27% 40%
41 Sugarbeets 1,238,159 99% 100% 77% 94%
42 Dry Beans 1,743,309 97% 99% 84% 94%
61 Fallow/Idle Cropland 24,395,076 80% 92% 35% 67%
69 Grapes 1,136,718 96% 98% 69% 82%
75 Almonds 1,155,344 98% 99% 78% 94%

Within the non-cropland domain, most superclass accuracies were high, with only a
few exceptions (Table 5). Developed/Open Space was incorrectly mapped in locations that
were actually cropland 25% of the time in 2012. Grassland/Pasture had an even lower
user’s accuracy and was mapped in cropped locations 32% of the time that year.
Furthermore, the high ratio of superclass producer’s accuracy to superclass user’s
accuracy —indicative of bias—in each of these classes suggests they are both considerably
overmapped in locations that are actually cropland.

Table 5. Superclass producer and user accuracies for all 16 classes in the non-cropland domain in 2012. Superclass accuracy
is the likelihood a given class is correctly identified as non-cropland. Percentage of errors within domain is the proportion
of errors in the original CDL where the confusion occurs among two land covers within the non-cropland domain, rather
than between a crop and non-cropland cover.

Superclass Accuracy

% of Errors within Domain

CDLID Land Cover Class CDL Acreage Omission Commission
Producer's  User’s
Errors Errors
37 Other Hay/Non Alfalfa 23,881,755 89% 86% 68% 62%
92 Aquaculture 203,750 87% 84% 58% 17%
111 Open Water 32,373,788 99% 95% 89% 76%
112 Perennial Ice/Snow 427,601 100% 99% 100% 97%
121 Developed/Open Space 64,041,431 97% 75% 72% 41%
122 Developed/Low Intensity 28,380,971 99% 91% 96% 69%
123 Developed/Med Intensity 11,279,299 100% 96% 98% 81%
124 Developed/High Intensity 3,900,690 100% 98% 99% 87%
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131 Barren 20,800,191 99% 96% 96% 87%
141 Deciduous Forest 239,843,277 100% 97% 94% 89%
142 Evergreen Forest 249,399,532 100% 99% 99% 96%
143 Mixed Forest 29,952,005 100% 99% 100% 98%
152 Shrubland 429,532,225 99% 89% 89% 64%
176 Grassland/Pasture 383,816,367 93% 68% 66% 37%
190 Woody Wetlands 75,447,681 99% 93% 97% 83%
195 Herbaceous Wetlands 23,005,862 94% 86% 88% 75%

Overall, the high superclass accuracies of non-crop classes compared to their low
specific class accuracies reported in Table 2 suggests that a sizable portion of the mapping
errors result from within-domain confusion among the various non-crop classes, rather
than between non-cropland covers and crops. To quantify this, we calculated the relative
within-domain error rate for each CDL class. This metric indicates what percentage of
mapping errors were a result of confusion within the same domain. For example, corn
had a relative within-domain omission error rate of 57% in 2012, which means that slightly
more than half of the missed (i.e., omitted) corn fields were mapped as another crop in
the CDL, rather than mapped as a non-cropland cover (Table 4). The within-domain
proportion of commission errors for corn was 73%, which indicates that roughly three-
quarters of all pixels that were incorrectly mapped as corn in the CDL were actually
another crop on the landscape rather than a non-cropland cover.

Nationwide, most crops had within-domain error proportions greater than 50%,
which signifies that they were most frequently confused with another crop when mapped
incorrectly. Two notable exceptions were alfalfa and fallow/idle cropland, which had
within-domain omission error rates of 27 and 35%, respectively. Thus, alfalfa and fallow
fields that were incorrectly captured by the CDL were most frequently classified as a non-
cropland cover. Alfalfa’s within-domain commission error rate was also less than 50%,
which suggests that pixels incorrectly mapped as alfalfa in the CDL were most likely to
be non-cropland covers on the landscape.

The proportion of within-domain errors for errors of omission for all non-cropland
covers were greater than 50%, indicating that misclassified non-cropland covers were
most likely to be labeled as another non-crop cover by the CDL. However, aquaculture,
developed/open space, and grassland/pasture all had low within-class rates of errors of
commission, which indicates that when incorrect, these land covers were frequently
mapped in locations that were actually cropland.

3.4. Spatial Patterns of CDL Accuracy, Confidence, and Certainty

CDL accuracy for specific crops varied greatly across the U.S. In general, most crop
accuracies in 2012 were highest within major cropping regions such as the Corn Belt,
Central Plains, and Mississippi Delta (Figure 2a; Appendix Figure Al). Conversely, crop
accuracies were lower along the periphery of these core production zones and in less
dominant agricultural regions of the eastern, southern, and western parts of the U.S. These
locations with lower accuracy have a higher prevalence of less common crops (e.g., crops
other than corn and soybeans), which are typically mapped less accurately due to more
limited reference and training data from FSA and a charter by USDA to focus mapping
efforts on major program crops [15,41]. In addition, a greater mixture of crop and non-
cropland covers in these areas generates more opportunities for misclassification.

Non-crop classes had the highest levels of reported disagreement between mapped
and reference sources in the northern and southern plains (Figure 2b). Most western
states, on the other hand, had a clearer identification of non-cropland cover types,
particularly across the vast non-cultivated areas in the region. Mid-Atlantic states and the
eastern Corn Belt also contained relatively high non-crop accuracies considering their
diverse composition of land cover classes.
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The visual inspection of confidence layers suggests that the locations of mixed
pixels—map units which fall across two or more land covers —are often mapped with
lower confidence than adjacent single cover pixels. For example, in heavily cultivated
regions of the country such as lowa, mixed pixels commonly occur between adjacent fields
and along roadways, where they are often the cause of misclassification in the CDL and
other remote sensing products [52,53]. In forested regions of the U.S., confidence levels
were also low, even across large uninterrupted swaths of forest land cover. In these such
locations, the low confidence reflects difficulty by the classification algorithm in
delineating the specific type of forest cover —i.e., deciduous, coniferous, mixed forest, or
woody wetland.

Regionally, CDL confidence levels are high across the Midwest and west, and lowest
in the southeast, northeast, and Great Lakes regions (Figure 2c,d). Within specific regions
of similar land cover, there is also variation. For example, in the cultivated region of the
Texas panhandle, cotton and corn on the western edge are both mapped with lower
confidence, perhaps due to a greater amount of land use change and intermittent cropping
patterns in that area. Across the North and South Dakota, crops tend to be consistently
mapped with lower confidence the farther west they are located (Appendix Figure A2).
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Users accuracy

Figure 2. Panel of the user’s accuracy (a,b), confidence layer (c,d), and combined product of user’s accuracy and confidence
layer (e,f) delineated for crop (a,c,e) and non-crop (b,d,f) classes of the CDL for 2012. .

To extract further insights about the within-class spatial variation of CDL
performance, we combined the classifier confidence data with assessed class accuracy into
a single measure of CDL certainty. Figure 2e,f shows an example of the combined accuracy
x confidence product at the national scale. Integrating pixel resolution spatial variation
from the confidence layer into the existing state and class resolution accuracy estimates is
particularly applicable to nationwide and multistate analyses since the confidence data
have greater continuity among state products.
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In addition to helping normalize certainty across regions, the use of both accuracy
and confidence information independently or in combination may provide improved
insights into local uncertainty. Figure 3 shows an example of an agriculturally intensive
region of southern Iowa. Here, accuracy data help demarcate field-sized tracts of land that
have low class accuracies (Figure 3a), which are locations that data users may wish to
withhold from analyses due to the large uncertainty associated with their classification.
Alternatively, the confidence layer captures finer levels of uncertainty due to mixed pixels
or other contributors to local uncertainty such as topography or ambiguity among land
covers (Figure 3b) but fails to consider the likelihood of the mapped class being incorrect.
Considering both accuracy and confidence data (Figure 3c) thus provides insights into
multiple dimensions of uncertainty and may be valuable for improving the certitude of
mapping and map applications.
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Figure 3. Maps of CDL user’s accuracy (a), confidence levels (b), and a combined layer of

certainty, shown as the product of accuracy and confidence (c).

3.5. Measured Biases and Adjusted Crop Area Estimates

Adjusted estimates of crop area informed by map biases can improve upon raw pixel-
count area estimates by calibrating them against the reference data used for assessment.
Table 6 presents the simple map biases (Equation (12)) and associated adjusted acreage
estimates (Equation (13)) for the 18 largest crop classes for the CDL for which there are
also relevant data from official USDA acreage estimates. Given that the CDL represents
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mid-summer estimates of crop extent, we include NASS data for both planted and
harvested areas, as well as the average of these two metrics. For ten of the 16 crops with
comparable NASS planted and harvested data, the simple bias-adjusted acreage estimate
was closer than the raw pixel-count estimate to the average of NASS planted and
harvested areas. As such, the adjusted results provide refined measures of crop area that
are independent of (but more consistent with) other acreage estimates such as the NASS
Surveys or Census of Agriculture and could be used to complement or replace raw CDL

pixel count area estimates in various applications.

Table 6. Simple bias and bias-adjusted acreage estimates for major crops for 2012. CDL area represents the summed area
of all pixels in the CDL. CDL bias and bias-adjusted acreage were calculated for each crop according to equations 12 and
13 using the producer’s and user’s accuracy data of Appendix Table A2. NASS planted and harvested areas are from the

annual NASS acreage report, released on June 29, 2012. Harvested cotton from 2012 October production report. All area
values are reported in acres.

Crop Name CDL Area  CDL Bias Bias-Adjusted NASS Planted NASS Harvested NASS
Acreage Area Area Ave
Corn 94,983,301 0.43% 94,572,035 96,405,000 88,851,000 92,628,000
Soybeans 69,810,086 -0.03% 69,829,899 76,080,000 75,315,000 75,697,500
Winter Wheat 34,784,199 -0.22% 34,860,122 41,819,000 35,023,000 38,421,000
Fallow/Idle Cropland 24,395,076 -12.24% 27,382,251 *14,145,567 **36,382,032 n/a
Alfalfa 16,167,152 -5.52% 17,059,748 19,213,000 18,827,000 19,020,000
Cotton 13,114,321 1.88% 12,868,014 12,635,000 10,443,400 11,539,200
Spring Wheat 12,303,171 2.97% 11,937,985 11,995,000 11,681,000 11,838,000
Sorghum 6,262,444 —6.60% 6,675,868 6,210,000 5,238,000 5,724,000
Dbl WinWht/Soybeans 5,311,121 2.85% 5,159,595 o ok e

Barley 2,852,300 -12.90% 3,220,316 3,678,000 3,268,000 3,473,000

Rice 2,671,894 -1.51% 2,712,326 2,661,000 2,640,000 2,650,500

Durum Wheat 1,860,552 -9.80% 2,042,794 2,203,000 2,122,000 2,162,500
Dry Beans 1,743,309 —6.65% 1,859,213 1,632,700 1,573,600 1,603,150
Canola 1,700,926 -2.23% 1,738,835 1,631,500 1,593,100 1,612,300
Peanuts 1,657,438 -1.42% 1,680,900 1,526,000 1,486,000 1,506,000
Sunflower 1,595,069 -8.79% 1,735,327 1,804,500 1,735,400 1,769,950

Oats 1,285,192 -33.81% 1,719,707 2,746,000 1,091,000 1,918,500
Sugarbeets 1,238,159 —0.55% 1,244,915 1,244,100 1,215,900 1,230,000

*Estimate of fallow cropland area from the 2012 Census of Agriculture.
**Estimate of idle cropland area from the 2012 Census of Agriculture.

**Double cropped winter wheat / soybean area from the CDL may be added to both CDL soybeans and CDL winter wheat
areas to facilitate comparison with NASS estimates for each individual crop.

Assessing the changes in mapped biases over time may also aid in understanding the
true dynamic compositions of crops on the landscape. Figure 4 charts the simple bias of
four major crops over time. According to the estimates, the mapping of both corn and
soybeans by the CDL relative to their reference data have increased only slightly, and in
tandem, over time. In contrast, alfalfa has gone from being under-mapped by 12.6%
relative to the reference data in 2008 to being under-mapped by only 1.6% in 2016, which
marks a considerable change over time. As a result, estimates of alfalfa area based on
direct CDL pixel counts could embody a sizeable artificial increase.
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Figure 4. Mapping bias of select crops over time. The biases represent the relative over-representation (positive values) or
under-representation (negative values) of crops by the CDL in each year according to comparison with the products’
reference data.

4. Discussion

The Cropland Data Layer currently provides the only annual information on
agricultural land use/land cover across the United States that is geographically
comprehensive, spatially explicit, and crop specific. Despite its prominent use and
application, the accuracy of the CDL had not been well characterized at national scales
nor across common aggregated classes. To fill this gap, we derived and analyzed multiple
metrics of certainty for the CDL across space and time to better understand its
performance and associated implications for measuring LULC and its change.

4.1. CDL Performance

Based on nationwide assessment, it is evident that the CDL consistently identifies
specific major crops like corn and soybeans with very high accuracy. On the other hand,
select land cover classes such as alfalfa and grassland/pasture are captured correctly only
about 75% of the time, which reflects the CDL’s generally lower performance outside of
the major crop classes, a point frequently discussed in state and regional evaluations
[35,40].

To accommodate low accuracies, specific classes can be aggregated into broader land
cover domains such as cropland or non-cropland. Our results spatially and numerically
quantify the effectiveness of this approach and show that across the U.S., cropland areas
are mapped correctly by the CDL at least 97% of the time for all years. These findings
confirm the CDL’s acuity of identification and demonstrate its validity for monitoring
cropland locations and associated shifts over time.

Mapping the spatial variation in class accuracies across the United States reveals clear
geographic trends and patterns in the CDL’s performance. In general, specific crop
accuracies are highest within core agricultural areas and among major USDA program
crops. Cropland superclass and consolidated cropland accuracies, however, are
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consistently high across the country, and further illustrate the value of aggregating to
broader domains when attempting to measure land cover across large areas or across all
CDL classes, particularly on the margins of major crop zones.

The use of map bias information to adjust area estimates provides a quantitative
means to improve crop area calculations based on remote sensing products [10,50].
Similarly, the simplified bias-adjusted approach for estimating crop area reported here
improved upon raw CDL pixel-based estimates by correcting for misclassifications and
also provides a more comprehensive accounting of cropland than the FSA reference data
would provide on its own, since that data source only captures land with crops that
participate in FSA programs. Our approach thus combines desirable features of both the
CDL and FSA datasets, while remaining independent of other USDA data sources like the
NASS surveys or Census of Agriculture that are occasionally used for calibration or
comparison.

4.2. Improvements over Time

For most metrics, we reported on the performance of the 2012 CDL, although
variability exists across years. Overall, CDL accuracy has improved over time, due in part
to use of additional satellite input (more sources and more images per year), a more robust
classification process (an ensemble decision tree instead of maximum likelihood
methodology), and increasing amounts of training data from the FSA and elsewhere [41].
As aresult, average class-specific accuracy for all crop classes has improved from 87% in
2008 to 92% in 2016. By 2016, a total of 17 crops were mapped with 90% or higher
producer’s accuracy, up from just 10 crops in 2008. Aggregate metrics, including
consolidated and superclass accuracies for the cropland and non-cropland domains, have
also improved. However, the magnitude of their increases is more limited due to their
already high performance across time.

The annual changes in performance of the CDL can have important ramifications for
CDL-based analyses. If the bias or relative over- or under-mapping of a class changes over
time, it can induce false signals of LULC change or skew estimates of crop area change.
Lark et al. (2017) explore the implications from the change in total cropland bias and
suggest potential solutions [41]. Here, we show that there are also sizable changes in bias
for specific crop types. These changes, if disregarded, may influence the results of analyses
of those crops over time. For example, unadjusted estimates of the increase in corn acreage
following the biofuels boom could be affected by artificial changes in corn mapping across
time. However, the magnitude and direction of impact depends on the specific years of
analysis and may be counterbalanced by parallel biases in soybeans and other crops. Thus,
analyses that focus on the relationship among corn, soybeans, and cropland —or any
classes that have experienced synchronized changes in bias —likely remain valid despite
potential eccentricities in the underlying data. Nonetheless, it is important to consider the
biases of mapped data in applied analyses, particularly when results may influence
industry and policymaking.

4.3. Implications for Measuring LULC Change

The use of aggregated classes to measure LULC change benefits from the high acuity
of the product to detect a broader domain while avoiding challenges of delineating
spectrally similar land covers within the same domain. When measuring conversions
between cropland and non-cropland, the consolidated classes can thus be used to initially
detect change, followed by subsequent identification of the specific land cover or crop
planted before and after the conversion [22]. The assessment of crop specificity after
detecting change maintains the thematic richness of the original CDL dataset without
adversely affecting detection of a conversion between the aggregated domains. In
practice, this isolates the known uncertainty in specific class identification and removes it
from the change detection process.
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Using this two-stage approach, the likelihood that a conversion occurred becomes a
function of the highly accurate aggregated classes, whereas the certainty of which specific
land cover class preceded and followed a conversion (given that the conversion was
correctly identified) is dependent upon the land cover’s specific class accuracy. Thus, for
cropland conversion estimates such as Lark et al. (2015) or Morefield et al. (2016), the class
accuracies reported in our Table 2 most closely represent the likelihood that a given crop
was planted on newly converted land, rather than directly indicate the likelihood that a
conversion occurred [22,54].

The challenges of mapping less-common specific crops and the ease of mapping
aggregate cropland have additional implications for CDL-based applications. For
example, it might be argued that the CDL is more appropriate for detecting broad land
use changes (e.g., conversion between cropland and non-cropland) than for identifying
nuanced changes among specific crops (e.g., identifying crop rotations) unless the focus
of rotations remains on major crop types [18,19,55]. Crop-specific applications should also
consider each class’s prevalence and accuracy and how such factors may influence results.

Our findings can also be used to guide how specific crops should be treated within
analyses. Alfalfa, for example, is often cited as a problem crop due to its semi-perennial
nature, spectral similarity to non-cropland covers, and occasional interplanting within
mixed species hay and pasture. The crop was incorrectly mapped in non-cultivated areas
14% of the time in 2012. By 2016, this superclass error rate dropped to just 8%. From a
producer's perspective, alfalfa was mapped as a non-cultivated land cover 20% of the time
in 2012, but this error rate dropped to 8% by 2016. Overall, the lower superclass accuracies
for alfalfa relative to other crops reinforce precautions of past analyses, such as the
exclusion by Morefield et al. (2016) of all non-crop to alfalfa conversions from their change
analysis and the exclusion by Lark et al. (2015) of grassland-to-alfalfa conversion. The
relative within-domain error rates (Table 4) further highlight the challenge of including
alfalfa in the cropland domain, since the crop is more frequently confused with non-
cropland covers than with other crop classes. However, the latest improvements in alfalfa
accuracy suggest that analyses of more recent CDL data may want to consider including
the forage crop in their analyses.

Visual mapping of specific and aggregate accuracies can help users identify hotspots
and problem areas within the country and understand how they vary across space and
time. Coupling accuracy data with its spatial location on the landscape thus offers
opportunities unafforded by the nonspatial structure of the NASS metadata tables and
confusion matrices for each state and year. For example, rather than excluding entire land
cover classes from analyses, such as the exclusions of alfalfa by Morefield et al. (2016) and
Lark et al. (2015), the spatial mapping of the accuracy of individual classes would allow
the empirical removal of just those pixels with low mapped accuracy in certain state—year
combinations, while retaining those with a higher likelihood of being correct. The value
of this spatial approach is greatest in analyses that consider multiple years of CDL data,
where the number of state, class, and year combinations is multiplicative. For example,
for an assessment of change between two years, there are typically over a million unique
combinations of state and class pairs, each with its own likelihood of being correct (e.g.,
50 classes times 40 states for year one multiplied by 50 classes times 40 states for the second
year yields four million combinations). The manual selection of which specific LULC class
combinations to include or exclude based on accuracy thus becomes intractable, whereas
the spatial accuracy maps can be used to easily select only those combinations that meet
a quantitative accuracy threshold.

The integration of confidence layer data with assessed accuracy data may also
improve spatial insights. For example, in many CDL-based change detection analyses,
post-classification processes such as spatial filters and minimum mapping units have been
used to indiscriminately remove areas of apparent change that are likely falsely mapped
due to mixed pixels or misclassifications. Alternatively, accuracy and confidence data
could be used to set a threshold of certitude below which any identified potential change
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is flagged for removal. Probability information from the remote sensing process has
previously been used to improve vector-based detection of land cover change using
unclassified Landsat data [48]. Here, we suggest that confidence information from the
remote sensing process could similarly help improve the post-classification detection of
LULC change using land cover products. While we have not quantified the impact of such
an approach, it has since been used in other studies to set a higher threshold of certainty
for change detection [56].

Confidence layer data could also be used in concert with accuracy information to
spatially allocate error adjustments. For example, here we modified area estimates for
each crop using an accuracy-derived indicator of bias (Table 6). However, such area
adjustments typically do not spatially correct pixels on the map, unless this issue of
reconciliation is specifically addressed [57]. To help achieve this reconciliation in post-
classification environments, confidence data could similarly be used to select the pixels
with the lowest confidence as candidates for reclassification. For example, if the CDL
overestimated corn area by 500 pixels in a given state, the 500 pixels of corn with the
lowest confidence could be removed to make a spatially explicit, bias-adjusted map of
corn that was consistent with the reference data estimates of area.

4.4. Limitations, Representativeness, and Uncertainty of Results

The class consolidation techniques described here do not modify the underlying
performance of the remote sensing product, but rather improve the representativeness of
the accuracy at which the product maps aggregate domains. Of note, aggregating classes
improves accuracy by lowering the product’s thematic resolution or specificity —thus
improvements are made by accommodating errors rather than by correcting them. The
greatest benefits are therefore achieved when the thematic resolution of the product
matches the desired application. When using aggregated remote sensing products in
applications, it is important to quantify these associated changes in accuracy so that the
reported metrics and critiques reflect the actual data used.

There may also be variation in the representativeness of the CDL’s reported accuracy
statistics. The FSA reference data used to assess the CDL are not based on a probabilistic
sample, but rather on an availability approach, with the majority coming from 10 key
USDA program crops. As a result, the reported consolidated class accuracies are most
representative for those crops, and less characteristic for specialty crops and non-crop
covers. Similarly, the distribution of crop sample data across geographic regions are in
some places disproportionate to the amount of crop produced there. Therefore, the
accuracies of certain regions are more reliable than others due to differing levels of
reference data available for assessment.

To maintain the highest level of representativeness while calculating national
average crop accuracies, we weighted the accuracy of each crop in each state by the total
acreage of that crop in that state. For example, lowa produced 14% of all corn in the nation
in 2012; thus, its accuracy was weighted to contribute 14% of the national accuracy for
corn. An alternative method for calculating nationwide accuracies is to sum all national
reference observations without regard to spatial distributions of the data, and such an
approach has recently been implemented by NASS to report nationwide accuracies for
select years in the online CDL metadata [26]. Here, we choose to area-weight by class
prevalence, such that the nationwide estimates reflect that of a pixel selected at random
and are unskewed by nonrepresentatively sampled reference data.

Uncertainty can also stem from errors in the reference data or a mismatch between
reference and evaluated data. For example, the FSA CLU classifications of grasslands are
often inconsistent across states and time, and occasionally they do not align with CDL
land cover designations. Thus, analysts at NASS make a judgement for each state and year
on how to best utilize the FSA data for training and assessing accuracy. Discrepancies in
how the FSA data are reported and incorporated can thus occasionally lead to apparent
differences in error rates across states and years, when in reality the inconsistencies
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between the CDL and the landscape are much smaller. Similarly, errors exist in the NLCD
data used for training and assessing non-crop areas of the CDLs, which in turn affect their
production and assessment. It is possible that some CDL non-crop classes are more correct
than the associated NLCD classes on which they are based and evaluated, given that the
CDL is updated and improved annually, it includes exclusive confidential FSA training
data, and it generates higher accuracies for cultivated areas. Thus, the reported non-crop
accuracies of the CDL (based on comparison with the NLCD) may underestimate the true
performance of those CDL classes.

5. Conclusions

The CDL is a powerful and unrivaled tool for the exploration of agricultural
landscapes and is poised to remain the premier remotely sensed agricultural LULC map
in the U.S. due to its annual availability, crop-specific detail, and exclusive access to
expansive and robust ground-based reference datasets from the USDA. We show that the
CDL identifies major crops and certain land covers with high accuracy across the U.S.,
and that this ability holds true for all years of nationwide data coverage. Our findings also
confirm that the CDL exhibits extremely high acuity at discerning the aggregated classes
of cropland and non-cropland across spatial and thematic scales. Explicitly considering
the bias within specific classes and incorporating confidence layer data provide two
additional opportunities to further improve CDL performance and its use in LULC change
assessments and other applications.

While the original CDL dataset can indeed provide challenges for applications that
are beyond its original intent of mapping annual crop locations, it is the responsibility of
its users to apply the data in ways that do not compromise results. The CDL’s consistent
and reliable performance in mapping crops and cropland nationwide and across time
clearly demonstrates that many of the critiques and concerns regarding the underlying
accuracy of the product are unfounded or dissipate when thoroughly assessed at
appropriate scales. Furthermore, the substantial uncertainty and resource costs of
alternative methods for monitoring crops and croplands, such as through ground surveys
or air photo interpretations, underscores the need for approaches that can systematically
identify continental scale LULC change in an automated, reproducible, and verifiable
manner. While many products based on remote sensing seek to fill this gap, the CDL is a
dataset proven to be well suited for the task. When used appropriately, the CDL is a valid
and indispensable tool for studying LULC and a crucial asset for monitoring
contemporary cropland dynamics across the United States.
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Appendix A

Table A1l. List of CDL codes and class names and whether they were included in the cropland or non-cropland domain in
the analyses of superclass and consolidated class accuracies. Domain delineations follow that of Lark et al. (2015) based
on original NASS distinctions [16,22].

ID Class Name ID Class Name ID Class Name ID Class Name
1 Corn 48  Watermelons 216  Peppers 37 Other Hay/Non Alfalfa
2 Cotton 49  Onions 217 Pomegranates
3  Rice 50  Cucumbers 218 Nectarines 63 Forest
4 Sorghum 51  Chickpeas 219  Greens 64 Shrubland
5  Soybeans 52  Lentils 220 Plums 65 Barren
6 Sunflower 53 Peas 221  Strawberries 81 Clouds/No Data
10  Peanuts 54  Tomatoes 222  Squash 82 Developed
11 Tobacco 55  Caneberries 223  Apricots 83 Water
12 Sweet Corn 56  Hops 224  Vetch 87 Wetlands
13 Pop or Orn Corn 57  Herbs 225 Dbl Crop WinWht/Corn 88 Nonag/Undefined
14 Mint 58  Clover/Wildflowers 226 Dbl Crop Oats/Corn 92 Aquaculture
21  Barley 59  Sod/Grass Seed 227 Lettuce 111 Open Water
22 Durum Wheat 60  Switchgrass 229  Pumpkins 112 Perennial Ice/Snow
23 Spring Wheat 61  Fallow/Idle 230 Dbl Crop Lettuce/Durum Wht 121 Developed/Open Space
24  Winter Wheat 66  Cherries 231 Dbl Crop Lettuce/Cantaloupe 122 Developed/Low Intensity
25  Other Small Grains 67  Peaches 232 Dbl Crop Lettuce/Cotton 123 Developed/Med Intensity
26 Dbl WinWht/Soy 68  Apples 233 Dbl Crop Lettuce/Barley 124 Developed/High Intensity
27  Rye 69  Grapes 234 Dbl Crop Durum Wht/Sorghum 131 Barren
28  Oats 70  Christmas Trees 235 Dbl Crop Barley/Sorghum 141 Deciduous Forest
29  Millet 71  Other Tree Crops 236 Dbl Crop WinWht/Sorghum 142 Evergreen Forest
30  Speltz 72 Citrus 237 Dbl Crop Barley/Corn 143 Mixed Forest
31 Canola 74  Pecans 238 Dbl Crop WinWht/Cotton 152 Shrubland
32  Flaxseed 75  Almonds 239 Dbl Crop Soybeans/Cotton
33  Safflower 76 Walnuts 240 Dbl Crop Soybeans/Oats 176 Grassland/Pasture
34 Rape Seed 77  Pears 241 Dbl Crop Corn/Soybeans
35 Mustard 204 Pistachios 242  Blueberries 190 Woody Wetlands
36 Alfalfa 205 Triticale 243 Cabbage 195 Herbaceous Wetlands
38 Camelina 206  Carrots 244  Cauliflower
39  Buckwheat 207  Asparagus 245  Celery
41  Sugarbeets 208  Garlic 246  Radishes
42 Dry Beans 209 Cantaloupes 247  Turnips
43  Potatoes 210  Prunes 248 Eggplants
44  Other Crops 211  Olives 249  Gourds
45  Sugarcane 212 Oranges 250 Cranberries
46  Sweet Potatoes 213 Honeydew Melons 254 Dbl Crop Barley/Soybeans
47  Misc Vegs and Fruits | 214  Broccoli
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Table A2. Nationwide area, producer’s accuracy, and user’s accuracy for each crop type in the 2012 CDL. Sorted in order
of descending producer’s accuracy.

CDL ID Crop Name CDL Acreage  Producer's Accuracy User's Accuracy

45 Sugarcane 1,026,752 96.52% 94.44%

3 Rice 2,671,894 95.54% 97.01%

1 Corn 94,983,301 95.23% 94.82%

5 Soybeans 69,810,086 93.82% 93.85%
41 Sugarbeets 1,238,159 93.67% 94.18%
31 Canola 1,700,926 93.51% 95.64%
24 Winter Wheat 34,784,199 92.18% 92.38%

2 Cotton 13,114,321 91.06% 89.39%
75 Almonds 1,155,344 91.04% 91.56%
250 Cranberries 36,040 91.02% 95.23%
23 Spring Wheat 12,303,171 89.47% 86.89%
212 Oranges 1,019,334 89.24% 91.45%
54 Tomatoes 353,534 89.24% 89.60%
51 Chickpeas 1,838 89.19% 84.44%
43 Potatoes 1,083,450 88.98% 92.66%
69 Grapes 1,136,718 87.39% 89.89%
26 Dbl Crop WinWht/Soybeans 5,311,121 86.70% 84.30%
230 Dbl Crop Lettuce/Durum Wht 39,776 86.08% 80.01%
68 Apples 444,242 85.67% 88.41%
56 Hops 24,903 84.53% 96.44%

6 Sunflower 1,595,069 84.09% 92.20%
10 Peanuts 1,657,438 81.17% 82.33%
42 Dry Beans 1,743,309 79.97% 85.66%
204 Pistachios 201,944 78.50% 85.69%
46 Sweet Potatoes 84,332 77.54% 87.22%

4 Sorghum 6,262,444 77.43% 82.91%
77 Pears 28,048 77.36% 80.67%
36 Alfalfa 16,167,152 75.40% 79.81%
245 Celery 2,460 74.95% 93.43%
76 Walnuts 341,480 74.80% 79.49%
52 Lentils 388,352 74.57% 82.45%
22 Durum Wheat 1,860,552 73.30% 81.26%
49 Onions 139,769 72.90% 78.67%
66 Cherries 199,450 72.70% 78.60%
211 Olives 45,218 72.58% 90.34%
21 Barley 2,852,300 72.41% 83.14%
247 Turnips 1,990 72.37% 79.65%
53 Peas 774,135 72.14% 83.45%
208 Garlic 17,233 71.20% 84.66%
61 Fallow/Idle Cropland 24,395,076 69.29% 78.96%
32 Flaxseed 284,228 68.10% 81.77%
59 Sod/Grass Seed 797,216 68.00% 82.93%
57 Herbs 104,376 67.07% 86.46%
14 Mint 8,429 67.00% 77.65%
50 Cucumbers 32,698 65.44% 78.26%
12 Sweet Corn 301,474 65.35% 80.95%
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244 Cauliflower 1,956 64.25% 79.31%
226 Dbl Crop Oats/Corn 109,775 63.82% 62.71%
234 Dbl Crop Durum Wht/Sorghum 4,095 63.24% 66.43%
47 Misc Vegs and Fruits 47,159 62.89% 78.30%
225 Dbl Crop WinWht/Corn 402,067 61.81% 69.33%
71 Other Tree Crops 68,927 61.69% 75.22%
27 Rye 453,504 61.47% 72.91%
254 Dbl Crop Barley/Soybeans 113,764 61.24% 78.16%
72 Citrus 139,758 60.68% 81.33%
33 Safflower 148,336 59.74% 80.07%
11 Tobacco 112,733 59.62% 79.97%
232 Dbl Crop Lettuce/Cotton 7,770 58.53% 69.78%
213 Honeydew Melons 6,430 58.09% 75.87%
231 Dbl Crop Lettuce/Cantaloupe 3,833 57.97% 85.54%
242 Blueberries 90,911 57.70% 74.20%
248 Eggplants 357 57.69% 68.18%
227 Lettuce 28,621 57.45% 66.98%
58 Clover/Wildflowers 146,851 57.21% 70.80%
209 Cantaloupes 18,325 57.00% 72.44%
217 Pomegranates 20,652 56.79% 76.84%
216 Peppers 19,796 55.46% 67.81%
207 Asparagus 19,258 54.93% 78.11%
74 Pecans 398,572 53.68% 83.55%
29 Millet 457,674 53.43% 64.84%
221 Strawberries 43,438 52.63% 80.70%
39 Buckwheat 22,586 52.11% 78.32%
246 Radishes 10,175 50.75% 70.24%
235 Dbl Crop Barley/Sorghum 12,071 49.65% 50.19%
67 Peaches 53,255 49.19% 68.69%
35 Mustard 32,734 48.15% 78.68%
241 Dbl Crop Corn/Soybeans 16,998 48.07% 75.59%
60 Switchgrass 10,684 47.62% 56.33%
220 Plums 53,436 46.92% 65.53%
55 Caneberries 11,633 46.19% 85.35%
206 Carrots 42,670 45.93% 70.76%
229 Pumpkins 23,094 43.87% 72.29%
70 Christmas Trees 65,800 43.65% 75.04%
243 Cabbage 18,368 43.03% 59.38%
38 Camelina 4,977 42.94% 69.91%
214 Broccoli 11,202 41.89% 63.04%
28 Oats 1,285,192 41.18% 62.21%
238 Dbl Crop WinWht/Cotton 324,242 41.14% 70.23%
48 Watermelons 37,670 40.78% 62.93%
219 Greens 15,028 40.62% 54.26%
13 Pop or Orn Corn 120,463 40.33% 91.15%
223 Apricots 3,760 39.37% 71.61%
222 Squash 20,832 37.05% 61.87%
237 Dbl Crop Barley/Corn 37,530 36.55% 70.59%
236 Dbl Crop WinWht/Sorghum 386,258 34.26% 60.55%
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224 Vetch 4,595 33.12% 69.06%
44 Other Crops 171,449 32.93% 63.82%
205 Triticale 156,684 32.74% 67.26%
218 Nectarines 2,589 32.16% 70.51%
25 Other Small Grains 5,008 28.18% 73.07%
34 Rape Seed 3,211 23.92% 58.74%
239 Dbl Crop Soybeans/Cotton 7,388 20.90% 66.57%
240 Dbl Crop Soybeans/Oats 17,928 19.50% 62.42%
30 Speltz 2,811 16.32% 60.80%
249 Gourds 150 10.00% 100.00%

Table A3. Accuracy of CDL-derived consolidated cropland and non-cropland classifications for each U.S. state or
multistate region for 2012. Results calculated according to equation 4 and consolidated according to Appendix Table Al.

Cropland Non-Cropland
Producer’s User's Producer's User's
State
Accuracy Accuracy Accuracy Accuracy

AL 84% 93% 98% 94%
AR 97% 100% 99% 89%
AZ 91% 97% 99% 95%
CA 96% 98% 99% 93%
Cco 93% 98% 98% 90%
CT_MA_ME_NH_RI_VT 87% 93% 100% 99%
DE_MD_N]J 93% 94% 98% 96%
FL 89% 95% 98% 92%
GA 86% 91% 98% 93%
IA 97% 99% 95% 77%
ID 93% 96% 99% 95%
IL 98% 97% 92% 95%
IN 98% 97% 94% 96%
KS 97% 99% 99% 95%
KY 92% 99% 97% 84%
LA 95% 98% 98% 90%
MI 96% 95% 95% 90%
MN 98% 98% 97% 93%
MO 98% 96% 97% 98%
MS 94% 98% 98% 92%
MT 91% 95% 99% 98%
NC 91% 95% 97% 93%
ND 95% 98% 97% 90%
NE 97% 100% 95% 67%
NM 88% 98% 99% 87%
NV 88% 96% 100% 99%
NY 86% 88% 98% 95%
OH 96% 97% 96% 95%
OK 97% 100% 96% 62%
OR 93% 97% 98% 93%
PA 83% 82% 98% 96%
SC 86% 92% 98% 94%
SD 95% 97% 98% 97%
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TN 95% 99% 98% 90%
X 92% 100% 96% 56%
uT 90% 98% 99% 94%
VA_WV 92% 94% 99% 98%
WA 97% 98% 100% 97%
WI 95% 97% 93% 84%
WY 88% 98% 99% 93%
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Figure Al. Map of 2012 state level user’s accuracies for specific crop classes of the CDL for the conterminous U.S. Data
from USDA NASS (2016) based on the comparison of CDL with FSA reference data for crop classes. An arbitrary grading
scale of “A”—“F” was assigned to accuracy intervals to help users easily identify where the CDL crop map excels versus
where additional caution may be warranted.
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Figure A2. Confidence of pixels mapped as corn in the 2012 CDL. Within a specific state, there can be large spatial variation
in the degree of certainty with which specific crops are mapped. In South Dakota and North Dakota, corn is mapped more
confidently in the eastern parts of the states (dark blue), where the crop is more prevalent, and is mapped less confidently
(green to yellow) as one moves westward and the crop becomes less prominent.
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