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1. Introduction

Many complex phenomena can be modeled by networks, that is, by a set of nodes and a set of connections among them,
called edges. Network models simplify reality by ignoring some information. Indeed, in the simplest network models,
neither nodes nor edges have attributes and only the connectivity between the nodes is modeled. This simplification
makes it possible to apply graph theory and use powerful quantitative methods to extract information about complex
systems that might not be easily accessible otherwise; see [1,2] for many examples.

However, in order to obtain a more faithful representation of a system, it sometimes becomes necessary to include
more information about the nodes and/or edges, and such additions usually make it necessary to adapt or modify the
quantitative methods of analysis. An example is the inclusion of weights, in which edges and/or nodes are assigned a
numerical value, representing a characteristic of interest for the modeler; see, e.g., [3-5]. Another example is furnished
by multi-class networks, in which each node belongs to exactly one of k node classes, and each edge belongs to exactly
one of d edge classes. This kind of model becomes necessary when different nodes can play fundamentally distinct roles
in the system. It is the purpose of the present paper to discuss models for multi-class networks. Examples of multi-class
networks include:

o Bibliographic Network: The node classes may be papers, authors, and journals. Classes of edges (relationships) may
be citations (between papers), authorships (between papers and authors), and publications (between papers and
journals).
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o Twitter Network: The node classes may be users/accounts, tweets, and comments. Classes of edges (relationships)
may be following (between users), tweet posting (between users and tweets), comment posting (between users and
comments), and the relationship between comments and the tweets they refer to.

o Healthcare Network: The node classes may be patients, health conditions, treatments, providers, and insurers. Notice
that “treatments” could be modeled simply as edges between providers and patients, but by modeling treatments
as nodes, we can connect them to the patients, the providers, the treatment types, the health condition, and the
insurer or insurers who is/are paying for it.

e Genomic Network: The node classes may be genes, diseases, chemical compounds, gene ontology categories, and
tissues. Classes of edges (relationships) between nodes may be protein-protein interaction (between proteins),
encoding (between genes and proteins), and up-regulation and down-regulation (between regulatory elements and
genes).

Of the many properties of networks that can be studied quantitatively, in this paper we are interested in the ranking
of nodes within node classes by their importance or centrality. Our work is inspired by previous results on 1-class, 2-
class, and 3-class models by Bini, Del Corso, and Romani in two nice papers [6,7], which they applied to the analysis of
bibliographic networks. Our models are a modification of their approach, and can be extended in a natural way to k-class
networks with k > 3. We will discuss differences and similarities of their and our approaches in detail.

This paper is organized as follows: Section 2 defines basic concepts. We review related work in Section 3, with
particular focus on the work by Bini et al. [6,7]. Sections 4-6 introduce our models, starting from one-class networks
and increasing the complexity until reaching k-class networks. We include motivating examples and establish theoretical
results based on perturbation theory in these sections. Section 7 presents computed results for some large-scale problems.
In particular, these examples compare the orderings obtained with the models of the present paper to the ordering
obtained with the models used by Bini et al. [6,7]. Section 8 contains concluding remarks.

2. Basic definitions

We model networks using the mathematical concept of a graph ¢ = (V,E), which is given by a pair of sets
V = {vy,..., vy}, containing the vertices or nodes, and E = {eq, ..., en}, containing the edges. In a directed graph, at
least one edge has a unique starting node and a unique ending node, while in an undirected graph all edges connect two
nodes without a specified direction. For simplicity, we will not allow self-loops, and we will not allow more than one edge
between a given pair of nodes, unless the edges are directed and go in opposite directions. Then the adjacency matrix for
G is a matrix A = [a;] € R™" with a; = 1 if there is an edge from node v; to node vj, and a; = 0 otherwise. If G is
undirected, then A is symmetric. We will identify a directed edge e starting at v; and ending at v; with the ordered pair
(vi, vj). A walk of length k is a sequence v;, vi,, ..., vj,, of nodes and a sequence e;, e;,, . .., e; of edges such that ej;
points from vj; to vy, ;. The nodes and edges of a walk are not required to be distinct. For further discussions on networks
and graphs, we refer to [1,2].

Definition 1. A multi-class network is a directed graph G = (V, E) together with a map C : V — {1, ..., k} that assigns
to each vertex one of k vertex classes, and amap D : E — {1, ..., d} that assigns to each edge one of d edge classes, such
that:

For all e = (v, w) and €’ = (v/, w’), we have: D(e) = D(¢’) iff C(v) = C(v') and C(w) = C(w") (1)

Remark 1. Notice that:

1. Equivalent definitions have been proposed elsewhere, e.g., in [8] under the term information network, further
specified as heterogeneous if k > 1 and homogeneous otherwise.

2. The direct conditional in (1) is a natural condition, stating that edges of the same kind should connect nodes of the
same types; one can always define more edge classes to make sure this holds.

3. The converse conditional in (1) is a technical requirement, which makes it easier to use block adjacency matrices
(see below).

4. Definition 1 uses a directed graph for greater generality; if modeling considerations indicate that the relationship
represented by a class of edges is symmetric, then this can be accommodated by adding a reverse class of edges
containing the appropriate reverse edges.

5. Algebraically, Definition 1 means that there is a graph homomorphism (see [9]) from G onto a graph & with k
vertices and d edges. One can allow self-loops in S; a self-loop corresponds to a class of edges in G that connect
nodes within the same node class.
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3. Related work

An early example of ranking objects in a multi-class network is described by Law and Lodge [10], who are interested
in ranking actors. The currently most popular ranking method, PageRank, was introduced by Brin and Page [11] and has
spurred considerable related work; see [12], [2, Chapter 7], and references therein. Recently, tensor methods for multi-
relation data have received considerable attention; see [13-16]. We will comment on how our approach relates to the
tensor method described by Ng et al. [15] at the end of Section 7. Similarly as Brin and Page, we will use the left Perron
vector of an adjacency matrix to rank nodes, but the way we define the adjacency matrix is different.

The ranking of scientific publications has received considerable attention over the years. The simplest ranking method
is to count the number of citations that each paper receives without considering its contents. The journal impact factor
(JIF), introduced by Garfield [17], reflects the average number of citations that papers published in a journal received over
two years. This method ignores the quality of the papers and authors that provide citations. The JIF therefore might not
provide an accurate measure of the quality of the papers in a journal; see Bini et al. [6,7], as well as Del Corso and Romani
[18] for discussions.

Bini, Del Corso, and Romani proposed an integrated model to evaluate papers, authors, and journals based on the quality
of the papers, authors, and journals [6,7]. We refer to this model as the BDR model. Bini et al. introduce a dummy paper,
a dummy author, and a dummy journal to obtain an irreducible adjacency matrix. A dummy paper is a paper that cites all
other papers and is cited by all other papers, a dummy author is the author who writes the dummy paper, and a dummy
journal is a journal in which the dummy paper is published. Suitable normalization then yields a row-stochastic adjacency
matrix, whose left unit eigenvector, in the Euclidean norm, associated with the largest eigenvalue can be scaled to have
positive entries. This vector is unique and is referred to as the left Perron vector of the adjacency matrix. The relative
importance of a node in its class is proportional to the relative size of the corresponding component of the left Perron
vector.

Notice that the left Perron eigenvector of a row stochastic matrix can be interpreted, under suitable assumptions, as the
steady distribution for a random walk on the nodes that follows the edges. However, the use of the Perron eigenvectors
as measures of centrality does not depend on scaling the matrix to be row stochastic, but on the recursive notion that
the centrality of a node is proportional to the sum of the centralities of its neighbors [19]. Whether an adjacency matrix
should to be scaled or not is a modeling issue.

It follows that the relative importance of a paper in the BDR model is not merely based on the number of citations
it receives, but also on the quality of the citations (the importance of the citing papers), the prestige of its author or
co-authors, and the reputation of the journal in which it is published. Bini, Del Corso, and Romani [6,7] proposed the
following models:

One-class model: Bini et al. [6,7] consider n; papers and define an associated adjacency matrix H = [h;] € R"*™,
such that hj; = 1 when paper i cites paper j, and h; = 0 otherwise. They assume the importance that paper i gives to
other papers is scaled by the total number of papers it cites. This yields the row-stochastic matrix

ZI:] hik
The above formula assumes that the denominator is positive. This is secured by letting one of the papers be the dummy
paper that cites every other paper and is cited by every paper (except by itself). We henceforth will not explicitly discuss
the dummy items in the BDR models. The entries of the unit left Perron vector of H yield the relative importance of the
papers; large entries indicate high relative importance.

Two-class model: Bini et al. [6,7] consider a model with n, authors and n; papers. It is determined by the adjacency

matrix H defined above together with an additional adjacency matrix K = [k;] € R™*™M, such that k; = 1 if author i
writes paper j, and k; = 0 otherwise. To determine the importance of papers and authors, Bini et al. use the model

T
s_ [KK 1<] .

FI = [flu] (S Rmxn], fl,’j =

KT H

The (ij)th entry of the matrix A = [a;] = KKT € R"™>™ indicates the number of papers that are co-authored by authors
i and j. Bini et al. assume that the importance given by author i to his/her co-authors is scaled by the total number of
papers that are co-authored by author i and his/her co-authors, and they also assume that the importance that paper i
gives to its authors is scaled by the total number of authors who write paper i. They therefore row-normalize the matrices
A=KKT and P = [p;j] = KT such that

o . . ajj ~ R R DPij
A=la5], @j=—  P=yl b= —-
2 i Gik k=1 Pik

To avoid that the importance of a paper is not proportional to the number of co-authors, Bini et al. column-normalization
the matrix K such that
R R . ki
Doili ke

and then apply the following algorithm [6,7] to obtain a row-stochastic matrix:
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Table 1

Comparison of the BDR two-class model and the two-class model of Section 5. For the bibliographic
network, we use H, K, and K" to replace matrices Hy;, Hy;, and Hj, respectively for the two-class
model introduced in Section 5. The scaling of the matrices in both models has not been considered.

k-class BDR model Model of Section 5
k=2 KK" K H KT
- K" H K 0
Difference Authors receive direct importance Authors receive indirect importance
from their co-authors. from their co-authors.

Fig. 1. Comparison of the flow of importance of the BDR two-class model and the two-class model of Section 5. Solid lines show the flow of
importance in the BDR two-class model and dashed lines show the flow of importance in the two-class model of Section 5. Here A stands for the
author or set of co-authors of paper P, P, stands for the set of papers that cite paper P, Ap stands for one of the authors of paper P, and A, stands
for the co-authors of author Ap.

Algorithm 1. For each i € {1,...,ny}, compute s; = Z]';‘l lAc,J Ifs; < 1, set I~<,-j = IAc,J forj = 1,...,ny — 1, and
l~<,<,,1 =1- ijll_l ku Else divide the entries of the ith row of K by s;, that is, set I~<,»j = IAc,-j/s,-. Output K= [I~<,»j].

Finally, Bini et al. compute the left Perron vector of the matrix

 H

The first n, components of the left Perron vector indicate the importance of the authors and the last n; components show
the importance of the papers.

We say that object i receives direct importance from object j, if there is a walk of length one from object j to object i.
Object i is said to receive indirect importance from object j, if there is a walk of length strictly larger than one from object
j to object i, and there is no walk of length one from object j to object i. Fig. 1 shows the difference in how importance
is propagated in the BDR model and our model to be introduced in Section 5.

Table 1 displays the adjacency matrices for the two-class BDR model and our two-class model of Section 5. The BDR
model assumes that the importance of author i is given by the direct importance of the paper(s) that he/she writes and
the direct importance of his/her co-authors. However, in our model the importance of author i is given by the direct
importance of the paper(s) he/she writes; the importance of paper j written by author i is given by the importance of the
papers that cite paper j, and the importance of its authors. Therefore, author i also receives the indirect importance from
his/her co-authors through the papers they co-author. In the BDR model, author i's work with well-known co-authors has
a higher probability to be more important than author j's work with less well-known co-authors, even if author j's paper
is more important than author i’s paper. In our model, the importance of author i depends more on the importance of the
papers he/she writes than on the reputation of his/her co-authors. Therefore, the authors give more importance to their
co-authors in the BDR model than in our model. As already mentioned, the BDR model includes a dummy author.

The preferred choice of model for the ranking of papers, authors, and co-authors may depend on the context in which
the results are used. Our model is an alternative to the BDR model. More details of the former are provided in Section 5.
One of the features of the two-class model of this paper is that it naturally generalizes to k-class models. This is illustrated
below.

Three-class model: Bini et al. [6,7] consider the joint ranking of n; papers, n, authors, and n3 journals by expanding
their two-class model to a three-class model that in addition to the matrices H and K includes an adjacency matrix
F = [f;] € R™>*™, such that f = 1 if journal i publishes paper j, and f; = 0 otherwise. To determine the importance of
these three objects, they use the adjacency matrix of the column labeled “BDR model” in Table 2.

Bini et al. modify the adjacency matrix shown in the column “BDR model” of Table 2 by rescaling before computing
its Perron vector. As already mentioned, the BDR model includes a dummy journal. A new matrix F is obtained from F by
dividing each entry by u = maxjn,(F - @), that is, the maximum number among the number of papers published in each
journal. Here and throughout this paper e = [1, 1, ..., 11" denotes a vector with all entries equal to one. Algorithm 1
is applied to a row-scaled version F. The scaling is designed to make the matrix row-stochastic. This is the matrix used
in the BDR model. This scaling has the effect that a journal that publishes many papers does not automatically give high

4
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Table 2
Comparison between the BDR three-class model and our three-class model. The scaling of the matrices
in both models has not been considered.

k-class BDR model Our model
FHFT FK" F H K" F'
k=3 KF" KKT K K 0 0
FT K" H F 0 O
Difference 1 Authors receive direct importance Authors receive indirect importance
from his/her co-authors and journals from his/her co-authors and journals
where he/she published papers. where he/she published papers.
Difference 2 Journal i receives direct importance Journal i receives indirect importance
from authors and journals that are from authors and journals that are
associated with journal i. associated with journal i.

Fig. 2. Comparison of the flow of importance of the BDR three-class model and our three-class model. Solid lines show the flow of importance in
the BDR three-class model and dashed lines show the flow of importance in our three-class model. Here A denotes the author or set of co-authors
of paper P, Jp denotes the journal where paper P is published, P. denotes the set of papers that cite paper P, Ap stands for one of the authors of
paper P, A; stands for set of co-authors of author Ap, J5, denotes the set of journals where author Ap’s papers are published, J. denotes the set of
journals that contain papers that cite papers published in journal Jp, and A; denotes the set of authors who publish their papers in journal Jp.

importance to the papers published in it. The matrices FHFT, FKT and KFT are normalized similarly as F. The matrix FT is
normalized similarly as K in the BDR two-class model. These matrices are used in the adjacency matrix of the BDR model.
The (left) Perron vector of this scaled adjacency matrix determines the ranking of the papers, authors, and journals. Scaling
details of our three-class model will be discussed in Section 7.

Table 2 shows the difference between the BDR three-class model and our three-class model. The BDR model assumes
that the importance of author i is given by the direct importance of the papers he/she writes, the direct importance of
his/her co-authors, and the direct importance of the journals where he/she publishes papers. The BDR model also assumes
that the importance of journal i is given by the direct importance of journals whose papers cite papers published in the
journal, the direct importance of authors who published their papers in journal i, and the direct importance of papers
published in journal i. In our model, described in Section 6, we assume that the importance of author i is given by the
direct importance from the papers he/she writes, indirect importance from journals through his/her papers, and indirect
importance from co-authors through papers they co-authored. We also assume that the importance of journal i is given
by the direct importance from the papers published in it, as well as indirect importance from authors published papers
in it, and indirect importance from other journals through papers. Therefore, the proportion of importance that authors
and journals give to an author or a journal in the BDR model is more than that in our model. That is, for some problems,
it will over-accumulate the importance that an author or a journal receives from authors and journals.

The flow of importance of the BDR three-class model and our three class model is illustrated by Fig. 2.

4. One-class model

We will use the following notation:

e O;: object class in the one-class model.
e ny: number of objects (nodes) in 0.
® 01,0, ..., 0, : objects in the class O;. For instance, o; may stand for paper i or user i.

Suppose that we are interested in studying the ranking of the objects in O; in a homogeneous network. Let H = [h;]
R™>™ be the adjacency matrix for the network, such that h; = 1 if there is a link from o; to o;, and h;; = 0 otherwise.

5
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® O
o

Fig. 3. Undirected network of Example 4.1.

Lo

Fig. 4. Directed network of Example 4.2.

The importance of o; is given by the jth entry of the left Perron vector x of H. Thus, x satisfies xX'H = pxT, where p is the
spectral radius of H. For different kinds of problems, normalization of the rows of H may have to be considered. More
details will be introduced in the examples of this section.

Some rows or columns of the adjacency matrix H may only have zero entries. This occurs when some node o; does not
have any links (edges) to other nodes, in which case o; is said to be a sink, or when a node o; does not have any links from
other nodes, in which case o; is referred to a source. The Perron vector is unique when H is nonnegative and irreducible,
but this is not the case in the presence of a sink or source. The adjacency matrix can be modified so that it is nonnegative
and irreducible by allowing “teleporting”. We consider three teleporting methods. They depend on a parameter 0 < € < 1,
which determines the probability of teleporting. The first two teleporting methods below are related to the teleporting
used by the Google PageRank model [11,20], while the last approach generalizes the one used by Bini et al. [6,7].

e TM;: For € € (0, 1), we define the new weighted adjacency matrix AH=H+e- [ee —I], wheree =[1,1,..., 1] .
The identity matrix [ € R"*™ is subtracted since we do not allow self-loops.

e TM,: For € € (0, 1), we introduce the weighted adjacency matrix H = H+¢-[ee’ —H —I]. The matrix H is subtracted
from the teleporting matrix because we allow teleporting only between nodes with no citation path.

e TMj3: For € € (0, 1], we introduce a dummy node op, 41 such that it has bi-directional links with all other nodes
01,02, ..., 0n,. This gives the new weighted adjacency matrix H € R +Dx("1+1) whose leading n; x n; principal
submatrix is H. Its last diagonal entry vanishes and the remaining entries of H in the last row and column equal e.

We first illustrate the one-class model with a simple undirected network, in which the nodes represent users and the
links represent friendships.

Example 4.1. Consider the network of Fig. 3 with four users. The associated adjacency matrix is given by

010 0
101 1
H=10 1 0 1
0110

Thus, H is nonnegative and irreducible. Its left Perron vector
x" =[0.2818 0.6116 0.5227 0.5227]

shows that User 2 has the highest rank. This depends on that he/she has three friends. Users 3 and 4 have the same, but
lower rank, because both of them have two friends, only. O

Example 4.2. Regard the directed network of Fig. 4. The nodes represent papers and the edges stand for citations. Paper
7 is a sink since it does not cite any paper. To obtain a unique unit left Perron vector, we complement the network with a
teleporting strategy. To understand the meaning of teleportation, imagine that a student is conducting a research project.
He starts reading a paper that interests him and wants to look at other interesting papers. He can either pick a new paper

6
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Table 3
Ranking of papers by using three teleportation methods and different values of €. Ps denotes the dummy paper.

T™;: € P Py Py Py Ps Pg P

0.1 0.1270 0.1966 0.1966 0.2347 0.5627 0.3634 0.6347
0.3 0.2251 0.2915 0.2915 0.3111 0.5218 0.4029 0.4980
0.5 0.2682 0.3236 0.3236 0.3351 0.4879 0.4043 0.4526
0.7 0.2924 0.3391 0.3391 0.3465 0.4660 0.4019 0.4310
0.9 0.3079 0.3480 0.3480 0.3532 0.4512 0.3992 0.4143
TM;: € Py P, Py Py Ps Pg Py

0.1 0.1356 0.2062 0.2062 0.2430 0.5619 0.3695 0.6207
0.3 0.2559 0.3150 0.3150 0.3287 0.4983 0.4047 0.4647
0.5 0.3137 0.3511 0.3511 0.3556 0.4455 0.3980 0.4143
0.7 0.3475 0.3671 0.3671 0.3682 0.4109 0.3889 0.3926
0.9 0.3696 0.3753 0.3753 0.3754 0.3871 0.3812 0.3815
TM3 L€ P] P2 P3 P4 P5 Ps P7 Pg

0.1 0.0254 0.0561 0.0561 0.0934 0.4571 0.2066 0.8301 0.2091
0.3 0.0835 0.1406 0.1406 0.1795 0.5082 0.3020 0.6367 0.4078
0.5 0.1247 0.1863 0.1863 0.2167 0.4837 0.3238 0.5236 0.5051
0.7 0.1523 0.2117 0.2117 0.2348 0.4535 0.3263 0.4562 0.5583
0.9 0.1715 0.2268 0.2268 0.2446 0.4279 0.3235 0.4138 0.5907

by following the citation path of papers or randomly look for another paper (teleporting). The parameter ¢ stands for the
probability of teleporting. Intuitively, we expect Paper 1 to be the least important paper, since it does not receive any
citations. Papers 2 and 3 are more important than paper 1, since they receive one citation each from Paper 1. Paper 4 is
more important than Papers 2 and 3, since it receives one citation from Paper 2, which is more important than Paper 1.
Papers 6 and 7 receive two citations. Their rankings therefore are higher than the rankings of Papers 3 and 4. Moreover,
Paper 7 is cited by Paper 5, which receives three citations. This makes Paper 7 more important than Paper 6. These rankings
are illustrated by Table 3. The table shows these rankings to be independent of the teleportation method used.

Table 3 shows the relative importance of Papers 5 and 7 to depend on the value of the teleportation parameter e. If
€ > 0 is small, the reader generally looks for a new paper by following the citation path, while if € is large, the reader
frequently ignores the citations and selects a random paper. For all of the three teleportation methods, Table 3 shows
that as ¢ — 0, we obtain the ranking P; > Ps > P > P4 > P3 = P, > Py. In particular, Paper 7 is more important
than Paper 5, even though Paper 5 has three citations, while Paper 7 only has 2. When ¢ — 1, Table 3 shows the ranking
Ps > P; > Pg > P4 > P3 = P, > P,. Thus, when € is large, and therefore the probability of teleporting is large, the relative
importance of papers with many citations increases. O

The importance of a paper is determined by how many papers it is cited by, and in the BDR and our models also
by the importance of the citing papers, but not by how many times a paper is cited in each one of the citing papers.
However, when Paper 1 cites Paper 2 several times, the importance of Paper 2 for the development of Paper 1 is likely
to be more important than if Paper 1 cites Paper 2 only once. For instance, the present paper cites the papers [6,7] many
times, because they are important for the development of the present paper. It therefore may be meaningful to equip the
adjacency matrix with weights that grow with the number of citations from one paper to another.

Example 4.3. Consider four papers Py, ..., P4, which cite each other several times. Specifically, P; cites Piy1 i + 1 times
fori =1, 2, 3, and P4 cites P; once. The network is displayed by Fig. 5, with the weights shown near each edge, and the
corresponding adjacency matrix is given by

0 2 00
00 3 0
H=10 0 0 4
1 0 00

It has the left Perron vector
x" =[0.3489 0.3153 0.4273 0.7722],
which shows Paper 4 to be most important. O

We are interested in investigating how the left Perron vector changes if we add a new link from node o, to node
0s. Similar results for row-stochastic matrices are shown by Bini et al. [6,7]. We first consider directed networks, and
subsequently will discuss undirected ones.

Example 4.4. Regard the unweighted network associated with the network of Fig. 5, i.e., all weights are set to one. The
left Perron vector for the network is given by

x'=[05 05 05 05].
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Fig. 5. Directed network of Example 4.3.

Adding a citation (link) from Paper 2 to Paper 4 gives a new network with Perron vector
x" =[0.5262 0.4311 0.3531 0.6424].
The importance of Paper 4 increases as expected. O
The behavior of the left Perron vector in the above example is a consequence of the perturbation results formulated
as Theorem 1. Theorem 1 is shown by Bini et al. [6,7] in the special case when p = p = 1.

Lemma 1 ([21,22]). Let the matrices A = [a;] € R™" and A= [a;] € R™" be nonnegative and irreducible, with spectral
tadii o and p, respectively, and associated right Perron vectors X = [X1, ..., %]’ and X = [X1, ..., X,]1". Thus, Ax = px and
AX = pX. Define the index sets Iy = {1 <i<n: @GG=a;,V1<j<ntand ' ={1<i<n: i¢ Iy} Hence, I contains
the indices of the rows of A that are the same as the rows of A, while I" contains the remaining indices. We assume that both
sets Iy and I" are non-empty. Then the following inequalities hold:

(a) If p > p, then X—I’: < %maxjep (%) forall k in I,

(b) If p < p, then % > £ minyc, (’ij) for all k in Ty,

(c) If p = p, then both inequalities above hold for all k.

Let A = [a;], B = [bj] € R™". We write A > 0 if all a; > 0,and A< BisB—A > 0.

Lemma 2 ([23, Corollary 8.1.19]). Let the matrices A, B € R"™" have spectral radii p(A) and p(B), respectively. If 0 < A < B,
then p(A) < p(B).

Theorem 1. Let the adjacency matrix H = [h;] € R™" be irreducible and assume that h,; = 0. Let the entries of the adjacency
matrix H = [h;] € R™" agree with the entries of H, except for h,; = 1. Assume that H and H have spectral radii p and p, and

associated left unit Perron vectors x = [X1, ..., X,]" and X = [X1, ..., &a1", respectively. Thus, px” = x"H and px" = X"H.
Then
X X X .
BB B s (2)
X PXs X
and
R
S (3)
Xs

Proof. Lete; =[0,...,0,1,0,..., 0]" e R denote the jth axis vector, and note that H=H+ e,esT. Thus, A > H, and
Lemma 2 yields p > p.Let A=HT and B = AT. Then the matrices A and B differ in row s only, and Ax = px and Bx = px.
Lemma 1(a) now gives (2).

Assume that X; < x,. It then follows from (2) that ||X||> < ||X||>, which contradicts that both X and x are unit vectors.
Here and below || - ||, denotes the Euclidean vector norm. ®

The above theorem shows that if we add an extra link from object o, to object o, then the rank of object o; increases
more than the rank of the other objects. This also holds for k-class models, for k > 2, because it is a rank-one perturbation.
However, Theorem 1 does not carry over to the situation when more than one link is added to the network. This is
illustrated by the following example.

Example 4.5. Consider a network defined by 6 papers with citations according to Fig. 6. Paper 6 is a sink. We used
teleportation method 1 with € = 107>, This gives the left Perron vector
R = [0.00009 0.00082 0.00673 0.06177 0.06177 0.99615] .

8
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F—O—

Fig. 6. Directed network of Example 4.5.

Now, modify the network so that Paper 1 cites Papers 3 and 6. Thus, we introduce links from Paper 1 to Paper 3 and to
Paper 6. The left Perron vector for the modified network is given by

" =[0.000089 0.000795 0.007075 0.062975 0.062975 0.996001].

new

Element-wise division of the vector entries gives
ST

XfeTw:[o.gszz 0.9647 1.0506 1.0196 1.0196 0.9998].
X

Since both Papers 3 and 6 receive a new citation, one might expect their relative importance to increase more than
the relative importance of the other papers. However, the rank-value of Paper 6 deceases while the rank-value of Papers
4 and 5 increase. O

In Example 4.5 the rank of one of the papers (Paper 3), which receives new citations, increases in rank more than the
other papers. The following result shows this behavior to hold in general. Corollary 1 is shown by Bini et al. [6,7] in the
special case when p = p = 1.

Corollary 1. Let the adjacency matrix H = [h;] € R™" be irreducible and such that h;;, = --- = hy;, = 0. Assume that

R rS/gA

the entries of the adjacency matrix H = [h;] € R"™" agree with the entries of H, except for hys, = --- = hy;, = 1. Define the
index sets I' = {s1,S3,...,S;}and Iy = {1 <i<n: i¢g o). Let Hand H have spectral radii p and p, and associated left
unit Perron vectors X = [X1, ..., X,]" and X = [X1, ..., X,17, respectively. Then

2 <max 2 Viely (4)

Xi jer X;
and

X
max = > 1. 5)
jer Xj

Proof. The proof is similar to that of Theorem 1. Let A = H' and A = HT. The matrices A and A differ in rows with indices
in the set I'. By Lemma 2, we have p > p, and Lemma 1(a) yields
Xi Xi
2« Q max -
Xi p Jjel X;
which shows (4).
Assume that inequality (5) is violated. Then 0 < &; < x; for 1 < j < n. Therefore, x and X cannot both be unit vectors.
This shows (5). ®

VI'EF(),

We remark that Theorem 1 and Corollary 1 carry over to k-class models, for k > 2, to be defined in Sections 5 and
6 ; the adjacency matrices for these models for k = 2 and k = 3 are shown in the right-hand side columns of Tables 1
and 2. The theorem and corollary do not hold for the BDR three-class model introduced in Table 2, because adding a new
citation from a paper to another paper will modify the matrix FHFT and, therefore, result in a rank-two perturbation.
Corollary 1 also is useful when studying undirected networks, for which the adjacency matrix H = [h;] is symmetric. Let
hij = 0 with i # j. When setting h; = 1, we also set h; = 1 to preserve symmetry.

A converse to Theorem 1 can be shown, which addresses the situation when an edge is removed from a network.
Consider the removal of an edge that points from node o, to node o;. We would expect this removal to decrease the rank
of node o; more than the rank of the other nodes; see Example 4.6 and Theorem 2. The new graph obtained when the
edge has been removed has to be connected. A converse of Corollary 1 also can be shown. It addresses the situation when
several edges that point from node o, to nodes os,, ..., 05, are removed. This is discussed by Corollary 2.

9
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—

Fig. 7. Directed network of Example 4.6.

Example 4.6. Consider a network of four papers Py, ..., P4 connected as shown by Fig. 7. The unit left Perron vector for
the network is given by

x" =[0.4484 0.3213 0.5516 0.6526].
Removing a citation (link) from Paper 2 to Paper 4 gives a new network with left Perron vector
x" =[0.4311 0.3531 0.6424 0.5262],
The importance of Paper 4 decreases as expected. O
Theorem 2. Let the adjacency matrix H = [h;] € R™" be irreducible and assume that h,; = 1. Assume there exist at least

two nonzero entries in the rth row and the sth column. Let the entries of the adjacency matrix H= [fl,-j] € R™M agree with
the entries of H, except for h,s = 0. Assume that H and H have spectral radii p and p, and associated unit left Perron vectors

X=1[X1,.... x0T and & = [X1, ..., Xa]", respectively. Thus, px” = x"H and px" = X"H. Then
X X X
LA N (6)
xj P Xs X
and
X
2 <1 (7)
Xs

Proof. If either nodes r or s become a source or sink after edge removal, we can always use one of the three teleporting
methods introduced in Section 4 to make H irreducible. Let ¢; = [0,...,0,1,0, ..., 0]" € R" denote the jth axis vector,
and note that H = H — ee!. Thus, H < H, and Lemma 2 yields / < p. Let A= H" and B = H". Then the matrices A and B
differ in row s only, and Ax = px and Bx = px. Lemma 1(b) now gives (6).

Assume that X; > x;. It then follows from (7) that ||X||, > ||x||2, which contradicts that both X and x are unit vectors. H

Corollary 2. Let the adjacency matrix H = [h;] € R™" be irreducible and such that hy;, = --- = hy5, = 1. Assume that
tAhere exist at least two nonzero entries in the rth row and jth columns for j =1, ..., £. Let the entries of the adjacency matrix
[h,j] € R”X" agree with the entries of H, except for hrSl =---=hy =0 Defme the index sets I’ = {s1, S5, ...,S¢} and
Fo ={1<i<n: i# Iy} LetH and H have spectral radii p and ,6, and associated left unit Perron vectors x = [Xq, ..., Xa]"
and X = [)?1, ..., %17, respectively. Then
X X
Z>min? Viel (8)
Xi el Xj
and
%
min = < 1. 9
jer x;

Proof. If either nodes r or s become a source or sink after edge removal, we can always use one of the three teleporting
methods introduced in Section 4 to make H irreducible. The proof is similar to that of Theorem 2. Let A = H" andA=H".
The matrices A and A differ in rows with indices in the set I". By Lemma 2, we have p < p. and Lemma 1(b) yields

X X;

J}@min—] Vie Iy,

Xi P jer Xj
which shows (8).

Assume that inequality (9) is violated. Then 0 < x; < &; for 1 < j < n. Therefore, x and X cannot both be unit vectors.

This shows (9). =

10
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Table 4
Weights wj; for links between objects in the classes O; and O,.
0, 0,
0, w11 @12
0, 21 @2
Table 5
Normalization methods.

NM; No normalization is applied.

NM, Column normalize H,; with respect to 1-norm so that the importance of oy; € O; is independent of
the number of nodes 0,; € 0,. Replace the matrix Hy; in (10) by the normalized matrix. With this
normalization the influence of a user is not proportional to the number of movies he/she reviews.

NM; Column normalization of H,; as above, and analogous row normalization of Hi,. Replace the

matrices Hy; and Hy, by the corresponding normalized matrices in (10). With this normalization
the influence of user is not proportional to the number of movies he/she reviews. Moreover,
the total amount of importance that a user gives to the movies he/she reviews is independent
of the number of movies reviewed.

()
()
)

Fig. 8. Directed network of Example 5.1.

5. Two-class model

We will use the following notation in this section:

e 01, Oy: object classes. Objects in these classes may represent papers and authors in a bibliographic network, and
users and movies in a network from the Douban web site [24].
e n;: number of objects (nodes) in the ith object class, i € {1, 2}.
® 0i1, 02, ..., Ojp,: Nodes in the class 0;, i € {1, 2}.
e wj for 1 <1i,j < 2: the weight w;; > 0 determines the influence of objects in class i have on the importance of objects
in class j. We set w; = 0 if objects in the class O; have no influence on the importance of objects in the class 0;;
otherwise we set w;; > 0 (see Table 4).
Consider the object classes 01 = {ou}f':ll and 0, = {02,~}:-Z1. Let Hj = [h(r'sj)] € R"*" be an adjacency matrix such that
h(rij) = 1 when there is an edge from object (node) o; to object (node) oj;, and h(,?) = 0 otherwise, for 1 < i,j < 2. The
most general form of our two-class model has an adjacency block matrix of the form

w11H11 wi2Hp2 (n1+n3)x(nq+n3)
S = c RM+mn2 1+n2) 10
|:6021H21 6022H22:| (10)

In all examples, we choose the weights wy; = w1 = wp1 = 1 and wy; = 0. This gives adjacency block matrices of the
form shown in the right-hand side of Table 1.

The relative importance of the n; + n, nodes is determined by computing the left Perron vector x' = [X(T)1 xgz] for S.
The relative size of the entries of the subvector xo, € R" yields the relative importance of the objects oy; of Oy, while
the relative importance of the objects 0,; of O, is proportional to the size of the entries of the subvector xgz. The relative
importance of the objects depends on whether the matrices H; have been normalized; see Table 5. This is illustrated by
examples below.

11
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Table 6
Ranking of users and movies by using NM;, NM,, NM3.
Method Uy Uy us Uy my my ms
NM, 0.2501 0.4532 0.4552 0.4840 0.4532 0.2592 0.1336
NM, 0.3445 0.5619 0.4333 0.4135 0.4355 0.1224 0.0476
NM3 0.3216 0.5087 0.4000 0.3794 0.5087 0.2463 0.1199
Example 5.1. Consider an example with 4 users uy, ..., uy and 3 movies my, m,, ms; see Fig. 8. The relation between

users is “friendships”, which are modeled by undirected edges. An edge from u; to m; indicates that u; reviewed m;; the
edge from m; to u; models that user u; gets “importance” by reviewing movie m;. Thus, all edges are undirected. We refer
to movies for which our model gives relatively large components of the left Perron vector as “influential”.

The importance of a user and movie depends on whether the columns of the matrix Hy, or and the rows of matrix Hy;
are normalized. Three normalization methods are used in Table 6.

When using NMj, user 4 is most influential, because he/she has two friends and writes reviews for three movies;
movie 1 is the most influential movie because it receives 4 reviews. For this normalization method, the influence of a
user is proportional to the number of friends he/she has and the number of reviews he/she writes. With NM,, user 2
is most influential, because he/she has three friends; again movie 1 is most influential. For NM,, the influence of a user
is proportional to the number of friends, but independent of the number of movies he/she reviews. When using NM3,
the total amount of influence that a user gives to each movie is the same. A user with many friends is likely to be most
influential. O

6. k-class model

This section uses the following notation:

e 01,..., O object classes. Objects in these classes may represent papers, authors, and journals in a bibliographic
network, and users, movies, and groups in a network from [24].

e n;: number of nodes in the ith object class, 1 <i < k.

® 01, 0j2, . .., Oy objects (nodes) in the ith object class, 1 <i < k.

e wjj for 1 < i,j < k: the weight w; > 0 determines the influence of objects in the class O; has on the importance of
the objects in the class O;.

Regard the object classes O; = {oﬁ}?i], 1<j<kandlet Hy = [h(,'s])] € R™*% be an adjacency matrix such that h?f) =

when there is an edge from object o; to object oj, and hfs’) = 0 otherwise. The most general form of our k-class model

has an adjacency block matrix of the form

onHi opHin o o onHi
g | @ wnHn . ouHa | gy
orH  wHe ... owHik
In all our examples, we use the weights w; = 1ifi = 1 or j = 1, and w; = 0 otherwise. When k = 3 this yields an
adjacency matrix of the form depicted in the right-hand side of Table 2. To determine the importance of the objects oy,
we compute the left unit Perron vector x for S. Dividing this vector into subvectors x" =[x, Xp,, ..., Xp | such that

Xo; € R", 1 < j < k, makes it possible to determine the importance of the objects in each class; the importance of the
objects in O; is determined by the relative size of the entries of the subvector Xo;-

7. Numerical experiments

To show that our model is practical, we applied it to networks from [24] and bibliographic networks defined by real
data. Example 7.1 discusses the ranking of objects of a four-class network from [24] with object classes users, movies,
groups, and locations. The data for this network can be downloaded from the HIN Resource Dataset [24,25]. Example 7.2
is concerned with a two-class bibliographic network defined by real data downloaded from the CiteSeer website.

Example 7.1. The data set from the Douban web site [24] includes 3022 users, 6971 movies, 2269 groups, and 244
locations. Thus, this is a four-class model. Intuitively, we expect the user with most friends, the movie with most reviews,
the group with most users, and the location with most users to be the most influential ones in each object class. The
relative importance of the 12506 nodes is determined by computing the left Perron vector x' = [x|, x{; xL x[]. The
relative importance of these objects depends on the normalization of the matrices Hj. In particular, the normalization
methods for two-class models discussed in Section 5 have to be generalized to be applicable to the four-class model
of this example. We let NM,-3 denote normalization methods for the group objects; see Table 7. For location objects, in

12
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Table 7
Updated Normalization methods for the third object group and fourth object location.
NM? No normalization is applied.
NM; Column normalize H3; with respect to the 1-norm so that the importance of oy; € O; is independent

of the number of nodes o3; € 03. Replace the matrix H3; by the normalized matrix. With this
normalization the influence of a user is not proportional to the number of groups he/she belongs to.

NM§ Column normalization of Hs; as above, and analogous row normalization of His. Replace the
matrices Hs; and Hys by the corresponding normalized matrices. With this normalization
the influence of a user is not proportional to the number of groups he/she belongs to. Moreover, the
total amount of importance that a user gives to the groups is independent of the number
of groups he/she belongs to.

NM‘l1 No normalization is applied.

Table 8
Columns 1, 3, 5 list the top five users in decreasing order based on the number of friends the user has,
the number of movies the user reviews, and number of groups the user belongs to, respectively.

User ID num. of friends User ID num. of movies User ID num. of groups
2070 36 2756 183 372 18
1116 25 546 181 636 17
1037 14 38 171 2444 17
2483 13 851 171 1307 13
1011 10 1088 171 2781 13
Table 9

Columns 1, 3, 5 list the top five objects among groups, movies, and locations in decreasing order based
on the number of users the group has, the number of reviews the movie receives, and number of users
the location has, respectively.

Group ID num. of users Movie ID num. of reviews Location ID num. of users
1867 61 1728 403 213 410
220 26 3649 381 93 292
774 26 223 378 142 108
1248 26 2135 375 68 97
1607 25 6691 375 54 96
Table 10
Ranking of users, movies, groups, and locations.
Mtds NM; + NM? + NM?% NM; + NM3 + NM?% NM; + NM3 + Nm?
Rank User Movie Group Loca. User Movie Group Loca. User Movie Group Loca.
1 2756 1728 1867 213 2070 1728 1867 213 2070 1728 774 213
2 47 2135 1607 93 1011 3024 774 93 2427 3649 1679 93
3 1242 223 1248 142 2031 3649 374 142 2031 3024 1073 68
4 913 6370 774 68 2483 2135 1381 68 1011 2135 1381 142
5 779 3649 1641 54 2427 6370 2065 54 2483 637 1777 183

the fourth class, we introduce an adjacency matrix Hy; = [hj'], such that hi' = 1 if user j is at location i, and h' = 0
otherwise. No normalization has to be applied to the matrix Hyq, because it is impossible for user i to appear at more than
one location simultaneously, that is, the importance of a user is not proportional to the number of locations. Furthermore,
no normalization has to be applied to the matrix Hy4, because we assume that the proportion of importance that each
user gives to a location is the same. We denote the normalization method for locations by NM‘]I, i.e., no normalization is
applied, for the object location in this paper; see Table 7.

The importance of a user, movie, and group depends on whether the columns of the matrices Hy,, Hi3 and the rows
of the matrices H,;, H3; are normalized. Three normalization methods are described in Table 10.

When using the normalizations NM; + NM? + NM?, the influence of a user is proportional to the number of friends,
movies he/she reviews, and groups he/she belongs to. The influence of a movie is determined by the number of reviews
it received, the influence of a group is determined by the number of members it has, and the influence of the location is
determined by the number of users at the location. Tables 8, 9, and 10 show that user 2756 reviewed 183 movies, user
2070 has 36 friends, and user 372 belongs to 18 groups. Moreover, user 2756 is the most influential, because 183 is larger
than 36 and 18. Movie 1728 is the most influential, because it received 403 reviews, group 1867 is the most influential,
since it has 61 members, and location 213 is most important one, because it has 410 users. With the normalization
NM; + NM% + NM‘ll, the influence of a user is proportional to the number of friends, but independently of the number of
movies he/she reviewed, and the number of groups he/she joins. The influence of a movie, a group, and the location is
determined by the number of reviews it received, and the number of users the group or the location has. From Table 10,
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Table 11

One-class model of Section 4 with TM3 for € = 0.1. The papers are shown in decreasing rank order. The
first column shows the titles and authors of the papers, the second column displays the position of the papers
ordered by decreasing number of citations received, and the last column shows the number of citations each
paper received.

Paper Position Number of Citations
Bryant—Boolean Function Manipulation 1 1640
Jacob, Karels—Congestion Avoidance and Control 4 1131
Kirkpatrick, Gelatt, Vecchi—Simulated Annealing 2 1344
Rivest, Shamir, Adleman—Digital Signatures 3 1219
Floyd, Jaconson—Detection Gateways 7 1024

Table 12

BDR one-class model. The papers are shown in decreasing rank order. The first column shows the titles and
authors of the papers, the second column displays the position of the papers ordered by decreasing number
of citation received, and the last column shows the number of citations each paper received.

Paper Position Number of Citations
Jacob, Karels—Congestion Avoidance and Control 4 1131

Diffie, Hellman—New Directions in Cryptography 31 556

Rivest, Shamir, Adleman—Digital Signatures 3 1219
Bryant—Boolean Function Manipulation 1 1640

Kirkpatrick, Gelatt, Vecchi—Simulated Annealing 2 1344

Table 13

Two-class model of Section 5 with TM3; with weight € = 0.1. The first column shows authors in decreasing rank order, and the second column shows
the number of papers each author has written. The papers in the third column are identified by titles and authors, and displayed in decreasing rank order.
The last column shows the number of citations each paper received.

Author Num. Pap. Paper Num. Cit.
Douglas C. Schmidt 329 Bryant—Boolean Function Manipulation 1640
Patrick C Hew 103 Jacob, Karels—Congestion Avoidance and Control 1131
Fachbereich Informatik 507 Kirkpatrick, Gelatt, Vecchi—Simulated Annealing 1344
Sally Floyd 91 Rivest, Shamir, Adleman—Digital Signatures 1219
Aniruddha Gokhale 58 Floyd, Jacob—Detection Gateways 1024

we can see that user 2070 now is most influential, since he/she has 36 friends. Movie 1728, group 1867, and location 213
are still the most influential ones. When instead using the normalization NM3 + NM3 + NM, the influence of a user is
primarily based on the number of friends he/she has, and the total amount of influence that a user gives to each movie
and group is the same, that is, the influence of movie i and group j is based on the influence of the user who reviews
movie j and joins group j, rather than the number of reviews movie i received and the number of members group j has.
The influence of location is based on the number of users it has and on the influence of these users. Table 10 shows user
2070 and movie 1728 to still be the most influential ones, but group 774 becomes the most influential group, because it
receives the influence from 26 users and some of the users join the most influential group and review the most influential
movies. We conclude that the choice of normalization is important for the ranking of objects of multi-class networks. O

Example 7.2. We consider a two-class model that uses the same data as Bini et al. [6,7]. The data includes 716 800
papers and 410930 authors. Since some of the papers are isolated and some of the papers do not have information about
authors, we first removed isolated papers and papers without author information. We then have a data set with 358 906
papers and 257 650 authors.

For our one-class model, we obtain an adjacency matrix H e R338906x358%06 and applied TM; with weight ¢ = 0.1.
Table 11 shows the top five papers. Results for the BDR model are displayed in Table 12. The BDR model and our model
give related, but different rankings.

For the two-class model, we have the adjacency matrices H e R38906%358906 apd K ¢ R257650%358906 e ysed TM; with
€ = 0.1, and normalization NM3. We introduced a dummy author, who writes the dummy paper. Table 13 shows the five
highest ranked papers (see Table 14).

The ordering determined by the one-class model of Section 4 and the BDR one-class model are quite similar. Papers that
receive more citations have higher rank than those that receive fewer citations. The difference in the ranking determined
by these models stems from the fact that in the BDR model the importance that paper i distributes to the papers it cites
is scaled by the total number of papers in the reference list of paper i; in our model, the importance of a reference is
independent of the number of papers in the list of references. We observe that the ranking of papers we obtained with
the two-class model of Section 5 is consistent with the ranking determined by the one-class model of Section 4. The
authors in the BDR two-class model receive a higher proportion of importance from other authors than the authors in
our two-class model. This results in the difference of the author rankings of these models. We finally remark that if we
adjust the weights wj;, then different rankings will result. O
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Table 14

BDR two-class model. The second column shows authors in decreasing rank order, and the third column displays the number of papers each author has
written. The papers in the fourth columns are identified by titles and authors, and shown in decreasing rank order. The last column displays the number
of citations each paper received.

Rank Author num.pap. Paper num.cit.
1 Randal Bryant 83 Kirkpatrick, Gelatt, Vecchi—Simulated Annealing 1344

2 Sally Floyd 91 Bryant-Boolean Function Manipulation 1640

3 John K. Ousterhout 23 Rivest, Shamir, Adleman—Digital Signatures 1219

4 Dennis M. Ritchie 6 Canny—Computational Approach to Edge Detection 834

5 Timothy H. Harrison 17 Floyd, Jacobson—Detection Gateways 1024

9 Douglas C. Schmidt 329

We conclude this section with some comments on the tensor-based approach by Ng et al. [15]. These authors study
the probability that a “random surfer” reaches a node or uses an edge. Suitable normalizations give probability tensors for
the nodes and edges. Zero “rows” or “columns” of the tensors are replaced by “rows” or “columns”, respectively, in which
each entry has the same value. This secures that the tensors are irreducible. The stationary probability distributions for the
nodes and edges determine the importance of the nodes and edges, respectively. Other approaches to secure irreducibility,
more in line with those used by Bini et al. [6,7], could also be used, such as introducing dummy entities (e.g., dummy
authors and dummy papers). A comparison of the tensor method by Ng et al. [15] with the 2-class model of the present
paper when applied to a small example with four authors and six papers resulted in the same ranking, but with different
“importance scores” for the authors and papers. We conclude that the method proposed by Ng et al. [15] provides an
alternative to our approach, which is more closely related to the technique by Bini, Del Corso, and Romani [6,7]. The
relative advantages of these approaches require further investigation and will depend on the networks and applications
considered.

8. Conclusion

This paper proposes new models for the analysis of multi-class or heterogeneous networks, in particular for the ranking
of nodes based on their importance or centrality. The use of block adjacency matrices provides a systematic approach to
the analysis of multi-class networks, in which the influence of nodes in one class on the relative importance ranking
of members of another class is carried by transitivity through the explicit relationships in the model, as expressed by
the powers of the matrix. For example, it becomes unnecessary to explicitly include co-authorship relationships among
authors when trying to rank articles by importance, as the co-authorship relationships arise naturally in the powers of
the block adjacency matrix,

For simplicity, the perturbation results have been stated and proved for the one-class model, but they in fact hold for
all k-call models for k € N. The results establish that the chosen notion of importance, based on the Perron eigenvector,
satisfies a kind of local monotonicity, namely that when a single edge is added, the rank of the node that is receiving the
influence cannot decrease.

Weights and teleportation models affect the ranking in a transparent manner. For a one-class bibliographic network,
the importance of a paper is determined by the number of papers it is cited by, and the importance of the citing papers.
The importance of a paper is also determined by the number of times a paper is cited in each one of the citing papers if
the bibliographic network is weighted. As the probability of teleporting increases, the relative importance of papers with
many citations increases if it is a teleportation model. When authorships and publications are considered, the importance
of a paper is also determined by the importance of its author and the importance of the journal where it is published,
but independent of the number of authors it has.

In computational terms, using block-structured adjacency matrices can lead to matrices of very large dimensions.
However, these matrices will in general be very sparse, so in many applications neither the computations nor the storage
become too demanding. We note that large matrices do not have to be stored simultaneously in fast memory, only
evaluations of matrix-vector products are required and this can be carried out in a piecemeal fashion.

Future work will include the use of further information about the components of the network, including node and
edge weights, as well as time dependence.
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