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Abstract

The need to estimate upper and lower bounds for matrix functions of the form
trace(WTf(A)V), where the matrix A € R™" is large and sparse, V, W € R™ are
block vectors with 1 < s <« n columns, and f is a function arises in many applica-
tions, including network analysis and machine learning. This paper describes the
shifted extended global symmetric and nonsymmetric Lanczos processes and how
they can be applied to approximate the trace. These processes compute approxi-
mations in the union of Krylov subspaces determined by positive powers of A and
negative powers of A — o/, where the shift o is a user-chosen parameter. When A is
nonsymmetric, transposes of these powers also are used. When A is symmetric and
W =V, we describe how error bounds or estimates of bounds for the trace can be
computed by pairs of Gauss and Gauss-Radau quadrature rules, or by pairs of Gauss
and anti-Gauss quadrature rules. These Gauss-type quadrature rules are defined by
recursion coefficients for the shifted extended global Lanczos processes. Gauss and
anti-Gauss quadrature rules also can be applied to give estimates of error bounds
for the trace when A is nonsymmetric and W # V. Applications to the computation
of the Estrada index for networks and to the nuclear norm of a large matrix are pre-
sented. Computed examples show the shifted extended symmetric and nonsymmet-
ric Lanczos processes to produce accurate approximations in fewer steps than the
standard symmetric and nonsymmetric global Lanczos processes, respectively.
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1 Introduction

We introduce shifted extended symmetric and nonsymmetric block Lanczos processes.
Applications include the analysis of large networks. We first describe this application
before discussing the details of the Lanczos processes.

The analysis of networks finds applications in a number of disciplines including
social science, engineering, molecular biology, and traffic planning; see [11, 12, 16, 17,
31]. Typically, one is interested in determining the most important vertices of a given
network, or to identify global properties of a network.

A network is represented by a graph G = {V, E}, which consists of a set of nodes
or vertices V = {v;}'_ and a set of edges E = {e, = {v,, v;} i v, v, € VYL that con-
nect the vertices. In an undirected graph each edge is a “two—way street”, whlle in a
directed graph at least one edge is a “one-way street”. In a weighted graph, each edge
is assigned a scalar value, which is the weight of the edge; in an unweighted graph, all
weights are unity.

A walk of length k in a graph G is defined as a sequence of vertices and edges such
that

/éj] /e\iz ?./3 2/'1,71 ?fk
Vfo - Vfl - vfz o 7 ka—l - vfk’

where the edge ¢ € = {vf 2 Ve, } emerges from vertex Ve and points to vertex Ve, (for
a directed graph) or is between the vertices v and v, (for an undirected graph) A
graph G is connected when there is a walk from any vertex to any other vertex in G.
We are concerned with unweighted connected graphs without self-loops and multi-
ple edges. However, the methods described also can be applied to weighted graphs.

We can associate an adjacency matrix A = [a;;] € R™" to a graph G. The entries
of the adjacency matrix for an unweighted connected graph G without self-loops and
multiple edges, with n vertices, are given by

1 if there is an edge from vertex v; to vertex v; (when G is directed)
a.; = or between the vertices v; and v; (when G is undirected),
0 otherwise.

The adjacency matrix is symmetric if the graph G is undirected and nonsymmetric
otherwise.

The importance of a vertex v; in a graph G is commonly referred to as its centrality.
There are several ways to measure centrality. Recently, matrix functions, and in particu-
lar the matrix exponential, have received considerable attention for measuring central-
ity. The number of walks from vertex v; to vertex v; of length k are given by [AF], ;- The
subgraph centrality of vertex v; determined by the matrix exponential is defined as

(A%, [A%],
TR TR

[exp(A)];; = 1 +[A];; +
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see [16, 19, 20]. Thus, the subgraph centrality of the vertex v; is a weighted aver-
age of all walks from v; back to itself. Longer walks receive a smaller weight than
shorter walks. This corresponds to the common modeling assumption that short
walks are more important than long ones. The sum of all subgraph centralities of a
graph is commonly referred to as the Estrada index of G,

EEG) 1= Y [exp(A)];; = Y. [exp(4,)] = trace(exp(4)), (1)
i=1 i=1

where the 4;,i = 1,2, ... n, denote the eigenvalues of the matrix A. The normalized
subgraph centrality of the vertex v; is given by

p; = [exp(A)],,/EEG), i=1.2,...,n,

and is used to determine the relative importance of vertices: the vertex v; is impor-
tant when p; is relatively large; see [16, Chapter 5]. For some networks, In(EE(G)) is
desired; see [16, p. 99]. We remark that the Estrada index also is a useful measure in
statistical thermodynamics [18] and in the investigation of the folding of long-chain
molecules [15]. The Estrada index is expensive to compute when the graph G is
large.

It is the purpose of this paper to introduce new methods to determine approxi-
mations of the Estrada index for large graphs. We will describe novel ways to
compute upper and lower bounds for the Estrada index (1), or estimates of such
bounds, for symmetric and nonsymmetric adjacency matrices for a graph. The
methods described also can be applied in machine learning, when f(¢) = In(7) (see
[5, 25, 32]), and in quantum chromodynamics when computing Schatten p-norms,
when f(¢) = #/2, for some 0 < p < 1; see [6, 34, 36].

Our method for computing upper and lower bounds (or estimates of such
bounds) is based on determining upper and lower bounds (or estimates thereof)
for expressions of the form

I(f) := trace(VIf(A)V), 2)

where A € R™" is a large, sparse matrix and V € R™" is a block vector with
1 <5 <« n orthonormal columns. Assume for now that the matrix A is symmetric
and the function fis analytic on the convex hull of the spectrum of A. Introduce the
spectral factorization

A=UAUT, A =diag[A, Ay, ..., 4,],

where 4, 4,, ..., 4,, denote the eigenvalues of A and the matrix U € R™" of eigen-
vectors of A is orthogonal. Here and throughout this paper the superscript 7 denotes
transposition. Then

fA)=UfMUT,  f(A) = diag[f(4).f(A2)s - . [ (A,)].

Bellalij et al. [7] observed that the expression (2) can be written as a Stieltjes inte-
gral. We have
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I(f) = trace(VIF(A)V) = Y f(Arace(V]'V,) = / Fda(d), 3)
i=1

where V = U Ty, f/,. denotes the ith row of the matrix \A/ and a(4) is a nondecreasing
real-valued piece-wise constant function with possible discontinuities at the eigen-
values 4, of A; da(4) is the associated measure.

Bellalij et al. [7] applied pairs of Gauss and Gauss-Radau quadrature rules to
compute upper and lower bounds for expressions of the form (2) for certain func-
tions f, including the exponential. The m-point Gauss rule is determined by applying
m steps of the global symmetric Lanczos process, which generates an orthonormal
basis for the global Krylov subspace

K, (A, V) :=span{V,AV,...,A" 'V} = (pA)V : pe I, ,}, “)

where I1,,_ denotes the set of polynomials of degree at most m — 1. Global Krylov
subspace techniques were first proposed by Jbilou et al. [28, 29] for solving linear
systems of equations with multiple right-hand sides.

Application of m steps of the global symmetric Lanczos process [29] to A with
initial block vector V € R™ gives the decomposition

AV, =V, (T,, ® L) + fyryy Vot EL, ©)

where ® denotes the Kronecker product. The n X s block columns of the matrix
vV, =1V, V,, ..., V,] € R where V, = V/||V| and || - || denotes the Frobenius
matrix norm, form a basis for the subspace (4) that is orthonormal with respect to
the inner product

(X,Y) = trace(X'Y), (6)
ie.,

1j=k

(V}, Vi) = trace(V V) = { 074k

where we recall that (Vj, Vj) = ||Vj||2. The matrix 7,, € R™" in (§) is symmetric
and tridiagonal, I, € R denotes the identity matrix, §,,,; > 0, and E,, € R™ is
made up of the columns (m — 1)s + 1, (m — 1)s + 2, ... , ms of the identity matrix 7.
We tacitly assume that m is small enough so that the decomposition (5) with the
stated properties exists. This is the generic situation.

The m-point Gauss quadrature rule for the Stieltjes integral (3) is given by

G, () 1= IVII*elA(T, e, (7)

where e; =[1,0, ... ,0]" denotes the first canonical basis vector. The Gauss rule
satisfies

Up) =G,(p). Vp e,
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see [7] for details.
The associated (m + 1)-point Gauss-Radau quadrature rule with a specified node
& can be expressed as

RE () = VI f(T,1 ey ®)

where T, . € R"DX"+1 s determined by modifying the last diagonal entry of
the matrix 7, so that 7, . has an eigenvalue at §. Here 7, is the matrix associ-
ated with the (m + 1)-point Gauss quadrature rule. The Gauss-Radau quadrature rule
satisfies

Ip) =R, (p). Vpell,;

see [7].

When the integrand fin (3) is 2m + 1 times continuously differentiable and the
derivatives f®™ and f®"*D do not change sign on the convex hull of the spectrum
of A, the Radau point & can be chosen to be one of the endpoints of the convex hull
so that the quadrature rules G,,(f) and an () bracket Z(f); see [7] for details. This
result follows from the seminal work by Golub and Meurant [23].

When f@™ or f@m+D change sign on the convex hull of the spectrum of A, pairs
of Gauss and Gauss-Radau quadrature rule are not guaranteed to bracket Z(f). In
this situation it may be attractive to compute estimates of upper and lower bounds
for Z(f) by evaluating pairs of Gauss and anti-Gauss quadrature rules. Anti-Gauss
rules were introduced by Laurie [30] to estimate the quadrature error of Gauss rules
applied to the approximation of integrals of a real-valued function with respect to
a nonnegative real-valued measure. Recent applications to the approximation of
matrix functions are described in [1, 2, 8].

If the function f cannot be approximated accurately by a polynomial of low to
moderate degree, then Gauss-type quadrature rules (7) and (8) typically will not
furnish accurate approximations of the expression (2). This situation occurs, for
instance, when the function f or one of its low-order derivatives has a singularity
at or close to some eigenvalue of A. Then it may be beneficial to approximate f by a
rational function with a pole at or close to a singularity of f or of one of its deriva-
tives. In fact, Druskin and Knizhnerman [14] have shown that it also may be benefi-
cial to approximate entire functions f by rational functions with a pole in the finite
complex plane, compared to polynomial approximations. Therefore, Druskin and
Knizhnerman [14] suggested the application of extended Krylov subspaces when the
matrix A is nonsingular. These subspaces are determined by both positive and nega-
tive powers of A.

The shifted extended global Krylov subspaces used in this paper generalize the
extended Krylov subspaces applied by Druskin and Knizhnerman [14] by allowing
a real or complex shift ¢. Thus, we consider approximation methods for (2) that use
shifted extended Krylov subspaces of the form

K’ (A, V) :=span{V,AV,A%V, ... ,A"'V,(A - 61,)7'V,

9
(A - 61}1)_2‘/, ey (A - Uln)_mV} C Rnxs’ ( )
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where the shift o is distinct from the eigenvalues of A. We assume that m is
small enough so that the block vectors in the right-hand side of (9) are linearly
independent.

This paper presents Gauss, Gauss-Radau, and anti-Gauss quadrature rules
associated with shifted extended Krylov subspaces (9). These rules are used
to approximate (2). Numerical examples in Sect. 6 illustrate that these quadra-
ture rules may yield significantly more accurate approximations than Gauss and
Gauss-Radau rules that are based on the “standard” global Krylov subspaces (4).

We also are interested in determining upper and lower bounds for expressions
of the form

I(f) := trace(WI f(A)V), (10)

when the matrix A is nonsymmetric and W,V € R™“, 1 < s <« n, are block vectors
that might be distinct. Our analysis assumes that the matrix A is diagonalizable and
has the spectral factorization

A=PDP', A=diag[i,,A,,...,4,] € C™", 1)

where 4;, 4,,..., 4, denote the eigenvalues of A and P € C"™" is a nonsingular
matrix of unit eigenvectors. However, the application of the numerical methods
described does not require existence of the factorization (11). A discussion on the
situation when the factorization (11) does not exist is provided by Pozza et al. [33].
The function f(A) can be defined by f(A) = Pf(A)P~!. Substituting (11) into

(10), and setting W = PTW € €™ and V = P~V € C™, yield
I(f) = trace(W'f(A)V) = Y f(4)trace(W V) = / fdu(h),  (12)
i=1

where Wi and Gi denote the ith rows of the matrices W and ?, respectively. Further,
du(2) is a measure with support at the eigenvalues of A.

We will present the shifted extended global nonsymmetric Lanczos process for
generating biorthogonal bases {V; 12;"1 and {Wi}izf1 for the shifted extended global
Krylov subspaces K’ (A, V) and Kfn(AT, W), respectively. Thus,

(V. W) = trace(W V) = { (l)j';e ’Z
We describe Gauss and anti-Gauss quadrature rules for estimating upper and lower
error bounds for the computed approximation of (10). This work extends the quad-
rature rules discussed by Fenu et al. [21] to shifted extended Krylov subspaces, and
it extends the recursion relations for the extended global symmetric Lanczos process
described in [9, 26] to the shifted symmetric and nonsymmetric Lanczos processes.
This paper is organized as follows. Section 2 reviews results in [8] on the
extended global Lanczos process applied to a symmetric matrix. We also discuss
the connection between the shifted extended global symmetric Lanczos process
and Gauss-type quadrature rules. Section 3 is concerned with the computation
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of anti-Gauss quadrature rules associated with the subspace (9) when A is sym-
metric. The shifted extended global nonsymmetric Lanczos process for gener-
ating biorthogonal bases for the spaces K? (A, V) and Kfn(AT, W) is described in
Sect. 4. These bases are expressed with the aid of shifted orthogonal Laurent pol-
ynomials. Section 5 discusses the computation of anti-Gauss-Laurent quadrature
rules. Numerical experiments with applications to network analysis and Schatten
p-norm computations are presented in Sect. 6 to illustrate the quality of the com-
puted approximations. Section 7 contains concluding remarks.

2 The shifted extended global symmetric Lanczos process

This section discusses the shifted extended global symmetric Lanczos process and
its relation to shifted Gauss-Laurent and Gauss-Laurent-Radau quadrature rules.
While introducing a shift o # 0 is straightforward theoretically, it is important in
applications. The shift affects the coefficients in the recursion relation satisfied by
the orthonormal block vectors that make up a basis for the shifted extended Krylov
subspaces (9). We require o to be real and outside the convex hull of the spectrum
of A.

2.1 Preliminaries and notation

We begin by recalling some definitions and notation that will be used throughout
this paper. The Kronecker product of two matrices A = [q; J] and B = [b; J] is defined
by A ® B = [, ;B] and satisfies the following properties:

1. A®B)C®D)=ACQ BD,
2. A®B)T =AT®B.

Definition 1 [10] Let the matrices M =[M;,M,,...,M,]eR™P and
N =[N,N,,...,N,] € R"™’P be partitioned into block columns M; and N, of size
n X p, respectively. Then the o-product of the matrices M and N is given by

T _ i=12,...0 Xt
M"oN =[N, M)l 5 " € R™.

The following proposition gives some properties of the o-product. We refer to this
product as the “diamond product”.

Proposition 1 [10] Let A,B,C € R™", D € R™" L € RPP, and a« € R. Then

. A+B)ToC=AToC+B"sC,
2. ATo(B+C)=AToB+AT o C,
3. (@A) o C = a(AT o O),
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4 Page8of35 A.H.Bentbib et al.
4. AToB)T =BT 0 A,

5. (DAY o B=AT o (DTB),

6. AT o (B(L® Ip)) = (AT o B)L.

2.2 The shifted extended global symmetric Lanczos process

This subsection describes the application of the extended global symmetric Lanc-
zos process to the shifted matrix A — 61, to generate an orthonormal basis {V; }2’"
of block vectors V; € R™ for the shifted extended global Krylov subspace (9)
This basis is computed by short recurrence formulas as follows:

v, =L,
a
v, - (13)
V,=—, V,=A-0l)'V, —a,V,,
oK)
where a; | = [V, @, = (A= ol,)"'V;, V), a, = |Vl For j=1,2,....m, we
have
h2j+1,2j—lV2j+l = V2j+1 =AV2j E 3h1 2j— Vi
_ B (14)
Mj22iVojsn = Vojp = (A — O'In)_lvzj Z hio; V.
i=2j-2
The coefficients h;; are determined so that the block vectors V,,V,, ..., V,,, ., are
orthonormal. This leads to the expressions
hisiy = (AVy_1, Vi), hyjirpjm1 = ||sz+1||, (15)
higj = ((A=al)"'V,, V), hyjsani = Vol

We provide recursion relations for computing the coefficients A, ; below.

Proposition 2 Let the coefficients a; ; and h; ; be defined by (13), (14), and (15). They
can be computed as follows:

hip=ay,,

hyy = ——[1 = a by, + ey,

21 = Ayofy ) TO0X 5],
a0

ajohy

23—

%)

For j=12,3,...,m, we have
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i3 01 = Moj_1 935
h =L h
2j-22j-17 3 2j-3,.2j-412j-32j-1>
2j—2.2j—4
{ 2j—1
h2j,2j—1 = . Ghzj-1,2j-2 - Z hi,Zj—Zhi,Zj—l >
2j,2j-2 i=2j-3

g2 5j = hajjas

-1
h2j—1,2j = 7 h2j—2,2j—3h2j—2,2j’
2j—1,2j-3
1 2j
h2j+1,2j = o 5h2j—1,2j_ Z hi,Zj—lhi,Zj .
2j+1,2j—1 i=2j—2

Proof From the relations (13) and (15), and due to the orthonormality of the block
vectors {Vi}l.z;’”z, we get

hp={(A=0cl)"'Vy, V) =((A=0l,)"'V}, V)
=(a,Va + a1,V Vo) = ap,.
The second equation in (13) yields
0y, AV, =V +6ay,V, — a; ,AV) + ay 50V,
and it follows that
hyy = (V1,AV,)

= L<‘/1, Vl +(70{22V2 - 0{1 2AV1 +a1 26V1>
@ ' ' '

1
= —I[1—a,h; +oa,,]

%)
and
-1 ah 3
hy5 = (V5,AV,) = _<V3’0‘1,2AV1> == .
o%) a0
We also have
h2j—3,2j—1 = <AV2,/—17 sz-3> = <AV2j—3’ sz-1>
2j-2
= (hyoiges Vet + ) higieaVis V) = b1 s,
i=2j—5

h2j—2,2j—1 = (szj—1s sz-2> = (szj—Z’ sz-1>-

Multiplying the second equation in (14) by (A — o/,) from the left gives
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4 Page 10 of 35 A.H.Bentbib et al.

%j-3

h2j—2,2j—4AV2j—2 = sz-4 - Z i,2j— _4(A—0ol)V; + 6h2j—2,2j—4V2j—2’
i=2j—6

which implies that

hyip0j1 = h2 . lZ hijahis;i ]
j—2.2j—

i=2j—6

Since, h;p;y =0fori=1,2,...,2j — 4, it follows that
1
h2j—2,2j—1 == 7 hzj—3,2j—4h2j—3,2j—1-
2j—2,2j—4

For the coefficient h,;,;_;, we have
h2j,2j—1 = <AV2j—l’ V2j> = <AV2js sz-1>’

and using the expression for AV,; and similar manipulations as above give

2j-1
1
hzj,zj—l = A thj—l,zj—z - 2 hi,2] 2h; 2j—1
2j,2j-2 i=2j-3

hyjnni = (A= 01,)"' Vo, Vo n) = (A = 61,) 'V, 5, V)

2j-1
= (hyj0iVo; + Z hinioVis Vo) = hyjni s,

i=2j—4

h2j—l,2j =(A- O'In)_l sz’ sz—1> = (A - O'In)_l V2j—]’ V2j>'
According to the first relation in (14), we can express (A — aln)‘1 Vyj_yas
1 2j-2
A=0l) Vo = ——— Vo= D hypsA=0l)'Vi+0(A=0l,) " Vy 5.
haj-12j-3 i

The orthogonality condition and fact that ; 5; = 0 for i < 2j — 2 lead to
-1
hyj-12j-3
hyjiy 05 = ((A— O-In)_lv2j’ Vojr1) = (A= 01)"' Vo, 1. V)

2
1 _ _
= <—lV2j_l = Y (A= oLV, + 0(A - ol,) lsz_l],vzj>
1

g1 = Pyj29j-3M2j-2j>

Poji1 0 i3
1 <l
= o thj—l,zj_ Z hi,2j 1hy 2j
2j+1,2j—-1 i=2j-2
This completes the proof. O
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Example: Let m = 3. Then the matrix H = [/, ;] € R¥®is of the form

[, iy iz O 0 0]
hyy by hyz hyy 00

hyy hyo by hyy hys O

H= Ry haz hyg hys hyg
0 hs3 hsy hss hse
0 0 hgy hes heg
0 0 0 hyshyg
0 0 0 0 hgel

(e}

(=l eNele)

All entries denoted by A, ; in the matrix may be nonvanishing. Moreover, entries on
the second superdiagonal equal entries on the second subdiagonal, i.e., h;; » = h;y,;
fori=1,2,3,4. O

We next discuss some useful properties of the shifted extended global Krylov sub-
spaces. Here and below we will tacitly assume that the number of steps of the shifted
extended global symmetric Lanczos process is small enough to avoid breakdown. This
is the generic situation; breakdown is very rare.

Application of m steps of the shifted extended global symmetric Lanczos process to
the matrix A with initial block vector V; of unit norm yields the decomposition

A\/2m = \/2m+1(:il—2m ® Iv)
= \/Zm(-l]—Zm ® IS‘) + V2m+l([t2m+1,2m—l’ t2m+l,2m] E;T;; ® Is)’

where the matrix E,, = [e,,_;, €,,,] € R*™ is made up of the last two columns of
the identity matrix /,,, and

T, = 1,1 = V) 0 AV, € R,
with t;= (AVj, V), i,j=1,2,...,2m. The matrices
Vo, = Vs Vo, oo u Vo by Vo =1V Vo, oo, Vo
are made up of orthonormal block vectors V; € R™. Also introduce the matrix

Ty = VI

m 2m+1

<>/4\/2'/” c R(2m+1)X2m. (16)

The entries of T,,, and TNTZm can be expressed in terms of recursion coefficients for
the shifted extended global symmetric Lanczos process as shown below. This makes
them easy to compute.

Proposition 3 Let the coefficients hi’]- and a;; ~be defined by (13) and (14). The non-
trivial entries of the matrices T,,, = [1; ;1 and T,,, = [1,;] can be expressed as

@ Springer



4 Page 12 of 35 A.H.Bentbib et al.

Loy = Mgy, fori=2j-3,2/-2,...2/+1, j=12,.,m,

ho=1hy,
thy =0 —al’zt
22=0— 2.1
%)
by = -2,
327~ 31
(%)

Moreover, for j = 1,2, ... ,m — 1, we have

Djr1j42 = Djs22j+1>

o hyay
bjvaoj+2 =0 — 77— hji0jt1>
2j42,2j
_ o1
3o = 7y Djt32j+1:
2j+2.2
Proof The proof is similar to that of [9, Proposition 3.1]. O

The orthonormal basis {Vj}f;”l for (9) can be expressed with the aid of orthogo-
nal shifted Laurent polynomials, i.e.,

sz—l = RZJ—Z(A)V al‘ld sz = RZ}—I(A)V’ j = 1, 2, oo, m, (17)
where R,;_, and R,, are shifted Laurent polynomials that live in the spaces

Ry el =span{l,(x—0)"",x,.... ¢, (x—0)7},

Ry(x)€Aj; :=span{l,(x—0)"",x,....(x = 0)7,¥}.

Proposition 4 Ler A be a symmetric matrix and let the coefficients a;; and h; ; be given
by (13) and (14). Then the sequence of shifted Laurent polynomials Ry, R, ...,R,,,
determined by (17), are orthonormal with respect to the bilinear form

(P, Q) = trace(P(AV)" QA)V) = / P(HQ(Dda(4),

where da is the measure defined in (3). These shifted Laurent polynomials satisfy a
pair of five-term recurrence relations of the form

hyji1 2j-1 Ry(%)

2%
YRy 5 (x) = hipi_ i Riy (%),
i=2j-3

2j+1
h2j+2,2jR2j+1(x) =@x-o )_1R2j—1(x) - 2 hi,ZjRi—l(x)’
i=2j-2
where R (x) = (1/ay)[(x — 6)"'Ry(x) — &) ,Ry ()], Ryx) = 1/ay, and
R,=R_,=0.
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Proof A similar result is shown in [9, Theorem 2.7]. The proposition can be shown
by modifying the proof presented there. O

2.3 Shifted Gauss-Laurent quadrature rules

The shifted extended global symmetric Lanczos approximation of the Stieltjes
integral (2) is given by

2m
5.0 = VIRl f(Ty, e, = D fO)w,, (18)
i=1
where 6, denotes the ith eigenvalue of T,,, and w; = ||V||*u? . Here u;, is the first

component of the normalized eigenvector u; of T,,, assomated w1th the elgenvalue 0,.
Using the same techniques as in [9, Proposition 3.4], we can show that the zeros of
R,,, are the eigenvalues of T,,,. Then, applying (18), we find that

o Ram) = 0. (19)

We will show below that (18) is a shifted Gauss-Laurent quadrature rule. The fol-
lowing properties help us to establish this fact.

Proposition 5 Let the matrix pairs {V,,,T,,} and {W,,,H,,}, where
Vo, =V, Vas oo s Vi)l and W, = [W, W,, ..., W,, ], be associated to the
shifted extended global Krylov subspace K? (A, V) and the global Krylov subspace
K,,,(A, (A —cl,)™™V), respectively, and let P,, = Wsz o V,, € R¥™ 2" Then the
matrices T,, and H,, are similar, i.e., W,, =P, T, P! . where P} P, =1,
Moreover, the matrices T,,, and H,,, satisfy the properties:

m*

1. (T, — oL,)"(V] oA -0l)™V)) = e
2. (Hyy, — 6ly,)"€, = Pay (T, — 61,)" legel,
3. A =oL) "V IPelf(Hy, )My, = 01,,)""e; = e[f(Ty,)e;.

Further, we have

1

A =ol)™"V,|* = .
4 ! elT(IH]Zm —ol,,)"e,

Proof We first show that PngZm = I,,,. By using the properties of the o-product, we
obtain

P2m ( O \/Zm)(\/sz < WQm) = O (\/Zm([ 2m < WZm] ® IY))

Since the shifted extended global subspace can be regarded as a global Krylov sub-
space, i.e.,
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4 Page 14 of 35 A.H.Bentbib et al.

K°(A, V) = Ky, (A, (A — 61,)™"V),
it follows that the columns of the matrix W,,, belong to K? (A, V). Therefore,
Pl Py, =W] oW, =1,
Using the definition of H,,,, we obtain
Hyp = W) 0 AW, = W] o [AV,, (V) oW,, Q)]
= (W] 0 AV, (V] oW,,)
= (W] oV, (V) ©AV,, (V) oW,,)=P,,T,,P} .

Thus, the matrices T,,, and H,,, are similar.
An application of a slightly modified form of [9, Lemma 3.8] gives

(A - Gln)_mvl = \/Zm[(-l]—2m - O-IZm)_mel ® Iv]

Multiplying the last equation by \/ZTm from the left and using properties of the ¢-prod-
uct, we obtain

V! o (A—ol,)™V, = (T,, — ok,) ",

which shows the first assertion.

The second assertion follows by using the fact that H,,, = sz—ﬂ—zmpgm and the
orthogonality of the matrix P,,,.

For the third assertion, we have

elT(f([H]Zm)(IH]Zm - O-IZm)Zmel = elT(IHIZm - UIZm)m(f(HZm)(IH]2m - O-IZm)mel'
An application of the second assertion shows that the above expression is equal to
e{PZm(—ﬂEm - UIZm)mf(-l]—Zm)(-ﬂ—Zm - 0-12m)mP;mel'

On the other hand, we have

mpT _ 1 m T -m
(—I]—Zm - 6127}1) szel = m(-ﬂ—2m - Glzm) [\/Zm < (A - Gln) Vl]
A = oL,) ™V, |’

where the last equality follows from the first assertion. This concludes the proof of
the last assertion. O

Theorem 1 Let A be a symmetric matrix. Apply m steps of the shifted extended
global Lanczos process with the initial block vector V € R™ to A to evaluate the
expression (18). Then this expression is a 2m-point shifted Gauss-Laurent quadra-
ture rule associated with the measure da in (3), i.e.,
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5 =T() Vf €Ay

Moreover, if the function f is 4m times continuously differentiable in the convex hull
of the spectrum of A, then the reminder term for this rule is given by

Eu) = T0) - G5,0) = L, / H(x—e>2w<x>da<x) 0)

where

w(x) = L (x = o)

T
el ([H]zm - O'Izm)zmel

and the scalar  lives in the largest open interval contained in the convex hull of the
spectrum of A.

Proof According to Proposition 5, we have
5 (D) = IIVIPelf(Ha, ) W(Hy, e,

Therefore, ggm is a 2m-point rational Gauss quadrature rule; see [22]. The remainder
term for this rule is given by

2m

0 - G5, = dx4m (fW)x_a @) /H(x— a)2w(x)da(x)

where g; is the jth eigenvalues of H,,,. The proof is completed since the matrices H,,,
and sz are similar. More details are provided in the proof of [27, Corollary 5.5],
which has to be applied to the matrix A — ¢, with the inner product (6). O

2.4 Shifted Gauss-Laurent-Radau quadrature rules

A (2m + 1)-point shifted Gauss-Laurent-Radau quadrature rule is obtained
by assigning one of the quadrature nodes, denoted by &, and determining the
remaining 2m quadrature nodes and the 2m + 1 weights so that the resulting
quadrature rule is exact for all shifted Laurent polynomials of as high an order
as possible. Application of m steps of the shifted extended global Lanczos pro-
cess to the matrix A with initial block vector V € R™* determines the matrix
T,,, € RCmDX2m defined by (16). The matrix T,,, is a leading principal submatrix.
We introduce the (2m + 1)-point shifted Gauss-Laurent-Radau rule

Rt (0 = IVIPel f(Tyi1 Ders

where
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4 Page 16 of 35 A.H.Bentbib et al.

ﬂ—zm T

Tomyig 1= [TT ~

e R@m+Dx2m+1)
a: ’

and 7 € R?" contains the first 2m entries of the last column of T, ;. The entry a
is determined so that the matrix Ty, - has an eigenvalue at &, where ¢ is a chosen
node outside the convex hull of the spectrum of T,,,. The parameter Eé is computed
similarly as described in [24, p. 561]. Thus, we solve the equation

X X
e[ 5] =[] sem
which can be written as

R — — _ -1
{Tme T = Ex, - {x (T, — &L,) "'z,

iy —@, = ¢, =&+l
Therefore, 55 can be expressed in terms of & as follows

@ =&+ 1" (T, —&L,) 'z

Theorem 2 The (2m + 1)-point shifted Gauss-Laurent-Radau rule associated with
the measure da satisfies

0.6 —
R2m+1(f) - I(f)’ Vf € A—Zm,Zm'

Furthermore, if the function fis 4m + 1 times continuously differentiable in the con-
vex hull of the spectrum of A, then the remainder term for this rule is given by

d4m+1 )

2t e, o 1), / x=&) H(x = 0, Y wx)da(x),
2D

where 55 lies in the largest open interval contained in the convex hull of the spec-

trum of A and §. The scalars 0; |, 0; 5, ..., 0;5,,, & denote the eigenvalues of T,,,,, .,
and the function w is defined in Theorem 1.

() - R3S, () =

Proof The proof is analogous to the proof of Theorem 1 and [27, Theorem 7.1]. The
latter proof has to be applied to the matrix M = A — oI, with the inner product (6).
O

The remainder terms for the shifted Gauss-Laurent rule (20) and the shifted
Gauss-Laurent-Radau rule (21) allow us to bound the expression Z(f) in (2) from
above and below if the derivatives (f - w)*™ and (f - w)*"*D are of constant sign
in the convex hull of the spectrum of A and £. For instance, when the derivatives
(f - w)*™ and (f - w)*"*+D are nonnegative on this interval and & is larger than or
equal to the largest eigenvalue of A, the expression Z(f) can be bounded according
to
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o () ST <RYE ().

However, when at least one of the derivatives (f - w)*™ or (f - w)*"*+D) changes sign
on the convex hull of the spectrum of A and &, pairs of shifted Gauss-Laurent and
shifted Gauss-Laurent-Radau rules are not guaranteed to produce upper and lower
bounds for Z(f).

3 Shifted anti-Gauss-Laurent quadrature rules

Laurie [30] introduced anti-Gauss rules for the estimation of the quadrature error for
Gauss rules applied to the integration of real-valued functions on a real interval. Exten-
sions to (standard) block Krylov subspace methods are described in [1, 2, 21]. This sec-
tion introduces the (2m + 1)-point shifted anti-Gauss-Laurent quadrature rule, denoted
by A7 ., associated with the shifted Gauss-Laurent rule (20). It is characterized by

2m+1°
(I_ -Agm_H)(f) = _SZm(f)’ Vf € A—2m,2m+1’

where &,,, is the error of the shifted Gauss-Laurent quadrature rule defined in (20).
This is equivalent to

Agm+1(f) = (2:[_ ggm)(f)’ Vf € A—Zm,2m+l'

Therefore, AJ, . (f) may be considered a (2m + 1)-point shifted Gauss-Laurent
quadrature rule with respect to the bilinear form (-, - ), determined by the func-
tional (27 — G5 )(f) and given by

(P,Q), 1= (T - G} )(PQ) =2(P,0Q) — |I[VI*e] P(T,,)0(Ty,)e;.  (22)

Let ko, R Loeee ’§2m be the first 2m + 1 shifted orthonormal Laurent polynomials with
respect to the bilinear form (22). They satisfy a pair of five-term recurrence relations
of the form

2j
Mo 0j-1Roj(x) = xRy 5 (x) — Z hii R (%),
i=2j-3
j -
hyjip2iRjs1 (¥) = (x — 6)_1R2j—1(x) - Z hi iRy (x)
=22

for j=1,2,..., where INQ_Z = ﬁ_l =0 and
Ry) = 1/@; 4, R, = (1/@)[(x — 6)"'Ry(x) — @ ,Ry ()]
Furthermore,

Zi,Zj—l = <X§2j—2’§i—l>A’ Ei,Zj = ((x— 5)_1§2j—1’ki—1>A- (23)
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4 Page 18 of 35 A.H.Bentbib et al.

The coefficients sz +1.2j—1 and sz +20; are determined so that (1~€2j,1~€2]»)A =1 and

(Ti’zj +1,I~€2j +124 = L. Due to Theorem 1, shifted anti-Gauss-Laurent quadrature rules
yield the same result as shifted Gauss-Laurent quadrature rules for all shifted Lau-
rent polynomials in 4_,,, 5, . 1.€.,

if P and Q are shifted Laurent polynomials such that

PQ € A—Zm,2m—l ’ then <P7 Q>A = <P’ Q> (24)

Using this property in (23) gives
ho=h. ij=12,..2m-1,
Bopi = hopis 1€ {2m—2,2m— 1},
Zum =h;p,, 1€ 1{2m—2,2m—1}.

This shows that I~€j(x) = Rj(x) for j=0,1,...,2m — 1. In addition, we have

Mot 2m-1Rom(X) = Moy 21 Ropn (X)- (25)
Using the properties (R, , Ry, ), = (Roy Ry,,) = 12nd (19) gives
72 — 2
h2m+l,2m—l - 2h2m+l,2m—l'
Thus, we can choose 712m lomel = \/Ehz,n +12m_1- Substituting this expression into

(25) yields

§2m(x) = LR2m ()C)

\/5

We turn to the determination of the entries of the symmetric pentadiagonal matrix

Ty ., = (1] € RemDXC@m+D a5s0ciated with the (2m + 1)-point shifted anti-Gauss-

Laurent rule,
A5 D) = IVIPelf(TS L Dey. (26)

where 7, = <XIN31‘_171~3,‘_1>A for i,j=1,2,...,2m+ 1. Recall that #;; = (xR,_;,R,_).
Using (24), we find
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~

=1 fori,j=1,2,...,2m.

We obtain from (19) that
gm(Rszzm—z) = gm(Rszzm—l) = gm(Rszzm) =0.

Therefore,
~ ~ o~ 1
D1 2me1 = Ry Ropya)a = _2<xR2m’R2m—2>A

1 -
B 7 [2(XR2m’ R2m—2> - 2m(R2mR2m_2)]
2

= 2 t2m+l,2m—1 .

In the same manner, we get the remaining entries of Tz‘lm o

Dmitom = \/§t2m+l,2m and 1,11 2ms1 = Lo 2l

In conclusion, the symmetric pentadiagonal matrix TJ . associated with the

(2m + 1)-point shifted anti-Gauss-Laurent rule (26) can be obtained from the matrix
Tt = \/sz +1 © AV, associated with the (2m + 1)-point shifted Gauss-Laurent
rule by multiplying the entries 75, 5,,_ and .| 5, by \/5 ,le.,

SR |V ¥
mtl =
et ¥ D1 2me1

where ¥,,, = [0, ...,0, V2,1 2ot Vi, +12m]” € R¥™. Algorithm 1 describes
how an approximation of (3) and an error estimate can be computed by a pair
of shifted Gauss-Laurent and anti-Gauss-Laurent quadrature rules when the
matrix A is symmetric. In the spirit of Laurie [30], we approximate (3) by
Uppp() = (G3,(N + A3, ,(£))/2 and estimate the error in U,,,(f) by the difference

2m+

195,,() = A3, (OI/163,, (DI
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4 Page 20 of 35 A.H.Bentbib et al.

Algorithm 1 Approximation of trace(V’ f(A)V) by pairs of shifted Gauss-Laurent and shifted anti-Gauss

Lauren

t quadrature rules for a symmetric matrix A.

Input: Symmetric matrix A, initial block V', parameter o, and function f.

1. Cho
2. a1 =
3. a1 9 =
4. g9 =

ose tolerance € > 0 and the maximum number of iterations Imaz.
=Vl Vi = V/o 15

=((A-oln)” IVth) V2 =(A—oaln)” 1V1 —a1,2Vi;

= ||Vall; Va = Va/ag a5 Vi = AVi; hiy = (Vs,V1);

5. for j=1:Inax

(a)
()

(c)
(d)

(f)
(g
(h)

()
()
(k
(

(m)

(n)

Vajoa = (A= 0aln) " Voj; hajaj = (Vajia, Vo)
Compute h; 251 and hi2; from recursion relations given by Proposition 2.

Vajrr = Vajr — Z h; 25-1Vis haj1,25-1 = [[Vajsll;

i=
ifj=1
t1:21 = h121; t12 =t2,1; to2 = 0 — a1 2t2,1 /a2 2;
else
t2j—3:25,2j—1 = haj—3:25,2j—15 t2j—1,2j = t2j,2j—1;
toj2j =0 — haj_1,2j—2taj2j—1/h2j2j—2;
end

G5,(1) = T f(Tzy)er;

Vajp1 = Vaji1/hoji1,2i-1;
- - 2j+1 _
Vajpo = Vajeo — 2 hioiVis hajyooj = [Vajtall;
=252

ifj=1, t31=h3s;t32=—012t31/a22;
else

tj41,2j-1 = hoji1,2j-1; taj1,2j = —hoj1,2j-2t2i41,2j-1/haj2j -2
end

Voj = V2[0,... ,0,t2j+1,2]71,t23+1,2j]T~;
Vojs = AVajqa: hojr1,2j+1 = (Vajt1, Vojgs);
Taj Vaj — T .
T hojin i and AZ; , (f) = ef (T, )ens
i165,(9) — AZ, (G5, () < e

Udpp(f)*("ll[ (f)*A 7+1(f)]/2 Break;
end

Compute 'JI‘QJ 1=

Vajy2 = Vajia/hoji22j;
end

Output: Approximation Uapp(f) of trace(VT f(A)V).

4 The shifted extended global nonsymmetric Lanczos process

This section describes the recursion relations for the shifted extended global non-
symmetric Lanczos process. This process generates two biorthogonal bases of block
vectors {Vj}j?;”l and {Vl/j}jzf1 for the shifted extended global Krylov subspaces

K? (A, V) and K;(AT, W). These bases can be computed with short recurrence for-
mulas. We have
“/1\,1 = W, V>|1/2, V= V/al,l’ ﬂ/l\,l = (W, V>/al,1’ W, = W/ﬁ],la
Vy, =(A-0cl)'V,—a,V|, W, = (AT —ol)"'W, — f,W,,
Ay, = <W17(A ol,)"'Vy), Bir = <‘//\1’(éT—°'1n)_lW1>’A
Uy = |<W2 Vz>|l/2 2= Vz/%z’ By = (W, Vo) az, Wy =W, /P,5,

27

andfor j=1,2,...,m
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2j
V2j+1 = h2j+1,2j—1V2j+1 =AV2j—1 - Z hi,2j—1Vi’
i=2j-3

2
_ _ AT
W2j+1 = g2j+1,2j—1W2j+1 =A W2j—1 - 2 gi,2j—1Wi’
3

i=2j—
2j+1 (28)
Voers = hoiinriVoiin = (A= ol )1V, — hoo V.
2j+2 242,25 ¥ 2j+2 n 2j i,2j V0
i=2j—2
2j+1
v _ — (AT —1
Wyna = 8ojagWapa = AT =Ly Wy = D iy W,,
i=2j—2
where
_ — (AT
hi,2j—l = <AV2j—1’Wi>]’ 8ij-1 = (A Tvvzj—lﬁvi%’
hiyy =(A-0l)" Vo, W), 8ip = (A" —0cl,)" Wy, V),
and
1/2 ) A~ A~
h2j+1,2j—1 = |0‘2j+1| s 82j+12j-1 = 0‘2j+1/h2j+1,2j—1» with Xjr1 = <W2j+1’W2j+l>s
1/2 ) ~ A~
h2j+2,2j = |‘12j+2| > 82j422j = 0‘2j+2/ h2j+2,2j’ with Mjty = <V2j+2’ W2j+2>~

Similarly as for the shifted extended global symmetric Lanczos process, the coef-
ficients h;; and g, ; can be computed recursively.

2
(28), can be computed recursively as follows:

Proposition 6 The coefficients h;;, g, ;, a;;, and P, ;, defined by the relations (27) and

hiy=a,,
1
hyy = —I[1 =P 0 + 0P,
B>
Bishi3
h2,3 =
J2%3
For j=2,3,...,m, we have
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4 Page 22 of 35 A.H.Bentbib et al.

h2j—3,2j—1 = 82j-1.2j-3>
h = _—1 h
2j-22j-1 = 82j-3.2j—4"Mj-32j-1>
82j-2,2j-4
) 2j—1
th,Zj—l = —|082-12-2 — Z gi,2j—2hi,2j—1 >
82j2j-2 =23
hyj22j = 822525
h = _—1 h
2j-12j = 82j-2.2j—3M2j-2 2
82j-1,2j-3
i <]
h2j+1,2j =——]10 h2j—1,2j - Z gi,2j—1hi,2j ’
g2j+l,2j—l i=2j-2

8aj—12j-1 = Moj_12j-1

82i2j = Majaj-

These relations also hold when the h;; and a;; are replaced by g;; and p,;, respec-
tively, and vice versa.
Proof The relations can be shown similarly as those in Proposition 2. O
Introduce the pentadiagonal matrix
Ty = [t;] = W 0 AV, € R, (29)

Here
1= (AVj, W), i,j=1,2,...,2m,

and the matrices \A/Zm =[V,V,,....V,,] and WZm =[W,W,,...,W,,] are defined
by the recursion relations for the shifted extended global nonsymmetric Lanczos
process,

A@Zm = @2m(r2m ® ]s) + V2m+1(TmE£ ® Is)’
ATWZm = WZm(-I]—sz ® Iv) + W2m+l(%\ ET ® Ix)’

m=m

(30)

with E,, = [e,,_1, €5,,] € R¥™? and

~

Tm = [?Zm+1,2m—l ’?2m+l,2m] = [<ATW2m—l ’ V2m+l >’ <ATW2m’ V2m+l >]’

Tm = [t2m+1,2m—l’t2m+l,2m]'
The entries of TATZm, z,,, and T, are computed recursively as shown below.
Proposition 7 Let the coefficients h;j, &;;, a;;, and P;; be defined by (27) and (28).

The matrix Ty,, = [t;1in (29) and the coefficients z,, and 7, in (30) can be computed
as follows:
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4

ligj1 =hi’2j_1, forie {2j-3,2j-2,...,2j+ 1}, j=1,2,...,m,

1
o= E [1 — oyt — 0')],

1 —al’z 2
22 =0~ 2,15
%)
_ %
Lip,=——10n),
oK)
131 = 8315
~ ﬁ1,2,\
Lip=—7"10),
22
Forj=1,2,...,m—1, we have
2j+1
t i T —
2j+1.2j+2 — h i,2j°2j+1,i 2j+1.2 | »
2j+2.2) | i=2j-1
hoji )
byjyr0j42 =0 — W 2j4+2,2j+1>
2j+2,2j
_ hyjs )
bitzoj+a = T bit32j+1
2j42.2j

biv3oir1 = 82432541
82j+1.2j~

bzt = _—gz' 22't2j+3,2j+1'
J+2,2]

Proof The recursions can be shown in a similar manner as [9, Proposition 3.1].
However, some adjustments have to be made, because here we apply a nonsym-
metric Lanczos process instead of a symmetric Lanczos process, and the matrix is

A — ol instead of A.

O

There are two sequences of shifted Laurent polynomials pg,p;,...,p,, and

d0-4,- --- » 4,, that are biorthogonal with respect to the bilinear form

(P, Q) = trace(P(A)V, QW) = / P(HQ(Ddu(A),

where dyu is the measure in (12). These shifted Laurent polynomials satisfy a pair of

five-term recurrence relations of the form
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4 Page 24 of 35 A.H.Bentbib et al.

2j
M1 2j-1P2j (%) = Xpyi (X)) — 2 hii1pi1 (%),
i:22_;—3
82j412j-192j(%) = Xq;_(x) — Z 8ij-19i-1(%),
T 31
IojsaaiPajn @ = X =0)"1py () = Y hiypi (),
i
82j422i0j+1(X) = (x — 6)_1512_j_1(x) - Zzzgi,zjqi_l(x),
i=2j—
where P1(x) = (1/ a3 )[(x = 6) ™" po(x) — @) 2P ()], pox) =1/ay
and q,(x) = (1/ B )(x = )7 go(x) = Py 240(¥)], qox) = 1/py s,

P2=p1=92,=9,=0.
The associated 2m-point shifted Gauss-Laurent quadrature rule is given by

2m

5.0 = (V. Whelf(T,,)e, = Zf(u W, (32)

where y; denotes the ith eigenvalue of sz and w; = (V, W)u Here u; is the first
component of the normalized eigenvector u; of sz This quadrature rule satisfies

SO =T(), Yf €A i

This can be shown similarly as related results in [27] or in Sect. 3.

Lemma 1 Let the shifted Laurent polynomials p,,, and gq,, be determined by the
recursion relations (31). Then

;,,,(sz) = gm(‘hm) =0.
Proof Consider the vectors of shifted Laurent polynomials
Py, (%) = [po(), Py (), s Pay (O] Qup(0) = [G9(%), 41 (X), ..., Gy ()]
Using (30), these vectors can be expressed as
xP,,, (x) =Py, (x)ﬁm + p2m(x)TmEnT1,
2Qy, () = QoW T] + 45, ()7, EL.

It follows that the 2m zeros of the Laurent polynomials p,, and g,, are the
eigenvalues of the matrix sz On the other hand, we have in view of (32) that
o @P2m) = G5, (q3,,) = 0. This completes the proof. O
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5 Shifted anti-Gauss-Laurent quadrature rules for nonsymmetric
matrices

This section extends the construction of the shifted anti-Gauss-Laurent quadrature
rules of Section 3 to the situation when the matrix A is nonsymmetric. Introduce the
(2m + 1)-point shifted anti-Gauss-Laurent quadrature rule

2m+1
A () = (W, V) Z TFL ey,
where the matrix T¢ | = (7] € Re™+Dx@7+D i such that
2m+1(f) QI-G ). Yf € A ypomer-
The entries of T“ ,are given by 7;; = (xp;_;,q;_, ), Where
(P.Q), 1= QT - G3,)(PQ) = 2AP. Q) — (W.V)e[ P(T,)Q(Ty, ey (33)

Let Do, Dys -+ Do a0d G5 Gys - - -  Go,y, bE the first biorthogonal shifted Laurent poly-
nomials with respect to the bilinear form (33). These shifted Laurent polynomials
satisfy a pair of five-term recurrence relations of the form

Eo(x) = 1/%,] s l~71 (x) = (1/"22,2)[()C - U)_lﬁo(x) - %,250()6)],
ﬁo(x) = 1/.51,1’ 51 (x) = (l/ﬁz,z)[(x - 0')_150()6) - ﬁ1,250(x)],

and

Poji1.2j-1P2/(¥) = XPao(x) — 2 Ry pj1Dim1 (%),

i=2j-3
2j+1
yjsaoPajp1(X) = (x = )Py (x) = 2 Rip i (),
i=2j-2
2
§2j+1,2j—152j(x) = xazj‘—z(x)— Z Zi,Zj—lai—l(x)’
i=2j-3
2j+1
82j+22iG0j+1 (X)) = (x— 6)“52,~_1(x) - Z 8:i24i-1 (%),
i=2j-2

wherep_, =p_,=¢_, =¢_, =0and

hle 1= <‘XQZJ—2’ ql 1>a’ hle - <(-x 0) p2j 1» Ql 1>a’

34
ngj <xp2_] 2 QI 1>a7 ngj - <(x 6) pQJ l’ql 1> ( )

The coefficients hy,  5i_15 hojioojs 82j412j-10 A0 €547 5; are determined so that

(l~72j’62j)a =l and @21+1’52/+1>“ =1
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4 Page 26 of 35 A.H.Bentbib et al.

Using the fact that for two shifted Laurent polynomials P and Q such that
PQ € Ay, 5, 1> We have (P,Q), = (P,0Q), and applying the relations (34), we
obtain

p =pj q] q;» forj=0,1,...,2m—1,

~ 1 ~ 1
Pom = EPZWL’ 9om = 9om-

V2
These formulas show that the entries of the pentadiagonal matrix T“ , associated to
the (2m + 1)-point shifted anti-Gauss-Laurent quadrature rule are

~

lij = lij>

for i,j=1,2,...,2m

and

bm1om-1 = \/5t2m+1,2m—1’ bn—1ome1 = \/§t2m+12m 1>

_ bmiom = \/Et2m+l,2m’ Dmomel = \/§t2m+12m’
Dmt12m41 = Lms12m+1-

In summary, the pentadiagonal matrix TATz“m . 1s obtained from the matrix
Tyt = W <>A\/2m +1 associated with the (2m + 1)-point shifted Gauss-Laurent
rule as follows

Fa  _ T P € R@n+Dx@m+1D)
omt+l TT t s
om 2m+12m+1
7 T
Where 2 t2m+1 2m—1> \/5 t2m+l,2m] and

TZm - 0 \/—t2m+l 2m—1> \/_t2m+l 2m

Algorlthm 2 describes how an approximation of (3) and an error estimate can be
computed by a pair of shifted Gauss-Laurent and shifted anti-Gauss-Laurent quadra-
ture rules when the matrix A is nonsymmetric. The computed approximation, U,,f ,
is the average of approximations of (3) determined by shifted Gauss-Laurent and
anti-Gauss- Laurent quadrature rules. Similarly as in Algorithm 1, we approximate
(10) by U, () = (G5,,(") + A7, (1))/2 and estimate the error in U,,,(f) by the dif-

ference |G, (f) — 2m+1(f)|/| DI "
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Algorithm 2 Approximation of trace(W?* f(A)V) by pairs of shifted Gauss-Laurent and shifted anti-Gauss-
Laurent quadrature rules for a nonsymmetric matrix A.

Input: Nonsymmetric matrix A, initial block vectors V, W, parameter ¢ and function f.
1. Choose tolerance ¢ > 0 and the maximum number of iterations I'mqaz-
2. a1 = [(W,V)|V/% vy = Viaig; Bii =W, V)/a11; W1 = W/B11;
3. a1 = (Wi,(A—oln)” 1V1) ng(Afaln) Wi —a1,2Vi;
4. 6127(\/'1 (AT — o1,,) " Wh); Wy = (AT—gIn) Wy — B1,2Wh;
5. ago = (W, V)|V Vo = Va/as,; B2, = [(Wa, Va)/az,0; Wi = Wa/Ba,2;
6. Vs = AVi; Wa = ATWy; hyy = (Ws, V); g11 = ha1;
7. For j =1:Imax ,\,
(a) Vajz = (A —oln) " Vaj; Wajpo = (AT — oln) ™' Way;
(b) haj2; = (Wajta, Voj); 925,25 = haj2;;
(c) Compute h; 21,9, 2] 1, hi,2j; gi,2; from recursion rclatlons given by

() Vaji1 = Vojq1 — Z Ri2j—1Vi; Waji1 = Waji1 — Z JJii- Wi
i=25-3 i
(©) hojir,2-1 = (Waypr, Vaj ) [V/25 g2541,25-1 = <Wz/+1»V2]+1>/h21+1 2j-13
(f) ifj=1
tio1 = hio; tie = [1—ai2(tin — 0)]/az2; tas = 0 — ai2ta1/as2;
else
2j-1
tj—3:2j,2j—1 = hoj_3:2j.2j 13 t2j—1,2; = —[ X higj_otaj—1: — ohaj_12-2]/h2;25-2;
i=27-3
toj2j =0 — haj_12j-at2j25—1/h2j2j-2;
end
(8) G3,;(f) = e f(T2))er;
(h) Vajp1 = Vaji1/hoji1,2i—1; Waji1 = Waj1/92j41,2j-15
~ - 2j+1 _ . 2j+1
(i) Vajpo =Vajea— X hi2jVi; Wajpo = Wajio — >0 gi2jWis
i=2j-2 i=2j-2
. — ~ 1/2 __ _
() hajr2.2j = |(Wajya, Vajua)| 5 g2j42.2) = (Wajra, Vajra)/haji2.2j;
(k) if j =1, 31 =hs1;ts2=—aizts1/azz; else
toj1,2j—1 = h2ji1,2j-1; tajr1,2) = —haj—12j-at2j+1,25—1/h2j2j—2;
end

() ¥z = Vv2[0,...,0, 2t2j41,2j-1, b2 41,25]; P2j = V2[0,...,0,t25-1,2j41, t25,2j4+1]7;
(m) Vaj43 = AVZJ+1 Wajys = ATWaji1; hajyr 241 = <W2]+3vV2J+1> 92j+1,2j+1 = h2j+1,2j413

(n

S Ty 2 Y
Compute TS, , = 4 7 and A, (f) = el f(Tg,. er;
2j+1 g,;l; hoji12j41 2j+1 1 2j+1

(0) i 1GS;(f) = A, 1 (NI/1GS;(f)] < e
Uapp () = (W, WG (F) + AZ;11(£)]/2; Break;
end
(P) Vajiz = Vajia/haji2,25; Wajso = Wajia/g2542,25
(a) end

Output: Approximation Uapp(f) of trace(WT f(A)V).

6 Numerical experiments

This section presents some numerical results that illustrate the performance of the
shifted extended Gauss-Laurent-type quadrature rules based on the global shifted
extended symmetric or nonsymmetric Lanczos processes. All experiments were car-
ried out in MATLAB R2015a on a computer with an Intel Core i-3 processor and
3.89 GB of RAM. The computations were done with about 15 significant decimal
digits.

Upper and lower bounds for trace(f(A)) can be determined as the sum of upper
and lower bounds for trace(Eij(A)Ej), j=12,...,n, with n, = [(n+s—1)/s],
with the initial block vectors E; = [€y;_1)41s --- > €min(s0y] € R™, provided that the
integrand f is such that pairs of shifted Gauss-Laurent and Gauss-Laurent-Radau
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4 Page 28 of 35 A.H.Bentbib et al.

rules yield upper and lower bounds. This is described for (standard) Gauss and
Gauss-Radau quadrature rules in [7]. We instead apply pairs of shifted Gauss-Lau-
rent and anti-Gauss-Laurent quadrature rules to determine approximations of upper
and lower bounds. Denote the computed approximations of trace(Eij(A)Ej) by

Uower,j(A) and Uy, (A), respectively. Then

Ulower(A) = Z Ulower,j(A)’ Uupper(A) = 2 Uupper,j(A)
j=1 j=1

provide approximations for upper and lower bounds for trace(A).
We report the magnitude of the estimated relative error

| Uupper (A) - Ulower (A) |

RelErr(A) = U @ . (35)
upper

The (standard) Gauss and Gauss-Radau rules described in [7] provide upper and
lower bounds for trace(Eij (A)EJ.) when f(¢) = exp(?). In this situation, Uupper J(A) and
Uower j(A) denote these bounds.

The first two subsections compare the performance of pairs of shifted Gauss-Lau-
rent and anti-Gauss-Laurent quadrature rules for symmetric matrices A, as imple-
mented by Algorithm 1, to the performance of (standard) Gauss and Gauss-Radau
quadrature (GQ) rules based on the global Lanczos algorithm described in [7, Algo-
rithm 2]. In the third subsection, we compare the application of shifted Gauss-Lau-
rent and anti-Gauss-Laurent quadrature rules, as implemented by Algorithm 2, to
the MATLAB function expm. The block size of E| is set to s = 60 and the stopping
tolerance € in Algorithms 1 and 2 is set to 2 - 1073, The GQ method is terminated
analogously.

The shift parameter is set to o = 1.014,,,, or o = 1.014,;,, where 4, and A
are estimates of the largest and smallest eigenvalues of A; we assume here that A,
is positive and 4,,;, is negative. Several techniques can be applied to determine such
estimates, including using Gershgorin’s disks [37], the irbleigs method [3, 4] for
symmetric matrices A, and the MATLAB command eigs, which implements an
implicitly restarted Krylov method [35] and can be applied for symmetric and non-
symmetric matrices, or the power method. We use the latter method with initial vec-
torv=J[1,1,...,1]".

The systems of equations with the matrix A — ¢/, in Algorithm 1 and the sys-
tems of equations with the matrices A — ¢/, and AT — 1 in Algorithm 2 are solved
by using the backslash operator \ of MATLAB. This operator computes an LU or
Cholesky factorization of A — o1, .

min

! If the matrix A € R™" is symmetric the operator \ first seeks to compute the Cholesky factorization of
A —ol,. If this is not possible, because A — o/, is not positive definite, then an LU factorization is deter-
mined by Gaussian elimination with partial pivoting. The computed factorization is used to solve the
linear system of equations with the matrix A — o1,.
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6.1 Application to undirected graphs in network analysis

We compute approximations of the Estrada index EE(A) for some undirected net-
works using the shifted Gauss-Laurent-type rules determined by Algorithm 1. These
rules are compared to the Gauss-type quadrature rules based on the global Lanczos
algorithm. These rules are denoted by GQ in the tables and described in [7]. We

choose the prescribed eigenvalue ¢ = 4., for GQ. Then we have the bounds

Gu(f) < trace(E] exp (AE) S RS, (1), f(1) = exp(v).

for every m, where G, (f) and Ri () are defined by (7) and (8), respectively;
see [7] for details. We consider six real-world undirected networks, which can be
found in the SuiteSparse Matrix Collection [13]. Some details on these matrices
are presented in Table 1, including the sparsity of each adjacency matrix, i.e., the
ratio between the number of nonzero elements and the total number of elements,
n?. Table 2 reports the required CPU time (Time) in seconds, the total number of
matrix-vector product (MVP) evaluations, and the relative error (35) achieved with
these methods. We also report the total number of linear systems solved (LSS) in
Algorithm 1. The results show Algorithm 1 to be faster and require a smaller num-
ber of MVP evaluations than the GQ algorithm to estimate the Estrada index EE(G).
To illustrate the quality of the computed bounds of trace(V” exp (4)V) determined
by the shifted anti-Gauss-Laurent quadrature rules, we consider the networks as-
22july06 and Erdos972. We choose block size s = 60 and V = E,. Figure 1 displays
the computed approximations of upper and lower bounds for for EE(G) for these
networks versus the number of iterations. As can be observed, standard Gauss-type
quadrature rules based on the global Lanczos method require many more steps to
bracket trace(V” exp (A)V) tightly.

Table 1 Adjacency matrix properties

Matrix #Nodes  #Edges 4, Sparsity Application

Undirected graphs:

Arenas/email 1133 10902 20.74 85-1073 Interchange network

Pajek/Erdos972 5488 7085 1445 470-10~*  Collaboration network

SNAP/as-735 7716 13895 46.89  4.45.10~*  Computer server network

SNAP/Oregon-1 11492 23409 6033 3.54-10"*  Road network

Newman/as-22july06 22963 96872 71.61 1.83-10~*  Structure of internet routers

Newman/cond-mat-2005 40421 351384  47.63 2.15-107*  Collaboration network

Directed graphs:

SNAP/p2p-Gnutella08 6301 20777 5.12 5.23-10%  Peer to peer network

Pajek/EVA 8497 6726 1.85 9.32.107>  Corporate inter-relation-
ships

Pajek/California 9664 16150 7.41 1.73-10™*  Web search

SNAP/p2p-Gnutella04 10879 39994 4.45 3.38-107%  Peer to peer network
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Table 2 CPU time in seconds, RelErr, number of matrix-vector product evaluations (MVP) and number
of linear system solves (LSS) for computing the Estrada index for several undirected networks

Matrix GQ [7] Algorithm 1

Time RelErr MVP Time RelErr MVP LSS
email 2.52 7.36-107* 9830 2.24 2.21-10™* 4585 4585
Erdos972 38.79 6.63-107* 47384 30.97 1.84-10* 26360 26360
as-735 59.63 9.30-10* 67416 40.92 6.75-107° 23040 23040
Oregon-1 406.56 9.18-10* 110180 71.98 2.56-107° 34476 34476
as-22july06 1856 9.06-10~* 233770 309 4.43.107° 68889 68889

cond-mat-2005 9459 9.40-107* 666397 3160 5.78 -1073 206185 206185

10100
—©— Lower bound
—&— Upper bound
1080 F
105F
1080
1040
100}
" —6— Lower bound
10 —&— Upper bound W
1 1 100 1 1 1 1 1 1 1
2 3 4 5 6 0 2 4 6 8 10 12 14
Dimension of approximation space Dimension of approximation space
10% 103
761 10%0F
741 1025
721 1020+
7+ 1015}
10
68 10
105F
661 —&— Lower bound —6— Lower bound
—O— Upper bound —&— Upper bound
L L 1 100 L L L L L
2 3 4 5 6 1 2 3 4 5 6 7 8 9
Dimension of approximation space Dimension of approximation space

Fig. 1 Upper and lower bounds or estimates thereof for trace(V” exp (A)V). Top row: Erdos972 graph.
Bottom row: as-22july06 graph. Left plot: Algorithm 1. Right plot: GQ method [7]
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Table 3 CPU time in seconds, RelErr, number of matrix-vector product evaluations (MVP) and number
of linear system solves (LSS) for computing the nuclear norm

Matrix GQ [7] Algorithm 1

Time RelErr MVP Time RelErr MVP LSS
Erdos992 1400 1.9-1073 279060 274.97 1.33-10™* 44080 44080
deter3 134.16 1.8-1073 90396 171.75 7391074 37308 37308
California 554.04 3.6-1073 901864 321.13 2381074 67108 67108
FA - - - 4274 2.76 - 104 79299 79299

6.2 Application to computing the nuclear norm

The nuclear norm of a general matrix X € R™" is defined as

InlIl mn

X1, = 2 o

where the o; are singular values of X. It is impractical or unfeasible to use the singu-
lar value decomposition of X to compute the nuclear norm of a large matrix. Com-
putation of the nuclear norm can be considered a trace estimation problems for the
symmetric positive semidefinite matrices A = X7X or A = XX7 [36]. The nuclear
norm of X can be expressed as

min{m,n} min{m,n}

W= X o= X 47 = macea!l,

i=1

where the 4, are the eigenvalues of A. We consider the same data sets as used in [36].
All matrices were obtained from [13]. We compare the performance of Algorithm 1
to the performance of the GQ method [7] when estimating the nuclear norm of the
matrices in Table 3. The prescribed eigenvalue & in the GQ algorithm is chosen to be
£ =0.Let¢ = A, Then we have the bounds

RE () < trace(VTAVIV) < G, (). f) =1

see [7] for details. Table 3 displays the CPU time (Time) required in seconds, the
total number of matrix-vector product (MVP) evaluations, and the relative error
(RelErr) in approximations determined by these methods. The symbol (—) signi-
fies that the stopping criterion was not satisfied within 3 hours of execution time.
The table shows Algorithm 1 to be faster and to require fewer matrix-vector product
evaluations than the GQ algorithm.

To illustrate the quality of the computed (approximate) bounds determined by the

GQ algorithm and Algorithm 1, we consider trace(VT\/XITXIV) and

trace(V7 X2T X,V), where X, and X, are the adjacency matrices for the Erdos992
and FA graphs, respectively. The initial block vector V is generated randomly with
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10°
6
51
ne
—6— Lower bound 35F —6— Lower bound
| | | | —6— Upper bound | | | | —6— Upper bound
2 4 6 8 10 12 14 0 5 10 15 20 25 30
Dimension of approximation space Dimension of approximation space
10* 10¢
10F 10
9f 9k
8f 1
7t s
6F 6l
5F 5[
4r ne
—©O— Lower bound —©O— Lower bound
{ { { { —6— Upper bound | | | } | | —6— Upper bound
2 4 6 8 10 12 14 16 0 10 20 30 40 5 60 70 80 90 100
Dimension of approximation space Dimension of approximation space

Fig.2 Upper and lower bounds or estimates thereof for trace(V” \/ZV). Top row: Erdos992 graph. Bot-
tom row: FA matrix. Left plot: Algorithm 1. Right plot: GQ method [7]

uniformly distributed entries in the interval [0, 1]; the matrix has s = 60 columns.
Figure 2 shows the upper and lower bounds for trace(V7’4 /XITX1 V) and

trace(VT X2T X, V) produced by the the GQ method and the estimates of upper and

lower bounds determined by Algorithm 1 versus the number of iterations. The figure
demonstrates the effectiveness of Algorithm 1.

6.3 Application to directed graphs in network analysis
We consider the computation of the Estrada index for some directed graphs that

model real-world directed networks. The adjacency matrices are nonsymmetric.
These computations illustrate the performance of the shifted Gauss-Laurent-type
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Table4 CPU time in seconds

Matri Algorithm 2 expm
for Algorithm 2 and the atrx gortim P
MATLAB function expm for Time Approximation Time
computing the Estrada index for
several directed graphs p2p-Gnutella08 35.11 6.12-10° 165.63
EVA 12.82 8.47-10° 80.95
California 25.51 1.14 - 10* 130.16
p2p-Gnutella04 219.79 1.06 - 10* 1616.64

quadrature rules determined by the nonsymmetric Lanczos process and imple-
mented by Algorithm 2. We use the adjacency matrices p2p-Gnutella08, EVA, Cali-
fornia, and p2p-GnutellaO4 from [13]. Some properties on these matrices are given
in Table 1. In Table 4, we show the CPU time required by Algorithm 2 and the
MATLAB function expm. We also show the approximation of the Estrada index
computed by the Algorithm 2. As illustrated by this table, the computational cost for
the function expm is much higher than for Algorithm 2.

7 Conclusion

This paper describes the extended shifted symmetric and nonsymmetric Lanczos
processes. These algorithms are used to compute shifted Gauss-Laurent-type quad-
rature rules. The matrices of recursion coefficients for these Lanczos processes are
shown to be pentadiagonal. This results in computations with short recursion formu-
las. Applications to the determination of estimates of upper and lower bounds for the
trace of matrix functions are described. Also applications to the computation of the
nuclear norm of a large matrix are described. The computed examples illustrate the
effectiveness of the proposed methods.
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