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Abstract
The need to estimate upper and lower bounds for matrix functions of the form 
trace(WTf (A)V) , where the matrix A ∈ ℝ

n×n is large and sparse, V ,W ∈ ℝ
n×s are 

block vectors with 1 ≤ s ≪ n columns, and f is a function arises in many applica-
tions, including network analysis and machine learning. This paper describes the 
shifted extended global symmetric and nonsymmetric Lanczos processes and how 
they can be applied to approximate the trace. These processes compute approxi-
mations in the union of Krylov subspaces determined by positive powers of A and 
negative powers of A − �In , where the shift � is a user-chosen parameter. When A is 
nonsymmetric, transposes of these powers also are used. When A is symmetric and 
W = V  , we describe how error bounds or estimates of bounds for the trace can be 
computed by pairs of Gauss and Gauss-Radau quadrature rules, or by pairs of Gauss 
and anti-Gauss quadrature rules. These Gauss-type quadrature rules are defined by 
recursion coefficients for the shifted extended global Lanczos processes. Gauss and 
anti-Gauss quadrature rules also can be applied to give estimates of error bounds 
for the trace when A is nonsymmetric and W ≠ V  . Applications to the computation 
of the Estrada index for networks and to the nuclear norm of a large matrix are pre-
sented. Computed examples show the shifted extended symmetric and nonsymmet-
ric Lanczos processes to produce accurate approximations in fewer steps than the 
standard symmetric and nonsymmetric global Lanczos processes, respectively.
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1  Introduction

We introduce shifted extended symmetric and nonsymmetric block Lanczos processes. 
Applications include the analysis of large networks. We first describe this application 
before discussing the details of the Lanczos processes.

The analysis of networks finds applications in a number of disciplines including 
social science, engineering, molecular biology, and traffic planning; see [11, 12, 16, 17, 
31]. Typically, one is interested in determining the most important vertices of a given 
network, or to identify global properties of a network.

A network is represented by a graph G = {V ,E} , which consists of a set of nodes 
or vertices V = {vi}

n
i=1

 and a set of edges E = {êk = {vi, vj} ∶ vi, vj ∈ V}m
k=1

 that con-
nect the vertices. In an undirected graph each edge is a “two-way street”, while in a 
directed graph at least one edge is a “one-way street”. In a weighted graph, each edge 
is assigned a scalar value, which is the weight of the edge; in an unweighted graph, all 
weights are unity.

A walk of length k in a graph G is defined as a sequence of vertices and edges such 
that

where the edge êji = {v
�i−1

, v
�i
} emerges from vertex v

�i−1
 and points to vertex v

�i
 (for 

a directed graph) or is between the vertices v
�i−1

 and v
�i

 (for an undirected graph). A 
graph G is connected when there is a walk from any vertex to any other vertex in G. 
We are concerned with unweighted connected graphs without self-loops and multi-
ple edges. However, the methods described also can be applied to weighted graphs.

We can associate an adjacency matrix A = [ai,j] ∈ ℝ
n×n to a graph G. The entries 

of the adjacency matrix for an unweighted connected graph G without self-loops and 
multiple edges, with n vertices, are given by

The adjacency matrix is symmetric if the graph G is undirected and nonsymmetric 
otherwise.

The importance of a vertex vi in a graph G is commonly referred to as its centrality. 
There are several ways to measure centrality. Recently, matrix functions, and in particu-
lar the matrix exponential, have received considerable attention for measuring central-
ity. The number of walks from vertex vi to vertex vj of length k are given by [Ak]i,j . The 
subgraph centrality of vertex vi determined by the matrix exponential is defined as

v
𝓁0

êj1
→ v

𝓁1

êj2
→ v

𝓁2

êj3
→ ⋯

êjk−1
→ v

𝓁k−1

êjk
→ v

𝓁k
,

ai,j =

⎧
⎪
⎨
⎪
⎩

1 if there is an edge from vertex vi to vertex vj (when G is directed)

or between the vertices vi and vj (when G is undirected),

0 otherwise.

[exp(A)]i,i = 1 + [A]i,i +
[A2]i,i

2!
+

[A3]i,i

3!
+⋯ ;
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see [16, 19, 20]. Thus, the subgraph centrality of the vertex vi is a weighted aver-
age of all walks from vi back to itself. Longer walks receive a smaller weight than 
shorter walks. This corresponds to the common modeling assumption that short 
walks are more important than long ones. The sum of all subgraph centralities of a 
graph is commonly referred to as the Estrada index of G,

where the �i , i = 1, 2,… n , denote the eigenvalues of the matrix A. The normalized 
subgraph centrality of the vertex vi is given by

and is used to determine the relative importance of vertices: the vertex vi is impor-
tant when pi is relatively large; see [16, Chapter 5]. For some networks, ln(EE(G)) is 
desired; see [16, p. 99]. We remark that the Estrada index also is a useful measure in 
statistical thermodynamics [18] and in the investigation of the folding of long-chain 
molecules [15]. The Estrada index is expensive to compute when the graph G is 
large.

It is the purpose of this paper to introduce new methods to determine approxi-
mations of the Estrada index for large graphs. We will describe novel ways to 
compute upper and lower bounds for the Estrada index (1), or estimates of such 
bounds, for symmetric and nonsymmetric adjacency matrices for a graph. The 
methods described also can be applied in machine learning, when f (t) = ln(t) (see 
[5, 25, 32]), and in quantum chromodynamics when computing Schatten p-norms, 
when f (t) = tp∕2 , for some 0 < p ≤ 1 ; see [6, 34, 36].

Our method for computing upper and lower bounds (or estimates of such 
bounds) is based on determining upper and lower bounds (or estimates thereof) 
for expressions of the form

where A ∈ ℝ
n×n is a large, sparse matrix and V ∈ ℝ

n×s is a block vector with 
1 ≤ s ≪ n orthonormal columns. Assume for now that the matrix A is symmetric 
and the function f is analytic on the convex hull of the spectrum of A. Introduce the 
spectral factorization

where �1, �2,… , �n denote the eigenvalues of A and the matrix U ∈ ℝ
n×n of eigen-

vectors of A is orthogonal. Here and throughout this paper the superscript T denotes 
transposition. Then

Bellalij et al. [7] observed that the expression (2) can be written as a Stieltjes inte-
gral. We have

(1)EE(G) ∶=

n∑

i=1

[exp(A)]i,i =

n∑

i=1

[exp(�i)] = trace(exp(A)),

pi = [exp(A)]i,i∕EE(G), i = 1, 2,… , n,

(2)I(f ) ∶= trace(VTf (A)V),

A = U�UT , � = diag[�1, �2,… , �n],

f (A) = Uf (�)UT , f (�) = diag[f (�1), f (�2),… , f (�n)].
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where V̂ = UTV  , V̂i denotes the ith row of the matrix V̂  , and �(�) is a nondecreasing 
real-valued piece-wise constant function with possible discontinuities at the eigen-
values �i of A; d�(�) is the associated measure.

Bellalij et  al. [7] applied pairs of Gauss and Gauss-Radau quadrature rules to 
compute upper and lower bounds for expressions of the form (2) for certain func-
tions f, including the exponential. The m-point Gauss rule is determined by applying 
m steps of the global symmetric Lanczos process, which generates an orthonormal 
basis for the global Krylov subspace

where �m−1 denotes the set of polynomials of degree at most m − 1 . Global Krylov 
subspace techniques were first proposed by Jbilou et al. [28, 29] for solving linear 
systems of equations with multiple right-hand sides.

Application of m steps of the global symmetric Lanczos process [29] to A with 
initial block vector V ∈ ℝ

n×s gives the decomposition

where ⊗ denotes the Kronecker product. The n × s block columns of the matrix 
𝕍m = [V1,V2,… ,Vm] ∈ ℝ

n×ms , where V1 = V∕‖V‖ and ‖ ⋅ ‖ denotes the Frobenius 
matrix norm, form a basis for the subspace (4) that is orthonormal with respect to 
the inner product

i.e.,

where we recall that ⟨Vj,Vj⟩ = ‖Vj‖2 . The matrix Tm ∈ ℝ
m×m in (5) is symmetric 

and tridiagonal, Is ∈ ℝ
s×s denotes the identity matrix, �m+1 ≥ 0 , and Em ∈ ℝ

ms×s is 
made up of the columns (m − 1)s + 1, (m − 1)s + 2,… ,ms of the identity matrix Ims . 
We tacitly assume that m is small enough so that the decomposition (5) with the 
stated properties exists. This is the generic situation.

The m-point Gauss quadrature rule for the Stieltjes integral (3) is given by

where e1 = [1, 0,… , 0]T denotes the first canonical basis vector. The Gauss rule 
satisfies

(3)I(f ) = trace(VTf (A)V) =

n∑

i=1

f (�i)trace(V̂
T
i
V̂i) = ∫

f (�)d�(�),

(4)�m(A,V) ∶= span{V ,AV ,… ,Am−1V} = {p(A)V ∶ p ∈ �m−1},

(5)A�m = �m(Tm ⊗ Is) + 𝛽m+1Vm+1E
T
m
,

(6)⟨X, Y⟩ = trace(XTY),

⟨Vj,Vk⟩ = trace(VT
j
Vk) =

�
1 j = k,

0 j ≠ k,

(7)Gm(f ) ∶= ‖V‖2eT
1
f (Tm)e1,

I(p) = Gm(p), ∀p ∈ �2m−1;
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see [7] for details.
The associated (m + 1)-point Gauss-Radau quadrature rule with a specified node 

� can be expressed as

where Tm+1,� ∈ ℝ
(m+1)×(m+1) is determined by modifying the last diagonal entry of 

the matrix Tm+1 so that Tm+1,� has an eigenvalue at � . Here Tm+1 is the matrix associ-
ated with the (m + 1)-point Gauss quadrature rule. The Gauss-Radau quadrature rule 
satisfies

see [7].
When the integrand f in (3) is 2m + 1 times continuously differentiable and the 

derivatives f (2m) and f (2m+1) do not change sign on the convex hull of the spectrum 
of A, the Radau point � can be chosen to be one of the endpoints of the convex hull 
so that the quadrature rules Gm(f ) and R�

m+1
(f ) bracket I(f ) ; see [7] for details. This 

result follows from the seminal work by Golub and Meurant [23].
When f (2m) or f (2m+1) change sign  on the convex hull of the spectrum of A, pairs 

of Gauss and Gauss-Radau quadrature rule are not guaranteed to bracket I(f ) . In 
this situation it may be attractive to compute estimates of upper and lower bounds 
for I(f ) by evaluating pairs of Gauss and anti-Gauss quadrature rules. Anti-Gauss 
rules were introduced by Laurie [30] to estimate the quadrature error of Gauss rules 
applied to the approximation of integrals of a real-valued function with respect to 
a nonnegative real-valued measure. Recent applications to the approximation of 
matrix functions are described in [1, 2, 8].

If the function f cannot be approximated accurately by a polynomial of low to 
moderate degree, then Gauss-type quadrature rules (7) and (8) typically will not 
furnish accurate approximations of the expression (2). This situation occurs, for 
instance, when the function f or one of its low-order derivatives has a singularity 
at or close to some eigenvalue of A. Then it may be beneficial to approximate f by a 
rational function with a pole at or close to a singularity of f or of one of its deriva-
tives. In fact, Druskin and Knizhnerman [14] have shown that it also may be benefi-
cial to approximate entire functions f by rational functions with a pole in the finite 
complex plane, compared to polynomial approximations. Therefore, Druskin and 
Knizhnerman [14] suggested the application of extended Krylov subspaces when the 
matrix A is nonsingular. These subspaces are determined by both positive and nega-
tive powers of A.

The shifted extended global Krylov subspaces used in this paper generalize the 
extended Krylov subspaces applied by Druskin and Knizhnerman [14] by allowing 
a real or complex shift � . Thus, we consider approximation methods for (2) that use 
shifted extended Krylov subspaces of the form

(8)R
�

m+1
(f ) = ‖V‖2eT

1
f (Tm+1,�)e1,

I(p) = R
�

m+1
(p), ∀p ∈ �2m;

(9)
𝕂

𝜎

m
(A,V) ∶=span

{
V ,AV ,A2V ,… ,Am−1V , (A − 𝜎In)

−1V ,

(A − 𝜎In)
−2V ,… , (A − 𝜎In)

−mV
}
⊂ ℝ

n×s
,
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where the shift � is distinct from the eigenvalues of A. We assume that m is 
small enough so that the block vectors in the right-hand side of (9) are linearly 
independent.

This paper presents Gauss, Gauss-Radau, and anti-Gauss quadrature rules 
associated with shifted extended Krylov subspaces (9). These rules are used 
to approximate (2). Numerical examples in Sect.  6 illustrate that these quadra-
ture rules may yield significantly more accurate approximations than Gauss and 
Gauss-Radau rules that are based on the “standard” global Krylov subspaces (4).

We also are interested in determining upper and lower bounds for expressions 
of the form

when the matrix A is nonsymmetric and W,V ∈ ℝ
n×s , 1 ≤ s ≪ n , are block vectors 

that might be distinct. Our analysis assumes that the matrix A is diagonalizable and 
has the spectral factorization

where �1, �2,… , �n denote the eigenvalues of A and P ∈ ℂ
n×n is a nonsingular 

matrix of unit eigenvectors. However, the application of the numerical methods 
described does not require existence of the factorization (11). A discussion on the 
situation when the factorization (11) does not exist is provided by Pozza et al. [33].

The function f(A) can be defined by f (A) = Pf (�)P−1 . Substituting (11) into 
(10), and setting Ŵ = PTW ∈ ℂ

n×s and V̂ = P−1V ∈ ℂ
n×s , yield

where Ŵi and V̂i denote the ith rows of the matrices Ŵ and V̂  , respectively. Further, 
d�(�) is a measure with support at the eigenvalues of A.

We will present the shifted extended global nonsymmetric Lanczos process for 
generating biorthogonal bases {Vi}

2m
i=1

 and {Wi}
2m
i=1

 for the shifted extended global 
Krylov subspaces ��

m
(A,V) and ��

m
(AT ,W) , respectively. Thus,

We describe Gauss and anti-Gauss quadrature rules for estimating upper and lower 
error bounds for the computed approximation of (10). This work extends the quad-
rature rules discussed by Fenu et al. [21] to shifted extended Krylov subspaces, and 
it extends the recursion relations for the extended global symmetric Lanczos process 
described in [9, 26] to the shifted symmetric and nonsymmetric Lanczos processes.

This paper is organized as follows. Section  2 reviews results in [8] on the 
extended global Lanczos process applied to a symmetric matrix. We also discuss 
the connection between the shifted extended global symmetric Lanczos process 
and Gauss-type quadrature rules. Section  3 is concerned with the computation 

(10)I(f ) ∶= trace(WTf (A)V),

(11)A = PDP−1, � = diag[�1, �2,… , �n] ∈ ℂ
n×n,

(12)I(f ) = trace(WTf (A)V) =

n∑

i=1

f (�i)trace(Ŵ
T
i
V̂i) = ∫

f (�)d�(�),

⟨Vj,Wk⟩ = trace(WT
k
Vj) =

�
1 j = k,

0 j ≠ k.
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of anti-Gauss quadrature rules associated with the subspace (9) when A is sym-
metric. The shifted extended global nonsymmetric Lanczos process for gener-
ating biorthogonal bases for the spaces ��

m
(A,V) and ��

m
(AT ,W) is described in 

Sect. 4. These bases are expressed with the aid of shifted orthogonal Laurent pol-
ynomials. Section 5 discusses the computation of anti-Gauss-Laurent quadrature 
rules. Numerical experiments with applications to network analysis and Schatten 
p-norm computations are presented in Sect. 6 to illustrate the quality of the com-
puted approximations. Section 7 contains concluding remarks.

2 � The shifted extended global symmetric Lanczos process

This section discusses the shifted extended global symmetric Lanczos process and 
its relation to shifted Gauss-Laurent and Gauss-Laurent-Radau quadrature rules. 
While introducing a shift � ≠ 0 is straightforward theoretically, it is important in 
applications. The shift affects the coefficients in the recursion relation satisfied by 
the orthonormal block vectors that make up a basis for the shifted extended Krylov 
subspaces (9). We require � to be real and outside the convex hull of the spectrum 
of A.

2.1 � Preliminaries and notation

We begin by recalling some definitions and notation that will be used throughout 
this paper. The Kronecker product of two matrices A = [ai,j] and B = [bi,j] is defined 
by A⊗ B = [ai,jB] and satisfies the following properties: 

1.	 (A⊗ B)(C⊗ D) = AC⊗ BD,
2.	 (A⊗ B)T = AT

⊗ BT.

Definition 1  [10] Let the matrices M = [M1,M2,… ,Ms] ∈ ℝ
n×sp and 

N = [N1,N2,… ,N
�
] ∈ ℝ

n×�p be partitioned into block columns Mi and Ni of size 
n × p , respectively. Then the ⋄-product of the matrices M and N is given by

The following proposition gives some properties of the ⋄-product. We refer to this 
product as the “diamond product”.

Proposition 1  [10] Let A,B,C ∈ ℝ
n×ps , D ∈ ℝ

n×n , L ∈ ℝ
p×p , and � ∈ ℝ . Then 

1.	 (A + B)T ⋄ C = AT
⋄ C + BT

⋄ C,
2.	 AT

⋄ (B + C) = AT
⋄ B + AT

⋄ C,
3.	 (�A)T ⋄ C = �(AT

⋄ C),

MT
⋄ N = [⟨Nj,Mi⟩]

j=1,2,…,𝓁

i=1,2,…,s
∈ ℝ

s×𝓁 .
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4.	 (AT
⋄ B)T = BT

⋄ A,
5.	 (DA)T ⋄ B = AT

⋄ (DTB),
6.	 AT

⋄ (B(L⊗ Ip)) = (AT
⋄ B)L.

2.2 � The shifted extended global symmetric Lanczos process

This subsection describes the application of the extended global symmetric Lanc-
zos process to the shifted matrix A − �In to generate an orthonormal basis {Vj}

2m
j=1

 
of block vectors Vj ∈ ℝ

n×s for the shifted extended global Krylov subspace (9). 
This basis is computed by short recurrence formulas as follows:

where �1,1 = ‖V‖ , �1,2 = ⟨(A − �In)
−1V1,V1⟩ , �2,2 = ‖Ṽ2‖ . For j = 1, 2,… ,m , we 

have

The coefficients hi,j are determined so that the block vectors V1,V2,… ,V2m+2 are 
orthonormal. This leads to the expressions

We provide recursion relations for computing the coefficients hi,j below.

Proposition 2  Let the coefficients �i,j and hi,j be defined by (13), (14), and (15). They 
can be computed as follows:

For j = 2, 3,… ,m , we have

(13)
V1 =

V

�1,1

,

V2 =
Ṽ2

�2,2

, Ṽ2 = (A − �In)
−1V1 − �1,2V1,

(14)
h2j+1,2j−1V2j+1 = Ṽ2j+1 = AV2j−1 −

2j∑

i=2j−3

hi,2j−1Vi,

h2j+2,2jV2j+2 = Ṽ2j+2 = (A − �In)
−1V2j −

2j+1∑

i=2j−2

hi,2jVi.

(15)
hi,2j−1 = ⟨AV2j−1,Vi⟩, h2j+1,2j−1 = ‖Ṽ2j+1‖,
hi,2j = ⟨(A − �In)

−1V2j,Vi⟩, h2j+2,2j = ‖Ṽ2j+2‖.

h1,2 = �2,2,

h2,1 =
1

�2,2

[1 − �1,2h1,1 + ��1,2],

h2,3 = −
�1,2h1,3

�2,2

.
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Proof  From the relations (13) and (15), and due to the orthonormality of the block 
vectors {Vi}

2m+2
i=1

 , we get

The second equation in (13) yields

and it follows that

and

We also have

Multiplying the second equation in (14) by (A − �In) from the left gives

h2j−3,2j−1 = h2j−1,2j−3,

h2j−2,2j−1 =
−1

h2j−2,2j−4
h2j−3,2j−4h2j−3,2j−1,

h2j,2j−1 =
1

h2j,2j−2

[

�h2j−1,2j−2 −

2j−1∑

i=2j−3

hi,2j−2hi,2j−1

]

,

h2j−2,2j = h2j,2j−2,

h2j−1,2j =
−1

h2j−1,2j−3
h2j−2,2j−3h2j−2,2j,

h2j+1,2j =
1

h2j+1,2j−1

[

�h2j−1,2j −

2j∑

i=2j−2

hi,2j−1hi,2j

]

.

h1,2 = ⟨(A − �In)
−1V2,V1⟩ = ⟨(A − �In)

−1V1,V2⟩
= ⟨�2,2V2 + �1,2V1,V2⟩ = �2,2.

�2,2AV2 = V1 + ��2,2V2 − �1,2AV1 + �1,2�V1,

h2,1 = ⟨V1,AV2⟩

=
1

�2,2

⟨V1,V1 + ��2,2V2 − �1,2AV1 + �1,2�V1⟩

=
1

�2,2

[1 − �1,2h1,1 + ��1,2]

h2,3 = ⟨V3,AV2⟩ =
−1

�2,2

⟨V3, �1,2AV1⟩ = −
�1,2h1,3

�2,2

.

h2j−3,2j−1 = ⟨AV2j−1,V2j−3⟩ = ⟨AV2j−3,V2j−1⟩

= ⟨h2j−1,2j−3V2j−1 +

2j−2�

i=2j−5

hi,2j−3Vi,V2j−1⟩ = h2j−1,2j−3,

h2j−2,2j−1 = ⟨AV2j−1,V2j−2⟩ = ⟨AV2j−2,V2j−1⟩.



	 A. H. Bentbib et al.

1 3

4  Page 10 of 35

which implies that

Since, hi,2j−1 = 0 for i = 1, 2,… , 2j − 4 , it follows that

For the coefficient h2j,2j−1 , we have

and using the expression for AV2j and similar manipulations as above give

According to the first relation in (14), we can express (A − �In)
−1V2j−1 as

The orthogonality condition and fact that hi,2j = 0 for i < 2j − 2 lead to

This completes the proof. 	�  ◻

h2j−2,2j−4AV2j−2 = V2j−4 −

2j−3∑

i=2j−6

hi,2j−4(A − �In)Vi + �h2j−2,2j−4V2j−2,

h2j−2,2j−1 = −
1

h2j−2,2j−4

[
2j−3∑

i=2j−6

hi,2j−4hi,2j−1

]

.

h2j−2,2j−1 = −
1

h2j−2,2j−4
h2j−3,2j−4h2j−3,2j−1.

h2j,2j−1 = ⟨AV2j−1,V2j⟩ = ⟨AV2j,V2j−1⟩,

h2j,2j−1 =
1

h2j,2j−2

�

�h2j−1,2j−2 −

2j−1�

i=2j−3

hi,2j−2hi,2j−1

�

,

h2j−2,2j = ⟨(A − �In)
−1V2j,V2j−2⟩ = ⟨(A − �In)

−1V2j−2,V2j⟩

= ⟨h2j,2jV2j +

2j−1�

i=2j−4

hi,2j−2Vi,V2j⟩ = h2j,2j−2,

h2j−1,2j = ⟨(A − �In)
−1V2j,V2j−1⟩ = ⟨(A − �In)

−1V2j−1,V2j⟩.

(A − �In)
−1V2j−1 =

1

h2j−1,2j−3

[

V2j−3 −

2j−2∑

i=2j−5

hi,2j−3(A − �In)
−1Vi + �(A − �In)

−1V2j−3

]

.

h2j−1,2j =
−1

h2j−1,2j−3
h2j−2,2j−3h2j−2,2j,

h2j+1,2j = ⟨(A − �In)
−1V2j,V2j+1⟩ = ⟨(A − �In)

−1V2j+1,V2j⟩

=

�
1

h2j+1,2j−1

�

V2j−1 −

2j�

i=2j−3

hi,2j−1(A − �In)
−1Vi + �(A − �In)

−1V2j−1

�

,V2j

�

=
1

h2j+1,2j−1

�

�h2j−1,2j −

2j�

i=2j−2

hi,2j−1hi,2j

�

.
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Example: Let m = 3 . Then the matrix H = [hi,j] ∈ ℝ
8×6 is of the form

All entries denoted by hi,j in the matrix may be nonvanishing. Moreover, entries on 
the second superdiagonal equal entries on the second subdiagonal, i.e., hi,i+2 = hi+2,i 
for i = 1, 2, 3, 4.   	� ◻

We next discuss some useful properties of the shifted extended global Krylov sub-
spaces. Here and below we will tacitly assume that the number of steps of the shifted 
extended global symmetric Lanczos process is small enough to avoid breakdown. This 
is the generic situation; breakdown is very rare.

Application of m steps of the shifted extended global symmetric Lanczos process to 
the matrix A with initial block vector V1 of unit norm yields the decomposition

where the matrix Em = [e2m−1, e2m] ∈ ℝ
2m×2 is made up of the last two columns of 

the identity matrix I2m and

with ti,j = ⟨AVj,Vi⟩ , i, j = 1, 2,… , 2m . The matrices

are made up of orthonormal block vectors Vj ∈ ℝ
n×s . Also introduce the matrix

The entries of �2m and �̃2m can be expressed in terms of recursion coefficients for 
the shifted extended global symmetric Lanczos process as shown below. This makes 
them easy to compute.

Proposition 3  Let the coefficients hi,j and �i,j be defined by (13) and (14). The non-
trivial entries of the matrices �2m = [ti,j] and �̃2m = [ti,j] can be expressed as

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1,1 h1,2 h1,3 0 0 0

h2,1 h2,2 h2,3 h2,4 0 0

h3,1 h3,2 h3,3 h3,4 h3,5 0

0 h4,2 h4,3 h4,4 h4,5 h4,6
0 0 h5,3 h5,4 h5,5 h5,6
0 0 0 h6,4 h6,5 h6,6
0 0 0 0 h7,5 h7,6
0 0 0 0 0 h8,6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A�2m = �2m+1(
��2m ⊗ Is)

= �2m(�2m ⊗ Is) + V2m+1(
[
t2m+1,2m−1, t2m+1,2m

]
ET
m
⊗ Is),

𝕋2m = [ti,j] = 𝕍
T
2m

⋄ A𝕍2m ∈ ℝ
2m×2m,

�2m = [V1,V2,… ,V2m], �2m+1 = [V1,V2,… ,V2m+1]

(16)𝕋2m = 𝕍
T
2m+1

⋄ A𝕍2m ∈ ℝ
(2m+1)×2m.
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Moreover, for j = 1, 2,… ,m − 1 , we have

Proof  The proof is similar to that of [9, Proposition 3.1]. 	�  ◻

The orthonormal basis {Vj}
2m
j=1

 for (9) can be expressed with the aid of orthogo-
nal shifted Laurent polynomials, i.e.,

where R2j−1 and R2j are shifted Laurent polynomials that live in the spaces

Proposition 4  Let A be a symmetric matrix and let the coefficients �i,j and hi,j be given 
by (13) and (14). Then the sequence of shifted Laurent polynomials R0,R1,… ,R2m , 
determined by (17), are orthonormal with respect to the bilinear form

where d� is the measure defined in (3). These shifted Laurent polynomials satisfy a 
pair of five-term recurrence relations of the form

where R1(x) = (1∕�2,2)[(x − �)−1R0(x) − �1,2R0(x)] , R0(x) = 1∕�1,1 , and 
R−2 = R−1 = 0.

ti,2j−1 = hi,2j−1, for i = 2j − 3, 2j − 2,… , 2j + 1, j = 1, 2,… ,m,

t1,2 = t2,1,

t2,2 = � −
�1,2

�2,2

t2,1,

t3,2 = −
�1,2

�2,2

t3,1.

t2j+1,2j+2 = t2j+2,2j+1,

t2j+2,2j+2 = � −
h2j+1,2j

h2j+2,2j
t2j+2,2j+1,

t2j+3,2j+2 = −
h2j+1,2j

h2j+2,2j
t2j+3,2j+1.

(17)V2j−1 = R2j−2(A)V and V2j = R2j−1(A)V , j = 1, 2,… ,m,

R2j−1(x) ∈ �−j,j−1 ∶= span{1, (x − �)−1, x,… , xj−1, (x − �)−j},

R2j(x) ∈ �−j,j ∶= span{1, (x − �)−1, x,… , (x − �)−j, xj}.

⟨P,Q⟩ = trace((P(A)V)TQ(A)V) =
∫

P(�)Q(�)d�(�),

h2j+1,2j−1R2j(x) = xR2j−2(x) −
2j∑

i=2j−3

hi,2j−1Ri−1(x),

h2j+2,2jR2j+1(x) = (x − �)−1R2j−1(x) −
2j+1∑

i=2j−2

hi,2jRi−1(x),
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Proof  A similar result is shown in [9, Theorem 2.7]. The proposition can be shown 
by modifying the proof presented there. 	�  ◻

2.3 � Shifted Gauss‑Laurent quadrature rules

The shifted extended global symmetric Lanczos approximation of the Stieltjes 
integral (2) is given by

where �i denotes the ith eigenvalue of �2m and wi = ‖V‖2u2
i,1

 . Here ui,1 is the first 
component of the normalized eigenvector ui of �2m associated with the eigenvalue �i . 
Using the same techniques as in [9, Proposition 3.4], we can show that the zeros of 
R2m are the eigenvalues of �2m . Then, applying (18), we find that

We will show below that (18) is a shifted Gauss-Laurent quadrature rule. The fol-
lowing properties help us to establish this fact.

Proposition 5  Let the matrix pairs {�2m, �2m} and {𝕎2m,ℍ2m} , where 
�2m = [V1,V2,… ,V2m] and �2m = [W1,W2,… ,W2m] , be associated to the 
shifted extended global Krylov subspace ��

m
(A,V) and the global Krylov subspace 

�2m(A, (A − �In)
−mV) , respectively, and let P2m = 𝕎

T
2m

⋄ 𝕍2m ∈ ℝ
2m×2m . Then the 

matrices �2m and ℍ2m are similar, i.e., ℍ2m = P2m𝕋2mP
T
2m

 , where PT
2m
P2m = I2m . 

Moreover, the matrices �2m and ℍ2m satisfy the properties: 

1.	 (�2m − �I2m)
m(� T

2m
⋄ (A − �In)

−mV1) = e1,
2.	 (ℍ2m − �I2m)

me1 = P2m(𝕋2m − �I2m)
mPT

2m
e1,

3.	 ‖(A − �In)
−mV1‖2eT1 f (ℍ2m)(ℍ2m − �I2m)

2me1 = eT
1
f (𝕋2m)e1.

Further, we have

Proof  We first show that PT
2m
P2m = I2m . By using the properties of the ⋄-product, we 

obtain

Since the shifted extended global subspace can be regarded as a global Krylov sub-
space, i.e.,

(18)G�

2m
(f ) = ‖V‖2eT

1
f (�2m)e1 =

2m�

i=1

f (�i)wi,

(19)G
�

2m
(R2m) = 0.

‖(A − �In)
−mV1‖

2 =
1

eT
1
(ℍ2m − �I2m)

2me1
.

PT
2m
P2m = (�T

2m
⋄ �2m)(�

T
2m

⋄�2m) = �
T
2m

⋄ (�2m([�
T
2m

⋄�2m]⊗ Is)).
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it follows that the columns of the matrix �2m belong to ��

m
(A,V) . Therefore,

Using the definition of ℍ2m , we obtain

Thus, the matrices �2m and ℍ2m are similar.
An application of a slightly modified form of [9, Lemma 3.8] gives

Multiplying the last equation by � T
2m

 from the left and using properties of the ⋄-prod-
uct, we obtain

which shows the first assertion.
The second assertion follows by using the fact that ℍ2m = P2m𝕋2mP

T
2m

 and the 
orthogonality of the matrix P2m.

For the third assertion, we have

An application of the second assertion shows that the above expression is equal to

On the other hand, we have

where the last equality follows from the first assertion. This concludes the proof of 
the last assertion. 	� ◻

Theorem  1  Let A be a symmetric matrix. Apply m steps of the shifted extended 
global Lanczos process with the initial block vector V ∈ ℝ

n×s to A to evaluate the 
expression (18). Then this expression is a 2m-point shifted Gauss-Laurent quadra-
ture rule associated with the measure d� in (3), i.e.,

�
�

m
(A,V) = �2m(A, (A − �In)

−mV),

PT
2m
P2m = �

T
2m

⋄�2m = I2m.

ℍ2m = 𝕎
T
2m

⋄ A𝕎2m = 𝕎
T
2m

⋄ [A𝕍2m(𝕍
T
2m

⋄𝕎2m ⊗ Is)]

= (𝕎T
2m

⋄ A𝕍2m)(𝕍
T
2m

⋄𝕎2m)

= (𝕎T
2m

⋄ 𝕍2m)(𝕍
T
2m

⋄ A𝕍2m)(𝕍
T
2m

⋄𝕎2m) = P2m𝕋2mP
T
2m
.

(A − 𝜎In)
−mV1 = �2m[(�2m − 𝜎I2m)

−me1 ⊗ Is].

�
T
2m

⋄ (A − �In)
−mV1 = (�2m − �I2m)

−me1,

eT
1
(f (ℍ2m)(ℍ2m − �I2m)

2me1 = eT
1
(ℍ2m − �I2m)

m(f (ℍ2m)(ℍ2m − �I2m)
me1.

eT
1
P2m(�2m − �I2m)

mf (�2m)(�2m − �I2m)
mPT

2m
e1.

(�2m − �I2m)
mPT

2m
e1 =

1

‖(A − �In)
−mV1‖

(�2m − �I2m)
m[� T

2m
⋄ (A − �In)

−mV1]

=
e1

‖(A − �In)
−mV1‖

,
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Moreover, if the function f is 4m times continuously differentiable in the convex hull 
of the spectrum of A, then the reminder term for this rule is given by

where

and the scalar �̃  lives in the largest open interval contained in the convex hull of the 
spectrum of A.

Proof  According to Proposition 5, we have

Therefore, G�

2m
 is a 2m-point rational Gauss quadrature rule; see [22]. The remainder 

term for this rule is given by

where �j is the jth eigenvalues of ℍ2m . The proof is completed since the matrices ℍ2m 
and �2m are similar. More details are provided in the proof of [27, Corollary 5.5], 
which has to be applied to the matrix A − �In with the inner product (6). 	�  ◻

2.4 � Shifted Gauss‑Laurent‑Radau quadrature rules

A (2m + 1)-point shifted Gauss-Laurent-Radau quadrature rule is obtained 
by assigning one of the quadrature nodes, denoted by � , and determining the 
remaining 2m quadrature nodes and the 2m + 1 weights so that the resulting 
quadrature rule is exact for all shifted Laurent polynomials of as high an order 
as possible. Application of m steps of the shifted extended global Lanczos pro-
cess to the matrix A with initial block vector V ∈ ℝ

n×s determines the matrix 
𝕋2m ∈ ℝ

(2m+1)×2m defined by (16). The matrix �2m is a leading principal submatrix. 
We introduce the (2m + 1)-point shifted Gauss-Laurent-Radau rule

where

G
�

2m
(f ) = I(f ) ∀f ∈ �−2m,2m−1.

(20)E2m(f ) ∶= I(f ) − G�

2m
(f ) =

d4m

dx4m
(fw)x=�̃

1

(4m)! ∫

2m∏

j=1

(x − �j)
2w(x)d�(x),

w(x) ∶=
1

eT
1
(ℍ2m − �I2m)

2me1
(x − �)2m

G
�

2m
(f ) = ‖V‖2eT

1
f (ℍ2m)w(ℍ2m)e1.

I(f ) − G�

2m
(f ) =

d4m

dx4m
(fw)x=�̃

1

(4m)! ∫

2m∏

j=1

(x − �j)
2w(x)d�(x),

R
�,�

2m+1
(f ) = ‖V‖2eT

1
f (�2m+1,�)e1,
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and � ∈ ℝ
2m contains the first 2m entries of the last column of �2m+1 . The entry �̃

�
 

is determined so that the matrix �2m+1,� has an eigenvalue at � , where � is a chosen 
node outside the convex hull of the spectrum of �2m . The parameter �̃

�
 is computed 

similarly as described in [24, p. 561]. Thus, we solve the equation

which can be written as

Therefore, �̃
�
 can be expressed in terms of � as follows

Theorem 2  The (2m + 1)-point shifted Gauss-Laurent-Radau rule associated with 
the measure d� satisfies

Furthermore, if the function f is 4m + 1 times continuously differentiable in the con-
vex hull of the spectrum of A, then the remainder term for this rule is given by

 where �̃
�
 lies in the largest open interval contained in the convex hull of the spec-

trum of A and � . The scalars �
�,1, ��,2,… , �

�,2m, � denote the eigenvalues of �2m+1,�, 
and the function w is defined in Theorem 1.

Proof  The proof is analogous to the proof of Theorem 1 and [27, Theorem 7.1]. The 
latter proof has to be applied to the matrix M = A − �In with the inner product (6). 	
� ◻

The remainder terms for the shifted Gauss-Laurent rule (20) and the shifted 
Gauss-Laurent-Radau rule (21) allow us to bound the expression I(f ) in (2) from 
above and below if the derivatives (f ⋅ w)(4m) and (f ⋅ w)(4m+1) are of constant sign 
in the convex hull of the spectrum of A and � . For instance, when the derivatives 
(f ⋅ w)(4m) and (f ⋅ w)(4m+1) are nonnegative on this interval and � is larger than or 
equal to the largest eigenvalue of A, the expression I(f ) can be bounded according 
to

𝕋2m+1,� ∶=

[
𝕋2m �

�
T

�̃
�

]
∈ ℝ

(2m+1)×(2m+1),

𝕋2m+1,�

[
x

−1

]
= �

[
x

−1

]
, x ∈ ℝ

2m,

{
�2mx − � = �x,

�
Tx − �̃

�
= −�,

⇔

{
x = (�2m − �I2m)

−1
�,

�̃
�
= � + �

Tx.

�̃
�
= � + �

T (�2m − �I2m)
−1
�.

R
�,�

2m+1
(f ) = I(f ), ∀f ∈ �−2m,2m.

(21)

I(f ) −R
�,�

2m+1
(f ) =

d4m+1

dx4m+1
(fw)x=�̃

�

1

(4m + 1)! ∫
(x − �)

2m∏

j=1

(x − �
�,j)

2w(x)d�(x),
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However, when at least one of the derivatives (f ⋅ w)(4m) or (f ⋅ w)(4m+1) changes sign 
on the convex hull of the spectrum of A and � , pairs of shifted Gauss-Laurent and 
shifted Gauss-Laurent-Radau rules are not guaranteed to produce upper and lower 
bounds for I(f ).

3 � Shifted anti‑Gauss‑Laurent quadrature rules

Laurie [30] introduced anti-Gauss rules for the estimation of the quadrature error for 
Gauss rules applied to the integration of real-valued functions on a real interval. Exten-
sions to (standard) block Krylov subspace methods are described in [1, 2, 21]. This sec-
tion introduces the (2m + 1)-point shifted anti-Gauss-Laurent quadrature rule, denoted 
by A�

2m+1
 , associated with the shifted Gauss-Laurent rule (20). It is characterized by

where E2m is the error of the shifted Gauss-Laurent quadrature rule defined in (20). 
This is equivalent to

Therefore, A�

2m+1
(f ) may be considered a (2m + 1)-point shifted Gauss-Laurent 

quadrature rule with respect to the bilinear form ⟨ ⋅ , ⋅ ⟩A determined by the func-
tional (2I − G

�

2m
)(f ) and given by

Let R̃0, R̃1,… , R̃2m be the first 2m + 1 shifted orthonormal Laurent polynomials with 
respect to the bilinear form (22). They satisfy a pair of five-term recurrence relations 
of the form

for j = 1, 2,… , where R̃−2 = R̃−1 = 0 and

Furthermore,

G�

2m
(f ) ≤ I(f ) ≤ R

�,�

2m+1
(f ).

(I −A�

2m+1
)(f ) = −E2m(f ), ∀f ∈ �−2m,2m+1,

A�

2m+1
(f ) = (2I − G�

2m
)(f ), ∀f ∈ �−2m,2m+1.

(22)⟨P,Q⟩A ∶= (2I − G
�

2m
)(PQ) = 2⟨P,Q⟩ − ‖V‖2eT

1
P(�2m)Q(�2m)e1.

h̃2j+1,2j−1R̃2j(x) = xR̃2j−2(x) −

2j∑

i=2j−3

h̃i,2j−1R̃i−1(x),

h̃2j+2,2jR̃2j+1(x) = (x − �)−1R̃2j−1(x) −

2j+1∑

i=2j−2

h̃i,2jR̃i−1(x)

R̃0(x) = 1∕�̃1,1, R̃1(x) = (1∕�̃2,2)[(x − �)−1R̃0(x) − �̃1,2R̃0(x)].

(23)h̃i,2j−1 = ⟨xR̃2j−2, R̃i−1⟩A, h̃i,2j = ⟨(x − �)−1R̃2j−1, R̃i−1⟩A.
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The coefficients h̃2j+1,2j−1 and h̃2j+2,2j are determined so that ⟨R̃2j, R̃2j⟩A = 1 and 

⟨R̃2j+1, R̃2j+1⟩A = 1 . Due to Theorem 1, shifted anti-Gauss-Laurent quadrature rules 
yield the same result as shifted Gauss-Laurent quadrature rules for all shifted Lau-
rent polynomials in �−2m,2m−1 , i.e.,

Using this property in (23) gives

This shows that R̃j(x) = Rj(x) for j = 0, 1,… , 2m − 1 . In addition, we have

Using the properties ⟨R̃2m, R̃2m⟩A = ⟨R2m,R2m⟩ = 1 and (19) gives

Thus, we can choose h̃2m+1,2m−1 =
√
2h2m+1,2m−1 . Substituting this expression into 

(25) yields

We turn to the determination of the entries of the symmetric pentadiagonal matrix 
𝕋
a
2m+1

= [̃ti,j] ∈ ℝ
(2m+1)×(2m+1) associated with the (2m + 1)-point shifted anti-Gauss-

Laurent rule,

where t̃i,j = ⟨xR̃i−1, R̃j−1⟩A for i, j = 1, 2,… , 2m + 1 . Recall that ti,j = ⟨xRi−1,Rj−1⟩ . 
Using (24), we find

(24)
if P and Q are shifted Laurent polynomials such that

PQ ∈ �−2m,2m−1, then ⟨P,Q⟩A = ⟨P,Q⟩.

h̃i,j = hi,j, i, j = 1, 2,… , 2m − 1,

h̃2m,i = h2m,i, i ∈ {2m − 2, 2m − 1},

h̃i,2m = hi,2m, i ∈ {2m − 2, 2m − 1}.

(25)h̃2m+1,2m−1R̃2m(x) = h2m+1,2m−1R2m(x).

h̃2
2m+1,2m−1

= 2h2
2m+1,2m−1

.

R̃2m(x) =
1
√
2
R2m(x).

(26)A�

2m+1
(f ) = ‖V‖2eT

1
f (� a

2m+1
)e1,
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We obtain from (19) that

Therefore,

In the same manner, we get the remaining entries of � a
2m+1

,

In conclusion, the symmetric pentadiagonal matrix � a
2m+1

 associated with the 
(2m + 1)-point shifted anti-Gauss-Laurent rule (26) can be obtained from the matrix 
�2m+1 = �

T
2m+1

⋄ A�2m+1 associated with the (2m + 1)-point shifted Gauss-Laurent 
rule by multiplying the entries t2m+1,2m−1 and t2m+1,2m by 

√
2 , i.e.,

where �2m = [0,… , 0,
√
2t2m+1,2m−1,

√
2t2m+1,2m]

T ∈ ℝ
2m . Algorithm  1 describes 

how an approximation of (3) and an error estimate can be computed by a pair 
of shifted Gauss-Laurent and anti-Gauss-Laurent quadrature rules when the 
matrix A is symmetric. In the spirit of Laurie [30], we approximate (3) by 
Uapp(f ) = (G�

2m
(f ) +A

�

2m+1
(f ))∕2 and estimate the error in Uapp(f ) by the difference 

|G�

2m
(f ) −A

�

2m+1
(f )|∕|G�

2m
(f )| . 

t̃i,j = ti,j, for i, j = 1, 2,… , 2m.

G
�

2m
(R2mR2m−2) = G

�

2m
(R2mR2m−1) = G

�

2m
(R2mR2m) = 0.

t̃2m+1,2m−1 = ⟨xR̃2m, R̃2m−2⟩A =
1
√
2
⟨xR2m,R2m−2⟩A

=
1
√
2
[2⟨xR2m,R2m−2⟩ − G�

2m
(R2mR2m−2)]

=
√
2 t2m+1,2m−1.

t̃2m+1,2m =
√
2t2m+1,2m and t̃2m+1,2m+1 = t2m+1,2m+1.

�
a
2m+1

=

[
�2m �2m

�
T
2m

t2m+1,2m+1

]
,
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4 � The shifted extended global nonsymmetric Lanczos process

This section describes the recursion relations for the shifted extended global non-
symmetric Lanczos process. This process generates two biorthogonal bases of block 
vectors {Vj}

2m
j=1

 and {Wj}
2m
j=1

 for the shifted extended global Krylov subspaces 
�

�

m
(A,V) and ��

m
(AT ,W) . These bases can be computed with short recurrence for-

mulas. We have

and for j = 1, 2,… ,m,
(27)

�1,1 = �⟨W,V⟩�1∕2, V1 = V∕�1,1, �1,1 = ⟨W,V⟩∕�1,1, W1 = W∕�1,1,

V̂2 = (A − �In)
−1V1 − �1,2V1, Ŵ2 = (AT − �In)

−1W1 − �1,2W1,

�1,2 = ⟨W1, (A − �In)
−1V1⟩, �1,2 = ⟨V1, (A

T − �In)
−1W1⟩,

�2,2 = �⟨Ŵ2, V̂2⟩�1∕2, V2 = V̂2∕�2,2, �2,2 = ⟨Ŵ2, V̂2⟩∕�2,2, W2 = Ŵ2∕�2,2,
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where

and

Similarly as for the shifted extended global symmetric Lanczos process, the coef-
ficients hi,j and gi,j can be computed recursively.

Proposition 6  The coefficients hi,j , gi,j, �i,j , and �i,j , defined by the relations (27) and 
(28), can be computed recursively as follows:

For j = 2, 3,… ,m , we have

(28)

V̂2j+1 = h2j+1,2j−1V2j+1 = AV2j−1 −

2j∑

i=2j−3

hi,2j−1Vi,

Ŵ2j+1 = g2j+1,2j−1W2j+1 = ATW2j−1 −

2j∑

i=2j−3

gi,2j−1Wi,

V̂2j+2 = h2j+2,2jV2j+2 = (A − �In)
−1V2j −

2j+1∑

i=2j−2

hi,2jVi,

Ŵ2j+2 = g2j+2,2jW2j+2 = (AT − �In)
−1W2j −

2j+1∑

i=2j−2

gi,2jWi,

hi,2j−1 = ⟨AV2j−1,Wi⟩, gi,2j−1 = ⟨ATW2j−1,Vi⟩,
hi,2j = ⟨(A − �In)

−1V2j,Wi⟩, gi,2j = ⟨(AT − �In)
−1W2j,Vi⟩,

h2j+1,2j−1 =
����2j+1

���
1∕2

, g2j+1,2j−1 = �2j+1∕h2j+1,2j−1, with �2j+1 = ⟨Ŵ2j+1, Ŵ2j+1⟩,

h2j+2,2j =
����2j+2

���
1∕2

, g2j+2,2j = �2j+2∕h2j+2,2j, with �2j+2 = ⟨V̂2j+2, Ŵ2j+2⟩.

h1,2 = �2,2,

h2,1 =
1

�2,2

[1 − �1,2h1,1 + ��1,2],

h2,3 = −
�1,2h1,3

�2,2

.
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These relations also hold when the hi,j and �i,j are replaced by gi,j and �i,j , respec-
tively, and vice versa.

Proof  The relations can be shown similarly as those in Proposition 2. 	�  ◻

Introduce the pentadiagonal matrix

Here

and the matrices �̂2m = [V1,V2,… ,V2m] and �̂2m = [W1,W2,… ,W2m] are defined 
by the recursion relations for the shifted extended global nonsymmetric Lanczos 
process,

with Em = [e2m−1, e2m] ∈ ℝ
2m×2 and

The entries of �̂2m , �m , and �̂m are computed recursively as shown below.

Proposition 7  Let the coefficients hi,j , gi,j , �i,j , and �i,j be defined by (27) and (28). 
The matrix �̂2m = [ti,j] in (29) and the coefficients �m and �̂m in (30) can be computed 
as follows:

h2j−3,2j−1 = g2j−1,2j−3,

h2j−2,2j−1 =
−1

g2j−2,2j−4
g2j−3,2j−4h2j−3,2j−1,

h2j,2j−1 =
1

g2j,2j−2

[

�g2j−1,2j−2 −

2j−1∑

i=2j−3

gi,2j−2hi,2j−1

]

,

h2j−2,2j = g2j,2j−2,

h2j−1,2j =
−1

g2j−1,2j−3
g2j−2,2j−3h2j−2,2j,

h2j+1,2j =
1

g2j+1,2j−1

[

�h2j−1,2j −

2j∑

i=2j−2

gi,2j−1hi,2j

]

,

g2j−1,2j−1 = h2j−1,2j−1,

g2j,2j = h2j,2j.

(29)𝕋2m = [ti,j] = 𝕎
T
2m

⋄ A𝕍2m ∈ ℝ
2m×2m.

ti,j = ⟨AVj,Wi⟩, i, j = 1, 2,… , 2m,

(30)
A��2m = ��2m(�2m ⊗ Is) + V2m+1(𝜏mE

T
m
⊗ Is),

AT��2m = ��2m(
��
T
2m

⊗ Is) +W2m+1(�𝜏mE
T
m
⊗ Is),

�̂m = [̂t2m+1,2m−1, t̂2m+1,2m] ∶= [⟨ATW2m−1,V2m+1⟩, ⟨ATW2m,V2m+1⟩],
�m = [t2m+1,2m−1, t2m+1,2m].
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For j = 1, 2,… ,m − 1 , we have

Proof  The recursions can be shown in a similar manner as [9, Proposition  3.1]. 
However, some adjustments have to be made, because here we apply a nonsym-
metric Lanczos process instead of a symmetric Lanczos process, and the matrix is 
A − �In instead of A. 	�  ◻

There are two sequences of shifted Laurent polynomials p0, p1,… , pm and 
q0, q1,… , qm that are biorthogonal with respect to the bilinear form

where d� is the measure in (12). These shifted Laurent polynomials satisfy a pair of 
five-term recurrence relations of the form

ti,2j−1 = hi,2j−1, for i ∈ {2j − 3, 2j − 2,… , 2j + 1}, j = 1, 2,… ,m,

t1,2 =
1

�2,2

[
1 − �1,2(t1,1 − �)

]
,

t2,2 = � −
�1,2

�2,2

t2,1,

t3,2 = −
�1,2

�2,2

t3,1,

t̂3,1 = g3,1,

t̂3,2 = −
�1,2

�2,2

t̂3,1,

t2j+1,2j+2 =
−1

h2j+2,2j

[
2j+1∑

i=2j−1

hi,2jt2j+1,i − �h2j+1,2j

]

,

t2j+2,2j+2 = � −
h2j+1,2j

h2j+2,2j
t2j+2,2j+1,

t2j+3,2j+2 = −
h2j+1,2j

h2j+2,2j
t2j+3,2j+1,

t̂2j+3,2j+1 = g2j+3,2j+1,

t̂2j+3,2j+1 = −
g2j+1,2j

g2j+2,2j
t̂2j+3,2j+1.

⟨P,Q⟩ = trace(P(A)V ,Q(A)W) =
∫

P(�)Q(�)d�(�),
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where p1(x) = (1∕�2,2)[(x − �)−1p0(x) − �1,2p0(x)] , p0(x) = 1∕�1,1 , 
and q1(x) = (1∕�2,2)[(x − �)−1q0(x) − �1,2q0(x)] , q0(x) = 1∕�1,1 , 
p−2 = p−1 = q−2 = q−1 = 0.

The associated 2m-point shifted Gauss-Laurent quadrature rule is given by

where �i denotes the ith eigenvalue of �̂2m and wi = ⟨V ,W⟩u2
i,1

 . Here ui,1 is the first 
component of the normalized eigenvector ui of �̂2m . This quadrature rule satisfies

This can be shown similarly as related results in [27] or in Sect. 3.

Lemma 1  Let the shifted Laurent polynomials p2m and q2m be determined by the 
recursion relations (31). Then

Proof  Consider the vectors of shifted Laurent polynomials

Using (30), these vectors can be expressed as

It follows that the 2m zeros of the Laurent polynomials p2m and q2m are the 
eigenvalues of the matrix �̂2m . On the other hand, we have in view of (32) that 
G
�

2m
(p2m) = G

�

2m
(q2m) = 0 . This completes the proof. 	�  ◻

(31)

h2j+1,2j−1p2j(x) = xp2j−2(x) −

2j∑

i=2j−3

hi,2j−1pi−1(x),

g2j+1,2j−1q2j(x) = xq2j−2(x) −

2j∑

i=2j−3

gi,2j−1qi−1(x),

h2j+2,2jp2j+1(x) = (x − �)−1p2j−1(x) −

2j+1∑

i=2j−2

hi,2jpi−1(x),

g2j+2,2jq2j+1(x) = (x − �)−1q2j−1(x) −

2j+1∑

i=2j−2

gi,2jqi−1(x),

(32)G�

2m
(f ) = ⟨V ,W⟩eT

1
f (�̂2m)e1 =

2m�

i=1

f (�i)wi,

G
�

2m
(f ) = I(f ), ∀f ∈ �−2m,2m−1.

G
�

2m
(p2m) = G

�

2m
(q2m) = 0.

�2m(x) = [p0(x), p1(x),… , p2m−1(x)], �2m(x) = [q0(x), q1(x),… , q2m−1(x)].

x�2m(x) = �2m(x)�̂2m + p2m(x)�mE
T
m
,

x�2m(x) = �2m(x)�̂
T
2m

+ q2m(x)�̂mE
T
m
.
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5 � Shifted anti‑Gauss‑Laurent quadrature rules for nonsymmetric 
matrices

This section extends the construction of the shifted anti-Gauss-Laurent quadrature 
rules of Section 3 to the situation when the matrix A is nonsymmetric. Introduce the 
(2m + 1)-point shifted anti-Gauss-Laurent quadrature rule

where the matrix 𝕋 a
2m+1

= [̃ti,j] ∈ ℝ
(2m+1)×(2m+1) is such that

The entries of �̂ a
2m+1

 are given by t̃i,j = ⟨xp̃j−1, q̃i−1⟩a , where

Let p̃0, p̃1,… , p̃2m and q̃0, q̃1,… , q̃2m be the first biorthogonal shifted Laurent poly-
nomials with respect to the bilinear form (33). These shifted Laurent polynomials 
satisfy a pair of five-term recurrence relations of the form

and

where p̃−2 = p̃−1 = q̃−2 = q̃−1 = 0 and

The coefficients h̃2j+1,2j−1 , h̃2j+2,2j , g̃2j+1,2j−1 , and g̃2j+2,2j are determined so that

A�

2m+1
(f ) = ⟨W,V⟩

2m+1�

i=1

eT
1
f (�̂ a

2m+1
)e1,

A�

2m+1
(f ) = (2I − G�

2m
)(f ), ∀f ∈ �−2m,2m+1.

(33)⟨P,Q⟩a ∶= (2I − G�

2m
)(PQ) = 2⟨P,Q⟩ − ⟨W,V⟩eT

1
P(�̂2m)Q(�̂2m)e1.

p̃0(x) = 1∕�̃1,1, p̃1(x) = (1∕�̃2,2)[(x − �)−1p̃0(x) − �̃1,2p̃0(x)],

q̃0(x) = 1∕�̃1,1, q̃1(x) = (1∕�̃2,2)[(x − �)−1q̃0(x) − �̃1,2q̃0(x)],

h̃2j+1,2j−1p̃2j(x) = xp̃2j−2(x) −

2j∑

i=2j−3

h̃i,2j−1p̃i−1(x),

h̃2j+2,2jp̃2j+1(x) = (x − �)−1p̃2j−1(x) −

2j+1∑

i=2j−2

h̃i,2jp̃i−1(x),

g̃2j+1,2j−1q̃2j(x) = xq̃2j−2(x) −

2j∑

i=2j−3

g̃i,2j−1q̃i−1(x),

g̃2j+2,2jq̃2j+1(x) = (x − �)−1q̃2j−1(x) −

2j+1∑

i=2j−2

g̃i,2jq̃i−1(x),

(34)
h̃i,2j−1 = ⟨xq̃2j−2, q̃i−1⟩a, h̃i,2j = ⟨(x − �)−1p̃2j−1, q̃i−1⟩a,
g̃i,2j−1 = ⟨xp̃2j−2, q̃i−1⟩a, g̃i,2j = ⟨(x − �)−1p̃2j−1, q̃i−1⟩a.

⟨p̃2j, q̃2j⟩a = 1 and ⟨p̃2j+1, q̃2j+1⟩a = 1.
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Using the fact that for two shifted Laurent polynomials P and Q such that 
PQ ∈ �−2m,2m−1 , we have ⟨P,Q⟩a = ⟨P,Q⟩ , and applying the relations (34), we 
obtain

These formulas show that the entries of the pentadiagonal matrix �̂ a
2m+1

 associated to 
the (2m + 1)-point shifted anti-Gauss-Laurent quadrature rule are

and

In summary, the pentadiagonal matrix �̂
a
2m+1

 is obtained from the matrix 
�̂2m+1 = �̂

T
2m+1

⋄ A�̂2m+1 associated with the (2m + 1)-point shifted Gauss-Laurent 
rule as follows

where �2m = [0,… , 0,
√
2 t̂2m+1,2m−1,

√
2 t̂2m+1,2m]

T and 
�2m = [0,… , 0,

√
2t2m+1,2m−1,

√
2t2m+1,2m]

T.
Algorithm 2 describes how an approximation of (3) and an error estimate can be 

computed by a pair of shifted Gauss-Laurent and shifted anti-Gauss-Laurent quadra-
ture rules when the matrix A is nonsymmetric. The computed approximation, Uappf  , 
is the average of approximations of (3) determined by shifted Gauss-Laurent and 
anti-Gauss-Laurent quadrature rules. Similarly as in Algorithm 1, we approximate 
(10) by Uapp(f ) = (G�

2m
(f ) +A

�

2m+1
(f ))∕2 and estimate the error in Uapp(f ) by the dif-

ference |G�

2m
(f ) −A

�

2m+1
(f )|∕|G�

2m
(f )| . 

p̃j = pj, q̃j = qj, for j = 0, 1,… , 2m − 1,

p̃2m =
1
√
2
p2m, q̃2m =

1
√
2
q2m.

t̃i,j = ti,j, for i, j = 1, 2,… , 2m

t̃2m+1,2m−1 =
√
2t2m+1,2m−1, t̃2m−1,2m+1 =

√
2 t̂2m+1,2m−1,

t̃2m+1,2m =
√
2t2m+1,2m, t̃2m,2m+1 =

√
2 t̂2m+1,2m,

t̃2m+1,2m+1 = t2m+1,2m+1.

𝕋
a
2m+1

=

[
𝕋2m �2m

�
T
2m

t2m+1,2m+1

]
∈ ℝ

(2m+1)×(2m+1),
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6 � Numerical experiments

This section presents some numerical results that illustrate the performance of the 
shifted extended Gauss-Laurent-type quadrature rules based on the global shifted 
extended symmetric or nonsymmetric Lanczos processes. All experiments were car-
ried out in MATLAB R2015a on a computer with an Intel Core i-3 processor and 
3.89 GB of RAM. The computations were done with about 15 significant decimal 
digits.

Upper and lower bounds for trace(f (A)) can be determined as the sum of upper 
and lower bounds for trace(ET

j
f (A)Ej) , j = 1, 2,… , ns , with ns = ⌊(n + s − 1)∕s⌋ , 

with the initial block vectors Ej = [es(j−1)+1,… , emin{sj,n}] ∈ ℝ
n×s , provided that the 

integrand f is such that pairs of shifted Gauss-Laurent and Gauss-Laurent-Radau 
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rules yield upper and lower bounds. This is described for (standard) Gauss and 
Gauss-Radau quadrature rules in [7]. We instead apply pairs of shifted Gauss-Lau-
rent and anti-Gauss-Laurent quadrature rules to determine approximations of upper 
and lower bounds. Denote the computed approximations of trace(ET

j
f (A)Ej) by 

Ulower,j(A) and Uupper,j(A) , respectively. Then

provide approximations for upper and lower bounds for trace(A).
We report the magnitude of the estimated relative error

The (standard) Gauss and Gauss-Radau rules described in [7] provide upper and 
lower bounds for trace(ET

j
f (A)Ej) when f (t) = exp(t) . In this situation, Uupper,j(A) and 

Ulower,j(A) denote these bounds.
The first two subsections compare the performance of pairs of shifted Gauss-Lau-

rent and anti-Gauss-Laurent quadrature rules for symmetric matrices A, as imple-
mented by Algorithm 1, to the performance of (standard) Gauss and Gauss-Radau 
quadrature (GQ) rules based on the global Lanczos algorithm described in [7, Algo-
rithm 2]. In the third subsection, we compare the application of shifted Gauss-Lau-
rent and anti-Gauss-Laurent quadrature rules, as implemented by Algorithm  2, to 
the MATLAB function expm. The block size of Ej is set to s = 60 and the stopping 
tolerance � in Algorithms 1 and 2 is set to 2 ⋅ 10−3 . The GQ method is terminated 
analogously.

The shift parameter is set to � = 1.01�max or � = 1.01�min , where �max and �min 
are estimates of the largest and smallest eigenvalues of A; we assume here that �max 
is positive and �min is negative. Several techniques can be applied to determine such 
estimates, including using Gershgorin’s disks [37], the irbleigs method [3, 4] for 
symmetric matrices A, and the MATLAB command eigs, which implements an 
implicitly restarted Krylov method [35] and can be applied for symmetric and non-
symmetric matrices, or the power method. We use the latter method with initial vec-
tor v = [1, 1,… , 1]T.

The systems of equations with the matrix A − �In in Algorithm 1 and the sys-
tems of equations with the matrices A − �In and AT − �In in Algorithm 2 are solved 
by using the backslash operator ∖ of MATLAB. This operator computes an LU or 
Cholesky factorization of A − �In

1.

Ulower(A) ∶=

ns∑

j=1

Ulower,j(A), Uupper(A) ∶=

ns∑

j=1

Uupper,j(A)

(35)RelErr(A) =
|Uupper(A) − Ulower(A)|

|Uupper(A)|
.

1  If the matrix A ∈ ℝ
n×n is symmetric the operator ∖ first seeks to compute the Cholesky factorization of 

A − �In . If this is not possible, because A − �In is not positive definite, then an LU factorization is deter-
mined by Gaussian elimination with partial pivoting. The computed factorization is used to solve the 
linear system of equations with the matrix A − �In.
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6.1 � Application to undirected graphs in network analysis

We compute approximations of the Estrada index EE(A) for some undirected net-
works using the shifted Gauss-Laurent-type rules determined by Algorithm 1. These 
rules are compared to the Gauss-type quadrature rules based on the global Lanczos 
algorithm. These rules are denoted by GQ in the tables and described in [7]. We 
choose the prescribed eigenvalue � = �max for GQ. Then we have the bounds

for every m, where Gm(f ) and R�

m+1
(f ) are defined by (7) and (8), respectively; 

see [7] for details. We consider six real-world undirected networks, which can be 
found in the SuiteSparse Matrix Collection [13]. Some details on these matrices 
are presented in Table 1, including the sparsity of each adjacency matrix, i.e., the 
ratio between the number of nonzero elements and the total number of elements, 
n2 . Table 2 reports the required CPU time (Time) in seconds, the total number of 
matrix-vector product (MVP) evaluations, and the relative error (35) achieved with 
these methods. We also report the total number of linear systems solved (LSS) in 
Algorithm 1. The results show Algorithm 1 to be faster and require a smaller num-
ber of MVP evaluations than the GQ algorithm to estimate the Estrada index EE(G). 
To illustrate the quality of the computed bounds of trace(VT exp (A)V) determined 
by the shifted anti-Gauss-Laurent quadrature rules, we consider the networks as-
22july06 and Erdos972. We choose block size s = 60 and V = E1 . Figure 1 displays 
the computed approximations of upper and lower bounds for for EE(G) for these 
networks versus the number of iterations. As can be observed, standard Gauss-type 
quadrature rules based on the global Lanczos method require many more steps to 
bracket trace(VT exp (A)V) tightly.

Gm(f ) ≤ trace(ET
j
exp (A)Ej) ≤ R

�

m+1
(f ), f (t) = exp(t).

Table 1   Adjacency matrix properties

Matrix # Nodes # Edges �max Sparsity Application

Undirected graphs:
Arenas/email 1133 10902 20.74 8.5 ⋅ 10−3 Interchange network
Pajek/Erdos972 5488 7085 14.45 4.70 ⋅ 10−4 Collaboration network
SNAP/as-735 7716 13895 46.89 4.45 ⋅ 10−4 Computer server network
SNAP/Oregon-1 11492 23409 60.33 3.54 ⋅ 10−4 Road network
Newman/as-22july06 22963 96872 71.61 1.83 ⋅ 10−4 Structure of internet routers
Newman/cond-mat-2005 40421 351384 47.63 2.15 ⋅ 10−4 Collaboration network
Directed graphs:
SNAP/p2p-Gnutella08 6301 20777 5.12 5.23 ⋅ 10−4 Peer to peer network
Pajek/EVA 8497 6726 1.85 9.32 ⋅ 10−5 Corporate inter-relation-

ships
Pajek/California 9664 16150 7.41 1.73 ⋅ 10−4 Web search
SNAP/p2p-Gnutella04 10879 39994 4.45 3.38 ⋅ 10−4 Peer to peer network
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Table 2   CPU time in seconds, RelErr, number of matrix-vector product evaluations (MVP) and number 
of linear system solves (LSS) for computing the Estrada index for several undirected networks

Matrix GQ [7] Algorithm 1

Time RelErr MVP Time RelErr MVP LSS

email 2.52 7.36 ⋅ 10−4 9830 2.24 2.21 ⋅ 10−4 4585 4585
Erdos972 38.79 6.63 ⋅ 10−4 47384 30.97 1.84 ⋅ 10−4 26360 26360
as-735 59.63 9.30 ⋅ 10−4 67416 40.92 6.75 ⋅ 10−6 23040 23040
Oregon-1 406.56 9.18 ⋅ 10−4 110180 71.98 2.56 ⋅ 10−5 34476 34476
as-22july06 1856 9.06 ⋅ 10−4 233770 309 4.43 ⋅ 10−5 68889 68889
cond-mat-2005 9459 9.40 ⋅ 10−4 666397 3160 5.78 ⋅ 10−5 206185 206185
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Fig. 1   Upper and lower bounds or estimates thereof for trace(VT exp (A)V) . Top row: Erdos972 graph. 
Bottom row: as-22july06 graph. Left plot: Algorithm 1. Right plot: GQ method [7]
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6.2 � Application to computing the nuclear norm

The nuclear norm of a general matrix X ∈ ℝ
m×n is defined as

where the �i are singular values of X. It is impractical or unfeasible to use the singu-
lar value decomposition of X to compute the nuclear norm of a large matrix. Com-
putation of the nuclear norm can be considered a trace estimation problems for the 
symmetric positive semidefinite matrices A = XTX or A = XXT [36]. The nuclear 
norm of X can be expressed as

where the �i are the eigenvalues of A. We consider the same data sets as used in [36]. 
All matrices were obtained from [13]. We compare the performance of Algorithm 1 
to the performance of the GQ method [7] when estimating the nuclear norm of the 
matrices in Table 3. The prescribed eigenvalue � in the GQ algorithm is chosen to be 
� = 0 . Let � = �min . Then we have the bounds

see [7] for details. Table 3 displays the CPU time (Time) required in seconds, the 
total number of matrix-vector product (MVP) evaluations, and the relative error 
(RelErr) in approximations determined by these methods. The symbol (−) signi-
fies that the stopping criterion was not satisfied within 3 hours of execution time. 
The table shows Algorithm 1 to be faster and to require fewer matrix-vector product 
evaluations than the GQ algorithm.

To illustrate the quality of the computed (approximate) bounds determined by the 
GQ algorithm and Algorithm  1, we consider trace(VT

√
XT
1
X1V) and 

trace(VT

√
XT
2
X2V) , where X1 and X2 are the adjacency matrices for the Erdos992 

and FA graphs, respectively. The initial block vector V is generated randomly with 

‖X‖∗ =
min{m,n}�

i=1

�i,

‖X‖∗ =
min{m,n}�

i=1

�i =

min{m,n}�

i=1

�
1∕2

i
= trace(A1∕2),

R
�

m+1
(f ) ≤ trace(VTA1∕2V) ≤ Gm(f ), f (t) = t1∕2;

Table 3   CPU time in seconds, RelErr, number of matrix-vector product evaluations (MVP) and number 
of linear system solves (LSS) for computing the nuclear norm

Matrix GQ [7] Algorithm 1

Time RelErr MVP Time RelErr MVP LSS

Erdos992 1400 1.9 ⋅ 10−3 279060 274.97 1.33 ⋅ 10−4 44080 44080
deter3 134.16 1.8 ⋅ 10−3 90396 171.75 7.39 ⋅ 10−4 37308 37308
California 554.04 3.6 ⋅ 10−3 901864 321.13 2.38 ⋅ 10−4 67108 67108
FA – – – 4274 2.76 ⋅ 10−4 79299 79299
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uniformly distributed entries in the interval [0, 1]; the matrix has s = 60 columns. 
Figure  2 shows the upper and lower bounds for trace(VT

√
XT
1
X1V) and 

trace(VT

√
XT
2
X2V) produced by the the GQ method and the estimates of upper and 

lower bounds determined by Algorithm 1 versus the number of iterations. The figure 
demonstrates the effectiveness of Algorithm 1.

6.3 � Application to directed graphs in network analysis

We consider the computation of the Estrada index for some directed graphs that 
model real-world directed networks. The adjacency matrices are nonsymmetric. 
These computations illustrate the performance of the shifted Gauss-Laurent-type 
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Fig. 2   Upper and lower bounds or estimates thereof for trace(VT

√
AV) . Top row: Erdos992 graph. Bot-

tom row: FA matrix. Left plot: Algorithm 1. Right plot: GQ method [7]
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quadrature rules determined by the nonsymmetric Lanczos process and imple-
mented by Algorithm 2. We use the adjacency matrices p2p-Gnutella08, EVA, Cali-
fornia, and p2p-Gnutella04 from [13]. Some properties on these matrices are given 
in Table  1. In Table  4, we show the CPU time required by Algorithm  2 and the 
MATLAB function expm. We also show the approximation of the Estrada index 
computed by the Algorithm 2. As illustrated by this table, the computational cost for 
the function expm is much higher than for Algorithm 2.

7 � Conclusion

This paper describes the extended shifted symmetric and nonsymmetric Lanczos 
processes. These algorithms are used to compute shifted Gauss-Laurent-type quad-
rature rules. The matrices of recursion coefficients for these Lanczos processes are 
shown to be pentadiagonal. This results in computations with short recursion formu-
las. Applications to the determination of estimates of upper and lower bounds for the 
trace of matrix functions are described. Also applications to the computation of the 
nuclear norm of a large matrix are described. The computed examples illustrate the 
effectiveness of the proposed methods.
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