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estimate the quadrature error when replacing an integral by an ¢-node Gauss quadrature
rule in order to choose a suitable number of nodes. A classical approach to estimate this
error is to evaluate the associated (2¢ + 1)-node Gauss-Kronrod rule. However, Gauss—

In memory of Dirk P. Laurie Kronrod rules with 2¢ + 1 real nodes might not exist. The (2¢ + 1)-node generalized
averaged Gauss formula associated with the ¢-node Gauss rule described in Spalevi¢ (2007)
Keywords: [16] is guaranteed to exist and provides an attractive alternative to the (2¢ + 1)-node

Gauss quadrature
Averaged Gauss rule
Generalized averaged Gauss rule

Gauss—Kronrod rule. This paper describes a new representation of generalized averaged
Gauss formulas that is cheaper to evaluate than the available representation.
© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let dw be a nonnegative measure with infinitely many points of support on the real axis, and such that all moments
= f xkdw(x), k=0,1,2,..., exist. For notational simplicity, we will assume that the measure has total mass one. We are
interested in approximating integrals of the form

()= / fx)dw(x) (1.1)
by the ¢-point Gauss rule
¢
G(H=Y Fxwy (1.2)
k=1

associated with the measure dw. This rule is characterized by

Ge(H=I(f) VY [fePy,
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where Py,_1 denotes the set of all polynomials of degree at most 2¢ — 1. The nodes x,(f) are known to be distinct and to
live in the convex hull of the support of dw, and the weights w,(f)
properties of Gauss quadrature rules.

It is important to be able to estimate the quadrature error

Z(f) —Ge(f) (1.3)

to assess whether the number of nodes, ¢, has been chosen large enough to achieve an approximation of the integral (1.1) of
desired accuracy. A classical approach to estimate the error (1.3) is to evaluate the (2¢ 4+ 1)-node Gauss-Kronrod quadrature
rule associated with (1.2), if it exists. This Gauss-Kronrod rule is a quadrature rule of the form

are positive; see, e.g., Gautschi [5] or Szegd [17] for

20+1
« 20+1 2041)y ~ (2041
/sz+1(f)—Zf(X, HwEH + 3 R WY,
k=1 k=t+1

such that the nodes x,[) k=1,2,...,¢, are the nodes in the Gauss rule (1.2), and the Gauss-Kronrod nodes &*k”“), k=
£+1,£+2,...,2¢+1, and the welghts AQH” L k= ..,2¢ 4+ 1, are determined so that

Kar1()=Z(f) VfeP3y.
Generally, the Gauss-Kronrod nodes 3?’(2“1) k=¢+1,£+4+2,...,2¢+1, are required to be real and to interlace the Gauss

WD k=1,2,.

nodes. In addition, the Gauss-Kronrod weights w ,2¢ + 1, should be positive. Efficient numerical methods

for computing the nodes and weights of the Gauss Kronrod rule ’C25+1 when the nodes x A(ZHU Jk=C0+1,0+42,...,20+1,

and weights W’(25+1) k=1,2,...,2¢ + 1, satisfy these conditions are described in [1,11]. The quadrature error (1.3) is

approximated by Kz¢41(f) — Qz(f ).

However, for many measures dw, including various Jacobi measures, and for certain numbers of nodes, Gauss-Kronrod
rules, whose nodes and weights satisfy the above conditions do not exist; see Notaris [13] for a nice recent survey of Gauss—
Kronrod rules and their properties. The non-existence of Gauss-Kronrod rules for important measures prompted Laurie [10]
to develop anti-Gauss and averaged rules for the estimation of the error in Gauss rules. The (¢ + 1)-point anti-Gauss rule,
@.H, associated with the Gauss rule (1.2) is determined by the requirement

e —D(H=—(Ge—D(f) ¥ fePay, (14)
and the associated averaged rule is given by
1 ~
Azer1(f) = E(Qz + Ge+1) (). (15)

It follows from (1.4) that the degree of precision of Ajyy1 is at least 2¢ + 1, i.e.,

A1 () =Z(f) VYV fePun.

It is well known that the Gauss rule (1.2) can be represented by a symmetric tridiagonal matrix

a0 VP 0
VB VB2
TZ: '.. '.. GRZXZ, (1'6)
VBe—2  ap /B
0 VBic1 o

whose entries o, € R and g, > 0 are recursion coefficients for the sequence of monic orthogonal polynomials {px}72,
associate with the measure dow,

Pk+1(t) = (t — ) pr(t) — B pk—1(H), k=0,1,...,

where p_1(t) =0, po(t) =1, see, e.g., Gautschi [5] for details. The eigenvalues of T, are the nodes and the squared first
components of the normalized eigenvectors are the weights of G;; see [5,8]. Recall that the total mass of the measure is
assumed to be one; otherwise the formula for the weights differs.

A popular approach to compute the nodes and weights of G, is furnished by the Golub-Welsch algorithm [9], which
requires only c£2 + O(¢) arithmetic floating point operations (flops), where ¢ > 0 is a fairly small constant independent
of ¢; see also Laurie [12] for a more recent discussion on the computation of nodes and weights. We remark that Glaser
et al. [7] describe an algorithm that is faster for certain classical orthogonal polynomials, such as Legendre, Hermite, and
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Laguerre polynomials, for large values of £. However, in many applications ¢ is not large enough for the latter algorithm to
be competitive. _

One of the attractions o£ the anti-Gauss rule Gy1 and the averageg rule Ajy,4q are their ease of computation: the sym-
metric tridiagonal matrix T,4q associated with the anti-Gauss rule G4 is obtained by multiplying the last off-diagonal
elements of the symmetric tridiagonal matrix T, associated with Gauss rule G,41 by +/2; see [10]. We denote the tridi-
agonal matrix so obtained by T¢41. The Golub-Welsch algorithm can be applied to compute the nodes and the weights of
the anti-Gauss rule Gy, 1 in c£2 + O(¢) flops. Thus, the computational cost of determining the nodes and weights of both
the Gauss rule G, and the averaged rule Ay, is 2c£% + O(¢) flops.

Spalevi¢ [16] observed that the averaged rule can be represented differently from (1.5) and this representation led to
the generalized averaged quadrature rule associated with the Gauss rule G, described below. We first outline the alternate
representation of the averaged rule. Introduce the reverse matrix

o1 /Be-1 0
B a2 Bea
Té: ERZXZ,
VB2 a1 VB
0 VB o

which is obtained by reversing the order of the rows and columns of the matrix (1.6), and define the concatenated sym-
metric tridiagonal matrix

Te  JBeee 0
Toos1=| VBeel o J/Bee] | e REFDXQHD, (1.7)
0  VBer T,

Using results by Peherstofer [15], Spalevic [16] showed that the nodes and weights of the averaged rule (1.5) are the eigen-
values and the squared first components of normalized eigenvectors, respectively, of the matrix (1.7). This representation
is helpful for showing properties of the averaged rule; see [2,3] for examples. However, the computation of the nodes and
weights of the averaged rule (1.5) by applying the Golub-Welsch algorithms to the matrix (1.7) requires 4c¢% + O(¢) flops
in addition to the c¢? + O(¢) flops necessary for the computation of the nodes and weights of the Gauss rule (1.2). Hence,
the computation of the nodes and weights of the averaged rule (1.5) by applying the Golub-Welsch algorithm to the matrix
(1.7) is more expensive than the approach to compute the nodes and weights of this rule outlined above.

In [16], Spalevi¢ also introduced the generalized averaged Gauss rule g“ml with 2¢ + 1 nodes associated with the Gauss
rule (1.2). Its nodes and weights are the eigenvalues and the square of the first components of the normalized eigenvectors,
respectively, of the matrix

Ty VBeer 0
T2[+1 = Mﬂgeg Oy ,B[.;,_]e{ S R(25+1)X(2e+]), (18)

0  Berer T,

which differs from the matrix (1.7) in that the elements in positions (¢ + 1,¢ + 2) and (¢ + 2,¢ + 1) are replaced by
/Bet1. This generalized averaged Gauss rule is exact for at least all polynomials in Py, and, thus, generally of higher
degree of precision than the averaged Gauss rule (1.5). The generalized averaged Gauss rule Gy¢41 can be used to estimate
the quadrature error (1.3) similarly as the averaged Gauss rule (1.5). In this application, one typically uses Ga¢+1(f) as an
approximation of the integral (1.1), and then considers Ga¢+1(f) — Ge(f) an estimate of the quadrature error.

A drawback of the rule Gyyt1, compared to the averaged rule (1.5), is that the former is more expensive to compute. The
computation of its nodes and weights by the Golub-Welsch algorithm requires 4c¢? + O(¢) flops, just like the computation
of the eigenvalues and first components of the eigenvectors of the matrix (1.7). In addition, the nodes and weights of the
Gauss rule have to be calculated. 5

It is the purpose of the present paper to describe a new representation of the generalized averaged Gauss rule Gy¢41 that
is analogous to the representation (1.5) and, therefore, is cheaper to compute. This representation is described in Section 2.
A computed example with timings is presented in Section 3, and Section 4 contains concluding remarks.

2. A new representation of generalized averaged Gauss rules

The following result provides a decomposition of the generalized averaged quadrature rule g“zm that is analogous to
the representation (1.5) of the averaged Gauss rule.
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Theorem 1. The generalized averaged Gauss quadrature rule defined by the tridiagonal matrix (1.8) can be expressed as

Be+1 g Be

Gorp1 = ¢ Gii1s (21)
T B+ B Be+ Besr
where the quadrature rule Gy , is determined by the symmetric tridiagonal matrix
[ a0 VA 0 ]
VB oar VB
T, = - c REFDXE+D) 2.2)

VB2 a2 A/ Be-1
v/ Be-1 Q1 VBe + Bes1
0 A/ Be + Bett o

It follows that using the representation (2.1), one can compute the nodes and weights of the quadrature rule in 2c£? + O(¢) flops by
the Golub-Welsch algorithm. This is the same flop count as required for computing the nodes and weights for the averaged rule (1.5).
The flop count includes the computation of the nodes and weights for the Gauss rule (1.2).

Proof. The nodes of the generalized averaged Gauss quadrature rule §25+1, defined by the tridiagonal matrix (1.8), are the
zeros of the polynomial (cf. [16])
taet1=pe- Fiq (2.3)

with

F}i1=DPes1 — Bes1 - Pe—ts (2.4)

where p; denotes the monic orthogonal polynomial of degree j associated with the measure dw. The nodes of the quadra-
ture rule G;, ; are the zeros of polynomial FZS_H in (2.3), which has the form (2.4); cf. [16, Eq. (2.6) on p. 1487].
We now apply [4, Proposition 1] with q¢4+1 = FZSJrl and

hy
1+ J/)h— = Be+1,
-1
where
he=PB0p1--- Be
and
y=ye=—14 001, (2.5)
Be

We obtain from [4, Eq. (3)] that

_ Ben
Be
where Z denotes the integral operator (1.1). Equation (2.5) and [4, Eq. (4)] now yield (2.1). O

(Gr —T) () = G —-DE), k=0,1,...,2¢+1,

We remark that among all possible quadrature rules Q41 in [4, Eq. (4)], the rule Gzz+1 has maximal degree of exact-
ness, 2¢ + 2, for general measures. When the measure dw in (1.1) is even, the degree of exactness increases to 2¢ + 3.
To estimate the error Z(f) — G;(f), we can use the formula

Be
Be + Ber1

The nodes and weights of the formula G7,; — g, can be computed in 2c02 +O(¢) flops by computing the nodes and weights
for the quadrature rules Gy ; and G, separately, similarly as in the computation of the averaged rule (1.5). In particular, this
flop count includes the calculation of the Gauss rule G,.

As the generalized averaged Gauss rule sz“ has maximal degree of exactness among all averaged quadrature rules, and
its computation requires about the same number of flops as the averaged rule (1.5), we propose that the right-hand side of
(2.6) be used for estimating the error in the Gauss rule (1.2).

Z(f) — Ge(f) ~ Gae1(f) — Ge(f) = (Gra(H) = Ge()). (2:6)
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Table 1

Ratios of CPU times for computing the Gauss rule (1.2)
and the generalized averaged Gauss rule using the rep-
resentation (1.8), and for computing the Gauss rule (1.2)
and the generalized averaged Gauss rule using the rep-
resentation (2.1) for several values of ¢. The table shows
averages over 1000 timings each of 106 runs.

14 Time for computing the rules (1.2) and (1.8)
Time for computing the rules (1.2) and (2.1)
20 225
40 z18
80 z26
160 232

3. Computed examples

Many illustrations of the performance of generalized averaged Gauss rules for the estimation of the error in the un-
derlying Gauss quadrature rule have been described in [2,3,14]. We therefore only present timings for the evaluation of
the ¢-node Gauss rule (1.2) and the (2¢ + 1)-node generalized averaged Gauss rule when the latter is represented by the
matrix (1.8) or the formula (2.1). We use a Matlab implementation gauss.m of the Golub-Welsch algorithm made available
by Gautschi [6]. This implementation does not fully exploit the structure of the problem and computes the (full) spectral
factorization of the tridiagonal matrix to which it is applied. This code requires @ (¢3) flops to compute the spectral factor-
ization of the matrix (1.6). All computations are carried out using Matlab version R2016b on a MacBook Pro laptop computer
with a 2.5 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory. The computations are performed with about 15
significant decimal digits.

Example 3.1. We compute the nodes and weights of the Gauss rule (1.2) as well as of the generalized averaged Gauss
rule by using the Golub-Welsch algorithm as implemented by the Matlab function gauss.m in [6]. The representations
(1.8) and (2.1) for the generalized averaged Gauss rule are used. The former representation requires that the Golub-Welsch
algorithm be applied to the matrix (1.8) of order 2¢ + 1; the latter only demands application of the Golub-Welsch algorithm
to the matrix (2.2) of order ¢ + 1 since the Gauss rule (1.2) is computed separately. The flop count for determining the
quadrature rules (1.2) and (1.8) is 9c£3 + O(£2) using the code gauss.m, while the flop count for computing (1.2) and (2.1)
is only 2c¢3 + O(¢?) using the same code. The ratio of the flop counts therefore is about 4.5 for ¢ large. In addition to
the arithmetic operations, the timings include many other things, such as function calls and data access. Table 1 shows the
ratio of the computing times for these approaches when dw(t) = 1. The variance of the computing times between different
runs is fairly large. We therefore report the average ratio of 1000 computations of the quadrature rules 106 times each. The
symbol Z stands for “usually larger than and often fairly close to” the number reported. What is clear from the timings is
that computing the quadrature rules (1.2) and (2.1) is faster than when using (1.2) and the matrix (1.8).

4. Conclusion

A new representation of generalized averaged Gauss rules is derived. It is analogous to the representation of averaged
Gauss rules described by Laurie [10]. A numerical example illustrates that it is faster to compute than the representation
derived in [16].
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