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Gauss quadrature rules associated with a nonnegative measure with support on (part of) 
the real axis find many applications in Scientific Computing. It is important to be able to 
estimate the quadrature error when replacing an integral by an ℓ-node Gauss quadrature 
rule in order to choose a suitable number of nodes. A classical approach to estimate this 
error is to evaluate the associated (2ℓ + 1)-node Gauss–Kronrod rule. However, Gauss–
Kronrod rules with 2ℓ + 1 real nodes might not exist. The (2ℓ + 1)-node generalized 
averaged Gauss formula associated with the ℓ-node Gauss rule described in Spalević (2007) 
[16] is guaranteed to exist and provides an attractive alternative to the (2ℓ + 1)-node 
Gauss–Kronrod rule. This paper describes a new representation of generalized averaged 
Gauss formulas that is cheaper to evaluate than the available representation.

 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let dω be a nonnegative measure with infinitely many points of support on the real axis, and such that all moments 
µk =

∫
xkdω(x), k = 0, 1, 2, . . ., exist. For notational simplicity, we will assume that the measure has total mass one. We are 

interested in approximating integrals of the form

I( f ) =
∫

f (x)dω(x) (1.1)

by the ℓ-point Gauss rule

Gℓ( f ) =
ℓ∑

k=1

f (x
(ℓ)

k
)w

(ℓ)

k
(1.2)

associated with the measure dω. This rule is characterized by

Gℓ( f ) = I( f ) ∀ f ∈ P2ℓ−1,
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where P2ℓ−1 denotes the set of all polynomials of degree at most 2ℓ − 1. The nodes x(ℓ)

k
are known to be distinct and to 

live in the convex hull of the support of dω, and the weights w(ℓ)

k
are positive; see, e.g., Gautschi [5] or Szegő [17] for 

properties of Gauss quadrature rules.
It is important to be able to estimate the quadrature error

I( f ) − Gℓ( f ) (1.3)

to assess whether the number of nodes, ℓ, has been chosen large enough to achieve an approximation of the integral (1.1) of 
desired accuracy. A classical approach to estimate the error (1.3) is to evaluate the (2ℓ + 1)-node Gauss–Kronrod quadrature 
rule associated with (1.2), if it exists. This Gauss–Kronrod rule is a quadrature rule of the form

K2ℓ+1( f ) =
ℓ∑

k=1

f (x
(ℓ)

k
)ŵ

(2ℓ+1)
k

+
2ℓ+1∑

k=ℓ+1

f (̂x
(2ℓ+1)
k

)ŵ
(2ℓ+1)
k

,

such that the nodes x(ℓ)

k
, k = 1, 2, . . . , ℓ, are the nodes in the Gauss rule (1.2), and the Gauss–Kronrod nodes x̂(2ℓ+1)

k
, k =

ℓ + 1, ℓ + 2, . . . , 2ℓ + 1, and the weights ŵ(2ℓ+1)
k

, k = 1, 2, . . . , 2ℓ + 1, are determined so that

K2ℓ+1( f ) = I( f ) ∀ f ∈ P3ℓ+1.

Generally, the Gauss–Kronrod nodes ̂x(2ℓ+1)
k

, k = ℓ + 1, ℓ + 2, . . . , 2ℓ + 1, are required to be real and to interlace the Gauss 

nodes. In addition, the Gauss–Kronrod weights ŵ(2ℓ+1)
k

, k = 1, 2, . . . , 2ℓ + 1, should be positive. Efficient numerical methods 

for computing the nodes and weights of the Gauss–Kronrod rule K2ℓ+1 , when the nodes ̂x(2ℓ+1)
k

, k = ℓ + 1, ℓ + 2, . . . , 2ℓ + 1, 

and weights ŵ(2ℓ+1)
k

, k = 1, 2, . . . , 2ℓ + 1, satisfy these conditions are described in [1,11]. The quadrature error (1.3) is 
approximated by K2ℓ+1( f ) − Gℓ( f ).

However, for many measures dω, including various Jacobi measures, and for certain numbers of nodes, Gauss–Kronrod 
rules, whose nodes and weights satisfy the above conditions do not exist; see Notaris [13] for a nice recent survey of Gauss–
Kronrod rules and their properties. The non-existence of Gauss–Kronrod rules for important measures prompted Laurie [10]
to develop anti-Gauss and averaged rules for the estimation of the error in Gauss rules. The (ℓ + 1)-point anti-Gauss rule, 
G̃ℓ+1 , associated with the Gauss rule (1.2) is determined by the requirement

(G̃ℓ+1 − I)( f ) = −(Gℓ − I)( f ) ∀ f ∈ P2ℓ+1, (1.4)

and the associated averaged rule is given by

A2ℓ+1( f ) = 1

2
(Gℓ + G̃ℓ+1)( f ). (1.5)

It follows from (1.4) that the degree of precision of A2ℓ+1 is at least 2ℓ + 1, i.e.,

A2ℓ+1( f ) = I( f ) ∀ f ∈ P2ℓ+1.

It is well known that the Gauss rule (1.2) can be represented by a symmetric tridiagonal matrix

Tℓ =




α0

√
β1 0√

β1 α1

√
β2

. . .
. . .

. . .
√

βℓ−2 αℓ−2
√

βℓ−1

0
√

βℓ−1 αℓ−1




∈ R
ℓ×ℓ, (1.6)

whose entries αk ∈ R and βk > 0 are recursion coefficients for the sequence of monic orthogonal polynomials {pk}∞k=0

associate with the measure dω,

pk+1(t) = (t − αk)pk(t) − βk pk−1(t), k = 0,1, . . . ,

where p−1(t) ≡ 0, p0(t) ≡ 1; see, e.g., Gautschi [5] for details. The eigenvalues of Tℓ are the nodes and the squared first 
components of the normalized eigenvectors are the weights of Gℓ; see [5,8]. Recall that the total mass of the measure is 
assumed to be one; otherwise the formula for the weights differs.

A popular approach to compute the nodes and weights of Gℓ is furnished by the Golub–Welsch algorithm [9], which 
requires only cℓ2 + O(ℓ) arithmetic floating point operations (flops), where c > 0 is a fairly small constant independent 
of ℓ; see also Laurie [12] for a more recent discussion on the computation of nodes and weights. We remark that Glaser 
et al. [7] describe an algorithm that is faster for certain classical orthogonal polynomials, such as Legendre, Hermite, and 
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Laguerre polynomials, for large values of ℓ. However, in many applications ℓ is not large enough for the latter algorithm to 
be competitive.

One of the attractions of the anti-Gauss rule G̃ℓ+1 and the averaged rule A2ℓ+1 are their ease of computation: the sym-

metric tridiagonal matrix T̃ℓ+1 associated with the anti-Gauss rule G̃ℓ+1 is obtained by multiplying the last off-diagonal 
elements of the symmetric tridiagonal matrix Tℓ+1 associated with Gauss rule Gℓ+1 by 

√
2; see [10]. We denote the tridi-

agonal matrix so obtained by T ℓ+1 . The Golub–Welsch algorithm can be applied to compute the nodes and the weights of 
the anti-Gauss rule G̃ℓ+1 in cℓ2 + O(ℓ) flops. Thus, the computational cost of determining the nodes and weights of both 
the Gauss rule Gℓ and the averaged rule A2ℓ+1 is 2cℓ2 +O(ℓ) flops.

Spalević [16] observed that the averaged rule can be represented differently from (1.5) and this representation led to 
the generalized averaged quadrature rule associated with the Gauss rule Gℓ described below. We first outline the alternate 
representation of the averaged rule. Introduce the reverse matrix

T ′
ℓ =




αℓ−1

√
βℓ−1 0√

βℓ−1 αℓ−2

√
βℓ−2

. . .
. . .

. . .
√

β2 α1

√
β1

0
√

β1 α0




∈ R
ℓ×ℓ,

which is obtained by reversing the order of the rows and columns of the matrix (1.6), and define the concatenated sym-

metric tridiagonal matrix

T̂2ℓ+1 =




Tℓ

√
βℓeℓ 0√

βℓe
T
ℓ αℓ

√
βℓe

T
1

0
√

βℓe1 T ′
ℓ


 ∈ R

(2ℓ+1)×(2ℓ+1). (1.7)

Using results by Peherstofer [15], Spalević [16] showed that the nodes and weights of the averaged rule (1.5) are the eigen-
values and the squared first components of normalized eigenvectors, respectively, of the matrix (1.7). This representation 
is helpful for showing properties of the averaged rule; see [2,3] for examples. However, the computation of the nodes and 
weights of the averaged rule (1.5) by applying the Golub–Welsch algorithms to the matrix (1.7) requires 4cℓ2 +O(ℓ) flops 
in addition to the cℓ2 +O(ℓ) flops necessary for the computation of the nodes and weights of the Gauss rule (1.2). Hence, 
the computation of the nodes and weights of the averaged rule (1.5) by applying the Golub–Welsch algorithm to the matrix 
(1.7) is more expensive than the approach to compute the nodes and weights of this rule outlined above.

In [16], Spalević also introduced the generalized averaged Gauss rule Ğ2ℓ+1 with 2ℓ + 1 nodes associated with the Gauss 
rule (1.2). Its nodes and weights are the eigenvalues and the square of the first components of the normalized eigenvectors, 
respectively, of the matrix

T̆2ℓ+1 =




Tℓ

√
βℓeℓ 0√

βℓe
T
ℓ αℓ

√
βℓ+1e

T
1

0
√

βℓ+1e1 T ′
ℓ


 ∈ R

(2ℓ+1)×(2ℓ+1), (1.8)

which differs from the matrix (1.7) in that the elements in positions (ℓ + 1, ℓ + 2) and (ℓ + 2, ℓ + 1) are replaced by √
βℓ+1 . This generalized averaged Gauss rule is exact for at least all polynomials in P2ℓ+2 and, thus, generally of higher 

degree of precision than the averaged Gauss rule (1.5). The generalized averaged Gauss rule Ğ2ℓ+1 can be used to estimate 
the quadrature error (1.3) similarly as the averaged Gauss rule (1.5). In this application, one typically uses Ğ2ℓ+1( f ) as an 
approximation of the integral (1.1), and then considers Ğ2ℓ+1( f ) − Gℓ( f ) an estimate of the quadrature error.

A drawback of the rule Ğ2ℓ+1 , compared to the averaged rule (1.5), is that the former is more expensive to compute. The 
computation of its nodes and weights by the Golub–Welsch algorithm requires 4cℓ2 +O(ℓ) flops, just like the computation 
of the eigenvalues and first components of the eigenvectors of the matrix (1.7). In addition, the nodes and weights of the 
Gauss rule have to be calculated.

It is the purpose of the present paper to describe a new representation of the generalized averaged Gauss rule Ğ2ℓ+1 that 
is analogous to the representation (1.5) and, therefore, is cheaper to compute. This representation is described in Section 2. 
A computed example with timings is presented in Section 3, and Section 4 contains concluding remarks.

2. A new representation of generalized averaged Gauss rules

The following result provides a decomposition of the generalized averaged quadrature rule Ğ2ℓ+1 that is analogous to 
the representation (1.5) of the averaged Gauss rule.
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Theorem 1. The generalized averaged Gauss quadrature rule defined by the tridiagonal matrix (1.8) can be expressed as

Ğ2ℓ+1 = βℓ+1

βℓ + βℓ+1
Gℓ + βℓ

βℓ + βℓ+1
G

∗
ℓ+1, (2.1)

where the quadrature rule G∗
ℓ+1 is determined by the symmetric tridiagonal matrix

T ∗
ℓ+1 =




α0

√
β1 0√

β1 α1

√
β2

. . .
. . .

. . .
√

βℓ−2 αℓ−2
√

βℓ−1√
βℓ−1 αℓ−1

√
βℓ + βℓ+1

0
√

βℓ + βℓ+1 αℓ




∈ R
(ℓ+1)×(ℓ+1). (2.2)

It follows that using the representation (2.1), one can compute the nodes and weights of the quadrature rule in 2cℓ2 + O(ℓ) flops by 
the Golub–Welsch algorithm. This is the same flop count as required for computing the nodes and weights for the averaged rule (1.5). 
The flop count includes the computation of the nodes and weights for the Gauss rule (1.2).

Proof. The nodes of the generalized averaged Gauss quadrature rule Ğ2ℓ+1 , defined by the tridiagonal matrix (1.8), are the 
zeros of the polynomial (cf. [16])

t2ℓ+1 = pℓ · F S
ℓ+1 (2.3)

with

F S
ℓ+1 = pℓ+1 − βℓ+1 · pℓ−1, (2.4)

where p j denotes the monic orthogonal polynomial of degree j associated with the measure dω. The nodes of the quadra-
ture rule G∗

ℓ+1 are the zeros of polynomial F S
ℓ+1 in (2.3), which has the form (2.4); cf. [16, Eq. (2.6) on p. 1487].

We now apply [4, Proposition 1] with qℓ+1 = F S
ℓ+1 and

(1 + γ )
hℓ

hℓ−1
= βℓ+1,

where

hℓ = β0 β1 · · · βℓ

and

γ = γℓ := −1 + βℓ+1

βℓ

. (2.5)

We obtain from [4, Eq. (3)] that

(
G

∗
ℓ+1 − I

)
(xk) = −βℓ+1

βℓ

(Gℓ − I) (xk), k = 0,1, . . . ,2ℓ + 1,

where I denotes the integral operator (1.1). Equation (2.5) and [4, Eq. (4)] now yield (2.1). �

We remark that among all possible quadrature rules Q 2ℓ+1 in [4, Eq. (4)], the rule Ğ2ℓ+1 has maximal degree of exact-
ness, 2ℓ + 2, for general measures. When the measure dω in (1.1) is even, the degree of exactness increases to 2ℓ + 3.

To estimate the error I( f ) − Gℓ( f ), we can use the formula

I( f ) − Gℓ( f ) ≈ Ğ2ℓ+1( f ) − Gℓ( f ) = βℓ

βℓ + βℓ+1

(
G

∗
ℓ+1( f ) − Gℓ( f )

)
. (2.6)

The nodes and weights of the formula G∗
ℓ+1 −Gℓ can be computed in 2cℓ2 +O(ℓ) flops by computing the nodes and weights 

for the quadrature rules G∗
ℓ+1 and Gℓ separately, similarly as in the computation of the averaged rule (1.5). In particular, this 

flop count includes the calculation of the Gauss rule Gℓ .

As the generalized averaged Gauss rule Ğ2ℓ+1 has maximal degree of exactness among all averaged quadrature rules, and 
its computation requires about the same number of flops as the averaged rule (1.5), we propose that the right-hand side of 
(2.6) be used for estimating the error in the Gauss rule (1.2).
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Table 1

Ratios of CPU times for computing the Gauss rule (1.2)
and the generalized averaged Gauss rule using the rep-
resentation (1.8), and for computing the Gauss rule (1.2)
and the generalized averaged Gauss rule using the rep-
resentation (2.1) for several values of ℓ. The table shows 
averages over 1000 timings each of 106 runs.

ℓ Time for computing the rules (1.2) and (1.8)

Time for computing the rules (1.2) and (2.1)

20 � 2.5

40 � 1.8

80 � 2.6

160 � 3.2

3. Computed examples

Many illustrations of the performance of generalized averaged Gauss rules for the estimation of the error in the un-
derlying Gauss quadrature rule have been described in [2,3,14]. We therefore only present timings for the evaluation of 
the ℓ-node Gauss rule (1.2) and the (2ℓ + 1)-node generalized averaged Gauss rule when the latter is represented by the 
matrix (1.8) or the formula (2.1). We use a Matlab implementation gauss.m of the Golub–Welsch algorithm made available 
by Gautschi [6]. This implementation does not fully exploit the structure of the problem and computes the (full) spectral 
factorization of the tridiagonal matrix to which it is applied. This code requires O(ℓ3) flops to compute the spectral factor-
ization of the matrix (1.6). All computations are carried out using Matlab version R2016b on a MacBook Pro laptop computer 
with a 2.5 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory. The computations are performed with about 15
significant decimal digits.

Example 3.1. We compute the nodes and weights of the Gauss rule (1.2) as well as of the generalized averaged Gauss 
rule by using the Golub–Welsch algorithm as implemented by the Matlab function gauss.m in [6]. The representations 
(1.8) and (2.1) for the generalized averaged Gauss rule are used. The former representation requires that the Golub–Welsch 
algorithm be applied to the matrix (1.8) of order 2ℓ +1; the latter only demands application of the Golub–Welsch algorithm 
to the matrix (2.2) of order ℓ + 1 since the Gauss rule (1.2) is computed separately. The flop count for determining the 
quadrature rules (1.2) and (1.8) is 9cℓ3 +O(ℓ2) using the code gauss.m, while the flop count for computing (1.2) and (2.1)
is only 2cℓ3 + O(ℓ2) using the same code. The ratio of the flop counts therefore is about 4.5 for ℓ large. In addition to 
the arithmetic operations, the timings include many other things, such as function calls and data access. Table 1 shows the 
ratio of the computing times for these approaches when dω(t) ≡ 1. The variance of the computing times between different 
runs is fairly large. We therefore report the average ratio of 1000 computations of the quadrature rules 106 times each. The 
symbol � stands for “usually larger than and often fairly close to” the number reported. What is clear from the timings is 
that computing the quadrature rules (1.2) and (2.1) is faster than when using (1.2) and the matrix (1.8).

4. Conclusion

A new representation of generalized averaged Gauss rules is derived. It is analogous to the representation of averaged 
Gauss rules described by Laurie [10]. A numerical example illustrates that it is faster to compute than the representation 
derived in [16].
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[16] M.M. Spalević, On generalized averaged Gaussian formulas, Math. Comput. 76 (2007) 1483–1492.
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