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edges. Different global communicability measures provide quantitative assessments of this
property, emphasizing different aspects of the problem.

This paper investigates the sensitivity of global measures of communicability to local
changes. In particular, for directed, weighted networks, we study how different global
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Finding what local changes lead to the largest changes in global communicability has many
potential applications, including assessing the resilience of a system to failure or attack,
guidance for incremental system improvements, and studying the sensitivity of global
communicability measures to errors in the network connection data.
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1. Introduction

Many complex phenomena can be usefully modeled by networks. Mathematically, a network is represented by a graph,
which consists of a set of vertices or nodes, and a set of edges that connect pairs of vertices. Network models often simplify
the representation of a complex system by disregarding some minutiae of reality, to make it feasible to use mathematical
and computational methods of analysis; see, e.g., [10,21] for many examples.

Sometimes, additional information about the vertices and/or edges is indispensable for a fuller and more realistic under-
standing of a complex system. Examples include the use of weighted networks [4,9,20], in which edges between vertices are
assigned different numerical values, so-called “weights.” In our setting, a higher weight for a given edge corresponds to a
higher communication capacity between the nodes it connects.

An important characteristic of a network is how well communication can flow in it, i.e.,, how easy or difficult it is to
reach one part of the network from another part by following edges. Several measures have been considered for quantifying
communicability on a global scale. They include the diameter of the graph that represents the network, the average distance
between nodes of this graph, and the communicability betweenness of nodes; see Estrada et al. [14]. Information transfer
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between nodes also is studied with the aid of the thermal Green’s function; here the network is considered submerged
in a thermal bath of some temperature T; see Estrada et al. [11,13]. In this paper we concentrate on two communicabil-
ity measures: the total network communicability, which was introduced by Benzi and Klymko [6], and the Perron network
communicability, which we describe below.

This article explores the sensitivity of the communicability measures mentioned to small, local, changes of a network.
Knowledge of the sensitivity can help answer several important questions about a network such as:

How robust is a network to disturbances or attacks, and how can the network be modified to be more robust?

Which edges of a network are very vulnerable, in the sense that the communicability decreases (relatively) significantly
if these edges are removed?

Can an addition of a new edge increase the communicability (relatively) significantly?

Can a network be simplified by removing a few edges and retain essentially the same communicability?

o How sensitive is the measured communicability of a network to incomplete information about the existing edges?

The graphs we consider may be unweighted or weighted. In an unweighted graph all edges have the same weight, which
we will choose to be one; in a weighted graph each edge has a positive weight. We are interested in which edge-weights to
increase in order to increase the communicability of a graph the most, or which edges to add to or remove from a graph to
achieve a significant increase or decrease, respectively, of the communicability. Our choice of which edge-weights to change,
or which edges to add or remove, is based on the sensitivity of the communicability to changes in the edge-weight. We
therefore investigate this sensitivity. Our approach is compared to some available approaches. Both undirected and directed
graphs are considered.

We remark that graphs that have more than one connected component are deficient in their communicability, because
not every node can communicate with every other node of the graph. Unless otherwise stated, we will assume the graphs
under consideration to be connected. (For networks with more than one connected component, the results here can be
applied separately to each component.)

This paper is organized as follows: Section 2 defines basic concepts about graphs. Notions of communicability are re-
viewed and a new one is introduced in Section 3. Computed illustrations for some small graphs are presented in Section 3.3.
Section 4 describes numerical methods for estimating the sensitivity of the total network communicability, and the sensi-
tivity of the Perron network communicability to changes in the weights, for large-scale networks. Section 5 presents a few
computed results for large-scale networks. Concluding remarks are provided in Section 6.

2. Basic definitions

Networks are represented mathematically by graphs. The basic theory of graphs can be found in many textbooks; see,
e.g., [10,21] for introductions focused on applications to the study of networks, and [7] for a deeper discussion of the
matrices associated to a graph. Below we will briefly state the definitions we need in order to fix the notation.

A weighted graph G = (V,E,W) consists of a set of vertices or nodes V = {v1,Vva,..., vy}, a set of edges & =
{e1,ea,...,en} that connect the nodes, and a map W that assigns to each edge a weight, which for the purposes of this
article always will be a positive real number. An edge e is said to be directed if it starts at a vertex v; and ends at a vertex
vj. This edge is denoted by e(v; — v;) and has the associated weight w;; > 0. If there also is an edge e(v; — v;) with
the same weight wj; = wyj, then we may identify the directed edges e(v; — v;) and e(v; — v;) with an undirected edge
with weight w;;; we denote undirected edges by e(v; <> v;). A graph with only undirected edges is said to be undirected,;
otherwise the graph is directed. In this work, we will consider only graphs without multiple edges or self-loops. The ad-
jacency matrix for a graph G is the matrix A = [WU]?,J‘:1 € R™" whose entries are the edge-weights; if there is no edge
e(vi — v;) in G, then w;j = 0. For an unweighted graph, all positive entries w;; of A equal one. When § is undirected, then
A is symmetric.

A sequence of edges (not necessarily distinct) such that {e(vi — v2).e(vy — v3),...,e(vy — Viy1)} form a walk of
length k. If vj 1 = v1, then the walk is said to be closed. For further discussions on networks and graphs; see [10,21].

3. Notions of communicability

There are many measures of communicability of a network. For instance, the diameter of the graph that represents a
network provides a measure of how easy it is for the nodes of the graph to communicate. We recall that for an unweighted
graph, its diameter is the maximal length of the shortest path between any pair of distinct nodes of the graph. The definition
has to be adjusted for weighted graphs. We will not use the diameter in this paper, because as a “worst case” measure it is
fairly crude. For instance, let G be an unweighted complete graph with n > 4 nodes from which one edge is removed. Then
the diameter of G is 2. More edges can be removed so that the diameter remains 2. In fact, one can remove any 1 or 2
edges from a complete graph with 4 nodes and then obtains a graph with diameter 2.

This paper focuses on the total network communicability, which is defined with the aid of the exponential of the ad-
jacency matrix, and on the Perron network communicability, which is defined with the Perron root and the right and
left Perron vectors of the adjacency matrix. This section discusses these communicability measures and their sensitivity to
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changes in the weights that define the adjacency matrix. Small examples that illustrate the performance of these measures
are presented.

3.1. The modified matrix exponential and network communicability

Consider an unweighted graph G with adjacency matrix A € R"™ ", Then the (ij)" entry of the matrix AX counts the
number of walks of length k between the vertices v; and v;. For weighted graphs, the interpretation of the (i)t entry of
the matrix A¥ has to be modified. A matrix function that is analytic at the origin and vanishes there can be defined by a
formal Maclaurin series

A=) aAk. (1)
k=1

For the moment we ignore the convergence properties of this series. Long walks are usually considered less important than
short walks, because information flows more easily through short walks than through long ones. Therefore, matrix functions
applied in network analysis generally have the property that 0 < ¢y, <ci for all sufficiently large k. The possibly most
common matrix function used in network analysis is the matrix exponential; see [10,15] for discussions and illustrations.
We prefer to use the modified matrix exponential

expg(A) 1= exp(A) — I, (2)

where I denotes the identity matrix, because the first term in the Maclaurin series of exp(A) has no natural interpretation
in the context of network modeling. For the modified matrix exponential, we have ¢, = 1/k! for k > 1, and the series (1)
converges for any adjacency matrix A. The quantity [expy(A)];; is commonly referred to as the subgraph centrality of the
vertex vj; it measures the ease of leaving node v; and returning to this node by following the edges of the graph; see
[10,15], though we remark that these references apply the matrix exponential instead of (2). The subgraph centrality is an
appropriate measure for undirected graphs; a discussion about directed graphs is provided in [8].

The communicability between distinct vertices v; and vj, i # j, is defined by

o0 Ak i
fexpo(A)ly = Y

k=1

see [10,12] for the analogous definition based on exp(A). It accounts for all the possible routes of communication between
the vertices v; and v; in the network defined by the adjacency matrix A, and assigns more weight to shorter routes than
to longer ones. The larger the value of [expy(A)];;, the better is the communicability between the vertices v; and v;.

We measure how effectively information can be transmitted across the whole network by the total network communica-
bility,

C™(A) =17 expy(A)1, (3)

where 1=[1,1,...,1]7 € R". Benzi and Klymko [6] defined the total network communicability with exp(A); this yields
values that are n larger than the values obtained with (3).

We are interested in determining the sensitivity of the total network communicability to changes in the weight w;; of
the edge e(v;i — vj). Therefore, we compute the partial derivative of C™(A) with respect to wj;. For that, we introduce
the Fréchet derivative L(A, E;j) of the modified matrix exponential expy(A) with respect to the direction E;; = eje]T., where

e, =1[0,...,0,1,0,...,0]T € R" denotes the kth axis vector, given by

expo(A + tEij) —expo(A)

: 4)

L(A, E;;) = lim
(A, Eyy) )
see, e.g., [16,22]. Then

aC™NA) im C™(A+tE;j) — C™N(A)

=17 . L(A,E;j) -1
owij t—0 t ( i)

shows the rate of change of the total network communicability between the vertices v; and v; in direction E;; due to a
change in the edge-weight wj;.

Definition 1. Let G = {V, £, W} be a graph with adjacency matrix A = [w;;] € R, where w;; > 0 if there is an edge
e(vi— vj) in G, and w;j; =0 otherwise. We define the total network sensitivity with respect to the weight w;; as

SNy =1T LA Ey) -1, ®
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as well as the total network sensitivity as

sS™NA) =) st A).

i,j=1

The total network sensitivity with respect to the weight w;; shows the rate of change of C™(A) with respect to a change
in the edge-weight w;;. The following result follows from Higham [16, Theorem 3.6].

Proposition 1. Let f be 2n — 1 times continuously differentiable in a connected open set 2 in the complex plane containing the origin,
and assume that the spectrum of the matrix A € R™*" is in Q. Then the Fréchet derivative L(A, E;;) exists and satisfies

A B\ _[FA) LA Eyp
(o %D ) ©

We are interested in the special case of Proposition 1 when f(t) =exp(t) — 1. Then the Fréchet derivative L(A, E;j) in
(6) is defined by (4). One has

expo(A +tE;j) — expg(A) — tL(A, Ejj) = o(t?) ast — 0. (7)
3.2. Perron network communicability

Let A =[wjj] € R™™ be a nonnegative irreducible adjacency matrix for a graph and let p be its Perron root (see, e.g.,
[17] for a full treatment of the Perron-Frobenius Theorem). Then there are unique right and left real eigenvectors x =
[X1,X2, ..., xz]T € R™ and Vy=1[¥1,Y2,---, yn]T € R", respectively, of unit Euclidean norm with positive entries associated
with p, i.e.,

Ax=px, Yy A=py. (8)

We recall that a node v; is referred to as a sink if there are no edges pointing from this node to any other node, and
a node v; is said to be a source when there are no edges from other nodes pointing to v;. Undirected edges should be
considered as “two-way streets” in this context. A directed graph is said to be strongly connected if every vertex v; can be
reached from any other vertex vj, j#1i, by following edges in their direction. It is well known that an adjacency matrix
is irreducible if and only if the associated graph is strongly connected; see, e.g., [17]. In particular, a graph with a sink or
source is not strongly connected, and the adjacency matrix A for such a graph is reducible. A common approach to obtain
a nearby irreducible adjacency matrix is to make a small positive perturbation of every entry of A. For instance, we may
replace A by the irreducible adjacency matrix A A+ 8A € R™M" where dA is a small multiple of the matrix 117 and
1=[1,1,...,1]7 € R" This makes the matrix A = A+ §A irreducible with ||A||2 ~ ||A|l2. Here and throughout this paper,
Il - ll2 denotes the spectral matrix norm or the Euclidean vector norm. In this section we will assume that, in case the given
adjacency matrix A is reducible, it is modified in this manner. We may therefore assume that the right and left Perron
vectors are unique up to scaling.

Let C € R™™M be a nonnegative matrix such that ||C| =1, and let & > 0 be small. Denote the Perron root of A+ &C by
p +8p. Then

y'Ccx

80 =& g + 0(e%);
VX

see [19]. Moreover,

Tcx Tcx Cl2lx 1
yex_ly |§ Iyl2NCll211%]l2 7 (9)

yTx yTx yT'x cosf

where 6 is the angle between x and y. The quantity 1/cosé is referred to as the condition number of p and denoted by
k(p); see Wilkinson [28, Chapter 2]. Equality is attained in (9) for C =yx'.

Consider increasing the entry w;j, i # j, of A slightly by & > 0. This corresponds to increasing the weight w;; of an
existing edge e(v; — v;) by &, or to introducing a new edge e(v; — v;) with weight ¢. The corresponding matrix C is given
by

C= Eij :eie]T.

The impact on the Perron root of the change ¢C of A is

(10)

5p =6 +O(£)
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We are interested in choosing a perturbation ¢C of A with C of the form (10), so that p is increased as much as possible.
The above relation shows that we should choose i and j so that

Xj = max X, Yi = max Y.
1<k<n 1<k<n
Recall that x and y are unit vectors. Therefore, x; =1 and y; =1 implies that x, =0 for all k # j and y, =0 for all k #i.
Then C =Ej; =yx! and the maximum perturbation of the Perron root is §p = gk (p).

We define the Perron root sensitivity with respect to the direction E;j = eieJT as

X
SRy =2,
y'x
as well as the Perron root sensitivity matrix

T
SR (A) = [S}}R(A)] y"

— ERHXH

n
i, y'x

j=1

Finally, we introduce the Perron network communicability,

n n
C™(A) = expo() 1Txy" 1 =expo(0) [ Y xi | [ D_vi ). (11)
j=1 j=1

which is analogous to the total network communicability (3), but is easier to compute for a large adjacency matrix A. Let
Il - |l1 denote the vector 1-norm. Since

n n

1/2 1/2 1/2 1/2
Y o xj=Ixlh <n x| =02 Y yi=Iyl <n'|yl2=n""?,
j=1 j=1

we have the bound

C™N(A) < nexpo(p).
In general, we expect the Perron network communicability to increase the most when increasing the edge-weight that
makes the Perron root change the most.

An alternative way to study the sensitivity of the Perron network communicability is to determine the first-order partial
derivative of C™N(A) with respect to wjj. Introduce the Fréchet derivative LPN(A, Ejj) of the matrix function expg(p)xy’
with respect to the direction E;j = eieJT, ie.,

L™N(A, Ejj) = lim expo (HOIROF(O) — expy(p)xy’
’ t—0 t )

where p, X, and y are the Perron root, and the right and left Perron vectors of A, respectively, and p(t), X(t), and y(t) are
the Perron root, and the right and left Perron vectors of A 4 tE;;. Then

™) | CPNA+tEy) — CNA)

=17 . 1™, E;) -1
3W,’j t—0 t ( l])

is the rate of change of the Perron network communicability between the vertices v; and v; in the direction E;; due to a
change in wj;. For the examples shown in the following sections, we choose t =2- 10~ when computing LPN(A, Ejj) unless
explicitly stated otherwise.

Definition 2. Let G = {V, £, W} be a graph with adjacency matrix A = [w;j] € R™", where w;; > 0 if there is an edge
e(vi— v;) in G, and w;; =0 otherwise. We define the Perron network sensitivity with respect to the weight w; as

s{’jN(A)=1T-LPN(A,Eij).1, (12)
as well as the Perron network sensitivity as

S™N(A) =Y STN(A).

i,j=1
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The Perron network sensitivity with respect to the weight w;; shows the rate of change of CPN(A) with respect to a
change in the edge-weight w;j. We are interested in investigating how CPN(A) relates to C™N(A). Assume first that the
spectral factorizations

A=XAX"1, AT=YAY™! (13)

exist, where A = diag[p, A2, ..., An] and the columns of the eigenvector matrix X = [X, X3, ..., Xp] are scaled to be of unit
Euclidean norm. We remark that matrices with a spectral factorization are dense among all matrices in R"*", We may
choose ¥ = [¥,V2,....¥:1=X"T. Then A = XAYT. The vector ¥ is a rescaling of the left Perron vector y in (8). This
normalization of the columns of ¥ yields y'x =1 and 'iJij =1 for j=2,3,...,n. In particular, this implies

" ~ . ~ 1
1=y x=[x|[¥llcosb, ie, [§Il=—==x(p).
0s 6

Assume that p is significantly larger than [A;| for j=2,3,...,n. Then
c™A) =1 X expy(A)YT1

n
=expy(p)17xy" 1+ Z expo(A )17 x,¥] 1
=2

=1 (P)C™N(A) + Y " expo(A1Tx ¥ (14)
j=2

~ Kk (p)C™N(A).

Thus, the total network communicability depends on the conditioning of the Perron root. For a general matrix A, we can
use the bounds [17x;| <n!/? and |§l']T.1| < |I¥jll1 in (14). When the graph that defines A is undirected, the matrix A is

symmetric, and we can let Y=Xbe orthogonal. In this case, we have x(p) =1 and can use

'xyj1<n,  j=2,3,....n,

in (14).

If the matrix A does not have the factorizations (13), then an analogous argument can be made using the Jordan canon-
ical form, where we use the fact that the right and left Perron vectors exist and are unique up to scaling also in this
situation.

We finally remark that both the computation of the total network sensitivity STN(A) and of the Perron network sensitivity
SPN(A) for a graph with n nodes requires the evaluation of n? Fréchet derivatives. This makes the evaluation of these
quantities expensive for networks with many nodes. The evaluation of the Perron root sensitivity matrix S?R(A) typically is
much cheaper for large networks. We will return to this issue below.

3.3. Examples with small networks

This section describes a few small examples that illustrate the use of Fréchet derivatives and the Perron root sensitivity.
The computational effort required to compute all Fréchet derivatives for large-scale networks can be significant. How to
reduce the computational effort for large-scale networks is discussed in Section 4.

In the first example, which is a small weighted graph, we compute the total network sensitivity and the Perron network
sensitivity with respect to the weights w;; for i # j to decide which edge-weight should be increased to enhance the total
network communicability or the Perron network communicability as much as possible. We study the Perron root sensitivity
by computing the left and right Perron vectors of A. The latter computations suggest which weight should be increased.
Our second example differs from the first one in that the graph is unweighted and directed.

Example 3.1. Consider the weighted graph of Fig. 1 with associated adjacency matrix

(15)

w Ul O
ok O N
W o = s
o Ul = N

The corresponding Perron root sensitivity matrix of A is
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Fig. 1. Graph of Example 3.1. The edge-weights are marked next to the edges.

Table 1

Example 3.1: The total network sensitivity SN and the Perron network sensitivity STV
with respect to changes in the weight w;;, for i # j, along with the total network
communicability and the Perron network communicability when the weight w;; of
the edge e(v; — vj) is increased by one.

i, j) s C™N(A+Ey) i, j) Si C™(A + Ey)
{1,3} 22615 82269 {1,3} 22781 79872
{2,3} 18221 76339 {2,3} 18247 73711
{1, 4} 17662 75511 {1,4} 17577 72722
{4,3} 15611 73124 {4,3} 15009 69720
{2,4} 14225 71324 {2,4} 14078 68481
(1,2} 13151 70097 (1,2} 12411 66543
{2,1} 12957 69606 {2,1} 12394 66250
(3,4) 12883 69588 (3,4} 12134 66022
(3,1} 11734 68303 (3,1} 10666 64389
{4,1} 11098 67434 {4,1} 10188 63702
3,2} 9585 65627 (3,2} 8562 61789
4,2} 9063 65011 4,2} 8176 61329

0.2956 0.2339 0.4241 0.3250
0.2336 0.1848 0.3352 0.2568
0.2109 0.1669 0.3026 0.2319 |’
0.1973 0.1562 0.2832 0.2170

SR = (16)

which shows that the Perron root sensitivity S}}R is maximized for {i, j} = {1, 3}. This indicates that the Perron root is
increased the most when increasing the weight w13 of the edge e(vi — v3). We expect the Perron network communicability
to increase the most when increasing the edge-weight that makes the Perron root change the most. Table 1 confirms this.
The table displays the total network sensitivity and the Perron network sensitivity with respect to changes in the weights
wj;j for i # j, as well as the total network communicability and the Perron network communicability of the graph obtained
when increasing each weight w;j, i # j, by one. The table shows the total network communicability to increase the most
by increasing the weight of the edge with the largest total network sensitivity Sl.TjN, i.e.,, weight wq3. Increasing this weight,

which also is associated with the largest Perron network sensitivity Sg’g gives the largest Perron network communicability,
CPN(A + Eq3). Thus, if the edges represent roads, the weights represent the width of each road, and we would like to
increase the communicability the most by widening one road, then we should widen the road represented by the edge
e(vi — v3).

The total network sensitivities S,.TjN and the Perron network sensitivities SZ.N with respect to changes in the weights w;;
of Table 1 also can be used to assess which weight(s) to decrease to reduce the total network communicability or the
Perron network communicability of the network of Fig. 1 the most. The fact that STy and STY are the largest sensitivities
suggests that we should reduce the weight w3 to reduce the total network communicability and the Perron network
communicability the most. Furthermore, the Perron root sensitivity matrix (16) suggests that both the Perron network
communicability (11) and the Perron root will decrease the most when decreasing the weight wys. Indeed, tabulating
C™(A — Ejj) and C™N(A — Ejj) for 1 <i, j <4, i # j, shows C™N(A — E13) and CP™N(A — E13) to be minimal. O

In the adjacency matrix (15) all off-diagonal entries are positive. This is not important for the approach described. We
can compute the total network sensitivity (5) and the Perron network sensitivity (12) independently of the values of the
weights wj. If SiTjN or S,PjN is the largest sensitivity and w;;j = 0, then this indicates that the total network communicability
or the Perron network communicability may be increased the most by adding the edge e(v; — v;) to the graph.
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@]

Fig. 2. Graph of Example 3.2. All edges have unit weight.

Table 2

Example 3.2: The five largest total network sensitivities SI-TJ-N and Perron network sensi-
tivities Sg-N with respect to perturbations in the weights wj;, for i # j, along with the
corresponding total network communicabilities and Perron network communicabilities
when the edge-weight w;; is increased by one.

{i, j} si C™(A + Eyj) {i, j} siN CPN(A + Eij)
{5.1} 16.8311 68.1499 (5.2 28.5369 58.3264
{5.8} 16.0552 67.3050 {5.1) 23.0099 56.9987
{5.2} 14.9415 65.2404 (5.3} 19.9219 51.2350
{53} 141656 64.4248 (5.8} 195778 53.8728
7.1} 13.2831 64.1815 (7.2 18.2576 50.5741

Example 3.2. Let A € R8%8 be the adjacency matrix for the unweighted directed graph of Fig. 2. All its entries are either
one of zero. The graph is not strongly connected, and therefore the matrix A is reducible. To obtain an irreducible matrix
A, we add the perturbation matrix §A =5 - 117 to A for some § > 0; thus, A=A+ 5A. We choose the value of § as
follows: Compute the Perron vectors for § =10~4 and then reduce § by a factor 10 and determine new Perron vectors until
the edge determined for two consecutive §-values is the same. For the present example, this gives § = 10~>. The matrix
A=A+10"5.117 so determined is irreducible and the right and left Perron vectors are unique up to scaling. We find the
three largest entries of the Perron root sensitivity matrix SPR(A) of A to be

SPR(A)s.1 =0.477305, S"R(A)s,=0.477298, S"R(A)sg=0.400601.

This suggests that the Perron root may be increased the most by inserting the edge e(vs — v1) into the graph. Typically,
the Perron network communicability is increased the most by increasing the weight for an edge (or inserting an edge) that
results in the largest increase of the Perron root. However, as is illustrated by Table 2, this might not be the case when the
largest Perron root sensitivities SPR(A),-J are very close in size as in the present example, where ng‘] and Sg%‘z are very close.
The table shows the Perron network communicability to increase the most by adding the edge e(vs — v;). Table 2 shows
the top five total network sensitivities and Perron network sensitivities with respect to perturbations in w;; for i # j, along
with the total network communicabilities and Perron network communicabilities of the graph obtained when increasing
each edge-weight w;; by one. The table shows the total network communicability to increase the most when adding the
edge associated with the largest total network sensitivity SI.TJ.N. The Perron network communicability increases the most by

inserting the edge associated with the largest Perron network sensitivity S}}N. a

For some graphs one can prove where to add an additional edge to maximize the total network sensitivity. The following
result provides an illustration.

Theorem 1. Let A = [w;j] € R™" be an adjacency matrix with all superdiagonal entries equal to one and all other entries equal to
zero. Fig. 3 displays the associated graph for n = 8. Let SiTjN(A) =1TL(A, Eij)1 be the total network sensitivity with respect to the
weight wij, where L(A, E;j) is the Fréchet derivative of A in the direction E;j. Consider the addition of one edge to the graph defined
by A. Then the total network sensitivity is maximized by inserting the edge e(v,, — v1). Thus,
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O—O—O—O—O0—O0—00—0

Fig. 3. Graph of Theorem 1 (for n =8).

max SN (A) = ST (A).

Proof. Let r, s be integers with 1 <r,s <n, and let ¢, =[0,...,0,1,0,..., 0]T € R" denotes the kth axis vector and define
E;s = erel. Expanding L(A, Eys) in terms of powers of A yields

(17)

AE;s+ ErsA  A2Es + AEpsA + E g A2
SINA) =1TL(A, E;)1 =1 <Er5+ “2‘ AR el £ ; s +...>1.

For notational convenience, denote the sum of the terms in the numerators that contain a total of k powers of A by Hﬁ’;) ,

ie., Hﬁ?) =Es, Hﬁ;) = AE;s + ErsA, etc. Then the right-hand side of (17) can be written as

17H®1
SN =1TL(A, Ers)1 = Z s

= k+1)" (18)

We will first show that all terms in the sum in (18) except for the 2n — 1 first ones vanish, and then conclude that
SIN(A) is maximized for r =n and s = 1. Fll‘St note that 1THY1 =1, for all 1 <r, s <n. We turn to the expression 17 H'"1
and use the representation A = Z, 1 eie! . which yields

i+1’
n—1 n—1
(1) T T T T
Hy;s' = AEs+ ErsA= Zeiei+]eres + ere Zeiei_H.
i=1 i=1

Noting that
Ze‘eT e eT _ er_]e‘;r, ifr > 2,
T T o ifr=1

n—1 T .
ee. ., ifs<n-—1,
erel ) eel ;=1 "t
P 0, ifs=n,

it follows that max; s ITHS)I = 2 is achieved for all 2<r<nand 1 <s<n-1.
We turn to the expression HrS = A%E;s+ AE,sA+E;sA? and obtain similarly as above that max; s 1TH§S)1 =3 is achieved
forall 3<r<nand 1<s<n-— 2. Similarly,

H’ggfl) — An_lErs + An—ZErSA + AH—3ErSA2 + . + ErSAn—l

and max, s1TH"""1=n for r=n and s = 1. Our findings yield that s 1lTH(k)l is maximized for r =n and s = 1.
Moreover, max; s 1TH§IS‘)1 =k+1, for 1 <k<n-1,ie, the maximum is the number of terms in the expression for Hﬁlg).
Now consider matrices Hﬁ’s‘) for k > n. Letting k = n yields

H® = A"Eps + A" ErgA + AV 2E A 4 4 Ey5A”,
where we observe that
Al=0, j>n. (19)

Thus, the expression for Hﬁg) has n — 1 nonvanishing terms and max; s lTH’;S“l =n—1 is achieved for r =n and s = 1. For
the superscript 2n — 2, we have

Hgn—Z) — AanZErS + AanBErSA 4ot AnflErsAnfl 4ot ErsAanZ_

Due to (19), the only nonvanishing term in the right-hand side is A" 1E,;A"!, and we obtain
max1THZ" 21 =1.
r,s
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Fig. 4. Graph of Example 3.5.

2n2

The maximum is achieved for r =n and s = 1. We conclude that 3 ;" ITH(k)l is maximized for r =n and s = 1. Finally,

we note that (19) implies that Hﬁ’;) =0 for k > 2n — 1. It follows that Zkzan lTHﬂcf)l =0. The above observations show

that

1TH(k).l 2n-2 _lTH(k)1 2n— 21TH(k)1
max sTN(A max B — max — 5 = =S™NA),
(A) = Z(1+1)v rs Z(;(k—i—l)' Z(1+1)v m (4)

and the theorem follows. O

Example 3.3. Let the graph G be defined as in Theorem 1 with n = 8; see Fig. 3. Its total communicability is 11.03. Consider
the graph G’ obtained by inserting the edge e(vg — v1). It has total communicability 13.75. If we instead insert the edge
e(v1 — v3) in the graph G, we obtain the graph G” with total communicability 12.75. The difference in total communica-
bility of the graphs G’ and G” illustrates that the choice of edge to insert is important when we aim to increase the total
communicability as much as possible. O

Example 3.4. Consider the undirected unweighted graph obtained by replacing every directed edge in Fig. 3 by an undirected
edge and connecting the vertices v; and vg by the undirected edge e(vi <> vg). We would like to add an undirected edge
so that the network communicability is increased the most. For notational convenience, we identify the node vg with vg.
Due to the circular symmetry of the graph, the total network sensitivities are the same in all directions for which w;; =0
and i # j. Also, the left and right Perron vectors of the adjacency matrix A are the same. Therefore, we cannot determine
which edge to add to increase the network communicability the most based on these two approaches. However, the Perron
network sensitivities S; N+4 for the most distant nodes (for i =0, 1, ..., 4) are the same, and larger than the sensitivities SPN
for the nodes v; and v; with j # i+ 4. This suggests that to increase the Perron network communicability the most, one
should add edges between the most distant nodes. O

3.4. Two other methods to increase or decrease network communicability

Arrigo and Benzi [2] introduced several methods for the selection of edges to be added to (or removed from) a given
directed or undirected graph defined by the adjacency matrix A so as to increase or decrease the network communicability.
They define the edge total communicability centrality of an existing edge e(v; — v;) or of a virtual edge e(v; --» v;) as

°TC(, j) = (eM);(1Te?);.

They also define another edge total communicability centrality of an existing edge e(v; — v;) or of a virtual edge e(v; --»
vj) as

‘gTC(, j) = Ch(HCa(}),
where the total hub communicability of vertex v; and the total authority communicability of vertex v; are given by
Ch(i) = [Usinh(£)VT1]; and Cq(j) = [V sinh(2)UT1];,

respectively. Here the matrices U, =, and V are the factors of the singular value decomposition A=UZVT.
The following example compares the above approaches to the ones of the present paper.

Example 3.5. Regard the directed unweighted graph shown in Fig. 4. To obtain an irreducible matrix, we use the same
procedure as we did in Example 3.2, which gives us § = 10~> for this example. We would like to add a directed edge
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Table 3

Example 3.5: The second column lists the edge to be added, and
the third and fourth columns show the total network communica-
bility and the Perron network communicability, respectively, when
wi; is increased from O to 1.

Methods (i, j} C™(A +Ejj) CPNA + Eyp)
eTC(, j) (5.3) 117.3601 92.4046
gTC(, j) (5.3) 117.3601 92.4046
sIN (7.5) 1271123 92.4049
s{j.N (4,5) 1241918 92.4050
s{ij 7.5) 1271123 92.4049

so that the network communicability is increased as much as possible. To achieve this, the methods by Arrigo and Benzi
[2] described above suggest that an edge e(v; — v;) be inserted into the graph so that the index pair {i, j} maximizes
€TC(i, j) or €gTC(i, j). For the graph of this example, both methods indicate that the edge e(vs — v3) be added to the
graph. Table 3 shows the total network communicability and the Perron network communicability after insertion of this
edge into the graph. We also evaluate the Perron root sensitivity (SZ.R), the total network sensitivity (SiTjN ), and the Perron
network sensitivity (S,[}N). The total network sensitivity is seen to be maximal and the Perron root is increased the most
for {i, j} ={7,5}, and the Perron network sensitivity is maximized for {i, j} = {4,5}. Table 3 shows the addition of the
edges e(v7 — vs) or e(v4 — vs) to the graph of Fig. 4 to increase the total network communicability and Perron network
communicability more than when inserting the edge e(vs — v3). We remark that the selection criteria used in the methods
[2] perform well for many graphs, but not for all. O

4. Efficient methods for large-scale networks

This section discusses some numerical methods for estimating the total network sensitivity, the Perron network sensi-
tivity, and the Perron root sensitivity for large-scale networks. Subsections 4.1, 4.2, and 4.3 describe five iterative Krylov
subspace methods to estimate the total network sensitivity. Algorithms for estimating the Perron network sensitivity and
the Perron root sensitivity are considered in Subsection 4.4.

4.1. Applications of the Arnoldi process to large-scale network problems

The evaluation of the total network sensitivity involves the computation of Fréchet derivatives, which can be done, e.g., by
using (6). However, this approach is quite expensive when the adjacency matrix A is large. This section, therefore, describes
several iterative Krylov subspace methods to estimate the total network sensitivity. These methods are much cheaper than
straightforward evaluation of (6) when the adjacency matrix is large and sparse. Application of 1 <m <« 2n steps of the
Arnoldi process to the matrix

_ A Eij 2nx2n
M= [0 A :| eR (20)

with initial unit vector vi =n~1/2[0T 17T € R?" gives the Arnoldi decomposition

MV = Vi H + gel, (21)
under the assumption that no breakdown occurs. Here, 0 =[0,...,0]" e R", 1=[1,...,1]T ¢ R", and Ejj = eie]T e R™1,
The matrix Hp, € R™ ™ is of upper Hessenberg form with nonvanishing subdiagonal entries. The columns of the matrix
Vin =[V1,V2, ...,Vn] € R2™*M form an orthonormal basis for the Krylov subspace

Km(M, v1) :=span{vy, Mvy, ..., M™ vy},

and g € R?" is orthogonal to (M, v1); see, e.g., Saad [26] for details on the Arnoldi process. Breakdown of the Arnoldi
process occurs when a subdiagonal entry of Hj; vanishes. We will not dwell on this rare situation. It is well known that

p(M)vi = Vmp(Hm)e, (22)
for all polynomials p of degree at most m — 1; see, e.g., [25].
We apply the decomposition (21) to compute an approximation of 1TL(A, Eij)1 using (6) as follows: Define the unit
vector w=n"12[1T 0717 € R?". Then
17L(A, Ei)1 = nwT expy(M)vi ~ nw! V,, expo(Hm)e;. (23)
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Bounds for the discrepancy expy(M)vy — Vi expg(Hm)er can be found in, e.g., [5]. The columns of Vi, should be reorthogo-
nalized when computed by the Arnoldi process to secure that the vector w Vy,, can be evaluated accurately; see [26] for a
discussion and implementation of the Arnoldi process with reorthogonalization.

Formula (7) provides an alternative approach to computing an approximation of 17 L(A, Eij)1 by the Arnoldi process. It
follows from (7) that

lim expo(A +tEij) — expo(A)
t—0 t

=L(A, Eij),

which suggests that we apply the Arnoldi process to the matrices A and A +tE;; for some small t > 0 separately with initial
unit vector V; =n~1/21 € R, Thus, application of m steps of the Arnoldi process to A and A + tE;j with initial vector V;
yields the Arnoldi decompositions

AV =VuHn+8el,  (A4tEij)Vim=VyHn+8el, (24)

where the columns of Vm and Vm form orthonormal bases for the Krylov subspaces Kpn(A,Vq) and Kp(A + tE,-j,V1),
respectively, the matrices Hy,, Hy, € R™ ™ are of upper Hessenberg form, and the n-vectors g and g are orthogonal to the
Krylov subspaces Km(A, V1) and K (A + tEjj, V1), respectively. For some small t > 0, we use the approximations

expo(A -+ tEij) —expo(A) 1/ Vmexpo(Him)er — Vimexpo(Hmes

LA Eil~
(A, Eij) : ;

which yield

el expo(Hm)er — el expo(Hm)e
; .
We will illustrate the use of the right-hand sides (23) and (25) in computed examples in Section 5.

17L(A, Ej)1~n

(25)

4.2. Applications of the Lanczos biorthogonalization algorithm to large-scale network problems

We describe how the expression (6) can be approximated by carrying out a few steps of the Lanczos biorthogonalization
algorithm [26]. This approach is an alternative to the application of the Arnoldi algorithm described above. Let the vector
v and matrix E;; be the same as in Subsection 4.1 and define wy = vq. Application of 1 <m « 2n steps of the Lanczos
biorthogonalization algorithm to the matrix (20) with unit starting vectors v; and wy gives, in the absence of breakdown of
the recursion formulas, the decompositions

MVpy = VinTy +g]er77-]7
MTWp, = WanTl"FgZezp

where the matrix T, € R™™ is tridiagonal and the columns of the matrices V,y = [V1,V2,...,Vn] € RZM and W, =
[wi, Wy, ..., Wn] € RZ™™ form a pair of biorthogonal bases for the Krylov subspaces

Km(M,vy) := span{vy, Mvy, ..., M™ vy},
KM, wy) := span{wy, MTwy, ..., (M")" wy},
respectively. The vectors gq,g, € R%" satisfy certain orthogonality relations; see, e.g., Saad [26] for details. Moreover, we
have analogously to (22) that
p(M)vi = Vmp(Tm)eq

for all polynomials p of degree at most m — 1.
Let w=n"1/2[1T 07]" € R?". Then an approximation of 17 L(A, Ej;)1 analogous to the one determined by application of
m steps of the Arnoldi process is given by

17L(A, Eij)1 =nw’ expy(M)vi ~ nw' Vi, expo(Tm)es. (26)

To assure that the vector w V,; can be calculated accurately, the columns of the matrices V,,, and W, should be rebiorthog-
onalized when computed by the Lanczos biorthogonalization algorithm; see Parlett et al. [23] for a discussion.

We also will illustrate the following alternative way of using the Lanczos biorthogonalization algorithm to approximate
1TL(A, Eij)1. Application of m steps of this algorithm to the matrices A and A 4 tE;; for some small t > 0 separately with
initial unit vectors V; = Wy =n~1/21 € R yields, assuming that no breakdown occurs, the decompositions

Avm = vm/fm +’g\1e’?;]7 n {(A + tEij)Vm = Vm’fm +§1e;€1, (27)

ATWy, = W, T +8el | (A+tEij)" Wy = Wi T + 8¢,
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where the columns of the matrices Vy, and Wy, form a pair of biorthogonal bases for the Krylov subspaces

Km(A, V1) :=span{Vy, Avy, ..., A"V},
Kin(AT, W1) := span{Wy, ATWy, ..., (A" Wy},

respectively, the columns of the matrices Vm and Wm form a pair of biorthogonal bases for the Krylov subspaces

Km(A + tEij, ¥1) := span{Vi, (A + tEj)Vi, ..., (A + tE)™ 'V},
Km((A+tEij)", W) := span{Wy, (A + tEj) Wi, ..., (A+tEj)")™ W},

respectively, the matrices T, Tm € R™ ™ are tridiagonal, and the vectors 8;,8> € R" satisfy certain orthogonality condi-
tions.

We apply the decompositions (27) similarly as we used the decompositions (24). Thus, for some small t > 0, we use the
approximations

expo(A +tEij) —expo(A) 1/ Vim expo(Tm)e1 — Vi expo(Tm)e

LA Epl~
(A, Eij) ; ;

which yield

e1T eXPO(Tm)el - e1T €XPo (?m)el
; .
We will illustrate the use of the right-hand sides (26) and (28) in computed examples in Section 5.

1"L(AEp)l~n

(28)

4.3. Another Arnoldi-based method for approximating the Fréchet derivative

Kandolf et al. [18] introduced several Krylov subspace methods for approximating the Fréchet derivative. They are defined
with the aid of Cauchy integrals and are based on the Lanczos, Arnoldi, and two-sided Arnoldi processes. We outline the
Arnoldi-based method; its performance will be illustrated in Section 5.

Consider a directed graph with n nodes and define the associated non-symmetric adjacency matrix A € R™" and the
direction matrix E = nyz" € R"™" of rank one. Here n € R and y,z € R" are unit vectors. Kandolf et al. [18] described the
following approach to approximate the Fréchet derivative of expy(A) with respect to the direction E.

Application of 1 <m < n steps of the Arnoldi process to the matrices A and AT with initial vectors y and z, respectively,
gives, in the absence of breakdown of the recursion formulas, the Arnoldi decompositions

AV = VG + g1€p,,
ATWm =WnHp +g2e,71-17

where the matrices Gp,, Hn € R™™ are of upper Hessenberg form with nonvanishing subdiagonal entries. The columns
of the matrices Vi, = [v1,Va2,...,Vp] € R and Wy, = [wq, Wy, ..., Wy] € R™™ form orthonormal bases for the Krylov
subspaces

Km(A,y) :=span(y, Ay, ..., A"y},
Km(A",2) :=span{z, A"z, ..., (A")" 'z},

respectively, with v; =y and w; = z. The vectors g1, g, € R" are orthogonal to in(A,y) and K (AT, z), respectively. Let

Then the mth Arnoldi approximation of the Fréchet derivative is given by
A T
L™ =V XmW,,,
where X, can be computed using the equation

_ | expo(Gm) Xm
EXPO(B)_[ 0 expo(HD) |

and the mth Arnoldi approximation for the total network sensitivity is
1714 = 1T v X, W (29)
see, e.g., Kandolf et al. [18] for details. We refer to this method as the KKRS Arnoldi method in Section 5.
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Table 4

Example 5.1: The five largest Perron root
sensitivities along directions for which i #
j.

{i. j) STR

(248,201} 0.0471
(248, 47} 0.0470
(201,47} 0.0464
(248,118} 0.0452
{118,201} 0.0446

4.4. Applications of the two-sided Arnoldi and restarted Lanczos methods to large-scale network problems

The dominant computational burden when studying the Perron root sensitivity and evaluating the quantities CPN(A + Ejj)
and SE.N is the calculation of the Perron root and the left and right Perron vectors. For small networks, these quantities easily
can be evaluated by using MATLAB functions eig or eigs. For large-scale networks, when the graph G that determines A
is directed, and A therefore is nonsymmetric, these quantities typically can be computed fairly inexpensively by the two-
sided Arnoldi method, which was introduced by Ruhe [24], and recently has been investigated and improved by Zwaan and
Hochstenbach [29]. In the situation when A is symmetric, a restarted Lanczos method, such as [3], can be applied.

5. Examples with large-scale networks

This section presents examples with large-scale networks to illustrate the performance of the numerical methods de-
scribed in Section 4. The computations are carried out using MATLAB R2018b on an Intel Xeon Silver 4116 CPU @ 2.10 GHz
(48 cores, 96 threads) equipped with 256 Gbyte RAM. The USAir97 data set used in Example 5.1 can be downloaded from
the website [27], the Air500 data set used in Example 5.2 can be downloaded from [1], and the usroads-48 data set used in
Example 5.3 can be downloaded from [27].

Define for notational convenience the relative difference

rij := |(new approximation) — (previous approximation)|/|(previous approximation)|, (30)

where “previous approximation” and “new approximation” denote approximations of the total network sensitivity SiTjN with

respect to the direction Ejj = efe]T determined by carrying out m and m + 1 steps, respectively, of an iterative method.
When applying the methods of Section 4 to estimate the total network sensitivity, we terminate the iterations as soon
as rij < 1074 for each SiTjN. We refer to the exact total network sensitivities as the “exact solution”, and denote the ap-
proximate solutions obtained by using the right-hand sides of eqs. (23), (25), and (29) by the “Arnoldi solution (23)”, the
“Arnoldi solution (25)”, or the “KKRS Arnoldi solution”, respectively. Similarly, the approximate solutions determined by the
approximations (26) and (28) are referred to as the “Lanczos solution (26)” and the “Lanczos solution (28)”, respectively.
We let 7 =1 in the KKRS Arnoldi method, and t =2 - 107 in the methods (25) and (28), as well as in the computation of
SPN 1TLPN(A, Eij)1. We use the two-sided Arnoldi method to compute the Perron root, and left and right Perron vectors.

Example 5.1. We consider the network USAir97, which is represented by an undirected weighted graph. The graph has 332
nodes, which correspond to American airports in 1997. Undirected edges represent flights from one airport to another and
the weight of each undirected edge indicates the frequency of flights between airports. The adjacency matrix A for the
graph is irreducible. Our aim is to determine an edge e(v; <> v;) (or e(v; « -+ v;j) ¢ &) for i # j such that the network
communicability is increased the most when increasing the edge-weight w;; and wj; slightly. Thus, to preserve symmetry
our perturbations are multiples of E;; 4 Ej; for different i and j.

Since the adjacency matrix A is symmetric, we only compute the Perron root sensitivities SB.R, and explore the total
network sensitivity and the Perron network sensitivity to changes in the weights w;; and wj; of edges e(v; < v;) (or
e(vi «-~»vj) ¢ &) with j>ifori, je{l,2,...,n}. Each edge-weight is increased in turn and the quantities SiTjN and SUN are
recorded to find the edge, whose associated weight should be increased. We also evaluate the total network communicability
and the Perron network communicability of the graphs obtained when increasing each pair of weights w;; and w; by one.
Table 4 displays the five largest Perron root sensitivities S{}R and shows that the Perron root is increased the most when

increasing the weight of edge e(va4g <> va1) slightly. The five largest total network sensitivities SiTjN and Perron network
sensitivities S}}N with respect to the weight of edge e(v; <> v;), together with the total network communicability and

Perron network communicability attained as the weight of edge e(v; <> v;) is increased by one are reported in Table 5.
The table shows both the total network communicability and the Perron network communicability to increase the most
when the weight of the edge e(v11g <> v24g) is increased by one. Since w11g,248 = W24g,118 = 0.1733 this means one should
increase the frequency of flights between airport 118 and airport 248 to increase the network communicability with respect
to any one edge-weight the most. In this example, since the largest Perron root sensitivities SPR(A)L j are very close in
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Table 5

Example 5.1: The five largest total network sensitivities SX.T.N and Perron network sensitivities S[P-N with
respect to changes in the weights of the edge e(v; <> v;) with i # j and j > i, as well as the corre-
sponding total network communicability and Perron network communicability when the weight of the
edge e(v; < v;) is increased by one.

i, ) Sy C™N(A+Ejj+Ejp)

ij i, j} SPN CPN(A + Ejj + Eji)

{ { ,j
{118, 248} 408.5090 5605.03 {118, 248} 412.30 5600.87
{47,118} 402.6977 5597.83 {47,118} 406.85 5594.19
{118,201} 401.8136 5596.48 {118,201} 405.79 5592.67
{ {
{ {

118,261} 396.2688 5590.28 118,261} 401.14 5590.54
67,118} 386.3636 5576.64 67,118} 390.32 5573.10

Table 6

CPU time required for evaluating the Perron root sensitivity, the Perron network sensitivity, the exact
solution, and the five approximate solutions, as well as the average number of steps m demanded by
each iterative method to satisfy the stopping criterion.

Communicability Method Average steps  Elapsed time
(in seconds)
Perron network communicability ~ Perron root sensitivity N/A 0.1
Perron network sensitivity ~ N/A 3180 (53 mins)
Exact solution N/A 56697 (15.7 hrs)
Arnoldi solution (23) 9.4774 253
Total network communicability Arnoldi solution (25) 4,9942 105
Lanczos solution (26) 10.9233 1032
Lanczos solution (28) 49941 113
KKRS Arnoldi solution 6.7381 226

size, the edge selection furnished by the Perron root sensitivity does not give the largest increase in the Perron network
communicability, or the total network communicability.

Table 6 shows the CPU time required for computing the Perron root sensitivity, the Perron network sensitivity, and the
total network sensitivity. For the latter, the CPU time for the exact solution and five approximate solutions determined by the
Arnoldi and Lanczos biorthogonalization methods is reported. The table also displays the average number of steps needed by
the Arnoldi and Lanczos biorthogonalization methods to satisfy the stopping criterion. Both the Perron network sensitivity
and the Perron root sensitivity suggest that the same edge-weight be increased, but the computation of the Perron root
sensitivity is much cheaper than evaluating the Perron network sensitivity for large networks, as shown in Table 6. Indeed,
the Perron root sensitivity may be the only practical indicator of which edge-weight to modify for very large networks. The
“exact solution” in the table is evaluated by computing L(A, E;;) using (6) with f the matrix exponential.

We implemented the Arnoldi method (23) with reorthogonalization to avoid that the computed results are influenced by
loss of orthogonality of the Krylov subspace basis. Similarly, rebiorthogonalization is performed for the Lanczos biorthogo-
nalization method (26).

Reducing the tolerance for rj; in (30) to 10> to decide when to terminate the iterations did not change the edges
selected when using the Arnoldi-based or Lanczos-based methods.

Fig. 5 shows the exact total network sensitivities and approximate total network sensitivities determined by the five
iterative Krylov subspace methods described in Section 4. Specifically, assume that we are interested in evaluating the total
network sensitivity Sl.TjN for i #j and j > i in ¢ different directions. We consider increasing one edge-weight of A at each

step, then calculate its associated exact (or approximate) total network sensitivity SiTjN, denote it by s¢ (or s{PP"™), and

store it in the vectors sX4t = [s¢X0¢t] (or s%PProx = [sTPP"**]), Repeating this procedure for the ¢ directions, we get the vectors
sexact — [gexact gexact | gexact)T ¢ R and s%PProx = [s{PPTOX TPPIOY L sPPPTON)T e RY. Each subfigure of Fig. 5 displays the

vectors s®t on the vertical axis and s%P"X for one of the Krylov methods on the horizontal axis. Each pair of vector
entries {s?’J prox. s$X4€} gives one dot on the graph; if the approximations are accurate, then s?p ProX s close to sf"a“ and the
resulting graph is on a straight line. We conclude that the Arnoldi method (25) is the fastest but the KKRS Arnoldi method
is most reliable. The Arnoldi methods demand m = 9.4774, m = 4.9942, or m = 6.7381 average number of steps to satisfy
the stopping criterion, while the Lanczos biorthogonalization methods require 10.9233 or 4.9941 average number of steps.
The number of matrix-vector product evaluations needed by the Arnoldi methods (23) and (25) are smaller, since each step
only requires one matrix-vector product evaluation, while each step of the KKRS Arnoldi and Lanczos biorthogonalization
methods requires two matrix-vector product evaluations, one with A (or M), and one with AT (or MT). Each matrix-
vector product evaluation with M requires two matrix-vector product evaluations with A. We conclude from Fig. 5 that
the application of the Arnoldi method based on (25) requires the fewest matrix-vector product evaluations followed by the
Lanczos biorthogonalization method based on (28). O
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Fig. 5. USAir97: Comparison of the exact and approximate solutions using the five iterative Krylov subspace methods described in Section 4. The heading
of each subplot shows the average number of steps m required by each iterative method to satisfy the stopping criterion.

Table 7

Example 5.1: The five largest Perron
root sensitivities along directions for
which wi; =0 and i # j.

{i. i) sTR

{224,257} 0.01341
{257, 224} 0.01335
{287,224} 0.01240
{261, 24} 0.01230
{224,287} 0.01228

Example 5.2. The network Air500 is represented by an unweighted directed graph with 500 nodes, which model the top
500 airports worldwide based on total passenger volume. Flights are represented by edges; the graph is based on flights
within one year from July 1, 2007, to June 30, 2008. The graph is strongly connected. The adjacency matrix associated with
the graph therefore is irreducible.

In this example, we want to insert an edge e(v; --» vj) ¢ £ that enhances the network communicability the most. We
study the Perron root sensitivity by computing the Perron root sensitivity matrix of the adjacency matrix A, and investigate
the total network sensitivity and the Perron network sensitivity with respect to weights w;;, where w;; =0 and i # j. Each
edge is added in turn, and the quantities SiTjN and S{}N are recorded to find the optimal edge. We also evaluate the total
network communicability and the Perron network communicability of the graph attained when wj; is changed from 0 to 1.

We recall that the Perron root is increased the most when the Perron root sensitivity SII.}R is maximized. In this example,
we are only interested in adding an edge when w;; =0 and i # j. The five largest Perron root sensitivities SE.R of interest
are listed in Table 7. The table indicates that the Perron root is increased the most by inserting the edge e(v24 — v257)
into the graph. The network communicability also is increased the most by adding this edge as is seen in Table 8. This
table displays the five largest total network sensitivities and Perron network sensitivities with respect to changes in wjj,
where w;j =0 and i # j, as well as the total network communicability and the Perron network communicability of the
graph obtained when changing w;; from 0 to 1. The table shows both the total network communicability and the Perron
network communicability to increase the most by adding an edge with either the largest total network sensitivity S};.N or
the largest Perron network sensitivity S}}N. The table suggests that the two busiest airports (224, JFK airport in NY, and 257,
LGA airport in NY), be connected. This can be done by adding a shuttle bus between them.
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Table 8

Example 5.2: The five largest total network sensitivities and Perron network sensitivities to changes in

wij, where w;; =0 and i # j, together with the corresponding total network communicability and Perron

network communicability when w;; is increased from 0 to 1.
{i, j} si C™(A + Eyj) {i, j} SN CPN(A + Eyj)
(224, 257) 2.5260 x 1036 1.9418 x 1038 (224, 257} 2.5237 x 1036 1.9386 x 1038
(257, 224) 2.5161 x 1036 1.9417 x 1038 {257, 224} 2.5103 x 1036 1.9385 x 1038
{261, 24} 2.3817 x 1036 1.9404 x 1038 {261, 24} 2.3810 x 1036 1.9372 x 1038
(19, 124} 2.3576 x 1036 1.9401 x 1038 {19, 124} 2.3587 x 1036 1.9369 x 1038
{24,261} 2.3529 x 1036 1.9401 x 1038 {24,261} 2.3457 x 1036 1.9368 x 1038

Table 9

CPU time for the evaluation of the Perron root sensitivity, the Perron network sensitivity, the exact solution, and the
five approximated solutions, as well as the average number of steps m that each iterative method needed to satisfy the
stopping criterion.

Communicability Method Average steps Elapsed time (in seconds)
Perron network communicability Perron root sensitivity N/A 0.65

Perron network sensitivity N/A 9228 (2.56 hrs)

Exact solution N/A 500172 (139hrs)

Arnoldi solution (23) 16.9994 2070(34.5 mins)
Total network communicability Arnoldi solution (25) 10.2312 1102 (18.4 mins)

Lanczos solution (26) 401211 26381 (7.3 hrs)

Lanczos solution (28) 8.0560 934 (15.6 mins)

KKRS Arnoldi solution 9.9561 1521 (25.4 mins)

The CPU time required for computing the Perron root sensitivity, the Perron network sensitivity, the exact solution, and
the five approximated solutions, together with the average number of steps that each iterative method carried out, are
reported in Table 9. Both the Perron network sensitivity and the Perron root sensitivity suggest the insertion of the same
edge to maximize the Perron network communicability, but computing the Perron root sensitivity of A is much cheaper
than computing the Perron network sensitivity for large networks, as shown in Table 9. While computing the total network
sensitivity, reorthogonalization is carried out for the Arnoldi method (23) and rebiorthogonalization is performed for the
Lanczos biorthogonalization method (26).

For this example, the approximations in the stopping criterion (30) are large. Therefore, the Lanczos biorthogonalization
method (26) requires many steps to satisfy this criterion when rj; < 10~4. This makes application of the method expensive.
We therefore replaced the matrix M by M/3. Then the Lanczos biorthogonalization method (26) requires fewer steps to
satisfy the analogue of (30) with rjj < 10~*. This modification showed the correct edge to insert. Making the tolerance for
rij smaller than 10~4 to determine when to terminate the iterative methods did not change the edge selected.

Fig. 6 is analogous to Fig. 5 and shows that the approximate solution obtained using KKRS Arnoldi method to be ac-
curate, followed by the one obtained by Lanczos biorthogonalization method (28), but the latter is faster and requires a
smaller average number of steps. The solutions obtained by the Arnoldi method (25) can be seen to be less accurate than
those obtained with the KKRS Arnoldi method, and the Lanczos biorthogonalization method (28) (the dots are not as close
to a straight line). The solution obtained by the Arnoldi (23) and the Lanczos biorthogonalization methods (26) are the
least accurate ones compared to those obtained by the other three iterative methods. On the other hand, each step of the
Arnoldi method (23) requires one matrix-vector product evaluation with M (two matrix-vector product evaluations with
A), and each step of the KKRS Arnoldi method demands two matrix-vector product evaluations, one with A, and one with
AT, while each step of the Arnoldi method (25) only requires one matrix-vector product evaluation with A. The Lanczos
biorthogonalization method (28) is competitive, each step of which requires one matrix-vector product evaluation with A
and one with AT.

Fig. 7 displays the exact solution and approximate solutions determined by the Arnoldi method (25) by choosing different
stopping criteria. The method needs 11.8587 average number of steps (25.66 mins) to satisfy the stopping criterion rjj <
107>, The figure shows that the approximation error is smaller when choosing rij < 107> and the number of matrix-vector
product evaluations is still the smallest one. Table 10 displays the airport labels corresponding to the airports of Table 8. O

Example 5.3. We consider the network usroads-48, which corresponds to the continental US road network, and is rep-
resented by an unweighted undirected graph. The graph has 126146 nodes, which correspond to intersections and road
endpoints. Undirected edges represent roads which connect the intersections and endpoints. Our aim is to insert an edge
e(vi « - > vj) ¢ & such that the network communicability is increased the most. Results of Examples 5.1 and 5.2 show that
computing the Perron root sensitivity of the modified adjacency matrix A or adjacency matrix A is much cheaper than
computing the Perron network sensitivity and total network sensitivity for large networks. Also note that it is not straight-
forward to determine whether a large network is irreducible. We therefore add a perturbation matrix §A =38 - 117 of small
norm to the adjacency matrix A. This guarantees that the matrix considered is irreducible. To determine the value of §, we
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Fig. 6. Air500: Comparison of the exact and approximate solutions using the five iterative Krylov subspace methods described in Section 4. The heading of
each subplot is the average number of steps m that each iterative method demands to satisfy the stopping criterion.
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Fig. 7. Air500: Comparison of the exact and approximate solutions using the Arnoldi method (25) by choosing different stopping criterions. The heading of
each subplot is the chosen stopping criterion and the average number of steps m that the method demands to satisfy the corresponding stopping criterion.

use the same procedure as in Example 3.2. While decreasing the value of §, we use the available computed Perron vectors
for the previous §-value as initial approximations to compute new Perron vectors associated with the new smaller value
of 5. We obtain in this manner the irreducible matrix A = A + §A with § = 10~7. Note that the matrix A is not explicitly
formed; we evaluate matrix-vector products with A and AT without explicitly storing these matrices. This keeps both the
storage and computing time low.

Table 11 displays the five largest Perron root sensitivities S}}R and shows that the Perron root is increased the most by
inserting the edge e(v44182 <> Va4035), that is, building a new road between endpoints 44182 and 44035. The network of
the present example is too large to make the evaluation of total network sensitivities and the exact solution practical. O

The examples of this section, as well as numerous other numerical experiments, indicate that the Arnoldi-based method
(25), the KKRS Arnoldi method, and the Lanczos biorthogonalization method (28) to perform better than the Arnoldi-based
method (23) and the Lanczos biorthogonalization method (26). The Arnoldi method (25) typically requires fewer matrix-
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Table 10

Airports for airport labels shown in Table 8.
Label Airport
19 AMS airport in NL
24 ATL airport in GA, USA
124 DFW airport in TX, USA
224 JFK airport in NY, USA
257 LGA airport in NY, USA
261 LHR airport in UK

Table 11

Example 5.3: The five largest Perron
root sensitivities along directions for
which wi; =0 and i # j.

{i.J) stR

{44182, 44035) 0.0898
{44067, 44323} 0.0846
{44154, 44087} 0.0845
{44182, 44133) 0.0797
{44182, 44294} 0.0795

vector product evaluations and less computer storage than the KKRS Arnoldi and Lanczos biorthogonalization methods (28).
This suggests that the former method may be attractive to use to compute the total network sensitivities SiTN when the

evaluation of matrix-vector products is very expensive or computer storage is scarce, otherwise the KKRS Arnoldi method
should be applied. For large networks, one can compute the Perron root sensitivity. Its computation is much cheaper than
the evaluation of the Perron network sensitivity and total network sensitivity. The latter measures therefore are less attrac-
tive to use for large networks.

6. Conclusion

This paper explores the sensitivity of global communicability measures to small local changes in a network. In partic-
ular, we investigate the sensitivity of the network communicability by increasing or decreasing edge-weights, or adding
or removing edges such that the total network communicability or Perron network communicability significantly increases
or decreases. The latter communicability measure is new and has the advantage of being easy to apply to very large net-
works. Efficient Krylov subspace-type methods for estimating the total network sensitivity, the Perron root sensitivity, and
the Perron network sensitivity are introduced and compared. Computed examples illustrate the feasibility of the methods
described.

Acknowledgements

The authors would like to thank Ernesto Estrada, Marcel Schweitzer, and the referees for comments. Work of ODCC
and LR was supported in part by NSF grant DMS-1720259. Work by SN was partially supported by a grant from Sapienza
Universita di Roma and by INAAM-GNCS.

References

[1] Air500 Data, https://www.dynamic-connectome.org/?page_id=25.
[2] F. Arrigo, M. Benzi, Edge modification criteria for enhancing the communicability of digraphs, SIAM J. Matrix Anal. Appl. 37 (2016) 443-468.
[3] J. Baglama, D. Calvetti, L. Reichel, IRBL: an implicitly restarted block Lanczos method for large-scale Hermitian eigenproblems, SIAM J. Sci. Comput. 24
(2003) 1650-1677.
[4] A. Barrat, M. Barthelemy, A. Vespignani, Weighted evolving networks: coupling topology and weight dynamics, Phys. Rev. Lett. 92 (2004) 228701.
[5] B. Beckermann, L. Reichel, Error estimation and evaluation of matrix functions via the Faber transform, SIAM J. Numer. Anal. 47 (2009) 3849-3883.
[6] M. Benzi, C. Klymko, Total communicability as a centrality measure, ]. Complex Netw. 1 (2013) 124-149.
[7] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
[8] O. De la Cruz Cabrera, M. Matar, L. Reichel, Analysis of directed networks via the matrix exponential, J. Comput. Appl. Math. 355 (2019) 182-192.
[9] O. De la Cruz Cabrera, M. Matar, L. Reichel, Centrality measures for node-weighted networks via line graphs and the matrix exponential, Numer.
Algorithms 88 (2021) 583-614.
[10] E. Estrada, The Structure of Complex Networks: Theory and Applications, Oxford University Press, Oxford, 2011.
[11] E. Estrada, Informational cost and networks navigability, Appl. Math. Comput. 397 (2021) 125914.
[12] E. Estrada, N. Hatano, Communicability in complex networks, Phys. Rev. E 77 (2008) 036111.
[13] E. Estrada, N. Hatano, M. Benzi, The physics of communicability in complex networks, Phys. Rep. 514 (2012) 89-119.
[14] E. Estrada, D.J. Higham, N. Hatano, Communicability betweenness in complex networks, Physica A 388 (2009) 764-774.
[15] E. Estrada, J.A. Rodriguez-Velazquez, Subgraph centrality in complex networks, Phys. Rev. E 71 (2005) 056103.
[16] NJ. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.

204



0. De la Cruz Cabrera, J. Jin, S. Noschese et al. Applied Numerical Mathematics 172 (2022) 186-205

[17] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

[18] P. Kandolf, A. Koskela, S.D. Relton, M. Schweitzer, Computing low-rank approximations of the Fréchet derivative of a matrix function using Krylov
subspace methods, Numer. Linear Algebra Appl. (2021) e2401.

[19] A. Milanese, ]. Sun, T. Nishikawa, Approximating spectral impact of structural perturbations in large networks, Phys. Rev. E 81 (2010) 046112.

[20] M.E]. Newman, Analysis of weighted networks, Phys. Rev. E 70 (2004) 056131.

[21] M.EJ. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.

[22] ]. Ortega, W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, SIAM, Philadelphia, 2000.

[23] B.N. Parlett, D.R. Taylor, Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comput. 44 (1985) 105-124.

[24] A. Ruhe, The two-sided Arnoldi algorithm for nonsymmetric eigenvalue problems, in: B. Kagstrom, A. Ruhe (Eds.), Matrix Pencils, Springer, Berlin, 1983,
pp. 104-120.

[25] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29 (1992) 209-228.

[26] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.

[27] USAir97 data and usroads-48 Data, https://sparse.tamu.edu.

[28] J.H. Wilkinson, Sensitivity of eigenvalues II, Util. Math. 30 (1986) 243-286.

[29] LN. Zwaan, M.E. Hochstenbach, Krylov-Schur-type restarts for the two-sided Arnoldi method, SIAM ]. Matrix Anal. Appl. 38 (2017) 297-321.

205



