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Ill-posed problems arise in many areas of science and engineering. Their solutions, if 
they exist, are very sensitive to perturbations in the data. To reduce this sensitivity, the 
original problem may be replaced by a minimization problem with a fidelity term and a 
regularization term. We consider minimization problems of this kind, in which the fidelity 
term is the square of the ℓ2-norm of a discrepancy and the regularization term is the qth
power of the ℓq-norm of the size of the computed solution measured in some manner. We 
are interested in the situation when 0 < q ≤ 1, because such a choice of q promotes sparsity 
of the computed solution. The regularization term is determined by a regularization matrix. 
Novati and Russo let q = 2 and proposed in (2014) [13] a regularization matrix that 
is a finite difference approximation of a differential operator applied to the computed 
approximate solution after reordering. This gives a Tikhonov regularization problem in 
general form. We show that this choice of regularization matrix also is well suited for 
minimization problems with 0 < q ≤ 1. Applications to image restoration are presented.

 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We consider the computation of an approximate solution of minimization problems of the form

min
x∈Rn

‖Ax− bδ‖2, (1)

where A ∈ Rm×n is a large matrix, whose singular values decrease to zero gradually with no significant gap. In particular, 
A is severely ill-conditioned and may be rank-deficient. The vector bδ ∈ Rm represents measured error-contaminated data. 
We will refer to the error in bδ as “noise.” The norm ‖ · ‖2 in (1) denotes the Euclidean vector norm. We will allow m ≥ n

as well as m < n. Unicity of the computed solution is secured by adding a regularization term to (1); see below.

Minimization problems of the kind (1) are commonly referred to as discrete ill-posed problems. They typically arise from 
the discretization of ill-posed problems, such as Fredholm integral equations of the first kind with a smooth kernel; see, 
e.g., [7,8] for discussions on ill-posed and discrete ill-posed problems. We are primarily interested in image deblurring. Then 
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the vector bδ represents a blur- and noise-contaminated image, and the matrix A is a blurring operator. We would like to 
determine the unknown blur- and noise-free image associated with the available image represented by bδ .

Let b ∈ Rm denote the (unknown) noise-free vector associated with bδ . We will assume that b is in the range of A and 
that a fairly sharp bound δ for the norm of the noise in bδ is known, i.e.,

‖b − bδ‖2 ≤ δ. (2)

These assumptions allow us to determine a regularization parameter with the aid of the discrepancy principle; see below.

Let A† denote the Moore–Penrose pseudoinverse of A. Then

x̂ := A†b (3)

represents the blur- and noise-free image associated with bδ , which we would like to determine. Since A is ill-conditioned 
and bδ is contaminated by error, the naïve solution of (1) of minimal Euclidean norm, given by

A†bδ = x̂ + A†(bδ − b),

typically is a useless approximation of ̂x, because generally ‖A†(bδ −b)‖2 ≫ ‖̂x‖2 . To achieve a more accurate approximation, 
the discrete ill-posed problem (1) is replaced by a nearby problem, whose solution is less sensitive to the error in bδ . This 
replacement is known as regularization.

A regularization technique that recently has received considerable attention is the replacement of (1) by a minimization 
problem of the form

x∗ := arg min
x∈Rn

J (x), (4)

where

J (x) :=

{
1

2
‖Ax − bδ‖22 +

µ

q
‖Lx‖

q
q

}
(5)

for some q > 0. The regularization matrix L ∈ Rℓ×n is such that

N (A) ∩N (L) = {0}. (6)

Then there are no nontrivial vectors that are in both N (A) and N (L). Here N (M) denotes the null space of the matrix M . 
Moreover,

‖z‖q :=




ℓ∑

j=1

|z j|
q




1/q

, z = [z1, . . . , zℓ]
T ∈ R

ℓ.

We will refer to ‖z‖q as the q-norm of z also for 0 < q < 1, even though the mapping z → ‖z‖q does not satisfy the triangle 
inequality and, therefore, is not a norm for these q-values. Throughout this paper the superscript T denotes transposition.

The regularization parameter µ > 0 in (5) balances the relative influence of the first term (the fidelity term) and the 
second term (the regularization term). When q = 2 the minimization problem (4) is known as a Tikhonov regularization 
problem in general form [8].

The use of 0 < q < 2 has received considerable attention; see, e.g., [1–5,9,12] and references therein. Note that if 0 <
q < 1, then the functional (4) generally is not convex. We will determine µ > 0 so that the computed solution xcomp of (4)
satisfies the discrepancy principle, i.e., such that

‖Axcomp − bδ‖2 = τ δ, (7)

where τ > 1 is a user-supplied constant that is independent of the bound δ in (2).
We briefly comment on the choice of q. In many situations it is known that the desired vector (3) is sparse in some basis, 

i.e., the vector ̂x has many vanishing coefficients when expressed in a suitable basis. To enhance sparsity in the solution of 
(4), we use 0 < q ≤ 1. Generally, the smaller q > 0, the sparser is the solution and the more difficult is its computation; see 
[9,12] for illustrations. We remark that the “norm” ‖z‖0 , which counts the number of nonvanishing entries of the vector z, 
promotes sparsity but is difficult to compute with. Therefore, this “norm” generally, is not used.

We will solve the minimization problem (4) by approximating the ℓq-norm for some 0 < q ≤ 1 by a weighted ℓ2-norm. 
By iteratively refining this approximation, it is possible to effectively compute a solution of (4). This process is known as 
the iteratively reweighted norm (IRN) method. It has been applied in several different situations with good results; see 
[3,9,12,15,16]. IRN methods proceed by solving a sequence of weighted least-squares problems until a solution of (4) has 
been determined to desired accuracy. Applications of IRN-type methods to minimization problems (4) with q smaller than 
unity are described in [3,9,12].
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We turn to the choice of the regularization matrix L in (4). The choice of this matrix has not received much attention 
in the literature. We propose to use a matrix L1 that represents a discrete first order derivative operator in one space-
dimension in combination with a reordering of the unknowns. Let P be a permutation matrix that describes the reordering. 
Then we let L := L1P in (4). An adaptive reordering method is described. The construction of this kind of regularization 
matrices for the minimization problem (4) is an adaption of a method proposed by Novati and Russo [13] for choosing a 
regularization matrix for Tikhonov regularization in general form.

This paper is organized as follows: Section 2 outlines a majorization-minimization method for the solution of (4) de-

scribed in [9]. An algorithm for determining the regularization parameter µ and the regularization matrix L by reordering 
the entries of the approximate solution are discussed in Section 3, and a few numerical examples are presented in Section 4. 
Finally, Section 5 contains concluding remarks.

2. A majorization-minimization method

We review a majorization-minimization method for the solution of (4). This method was first described in [9], where it 
is referred to as the FMM-GKS method. Introduce the function

�q,ε(t) :=

{
|t|q, q > 1,(

t2 + ε2
)q/2

, 0 < q ≤ 1,
(8)

where ε > 0 is a small constant. We will comment on the choice of ε in Section 4. The function t → �q,ε(t) is everywhere 
differentiable for any q > 0. This function is used to define a smoothed version of ‖z‖qq by

‖z‖
q
q ≈

ℓ∑

i=1

�q,ε(zi), z = [z1, z2, . . . , zℓ]
T ∈ R

ℓ.

Substituting this smoothed norm into the functional (4) yields

Jε(x) :=
1

2
‖Ax− bδ‖22 +

µ

q

ℓ∑

i=1

�q,ε((Lx)i). (9)

Instead of minimizing (4), we seek to solve

x∗ := arg min
x∈Rn

Jε(x). (10)

When q < 1, the functional (10) is not convex. The majorization-minimization method for the solution of (10) described in 
[9] constructs a sequence of iterates x(k) , k = 1, 2, . . ., that converge to a stationary point of Jε . At each step, the functional 
Jε is majorized by a quadratic functional x → Q(x, x(k)) that is tangent to Jε at x(k) . Thus, i) x → Q(x, x(k)) is quadratic, 
ii) Q(x, x(k)) ≥ J (x) for all x ∈ Rn , and iii) Q(x(k), x(k)) = J (x(k)) and ∇xQ(x(k), x(k)) = ∇J (x(k)), where ∇x denotes the 
gradient with respect to the first argument of Q.

We outline the construction of a quadratic tangent majorant at the point x(k) for 0 < q < 2. Let

u(k) := Lx(k)

and introduce the vector

ω
(k) := u(k)


1−

(
(u(k))2 + ε2

ε2

)q/2−1

 ,

where all the operations, including squaring, are meant element-wise. It is shown in [9] that the functional

Q(x,x(k)) :=
1

2
‖Ax − bδ‖22 +

µεq−2

2

(
‖Lx‖22 − 2〈ω(k), Lx〉

)
+ c, (11)

with c a suitable constant that is independent of x, is a quadratic tangent majorant for Jε at x(k) . In (11) and below 
〈u, v〉 := uT v denotes the standard inner product of two real vectors u and v.

Given x(k) , the next iterate, x(k+1) , is the minimizer of x → Q(x, x(k)). Since Q is quadratic, x(k+1) can be computed by 
determining the zero of the gradient of x → Q(x, x(k)), i.e., by solving the linear system of equations

(AT A + ηLT L)x(k+1) = ATbδ + ηLTω(k), η := µεq−2. (12)

Due to the requirement (6), the above linear system of equations has a unique solution for any η > 0.
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An approximate solution of (12) can be computed efficiently by seeking a solution in a low-dimensional subspace. Let the 
columns of Vk ∈ Rn×d , with 1 ≤ d ≪ n, form an orthonormal basis for the subspace in which we determine an approximate 
solution x(k+1) of (12). We determine x(k+1) as the solution of the minimization problem

y(k+1) := argmin
y

∥∥∥∥
[

AVk

η1/2LVk

]
y−

[
bδ

η1/2
ω

(k)

]∥∥∥∥
2

2

(13)

and let

x(k+1) := Vky
(k+1). (14)

However, instead of explicitly solving the problem (13), we compute the solution of a reduced problem that is obtained by 
using the QR factorizations

AVk = Q AR A with Q A ∈ R
m×d, R A ∈ R

d×d,

LVk = Q LR L with Q L ∈ R
ℓ×d, R L ∈ R

d×d.
(15)

Thus, the matrices Q A and Q L have orthonormal columns and the matrices R A and R L are upper triangular. Inserting the 
factorizations (15) into (13) yields the low-dimensional minimization problem

y(k+1) := argmin
y

∥∥∥∥
[

R A

η1/2R L

]
y−

[
Q T

Ab
δ

η1/2Q T
L ω

(k)

]∥∥∥∥
2

2

, (16)

which we solve numerically. The solution y(k+1) is computed by QR factorization of the matrix
[

R A

η1/2R L

]
, (17)

where we may use the fact that both submatrices R A and η1/2R L are upper triangular and of the same size.
Substituting (14) into (12) gives the residual vector

r := AT (AVky
(k+1) − bδ) + ηLT (LVky

(k+1) − ω
(k)).

This expression can be simplified by using the factorizations (15). We expand the solution subspace by including the scaled 
residual vector vnew := r/‖r‖ in it. This vector is orthogonal to the columns of the matrix Vk , and we define the new matrix 
Vk+1 = [Vk, vnew] ∈ Rn×(d+1) . Its columns form an orthonormal basis for the expanded solution subspace. The solution 
subspaces determined in this manner are referred to as generalized Krylov subspaces.

The main computational effort of the algorithm for large matrices A and L is the evaluation of matrix-vector products 
with these matrices and with their transposes. The QR factorizations (15), as well as of (17), can be updated for increasing 
values of k as described in [6]. It can be shown that the approximate solutions x(k) for k = 1, 2, . . ., computed in the manner 
outlined, converge to a stationary point of (9); see [9] for details.

We turn to the determination of the regularization parameter µ > 0. A bound (2) for the error in bδ is assumed to be 
known. This allows us to determine µ with the aid of the discrepancy principle (7). Thus, for each k, we determine the 
regularization parameter µ = µ(k) so that the computed approximate solution (14) satisfies the discrepancy principle, i.e.,

‖Ax(k+1) − bδ‖2 = τ δ. (18)

The computation of such a µ-value can be carried out quite efficiently by using the factorizations (15). Details are described 
in [3]; here we just provide an outline. Substituting (14) into (18) and using (15) gives

‖Q AR Ay
(k+1) − bδ‖2 = τ δ,

where we note that the vector y(k+1) , which is computed by solving (16), depends on µ, because η is a function of µ; cf. 
(12). Define the function

ϕ(µ) = ‖R Ay
(k+1) − Q T

Q bδ‖22

and solve

ϕ(µ) = τ 2δ2 (19)

by Newton’s method or a related root-finder. The regularization parameter µ is updated in each iteration, and this requires 
the solution of (16). Since the matrices R A and R L are fairly small, the computations can be carried out quite rapidly. We 
denote the solution of (19) by µ(k+1) .

We refer to [7] for a discussion on the discrepancy principle. We remark that other methods for choosing the regulariza-
tion parameter also can be used; see, e.g., [4,8,10,11,14] for discussions.

The following algorithm outlines the computations for a fixed matrix L and a fixed regularization parameter µ > 0. We 
will generalize this algorithm in Section 3.
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Algorithm 1 (The MM-GKS-DP method). Let 0 < q < 2 be fixed and let the matrices A ∈ Rm×n and L ∈ Rℓ×n satisfy (6). We 
are particularly interested in the regularization matrix (23) below. Let x(0) = 0 be the initial approximate solution, and let 
ε > 0 and k0 > 0 be constants.

Generate the initial subspace basis: V0 ∈ Rn×k0 such that V T
0 V0 = I;

Compute and store AV0 and LV0;

Compute the QR factorizations AV0 = Q AR A and LV0 = Q LR L ;

for k = 0, 1, . . . do
u(k) = Lx(k);

ω
(k) = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)
;

η(k) = µ(k)εq−2;

where µ(k) is such that ‖AVky
(k+1) − bδ‖2 = τ δ;

y(k+1) = (RT
AR A + η(k)RT

L R L)
−1(RT

AQ
T
Ab

δ + η(k)RT
L Q

T
L ω

(k));

r = AT (AVky
(k+1) − bδ) + ηLT (LVky

(k+1) − ω
(k));

Reorthogonalize, if needed: r = r − VkV
T
k
r;

vnew = r/‖r‖2; Vk+1 = [Vk, vnew];

Update the factorization (15) to obtain AVk+1 = Q AR A and LVk+1 = Q LR L ;

x(k+1) = Vk+1y
(k+1);

end

The iterations with Algorithm 1 are terminated as soon as two consecutive approximate solutions are sufficiently close, 
i.e., as soon as

‖x(k) − x(k+1)‖2

‖x(k)‖2
≤ 10−4. (20)

3. Determining the regularization matrix

This section describes a new method for adaptively determining a regularization matrix L. We first discuss how to 
determine a permutation matrix in each iteration of Algorithm 1.

Let P ∈ Rn×n be a permutation matrix. Replacing Lx by Ly with y = Px in (11) gives the functional

Q̃(y,y(k)) =
1

2
‖AP T y− bδ‖22 +

µεq−2

2

(
‖Ly‖22 − 2〈ω(k), Ly〉

)
+ c,

where y(k) = Px(k) . The next iterate, y(k+1) , satisfies the linear system of equations

(P AT AP T + ηLT L)y = P ATbδ + ηLTω(k),

which is analogous to (12). Equivalently, x(k+1) satisfies

(AT A + ηP T LT LP )x = ATbδ + ηP T LTω(k),

which are the normal equations associated with the least-squares problem

min
x∈Rn

{
‖Ax − bδ‖22 + η‖LPx − ω

(k)‖22

}
. (21)

The minimization problem (21) suggests that we determine a permutation matrix P such that the regularization term 
be small. However, the minimization of this term over all permutations for given vectors x ∈ Rn , ω(k) ∈ Rℓ , and matrix 
L ∈ Rℓ×n is difficult. We therefore consider the simpler minimization problem

min
P∈P

‖LPx‖ (22)

for some distance measure ‖ · ‖, where P denotes the set of n × n permutation matrices. A permutation matrix P∗ ∈ Rn×n

that satisfies (22) is said to be optimal with respect to the matrix L, the vector x, and the norm ‖ · ‖. Novati and Russo [13]
considered the minimization problem (22) for the Euclidean vector norm, but other vector norms also can be used. We are 
particularly interested in the situation when the matrix L in (22) is the bidiagonal matrix
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L1 :=




1 −1 0
1 −1

1 −1

. . .
. . .

0 1 −1




∈ R
(n−1)×n, (23)

which is a scaled finite difference approximation at equidistant points of the first derivative operator in one space-
dimension.

Theorem 1. Let the matrix L in (22) be given by (23), and let the permutation matrix P∗ ∈ Rn×n order the entries of the vector x ∈ Rn

in increasing or decreasing order. Then P∗ solves (22) when ‖ · ‖ = ‖ · ‖1 .

Proof. Let y = [y1, y2, . . . , yn−1]
T = LPx. Then, by the triangle inequality,

|y1 + y2 + . . . + yn−1| ≤ |y1| + |y2| + . . . + |yn−1| = ‖y‖1,

with equality if all the yi have the same sign. The latter occurs if the permutation P is such that all the entries of LPx are 
nonnegative or all entries are nonpositive. Thus, ‖LPx‖1 achieves its lower bound if the permutation P orders the elements 
of x in increasing order or in decreasing order. �

The well-known relations

‖y‖2 ≤ ‖y‖1 ≤ (n − 1)1/2‖y‖2, y ∈ R
n−1

suggests that the permutation P∗ of Theorem 1 is suitable also when ‖ · ‖ is the Euclidean norm.

Theorem 2. Let y = [y1, y2, . . . , yn−1]
T = LPx and consider the distance measure

‖y‖ =

(
n−1∑

i=1

|yi |
q

)1/q

for some q > 0. Assume that all entries yi are nonvanishing. Then ‖y‖ achieves its minimum when all |yi| are equal.

Proof. We will show the theorem by using a Lagrange multiplier. Let zi = |yi |. Since zi > 0 for all i, we may scale all zi by 
the same positive factor so that the scaled zi satisfy

n−1∏

i=1

zi = 1. (24)

We will assume this scaling has been carried out and consider the function

f (z1, z2, . . . , zn−1) = z
q
1 + z

q
2 + . . . + z

q
n−1 + λz1z2 . . . zn−1.

The partial derivatives are given by

∂ f

∂zi
(z1, z2, . . . , zn−1) = qz

q−1
i

+ λz1 . . . zi−1zi+1 . . . zn−1, i = 1,2, . . . ,n − 1.

Setting the partial derivatives to zero and multiplying by zi > 0 gives

qz
q

i
+ λz1z2 . . . zn−1 = qz

q

i
+ λ = 0, i = 1,2, . . . ,n − 1.

We conclude that

zi = (−λ/q)1/q , i = 1,2, . . . ,n − 1. (25)

Thus, all the zi are equal. This is the unique stationary point of the function f in its domain. Let z1 = t and z j = 1/t1/(n−2)

for j = 2, 3, . . . , n − 1 and t > 0. Then these z j satisfy the constraint (24) and it follows that f (z1, z2, . . . , zn−1) → ∞ as 
t → ∞. We can similarly let any subset of at most n −2 variables z j approach infinity so that the constraint (24) is satisfied. 
This shows that the function f is coercive. It therefore has (at least) one local minimum in its domain. It follows that the 
point defined by (25) therefore is the unique minimum of the function f under the constraint (24). The measure ‖z‖, and 
therefore ‖y‖, achieve their minima when f is minimal. We conclude that ‖y‖ is minimal when all nonvanishing |yi | are 
the same. This occurs, for instance, when the entries xi of x, for i = 1, 2, . . . , n, are equidistant. �
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The vector y = [y1, y2, . . . , yn−1]
T = P∗Lx, with the permutation P∗ of Theorem 1, generally does not satisfy |yi | = |y j|

for all 1 ≤ i, j < n. Nevertheless, Theorem 2 indicates that the permutation P∗ may be suitable to apply when the entries of 
x = [x1, x2, . . . , xn]T may be considered piece-wise smooth functions of their index, with only a few jump discontinuities.

Algorithm 2 solves the minimization problem (22) for every iterate x = x(k+1) generated during the execution of the 
algorithm. The initial permutation P0 is the identity matrix. We refer to Algorithm 2 as the reordered (RR) MM-GKS-DP 
algorithm, because it complements the computations of Algorithm 1 with reordering of the entries of the approximate 
solutions determined in the inner loop.

Algorithm 2 (The RR-MM-GKS-DP method). Let 0 < q < 2 be fixed and let the matrices A ∈ Rm×n and L1 ∈ Rℓ×n satisfy (6). 
Let x0 ∈ Rn be an initial approximate solution, and let ε > 0, s and k0 > 0 be constants.

for t = 0, 1, . . . do
Compute bt = b − Axt , let x

(0)
t = xt ;

Generate the initial subspace basis on A and bt : V0 ∈ Rn×k0 such that V T
0 V0 = I;

Define L = L1Pt ;

Compute the QR factorizations AV0 = Q AR A and LV0 = Q LR L ;

for k = 0, 1, . . . do
u(k) = Lx

(k)
t ;

ω
(k) = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)
;

η
(k)
t = µ

(k)
t εq−2;

where µ(k)
t is such that ‖AVky

(k+1)
t − bδ‖2 = τ δ;

y
(k+1)
t = (RT

AR A + η
(k)
t RT

L R L)
−1(RT

AQ
T
Ab

δ + η
(k)
t RT

L Q
T
L ω

(k));

r = AT (AVky
(k+1)
t − bδ) + ηLT (LVky

(k+1)
t − ω

(k));

Reorthogonalize, if needed, r = r − VkV
T
k
r;

vnew = r/‖r‖; Vk+1 = [Vk, vnew];

Update (15) to obtain AVk+1 = Q AR A and LVk+1 = Q LR L ;

x
(k+1)
t = Vk+1y

(k+1)
t ;

end

xt+1 = x
(k+1)
t ;

Determine new permutation matrix Pt+1;

end

The iterations in the inner loop (the k-loop) of Algorithm 2 are terminated as soon as two consecutive approximate 
solutions are sufficiently close, i.e., as soon as (20) holds. Then a new ordering of the entries of the available approximate 
solution x(k+1) (i.e., a new permutation matrix Pt+1) is determined, and the computations with Algorithm 2 are continued. 
The outer loop is exited as soon as two consecutive approximate solutions xt+1 and xt are sufficiently close, i.e., as soon as

‖xt − xt+1‖2

‖xt‖2
≤ 10−4. (26)

This stopping criterion is analogous to (20).

4. Numerical examples

This section presents two image restoration examples that compare Algorithms 1 and 2. The examples illustrate that 
using the ordering of the entries of the computed solution described in Section 3 improves the quality of the computed 
restorations, when compared with the standard ordering of Algorithm 1 of Section 2.

The error e = bδ − b in the vector bδ in (4) models zero mean white Gaussian noise. We refer to the quotient

σ :=
‖e‖

‖b‖

as the noise level, and set δ := σ‖b‖ in (7) and in Algorithms 1 and 2. We let τ = 1.01 in the algorithms. The parameter 
ε in (8) is set to one, as suggested in [3]. This choice of ε is appropriate for image restoration problems, because it is 
much smaller than the largest pixel value, which is 255. Choosing 0 < ε < 1 does not improve the quality of the computed 
restorations, but increases the number of iterations required by the Algorithms 1 and 2, and therefore increases the com-

puting time. Other applications of the minimization problem (4), such applications to linear regression described in [1], may 
require 0 < ε < 1 to furnish good results.
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Table 1

Example 4.1: Comparison of Algorithms 1 and 2 applied to the ℓ2-ℓ1 and ℓ2-ℓ0.5 models for the restoration of MRI test images that have 
been corrupted by motion blur and Gaussian noise.

Noise Iteration number µ Relative error CPU time

% Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

ℓ2-ℓ0.5

0.01 106 186 4.9 · 10−1 7.0 · 10−1 1.10 · 10−1 1.02 · 10−1 4.99 · 101 3.80 · 101

0.001 181 157 1.9 · 10−2 6.6 · 10−3 5.25 · 10−2 4.63 · 10−2 2.26 · 102 7.59 · 101

ℓ2-ℓ1

0.01 74 186 9.7 · 10−3 7.0 · 10−1 1.20 · 10−1 1.03 · 10−1 1.06 · 102 2.94 · 101

0.001 181 186 6.0 · 10−4 8.2 · 10−2 6.57 · 10−2 4.80 · 10−2 1.49 · 102 6.03 · 101

The initial regularization matrix L in the algorithms is (23). We set the maximal number of iteration with Algorithm 1

and the maximal number of inner iterations with Algorithm 2 to 30, and the maximal number of outer iterations in the 
latter algorithm to 6. These choices do not affect the quality of the computed restorations significantly. In all examples we 
let the columns of V0 ∈ Rn×k0 in Algorithms 1 and 2 be the basis for the initial Krylov subspace

Kk0(A
T A, ATb0) = span{ATb0, (A

T A)AT b0, . . . , (A
T A)k0−1ATb0} (27)

with k0 = 10, where b0 = bδ in Algorithm 1 or b0 = bt in Algorithm 2.

We measure the quality of the restored image, represented by the vector xcomp , with the relative restoration error

ek :=
‖xcomp − x̂‖2

‖̂x‖2
,

where the vector ̂x represents the desired blur- and noise-free image. The computational efficiency is measured in terms of 
the total CPU time required by the algorithms to satisfy the stopping criterion. All experiments were carried out in MATLAB 
with about 15 significant decimal digits on an Intel Core i5-3230M @ 2.60 GHz computer with 8 GB RAM.

Example 4.1. We consider the restoration of the test image MRI, which is represented by an array of 256 × 256 pixels. 
The model (9) with q = 1 or q = 0.5 is applied. The pixels of the available blur- and noise-contaminated image are stored 
column-wise in the vector bδ ∈ R2562 . The blurring matrix A ∈ R2562×2562 , which models horizontal motion blur is a block 
Toeplitz matrix defined by

A = I256 ⊗ B,

where ⊗ stands for the Kronecker product, and B = [bi j] ∈ R256×256 is a symmetric banded matrix with half-bandwidth 
d = 15 and nontrivial entries

bi j =

{
1

2d−1
, |i − j| ≤ d,

0, otherwise.

We show results for the noise levels ν = 1 · 10− j , j = 2, 3. The available blur- and noise-contaminated image is displayed 
in Fig. 1(a) with noise corresponding to the noise level ν = 1 · 10−3 . Fig. 1(b) shows the desired blur- and noise-free image, 
which is represented by the vector ̂x ∈ R2562 . It is assumed not to be known.

Table 1 displays the regularization parameter values µ determined by Algorithms 1 and 2, as well as the total number 
of iterations, the relative error ek in the computed restorations, and the CPU time required for two noise levels and two 
values of q. The iterations with the algorithms are terminated as soon as the stopping criteria (20) or (26) are satisfied. 
The table shows Algorithm 2 to determine approximations of x̂ of higher quality with less CPU time than Algorithm 1 for 
all noise levels. We remark that the CPU time is not proportional to the number of iterations, because the count of the 
latter includes both inner and outer iterations; the inner iterations for the zero-finder are less expensive than the outer 
iterations that expand the solution subspace. Figs. 1(c) and (d) display the computed approximate solutions determined by 
Algorithm 1 and Algorithm 2, respectively, when the noise level in the available image bδ is ν = 1 · 10−3 .

Fig. 2 compares the relative error as a function of the iteration number in restorations computed with Algorithms 1 and 
2 when q = 1 for the noise levels ν = 1 · 10− j , j = 2, 3. For the purpose of comparison, we do not stop the iteration when 
the stopping criterion (20) and (26) are satisfied. The figure shows Algorithm 2 to determine restorations of higher quality 
than Algorithm 1 for both noise levels. �

Example 4.2. We consider the restoration of the test image QRcode, which is represented by an array of 256 × 256 pixels. 
We let q = 0.5 or q = 1 in (9). The available image is represented by the vector bδ ∈ R2562 . It is corrupted by motion 
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Fig. 1. Example 4.1: (a) Available blur- and noise-contaminated MRI image represented by the matrix bδ , (b) desired image, restored images by (c) Algo-
rithm 1, and (d) Algorithm 2.

Fig. 2. Example 4.1: Convergence of the logarithm of the relative errors ek as a function of the iteration number k in restorations determined by the MM-

GKS-DP algorithm (Algorithm 1) and the RR-MM-GKS-DP algorithm (Algorithm 2) for ℓ2-ℓ1 minimization model with noise levels (a) ν = 1 · 10−2 and (b) 
ν = 1 · 10−3 .

blur and additive zero-mean white Gaussian noise. The blurring matrix A is of the same type as in Example 4.1 with half-
bandwidth d = 15. The contaminated image is determined similarly as in Example 4.1; it is shown in Fig. 3(a). Fig. 3(b) 
displays the desired blur- and noise-free image. It is represented by the vector ̂x ∈ R2562 , and is assumed not to be known. 
We computed restorations for the noise levels ν = 1 · 10− j , j = 1, 2, 3.

Table 2 displays the values of the regularization parameter µ determined by the algorithms, the relative errors ek in the 
computed approximate solutions, xcomp , determined by Algorithms 1 or 2, and the CPU times required. The iterations are 
terminated as soon as the stopping criteria (20) or (26) are satisfied. Table 2 shows Algorithm 2 to determine approximations 
of ̂x of higher quality with less CPU time than Algorithm 1. Figs. 3(c) and (d) depict the computed restorations determined 
by Algorithms 1 and 2, respectively, when ν = 1 · 10−3 .
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Table 2

Example 4.2: Comparison of Algorithms 1 and 2 with q = 0.5 and q = 1 applied to the restoration of the QRcode test images that are corrupted 
by motion blur and Gaussian noise.

Noise Iteration number µ Relative error CPU time

% Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

ℓ2-ℓ0.5

0.1 13 40 1.2 · 10−2 4.9 · 10−1 3.02 · 10−1 2.47 · 10−1 5.25 · 101 2.52 · 101

0.01 91 34 6.8 · 10−3 4.9 · 10−1 1.51 · 10−1 1.83 · 10−2 1.06 · 102 3.23 · 101

0.001 166 34 3.3 · 10−3 7.0 · 10−1 1.24 · 10−1 5.60 · 10−3 1.20 · 102 3.48 · 101

ℓ2-ℓ1

0.1 14 41 1.2 · 10−1 7.0 · 10−1 3.03 · 10−1 2.52 · 10−1 5.47 · 101 2.52 · 101

0.01 107 36 6.8 · 10−3 2.4 · 10−1 1.48 · 10−1 2.30 · 10−2 1.07 · 102 3.74 · 101

0.001 180 34 3.3 · 10−1 3.4 · 10−1 1.17 · 10−1 7.50 · 10−3 1.24 · 102 3.78 · 101

Fig. 3. Example 4.2: (a) Available blur- and noise-contaminated QRcode image represented by the vector bδ , (b) desired image, restored images determined 
by (c) Algorithm 1, and (d) Algorithm 2.

Fig. 4 shows log10(ek) for the restorations determined at step k of the algorithms with applied for noise level ν = 1 ·10−3

with q = 0.5 and q = 1 in (9). The figures show the RR-MM-GKS-DP algorithm (Algorithm 2) to determine restorations of 
higher quality than the MM-GKS-DP algorithm (Algorithm 1). �

5. Conclusions

We apply a method for determining the regularization matrix based on reordering of the unknowns, proposed by Novati 
and Russo [13] for Tikhonov regularization, in a restarted ℓ2-ℓq minimization method for image restoration. The restorations 
determined in this manner are of higher quality than when no reordering is carried out. The regularization parameter is 
determined by the discrepancy principle. This makes it possible to apply the method described without user interaction.
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Fig. 4. Example 4.2: The logarithm of the relative error ek as a function of the iteration number k for the MM-GKS-DP algorithm (Algorithm 1) and the 
RR-MMGKS-DP algorithm (Algorithm 2) with (a) q = 0.5 and (b) q = 1. The noise level in the contaminated image is ν = 1 · 10−3 .
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