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The truncated singular value decomposition (TSVD) is a popular method for solving linear 
discrete ill-posed problems with a small to moderately sized matrix A. This method 
replaces the matrix A by the closest matrix Ak of low rank k, and then computes the 
minimal norm solution of the linear system of equations with a rank-deficient matrix so 
obtained. The modified TSVD (MTSVD) method improves the TSVD method, by replacing 
A by a matrix that is closer to A than Ak in a unitarily invariant matrix norm and 
has the same spectral condition number as Ak . Approximations of the SVD of a large 
matrix A can be computed quite efficiently by using a randomized SVD (RSVD) method. 
This paper presents a novel modified truncated randomized singular value decomposition 
(MTRSVD) method for computing approximate solutions to large-scale linear discrete ill-
posed problems. The rank, k, is determined with the aid of the discrepancy principle, 
but other techniques for selecting a suitable rank also can be used. Numerical examples 
illustrate the effectiveness of the proposed method and compare it to the truncated RSVD 
method.

 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the computation of approximate solutions of large minimization problems of the form

min
x∈Rn

‖Ax − b‖2, (1.1)

where A ∈ Rm×n is a large matrix whose singular values gradually decay to zero without a significant gap. In particular, 
A is severely ill-conditioned and may be rank-deficient. Minimization problems (1.1) with a matrix of this kind often are 
referred to as discrete ill-posed problems. They arise, for example, from the discretization of linear ill-posed problems, such 
as Fredholm integral equations of the first kind with a smooth kernel. Throughout this paper ‖ · ‖2 denotes the Euclidean 
vector norm or the spectral matrix norm. We allow m ≥ n as well as m < n.
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The vector b ∈ Rm in (1.1) represents measured data that are contaminated by an error e ∈ Rm , which may stem from 
measurement or discretization errors. Let ̂b ∈ Rm denote the unknown error-free vector associated with b, i.e.,

b = b̂ + e. (1.2)

We will assume ̂b to be in the range of A, and that a fairly accurate bound for the relative error

‖e‖2

‖̂b‖2
≤ ǫ, (1.3)

in b is known. Then a regularized solution of (1.1) can be determined with the aid of the discrepancy principle; see below.

We are interested in computing an approximation of the solution ̂x of minimal Euclidean norm of the unknown error-free 
least-squares problem

min
x∈Rn

‖Ax− b̂‖2.

Let A† ∈ Rn×m denote the Moore-Penrose pseudoinverse of A. Then

x̂ = A †̂b. (1.4)

Because A has many positive singular values close to zero, the matrix A† is of very large norm, and the solution of the 
available least-squares problem (1.1), given by

x̌ = A†b = A†(̂b + e) = x̂+ A†e,

typically is dominated by the propagated error A†e, and then is meaningless. This difficulty can be mitigated by replacing 
the matrix A by a nearby matrix that does not have tiny positive singular values. This replacement commonly is referred to 
as regularization. One of the most popular regularization methods for discrete ill-posed problem (1.1) of small to moderate 
size is the truncated singular value decomposition (TSVD); see, e.g., [2,3,7]. Introduce the singular value decomposition

A = U�V ⊤, (1.5)

where U = [u1, u2, . . . , um] ∈ Rm×m and V = [v1, v2, . . . , vn] ∈ Rn×n are orthogonal matrices, the superscript ⊤ denotes 
transposition, and the nontrivial entries (known as the singular values) of the (possibly rectangular) diagonal matrix

� = diag[σ1,σ2, . . . ,σmin{m,n}] ∈ R
m×n (1.6)

are ordered according to

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σmin{m,n} = 0.

Here r is the rank of A. Define the matrix

�k = diag[σ1,σ2, . . . ,σk,0, . . . ,0] ∈ R
m×n

for k ≤ r by setting the singular values σk+1, σk+2, . . . , σmin{m,n} in (1.6) to zero. Then the matrix

Ak = U�kV
⊤ (1.7)

is a best rank-k approximation of A in any unitarily invariant matrix norm, such as the spectral and Frobenius norms. We 
have

‖Ak − A‖2 = σk+1, ‖Ak − A‖F =

√√√√
r∑

i=k+1

σi
2, 0 ≤ k ≤ r,

where ‖ · ‖F denotes the Frobenius norm, and we define A0 = 0 and σn+1 = 0.

The TSVD method replaces the matrix A in (1.1) by Ak . Let xk ∈ Rn denote the solution of minimal Euclidean norm of

min
x∈Rn

‖Akx− b‖2.

It is given by xk = A
†

k
b. The discrepancy principle prescribes that the truncation index k ≥ 0 in (1.7) be chosen as the smallest 

integer such that

‖Akxk − b‖2

‖̂b‖2
≤ τǫ, (1.8)
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where τ > 1 is a user-chosen constant that is independent of the bound ǫ in (1.3); see [3,7]. We will use the discrepancy 
principle in the computed examples reported in Section 4. However, other methods for determining k also can be used 
when no accurate estimate of ‖e‖ is available, such as the L-curve criterion and generalized cross validation; see, e.g., 
[2,7,11,12,14].

The modified truncated singular value decomposition (MTSVD) method proposed in [13] replaces the matrix Ak in (1.8)
by a matrix that (generally) is closer to A in a unitarily invariant matrix norm with the same condition number as Ak . This 
replacement often results in more accurate approximations of x̂ when the discrepancy principle is used to determine the 
truncation index k; see [13] for computed examples.

The TSVD and MTSVD methods are not suitable for application to the solution of large-scale discrete ill-posed problems 
(1.1) due to the high cost of evaluating the SVD of a large matrix A; see, e.g., [5, p. 493] for counts of arithmetic floating 
point operations. However, the computational effort can be reduced by computing an approximation of the singular value 
decomposition by a randomized method and applying the modified truncated singular value decomposition to the computed 
approximate SVD. This yields the modified truncated randomized singular value decomposition (MTRSVD).

In recent years several randomized algorithms have been proposed for computing approximate factorizations of a large 
matrix, such as an approximate SVD; see, e.g., Halko et al. [6]. These factorizations have been used to compute approximate 
solutions to ill-posed problems (1.1) by Tikhonov regularization; see, e.g., Jia and Yang [10] and Xiang and Zou [15,16].

It is the purpose of the present paper to discuss the use of a randomized singular value decomposition (RSVD) in 
conjunction with the MTSVD described in [13]. We refer to this scheme as the MTRSVD method. Our reason for regularizing 
by a truncated singular value decomposition instead of using Tikhonov regularization is that the former method is easier to 
implement. Moreover, we base our method on the MTSVD instead of on the standard TSVD, because the former typically 
yields approximations of the desired solution (1.4) of higher quality when the required singular vectors have been computed 
with high enough accuracy.

The remainder of this paper is organized as follows. Section 2 provides a brief review of the MTSVD, RSVD, and TRSVD 
methods. The proposed MTRSVD method is described in Section 3, where also its computational complexity and error 
bounds are presented. Section 4 shows several numerical examples that illustrate the efficiency of the MTRSVD method. 
Section 5 contains concluding remarks.

2. The MTSVD, RSVD, and TRSVD methods

2.1. The MTSVD method

We review the modified SVD (MTSVD) method introduced in [13]. First consider the TSVD method [3,7]. It replaces the 
matrix A in (1.1) by the matrix Ak in (1.8), and determines the least-squares solution of minimal Euclidean norm. We denote 
this solution by xk and assume that k ≤ r = rank(A). The vector xk can be expressed as

xk = A
†

k
b =

r∑

j=1

φ
(k)
j

u⊤
j b

σ j

v j,

where the u j and v j are columns of the matrices U and V in (1.5), respectively, and the filter factors φ(k)
j

are defined by

φ
(k)
j

=

{
1, 1 ≤ j ≤ k,

0, k < j ≤ r.

The condition number of Ak , given by

κ2(Ak) =
σ1

σk

, (2.1)

grows with k. The larger the condition number (2.1), the more sensitive the vector xk can be to the error e in b; see, e.g., 
[3,5,7] for discussions.

The MTSVD method in [13] gives a closest matrix Ãk̃ to A in the spectral or Frobenius norms with a specified smallest 
singular value σk . Define the decomposition

Ãk̃ = U �̃k̃V
⊤, (2.2)

where U and V are the orthogonal matrices in the SVD (1.5) of A, and the entries of �̃k̃ = diag[σ̃1, . . . , ̃σk, 0, . . . , 0] are 
given by

σ̃ j =

{
σ j, 1 ≤ j ≤ k,

σk, k < j ≤ k̃,
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where ̃k ≥ k is determined by the inequalities σ̃k ≥ σk/2 and σ̃k+1 < σk/2. It is shown in [13] that

‖A − Ãk̃‖2 < ‖A − Ak‖2, ‖A − Ãk̃‖F < ‖A − Ak‖F

when σk+1 > σk/2. Moreover,

κ2( Ãk̃) = κ2(Ak).

By replacing the matrix A in (1.1) by Ãk̃ in (2.2), we can get a more accurate approximation of the desired solution (1.4),

x̃̃k = Ã
†

k̃
b =

r∑

j=1

φ̃
(̃k)
j

u j
⊤b

σ j

v j

with filter factors

φ̃
(̃k)
j

=





1, 1 ≤ j ≤ k,

σ j/σk, k < j ≤ k̃,

0, k̃ < j ≤ r,

where we assume that ̃k ≤ r. The definition of ̃x̃k can be extended to allow k ≤ r.

2.2. The RSVD and TRSVD methods

Algorithm 1 describes the randomized SVD (RSVD) method considered in [6]. The decomposition determined by the 
algorithm can be used to compute a low-rank approximation of a matrix A ∈ Rm×n with m ≥ n. The index ℓ in the algorithm 
has to be chosen large enough. We let ℓ = ktarget + p, where ktarget ≪ min{m, n} is the required rank of the low-rank 
approximation of A when seeking to satisfy the discrepancy principle, and p is an over-sampling parameter. The choices of 
ktarget and p are illustrated in Section 4. In our analysis below, we set ktarget = k. Algorithm 1 computes an approximate 
SVD of A by computing an orthogonal matrix Q ℓ , whose range approximates that of Ak , in Step 3, and the SVD of a small 
matrix Bℓ in Step 5. We refer to [6] for more details.

Algorithm 1 (RSVD). Given A ∈ Rm×n(m ≥ n), compute an approximate SVD: A ≈ Ǔℓ�̌ℓ V̌
⊤
ℓ with Ǔℓ ∈ Rm×ℓ , �̌ℓ ∈ Rℓ×ℓ , and 

V̌ℓ ∈ Rn×ℓ , with 1 ≤ ℓ ≪ n.

1: Generate a Gaussian random matrix 	ℓ ∈ Rn×ℓ .

2: Form the matrix Yℓ = A	ℓ ∈ Rm×ℓ .

3: Compute the skinny QR factorization Yℓ = Q ℓRℓ , where Q ℓ ∈ Rm×ℓ has orthonormal columns and Rℓ ∈ Rℓ×ℓ is upper triangular.
4: Form the matrix Bℓ = Q ⊤

ℓ A ∈ Rℓ×n .

5: Compute the SVD of the small matrix Bℓ: Bℓ = W̌ℓ�̌ℓ V̌
⊤
ℓ .

6: Form the matrix Ǔℓ = Q ℓW̌ℓ ∈ Rm×ℓ . Then A ≈ Ǔℓ�̌ℓ V̌
⊤
ℓ .

Algorithm 2 describes the randomized SVD for a matrix A ∈ Rm×n with m < n. The algorithm is equivalent to applying 
Algorithm 1 to A⊤ .

Algorithm 2 (RSVD∗). Given A ∈ Rm×n(m < n), compute an approximate SVD: A ≈ Ǔℓ�̌ℓ V̌
⊤
ℓ with Ǔℓ ∈ Rm×ℓ , �̌ℓ ∈ Rℓ×ℓ , 

and V̌ ∈ Rn×ℓ , with 1 ≤ ℓ ≪m.

1: Generate a Gaussian random matrix 	ℓ ∈ Rℓ×m .

2: Form the matrix Yℓ = 	ℓA ∈ Rℓ×n .

3: Compute the skinny QR factorization Y⊤
ℓ = Q ℓRℓ , where Q ℓ ∈ Rn×ℓ has orthonormal columns and Rℓ ∈ Rℓ×ℓ is upper triangular.

4: Form the matrix Bℓ = AQ ℓ ∈ Rm×ℓ .

5: Compute the SVD of the small matrix Bℓ: Bℓ = Ǔℓ�̌ℓW̌
⊤
ℓ .

6: Form the matrix V̌ℓ = Q ℓW̌ℓ ∈ Rn×ℓ . Then A ≈ Ǔℓ�̌ℓ V̌
⊤
ℓ .

Algorithm 1 generates the approximation

Ǎℓ = Ǔℓ�̌ℓ V̌
⊤
ℓ (2.3)

of at most rank ℓ of A, where

Ǔℓ = [ǔ1, ǔ2, . . . , ǔℓ] ∈ R
m×ℓ, V̌ℓ = [v̌1, v̌2, . . . , v̌ℓ] ∈ R

n×ℓ,

and �̌k = diag[σ̌1, σ̌2, . . . , σ̌ℓ] ∈ Rℓ×ℓ with σ̌1 ≥ σ̌2 ≥ . . . ≥ σ̌ℓ ≥ 0. As mentioned above, ℓ is generally chosen some-

what larger than the smallest positive integer k that allows the discrepancy principle to be satisfied; cf. (1.8). Let 
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Ǔk = [ǔ1, ̌u2, . . . , ̌uk] ∈ Rm×k , V̌k = [v̌1, ̌v2, . . . , ̌vk] ∈ Rn×k , and �̌k = diag[σ̌1, σ̌2, . . . , σ̌k] ∈ Rk×k be submatrices of the ma-

trices in the decomposition (2.3). Then

Ǎk = Ǔk�̌k V̌
⊤
k (2.4)

is a best rank-k approximation of the matrix Ǎℓ . The following result gives an error bound for the TRSVD method.

Theorem 1. ([6]) Let Ǎk be the rank-k TRSVD approximation to A defined by (2.4). Then the approximation error is

||A − Ǎk||2 ≤ σk+1 + ||A − Q ℓQ
⊤
ℓ A||2. (2.5)

3. The MTRSVD method and error bounds

3.1. The MTRSVD method

This subsection describes a novel modified truncated randomized singular value decomposition (MTRSVD) method for 
solving large-scale discrete ill-posed problems (1.1). The following result gives a closest matrix to the matrix Ǎℓ in (2.3) in 
the spectral and Frobenius norms.

Theorem 2. Let Ǎℓ = Ǔℓ�̌ℓ V̌
⊤
ℓ be the approximate truncated SVD (2.3) of A, and let 1 ≤ k ≤ k̂ ≤ ℓ. A closest matrix ̂Ak̂ to the matrix 

Ǎℓ in the spectral and Frobenius norms with smallest singular value σ̌k is given by

Âk̂ = Ǔ k̂�̂k̂ V̌
⊤

k̂
, (3.1)

where the matrix Ǔ k̂ is made up by the first ̂k columns of the matrix Ǔℓ and the matrix V̌ k̂ is made up of the first ̂k columns of the 

matrix V̌ℓ . Moreover, the entries of ̂�k̂ = diag[σ̂1, ̂σ2, . . . , ̂σ̂k] ∈ Rk̂×̂k are given by

σ̂ j =

{
σ̌ j, 1 ≤ j ≤ k,

σ̌k, k < j ≤ k̂,

where ̂k is determined by the inequalities σ̌̂k ≥ σ̌k/2 and σ̌̂k+1 < σ̌k/2, and the σ̌ j are the singular values of Ǎℓ.

Proof. The proof is similar to the proof of [13, Theorem 2.3] and therefore is omitted. �

Remark 1. Let ℓ > k̂ and assume that σ̌k − σ̌̂k < σ̌k+1 and σ̌̂k+1 < σ̌k+1 . The latter inequalities impose conditions on the 
decay of the singular values σ̌k, σ̌k+1, . . . , σ̌̂k+1 and hold for many linear discrete ill-posed problems. Then

‖ Ǎℓ − Âk̂‖2 < ‖ Ǎℓ − Ǎk‖2, (3.2)

i.e., Âk̂ is a more accurate approximation of Ǎℓ in (2.3) than Ǎk . The inequality (3.2) follows from the observations that

‖ Ǎℓ − Âk̂‖2 = max{σ̌k − σ̌̂k, σ̌̂k+1}, ‖ Ǎℓ − Ǎk‖2 = σ̌k+1.

Moreover,

κ2( Âk̂) = κ2( Ǎk).

The matrix (3.1) can be used to determine a regularized approximate solution of (1.1).

Theorem 3. Let Ǎℓ = Ǔℓ�̌ℓ V̌
⊤
ℓ be the approximate partial SVD in (2.3) of A and let Âk̂ be a closest matrix defined by (3.1) with 

1 ≤ k ≤ k̂ ≤ ℓ. Then an approximate regularized solution of (1.1) is given by

x̂̂k =

ℓ∑

j=1

φ̂
(̂k)
j

ǔ⊤
j
b

σ̌ j

v̌ j, (3.3)

with the filter factors

φ̂
(̂k)
j

=





1, 1 ≤ j ≤ k,

σ̌ j/σ̌k, k < j ≤ k̂,

0, k̂ < j ≤ ℓ.
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Proof. Replacing A by Âk̂ in (1.1) yields

min
x∈Rn

‖ Âk̂x− b‖2.

The minimal-norm least-squares solution of this minimization problem is given by (3.3), which is an approximate regular-
ized solution of (1.1). �

We remark that the approximate solution (3.3) typically is of higher quality than the approximate solution determined 
by replacing A by Ãk and using the TRSVD method, because Âk̂ often approximates Ãℓ more accurately than Ǎk , cf. (3.2), 

provided that the singular values {σ̌ j}
k
j=1

and singular vectors {ǔ j, ̌v j }̂
k
j=1

of Ǎ approximate the corresponding singular 
values and vectors of A with sufficient accuracy.

Algorithm 3 implements an application of Theorem 3. The algorithm consists of three steps: Step 1 computes a partial 
approximate SVD of A by Algorithm 1, and Step 2 gives the rank-k TRSVD approximation of A by the TRSVD in (2.4). The 
regularization parameter k is determined by the discrepancy principle similarly as in [13]. Step 3 uses the MTSVD method 
in [13] to compute the approximate solution ̂x̂k of the large-scale linear discrete ill-posed problems (1.1). Algorithm 3 does 
not require m ≥ n.

Algorithm 3 (MTRSVD). Given A ∈ Rm×n , ℓ ≪ min{m, n}. Compute an approximate regularized solution of (1.1).

1: Compute the approximate partial RSVD Ǎℓ = Ǔ �̌V̌ ⊤ of A by Algorithm 1.

2: Compute the rank-k TRSVD approximation Ǎk of the matrix A by using the discrepancy principle.
3: Compute the approximate regularized solution ̂x̂k of (1.1) by (3.3). We assume that 1 ≤ k ≤ k̂ ≤ ℓ.

3.2. Computational complexity and error bounds

We discuss the computational complexity of the MTRSVD method. For a given matrix A ∈ Rm×n in (1.1) with m ≥ n ≫ ℓ, 
the count of arithmetic floating point operations (flops) for Algorithm 1 is about 4mnℓ, see [15], while the computation of 
the standard SVD of A is about 6mn2 +20n3 flops; see [5]. Other computations required by Algorithm 3 have negligible flop 
counts.

At the end of this section, we analyze the error in approximate solutions determined by Algorithm 3. We first need the 
following estimates shown in [6].

Lemma 1. Suppose that A ∈ Rm×n has the singular values σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n} ≥ 0. Let 	ℓ ∈ Rn×(k+p) be a Gaussian matrix 
with ℓ := k + p ≤ min{m, n} and p ≥ 4. Let the columns of Q ℓ form an orthonormal basis for the range of the matrix A	ℓ; see 
Algorithm 1. Then

‖A − Q ℓQ
⊤
ℓ A‖2 ≤ (1+ 6

√
ℓp log p)σk+1 + 3(ℓ� j>kσ

2
j )

1/2 (3.4)

with probability not less than 1 − 3p−p .

Under a mild assumption on p, the error bound (3.4) can be simplified to

‖A − Q ℓQ
⊤
ℓ A‖2 ≤ (1+ 9

√
ℓmin{m,n})σk+1;

see [6] for details.
The following result gives an error bound for the approximation determined by the MTRSVD method.

Theorem 4. Let ̂Ak̂ in (3.1) be an approximation of A determined by Algorithm 3. Then, using the notation of Lemma 1, the approxi-
mation error is bounded by

||A − Âk̂ ||2 ≤ σk+1 + σk + (1+ 6
√

ℓp log p)σk+1 + 3(ℓ� j>kσ
2
j )

1/2. (3.5)

Proof. We have

||A − Âk̂ ||2 ≤ ||A − Ǎk ||2 + || Ǎk − Âk̂ ||2, || Ǎk − Âk̂ ||2 = σk

by Theorem 1 and (3.4). �

Similarly as above, we can simplify the bound of Theorem 4 under mild condition on p to

‖A − Âk̂‖2 ≤ (2+ 9
√

ℓmin{m,n})σk+1 + σk. (3.6)

The following theorem gives a sharper bound than (3.6).
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Theorem 5. Let Âk̂ ∈ Rm×n in (3.1) with m ≥ n be an approximation of A determined by Algorithm 3. Then, using the notation of 
Lemma 1,

||A − Âk̂ ||2 ≤ σ̃k+1 + σk + (1+ 6
√

ℓp log p)σk+1 + 3(ℓ� j>kσ
2
j )

1/2, (3.7)

where ̃σk+1 is the (k + 1)st singular value of Q ⊤
ℓ A and satisfies

σm−q+1 ≤ σ̃k+1 ≤ σk+1

with the definition σn+1 = . . . = σm = 0.

The bound of Theorem 5 with obvious modifications also holds for m < n.

3.3. The randomized power method

The MTRSVD method as implemented by Algorithm 3 performs well when applied to many discrete ill-posed problems 
that arise from the discretization or linear ill-posed problems in one space-dimension. This is illustrated in Section 4. 
However, for some discrete ill-posed problems the MTRSVD method is not able to determine an approximation of the 
desired solution x̂ with satisfactory accuracy. This is true, for instance, for several discrete ill-posed problems that stem 
from the discretization of ill-posed problems in two space-dimensions.

Poor performance of the MTRSVD method, when the MTSVD method performs well, stems from the fact that the former 
method does not determine a suitable solution subspace. This difficulty with the MTRSVD method typically arises when 
the singular values of the matrix A in (1.1) decay to zero fairly slowly with increasing index. Slow convergence of the 
singular values to zero with increasing index is fairly common for linear discrete ill-posed problems in two or more space-
dimensions.

It is well known that approximations of the singular vectors determined by the RSVD method are less accurate when the 
singular values decay to zero slowly with increasing index number than when they decay to zero quickly. This behavior is 
suggested by Lemma 1.

The randomized power method described by Halko et al. [6] provides a remedy. This method determines the singular 
vectors of M = (AA⊤)q A for a small integer q ≥ 1. We observe that the matrix M has the same singular vectors as A, while 
its singular values σ j(M) = σ j(A)2q+1 , j = 1, 2, . . . , decay faster to zero than the singular values σ j(A) of A when the latter 
are small. Therefore, the RSVD method applied to M is able to determine the singular vectors associated with the largest 
singular values more accurately than when the RSVD method is applied to A. This observation suggests that we modify Step 
1 in Algorithm 3 by applying the RSVD method to the matrix M instead of to A.

It is undesirable to explicitly form the possibly very large matrix M . Algorithm 4 determines approximations of a partial 
SVD of A by applying a randomized power method to M without explicitly forming M . In the computed examples of 
Section 4, we set q = 1. Algorithm 4 assumes that m ≥ n. It is straightforward to modify the algorithm to be applicable 
when m < n.

Algorithm 4 (RSVD(q)). Given A ∈ Rm×n , m ≥ n, and ℓ ≪ n. Compute an approximation Ǎℓ = Ǔℓ�̌ℓ V̌
⊤ of a partial SVD of A, 

with Ǔℓ ∈ Rm×ℓ , �̌ℓ ∈ Rℓ×ℓ , and V̌ℓ ∈ Rn×ℓ by q steps of the power method applied to AA⊤ .

1: Generate a Gaussian random matrix 	ℓ ∈ Rn×ℓ .

2: Form the matrix Y0 = A	ℓ ∈ Rm×ℓ .

3: Compute the matrix Q (0)
ℓ ∈ Rm×ℓ with orthonormal columns by compact QR factorization Y0 = Q

(0)
ℓ R

(0)
ℓ .

4: for j = 1, 2, . . . , q do

5: Form the matrix Ỹ j = A⊤Q
( j−1)
ℓ , and compute the compact QR factorization Ỹ j = Q̃

( j)
ℓ R̃

( j)
ℓ with Q̃ ( j)

ℓ ∈ Rn×ℓ and R̃( j)
ℓ ∈ Rℓ×ℓ .

6: Form the matrix Y j = A Q̃
( j)
ℓ , and compute the compact QR factorization Y j = Q

( j)
ℓ R

( j)
ℓ with Q ( j)

ℓ ∈ Rm×ℓ and R( j)
ℓ ∈ Rℓ×ℓ .

7: end for

8: Let Q ℓ = Q
(q)
ℓ .

9: Form the matrix Bℓ = (Q ℓ)
⊤ A ∈ Rℓ×n .

10: Compute the SVD of the small matrix Bℓ: Bℓ = W̌ℓ�̌ℓ V̆
⊤
ℓ .

11: Form the matrix Ǔℓ = Q
(q)
ℓ W̌ℓ ∈ Rm×ℓ . Then Ǎℓ = Ǔℓ�̌ℓ V̌

⊤
ℓ is the desired approximate partial SVD of A.

When the singular vectors are not approximated accurately enough, the MTRSVD method may determine worse approx-
imations of the desired solution ̂x of (1.1) than the TRSVD method. This depends on that the error in the singular vectors 
often increases with their index, and the MTRSVD typically includes more (approximate) singular vectors in the computed 
solution than the TRSVD method. Thus, the MTRSVD method may include more poorly approximated singular vectors in 
the computed solution than the TRSVD method. Some computed examples in Section 4 with discrete ill-posed problems 
that arise from the discretization of ill-posed problems in two space-dimensions illustrate this. The good performance of 
the MTRSVD method reported in [13] is achieved, because the singular values and vectors are computed accurately in the 
examples reported there.
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The shortcoming of the MTRSVD method mentioned above can be remedied by applying the power method (Algorithm 4) 
to determine improved approximations of the singular vectors required to represent a regularized approximate solution of 
(1.1). Algorithm 5 describes such a method, which we refer to as MTRSVD(q).

Algorithm 5 (MTRSVD(q)). Given A ∈ Rm×n . Let ℓ = k + p ≪ min{m, n} and let q > 0 be a small integer. Compute an 
approximate regularized solution xk of (1.1).

1: When m ≥ n, compute an approximate partial SVD Ǎℓ = Ǔℓ�̌ℓ V̌
⊤ of A by q steps of power method applied to AA⊤ as described by Algorithm 4; an 

analogous algorithm can be applied when m < n.

2: Compute the rank-k (with k ≤ ℓ) TRSVD approximation Ǎk of Ǎ, where k is determined by the discrepancy principle.
3: Compute the approximate regularized solution ̂x̂k of (1.1) by (3.3) with the matrix ̃Aℓ in Theorem 3 replaced by Ǎℓ .

4. Numerical experiments

We first consider three linear discrete ill-posed problems that arise from the discretization of linear ill-posed problems 
in one space-dimension. These problems stem from Hansen’s Regularization Tools [8]. The performance of the MTRSVD and 
TRSVD methods are reported in Subsection 4.1. Linear discrete ill-posed problems that stem from the discretization of linear 
ill-posed problems in two space-dimensions are discussed in Subsection 4.2. One of the problems is from IR Tools [4]. The 
problems in this subsection illustrate that it may be necessary to apply the power method (Algorithm 4) to obtain useful 
approximations of the desired solution x̂ of (1.1). In all our examples m ≥ n; however, similar results are achieved when 
m < n.

4.1. Ill-posed problems in one space-dimension

All calculations reported in this subsection were carried out in MATLAB R2016b on a laptop computer with 2.2 GHz Intel 
Core i5-5200U CPU and 4 GB RAM.

We consider the test problems deriv2, gravity, and heat from [8]. They are linear discrete ill-posed problems, whose 
singular values converge to zero with increasing index slowly, quickly, and moderately fast, respectively. All examples arise 
from the discretization of Fredholm integral equations of the first kind of the form

b∫

a

κ(s, t)x(t)dt = g(s), c ≤ s ≤ d, (4.1)

with a smooth kernel κ . MATLAB functions in [8] are used to generate the matrices A and the exact solutions ̂x. We then 
determine b̂ = Âx, and the error contaminated right-hand data vector b in (1.1) by (1.2), where e models white Gaussian 
noise with different noise levels ǫ = {0.1, 0.01, 0.001}; cf. (1.3).

Let xk denote a computed approximation of the desired solution ̂x. The relative error is defined as

Err =
||xk − x̂||2

||̂x||2
. (4.2)

The parameter ℓ in our algorithms is important for the good performance of the randomized SVD method. We would 
like to choose ℓ in Algorithm 1 so that

‖(I − Q ℓQ
⊤
ℓ )A‖2

‖̂b‖2
≤ ǫ, (4.3)

where the matrix Q ℓ ∈ Rm×ℓ has random orthogonal columns, like in Algorithm 1, and ǫ is an available bound for the error 
e in b; cf. (1.3). Then, if σk+1 is small, ‖A − Ǎℓ‖2 is close to ǫ‖̂b‖2; cf. (2.5). Our numerical experience suggests that for 
many problems ℓ has to be somewhat larger than the smallest k-value, such that the discrepancy principle (1.8) holds.

Theorem 6. Let the matrix A ∈ Rm×n have the singular values σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n} ≥ 0, and let 1 ≤ ℓ ≤ min{m, n}. Then σℓ+1

is a lower bound for the expression in the left-hand side of (4.3), i.e., eℓ := ‖(I − Q ℓQ
⊤
ℓ )A‖2 ≥ σℓ+1 . This bound is achieved for 

Q ℓ = [u1, u2, . . . , uℓ], where the vectors u j are left singular vectors of A; cf. (1.5).

Proof. First let Q ℓ = Uℓ = [u1, u2, . . . , uℓ] ∈ Rm×ℓ , where the vectors u j are left singular vectors of A; cf. (1.5). Using the 
SVD (1.5) of A, we obtain

‖A − UℓU
⊤
ℓ A‖2 = ‖U�V ⊤ − UℓU

⊤
ℓ U�V ⊤‖2 = ‖� − U⊤UℓU

⊤
ℓ U�V ⊤‖2 = σℓ+1.
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Fig. 1. Example 4.1: Approximation errors ek = ||(I − Q kQ
⊤
k

)A||2 for random matrix Q k ∈ Rm×k with orthonormal columns (green jagged graph) and the 
(k + 1)st singular value of A ∈ R200×200 (red smooth graph), which is a lower bound for ek , as functions of k. The graphs show the logarithm in base 10 of 
these quantities for the test problems (a) deriv2, (b) gravity, and (c) heat. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Let B = U⊤UℓU
⊤
ℓ U�V⊤ ∈ Rm×n . Then B is of rank at most ℓ and has the singular value decomposition B = Ũ �̃Ṽ⊤ with

�̃ = diag[σ̃1, σ̃2, . . . , σ̃min{m,n}], σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃min{m,n} ≥ 0

and σ̃ j = 0 for j ≥ ℓ. It follows from [9, Theorem 3.4.5] and the Fan dominance theorem contained in [9, Corollary 3.5.9]
that

‖A − B‖2 ≥ ‖� − �̃‖2 = max{ max
1≤ j≤ℓ

|σ j − σ̃ j|,σℓ+1}.

This shows the theorem. �
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Table 1

Example 4.1: Comparison of CPU times (in seconds) and relative errors for the MTRSVD, TSVD, MTSVD, and TRSVD 
methods for matrices A ∈ Rn×n of different sizes n and for three noise levels ǫ .

Method ǫ = 0.1 ǫ = 0.01 ǫ = 0.001

Time Err Time Err Time Err

n = 1000

TSVD 0.727 0.3451 0.734 0.2347 0.723 0.1608

MTSVD 0.729 0.3364 0.735 0.2203 0.724 0.1480

TRSVD 0.031 0.3461 0.033 0.2342 0.044 0.1512

MTRSVD 0.033 0.3364 0.035 0.2191 0.046 0.1457

n = 2500

TSVD 12.463 0.3392 12.141 0.2165 11.835 0.1503

MTSVD 12.464 0.3174 12.143 0.1999 11.837 0.1331

TRSVD 0.111 0.3188 0.104 0.2084 0.142 0.1480

MTRSVD 0.113 0.2878 0.106 0.1862 0.145 0.1426

n = 20000

TSVD – – – – – –

MTSVD – – – – – –

TRSVD 2.788 0.282 2.291 0.1821 4.022 0.1208

MTRSVD 2.981 0.2523 2.373 0.1719 4.100 0.1117

Fig. 1 displays σk+1 , the (k + 1)st largest singular value of A (red smooth graphs), and the quantity ek of Theorem 6

(green jagged graphs) as functions of k for three linear discrete ill-posed problems. The latter graphs are jagged, because 
the matrix Q k has random orthonormal columns. The figure illustrates that in order for the inequality (4.3) to hold, the 
parameter ℓ has to be larger than the smallest k such that σk+1 ≤ ǫ .

Let ktarget be the smallest k-value so that the discrepancy principle (1.8) is satisfied. We seek to choose ℓ in Algorithm 1

that is somewhat larger than ktarget , i.e., we let ℓ = ktarget + p for some moderate positive integer p.
The value ktarget depends both on the problem being solved and on the size of ǫ , and is rarely known in advance. 

In practice, ℓ is often determined in an adaptive way, i.e., we seek to determine a computed solution that satisfies the 
discrepancy principle and check whether (4.3) holds. The parameter ℓ usually is not determined very carefully, because 
using an ℓ-value that is somewhat larger than necessary does not reduce the accuracy in the computed solution and the 
additional cost of such a choice of ℓ often is negligible. Therefore, adaptive methods for selecting ℓ often start with a fairly 
large initial value of ℓ, and then increase ℓ, if necessary, with not very small “steps”.

The determination of a suitable ℓ is not the main focus of this paper. We therefore, for simplicity, in our experiments 
choose fairly large values of ℓ. In this subsection, we set ℓ = 120 when ǫ = 0.001, and let ℓ = 70 when ǫ = 0.1 or ǫ = 0.01.

We report the CPU time required in seconds (CPU) and the relative error in the computed approximate solution (4.2)
(Err) for each method and several noise levels. To gain insight into the average behavior of the solution methods, we report 
for every example the average of the relative errors in the computed approximate solutions xk over 100 runs for each noise 
level, with exception for experiments with n = 20000. The latter results are from a single trial.

Example 4.1. Consider the Fredholm integral equations of the first kind (4.1) with

κ(s, t) =

{
s(t − 1), s < t,

t(s − 1), s ≥ t,
x(t) = t, g(s) =

s3 − s

6
,

and a = c = 0, b = d = 1. We use the MATLAB code deriv2 from [8] to generate the matrix A ∈ Rn×n for n ∈
{1000, 2500, 20000}. The code also generates the desired solution x̂ ∈ Rn . We let e ∈ Rn model white Gaussian noise, 
scaled such that ‖e‖ = ǫ , and determine the “available” error-contaminated data vector b using (1.2).

Table 1 presents CPU times and relative errors for the MTRSVD method and compares this method to the TSVD, MTSVD, 
and TRSVD methods for matrices A ∈ Rn×n for n ∈ {1000, 2500, 20000} and noise levels ǫ ∈ {0.1, 0.01, 0.001}. The table 
shows the CPU time for MTRSVD to be lower than for the TSVD and MTSVD methods, and the relative errors achieved 
with the MTRSVD method to be smaller than those for the TRSVD method. When n is large, say n = 20000, the TSVD and 
MTSVD cannot be evaluated on the laptop computer used for the experiments in this subsection, while the MTRSVD method 
performs well. The table entries for the TSVD and MTSVD methods for n = 20000 therefore are marked by −.

Fig. 2 displays the exact and computed approximate solutions determined by the MTSVD and MTRSVD methods for 
n = 2500 and noise level ǫ = 0.001. The approximate solution determined by the MTRSVD method shown in Fig. 2(b) is 
closer to the exact solution than the approximate solution computed by MTSVD and depicted in Fig. 2(a). Table 1 and Fig. 2
illustrate the benefit of using the MTRSVD method. �

Example 4.2. This test example uses the MATLAB code gravity in [8] to determine the matrix A ∈ Rn×n and the desired 
solution x̂ ∈ Rn . The error vector and error-contaminated data vector b ∈ Rn are generated similarly as in Example 4.1. 
Table 2 displays the CPU time (in seconds) and the relative errors in the approximate solutions computed by the MTRSVD, 
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Fig. 2. Example 4.1: Exact solution and approximate solutions computed by (a) MTSVD and (b) MTRSVD for n = 2500 and noise level ǫ = 0.001.

Table 2

Example 4.2: Comparison of CPU times and relative errors using MTRSVD, TSVD, MTSVD, and TRSVD for different 
matrix sizes n and noise levels ǫ .

Method ǫ = 0.1 ǫ = 0.01 ǫ = 0.001

Time Err Time Err Time Err

n = 1000

TSVD 0.655 0.0753 0.612 0.0322 0.617 0.0144

MTSVD 0.657 0.0676 0.614 0.0276 0.618 0.0122

TRSVD 0.032 0.0752 0.031 0.0318 0.031 0.0146

MTRSVD 0.034 0.0678 0.033 0.0275 0.032 0.0123

n = 2500

TSVD 10.807 0.0410 10.713 0.0289 10.779 0.0136

MTSVD 11.808 0.0338 10.714 0.0208 10.780 0.0121

TRSVD 0.097 0.0612 0.103 0.0195 0.110 0.0143

MTRSVD 0.099 0.0536 0.105 0.0176 0.112 0.0110

n = 20000

TSVD – – – – – –

MTSVD – – – – – –

TRSVD 2.361 0.0613 2.354 0.0217 2.221 0.0095

MTRSVD 2.447 0.0554 2.439 0.0201 2.314 0.0074

TSVD, MTSVD, and TRSVD methods for problems of different sizes and for three noise levels. Table 2 shows the MTRSVD 
method to require less CPU time than the TSVD and MTSVD methods, and determines an approximate solution with a 
smaller relative error than TRSVD for most noise levels and problem sizes. Again, when n is large, such as n = 20000, the 
TSVD and MTSVD methods cannot be used.

Fig. 3 displays the exact and computed approximate solutions determined by the MTSVD and MTRSVD methods for 
n = 2500 and noise level ǫ = 0.001. The approximate solution determined by MTRSVD shown in Fig. 3(b) is seen to be 
closer to the exact solution ̂x than the approximate solution computed by MTSVD depicted in Fig. 3(a). Table 2 and Fig. 3
illustrate the benefit of using the MTRSVD method. �

Example 4.3. This example arises from the discretization of a first kind Volterra integral equation on the interval [0, 1] with 
a convolution kernel. The MATLAB code heat in [8] is used to generate the matrix A ∈ Rn×n and the desired solution ̂x. The 
noise vector e ∈ Rn and the error-contaminated data vector b ∈ Rn are generated analogously as in the previous examples. 
Table 3 compares the CPU times and relative errors for the MTRSVD, TSVD, MTSVD, and TRSVD methods for problems of 
different sizes n and with different noise levels. Fig. 4 displays ̂x and approximate solutions computed by the MTSVD and 
MTRSVD methods for n = 2500 and noise level ǫ = 0.001. The MTRSVD method is seen to be competitive both with regard 
to accuracy and CPU time. �
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Fig. 3. Example 4.2: Exact solution x̂ and approximate solutions computed by (a) MTSVD and (b) MTRSVD for n = 2500 and noise level ǫ = 0.001.

Table 3

Example 4.3: Comparison of CPU times and relative errors using MTRSVD, TSVD, MTSVD, and TRSVD for different 
sizes and noise levels.

Method ǫ = 0.1 ǫ = 0.01 ǫ = 0.001

Time Err Time Err Time Err

n = 1000

TSVD 0.663 0.2504 0.652 0.1048 0.688 0.0296

MTSVD 0.664 0.2132 0.653 0.0746 0.689 0.0223

TRSVD 0.030 0.2479 0.032 0.0999 0.031 0.0276

MTRSVD 0.032 0.2107 0.035 0.0628 0.034 0.0228

n = 2500

TSVD 10.800 0.1845 10.872 0.0703 10.808 0.0265

MTSVD 10.802 0.1461 10.873 0.0575 10.810 0.0193

TRSVD 0.098 0.1894 0.106 0.0570 0.130 0.0264

MTRSVD 0.100 0.1536 0.109 0.0444 0.133 0.0218

n = 20000

TSVD – – – – – –

MTSVD – – – – – –

TRSVD 2.905 0.1385 2.377 0.0416 2.686 0.0167

MTRSVD 2.981 0.1120 2.458 0.0279 2.766 0.0138

We conclude this subsection with a comment on the bounds furnished by Theorems 4 and 5 for the above examples. 
For all examples, the right-hand sides (3.5) and (3.7) are close. However, these bounds are far from sharp. They are about a 
factor 10 to 100 larger than the left-hand side of (3.5).

4.2. Ill-posed problems in two space-dimensions

All examples in this subsection are solved using MATLAB R2019b on a laptop computer with 1.4 GHz Dual-Core Intel 
Core i5 and 4 GB RAM. The first example is an image deblurring problem from IR Tools [4] and the second example is a dis-
cretization of a Fredholm integral equation of the first kind in two space-dimensions. The discretized problem is determined 
with the aid of the code baart from [8]. The examples illustrate the performance of Algorithm 5 for q = 0 and q = 1.

For the examples of this subsection, the choice of the subspace dimension ℓ requires some attention. We will use 
different ℓ-values for different methods when necessary. A method may require ℓ to be quite large to be able to satisfy the 
discrepancy principle, and we do not want to use the same large value of ℓ for the other methods if this is not needed, 
because this would make the latter methods unnecessarily slow. Similarly as in the previous subsection, we determine the 
required ℓ-values only roughly; if a certain ℓ-value is found not to be large enough to be able to satisfy the discrepancy 
principle, then we generously increase ℓ in steps of several hundred or even a thousand until we are able to satisfy the 
discrepancy principle. The specific ℓ-value used for each example and method is stated in the tables. We also tabulate the 
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Fig. 4. Example 4.3: Exact solution x̂ and approximate solutions computed by (a) MTSVD and (b) MTRSVD for n = 2500 and noise level ǫ = 0.001.

Table 4

Example 4.4: Comparison of CPU times, relative errors, and truncation index values of the TSVD, MTSVD, 
TRSVD(1), and MTRSVD(1) methods applied to the restoration of speckle blur and noise contaminated images. 
When n = 4900, we let ℓ = 3000 and ℓ = 4000 for ǫ = 0.01 and ǫ = 0.001, respectively; when n = 10000, we let 
ℓ = 6000 and ℓ = 7000 for the noise levels ǫ = 0.01 and ǫ = 0.001, respectively.

Method ǫ = 0.01 ǫ = 0.001

Time Err k or k̂ Time Err k or k̂

n = 4900

TSVD 124.4375 0.7688 2 88.9597 0.7698 2

MTSVD 124.4521 0.7688 2 88.9643 0.7698 2

TRSVD(1) 76.1313 0.2264 1763 108.1081 0.1586 3289

MTRSVD(1) 76.494 0.2124 2484 108.1686 0.1483 3521

n = 10000

TSVD 917.3022 0.7733 2 834.3533 0.7686 2

MTSVD 917.4021 0.7733 2 834.3971 0.7686 2

TRSVD(1) 494.9429 0.2187 3050 713.3095 0.1411 5890

MTRSVD(1) 495.5029 0.1962 4848 713.6283 0.1288 6695

truncation index for TSVD and TRSVD, denoted by k, as well as the truncation index for MTSVD and MTRSVD, denoted by ̂k. 
These truncation indices may depend on the subspace dimension ℓ; a larger value of ℓ may decrease the relative error (4.2)
as well as the truncation indices k and ̂k.

MTRSVD(1) in the table denotes Algorithm 5 with q = 1; the method MTRSVD(0) stands for the basic MTRSVD method 
without power iteration. All the results are averages based on 30 experiments unless otherwise specified. �

Example 4.4. This example uses the IR Tools package [4]. We blur an image of the Hubble space telescope included in the 
package (of different sizes, 70 × 70 and 100 × 100 pixels) with medium speckle blur or severe motion blur. The image sizes 
correspond to n = 4900 and n = 10000, respectively. Zero boundary conditions are imposed. These boundary conditions 
are appropriate due to the black background of the image. The blurring matrix A generated by IR Tools is a psfMatrix
object for the blur considered. These objects have many favorable features and can be convenient to apply. However, in this 
example, we convert the object determined by IR Tools to a matrix A. This allows us to compute the SVD of the blurring 
matrix with the MATLAB function svd. The evaluation of the SVD of a psfMatrix object is not possible. We do not exploit 
any structure of A in these computations. The timings therefore are representative for general matrices. Moreover, matrix-

block-vector products can be evaluated quite efficiently on many computers (by the use of level 3 BLAS), while psfMatrix

objects only allow multiplication by one vector at a time.

The exact blurred Hubble space telescope image is contaminated by white Gaussian noise with noise levels ǫ ∈

{0.01, 0.001}.
Table 4 demonstrates the performance of the methods TRSVD(1) and MTRSVD(1) with one step of power iteration when 

applied to problems of various sizes and noise levels, and compares these methods to the standard TSVD and MTSVD meth-
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Fig. 5. Example 4.4: (a) True image (70 × 70 pixels, i.e., n = 4900), (b) blur- and noise-contaminated image (noise level ǫ = 0.01), (c) speckle blur point 
spread function displayed on a square root scale, and (d) restored image determined by MTRSVD(1).

ods. Fig. 5 provides visual illustrations. We note that the values of the parameter ℓ used for the computations for Table 4

and Fig. 5 are quite large. This is necessary to achieve fairly accurate restorations. Smaller values of ℓ yield restorations of 
worse quality.

Table 5 compares the basic MTRSVD method without power iteration, denoted by MTRSVD(0), to the basic MTRSVD 
method complemented by j steps of power iterations. The latter schemes are denoted by MTRSVD( j). We found that at 
most a few steps of power iteration is necessary, and typically we only apply at most one step. This table also illustrates 
that power iterations are necessary when the singular values decay slowly with increasing index. The left-hand side of 
Table 5 shows results for a fairly small speckle blur matrix. The MTRSVD(0) method does not give as accurate restorations 
as TRSVD(0), because the former method uses more error-contaminated singular vectors than the latter. The right-hand side 
of the table shows results for motion blur. The singular values for this blur decay to zero slower with increasing index 
than for speckle blur. Therefore, more singular vectors are required to determine a restoration that satisfies the discrepancy 
principle. The MTRSVD(0) method is seen to perform much worse than TRSVD(0), since the former method uses more error 
contaminated singular vectors to construct the restoration.

Table 6 supplements Table 5 and illustrates that when matrix size increases, it becomes even more important to apply 
power iterations. Results in this table show averages of 10 experiments.

The MTRSVD method seeks to determine a partial SVD of matrix A. Fig. 6 displays the exact singular values and the 
approximate singular values computed by MTRSVD(1) for a speckle medium blurring matrix of size n = 2500 and noise level 
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Table 5

Example 4.4: Comparison of CPU times, relative errors, and truncation index values for TRSVD and MTRSVD with 
different numbers of power iterations, q. Left columns are results for speckle blur and right columns are for 
motion severe blur. In all experiments n = 2500 and ǫ = 0.1.

Method Speckle blur n = 2500 Motion blur n = 2500

Time Err k or k̂ Time Err k or k̂

q = 0, ℓ = 1500

TRSVD(0) 6.3056 0.3145 487 4.5657 0.3803 527.8667

MTRSVD(0) 6.3258 0.3299 1021 4.5788 0.5745 1078

q = 1, ℓ = 1000

TRSVD(1) 4.1258 0.3183 410.6333 3.0376 0.3539 290.4667

MTRSVD(1) 4.1432 0.3169 921.8333 3.046 0.3431 580.0333

q = 2, ℓ = 1000

TRSVD(2) 5.7218 0.3184 409.0333 4.0023 0.3538 290.4

MTRSVD(2) 5.7407 0.3162 940.2667 4.0107 0.3440 591.1333

q = 3, ℓ = 1000

TRSVD(3) 7.3551 0.3184 408.9667 5.2317 0.3538 290.4333

MTRSVD(3) 7.3745 0.3164 949.8667 5.2403 0.3442 593.6

Table 6

Example 4.4: Comparison of CPU times, relative errors, and truncation index values for the TRSVD(0), MTRSVD(0), 
TRSVD(1) and MTRSVD(1) methods applied to the restoration of images that have been contaminated by severe 
motion blur and noise.

Method Motion blur n = 4900 Motion blur n = 10000

Time Err k or k̂ Time Err k or k̂

q = 0, ℓ = 2500 q = 0, ℓ = 4000

TRSVD(0) 36.2741 0.3761 838.2 178.9941 0.4148 1560.5

MTRSVD(0) 36.3312 0.5664 1614.7 179.4288 0.6714 2865.6

q = 1, ℓ = 1500 q = 1, ℓ = 3000

TRSVD(1) 22.1102 0.3416 438.5 167.3661 0.3338 738

MTRSVD(1) 22.1417 0.3296 875.4 167.623 0.3251 1483.6

Fig. 6. Example 4.4: Exact singular values and approximate singular values computed by MTRSVD(1): (a) The first 30 singular values: The exact singular 
values are marked by (red) stars, while approximate ones are marked by (blue) circles. (b) The first 300 singular values: The exact singular values are on a 
(blue) continuous curve, while approximate ones are marked by (red) dots.

ǫ = 0.01. Fig. 6(a) shows the first 30 singular values and Fig. 6(b) depicts the first 300. We can see that the approximate 
singular values are fairly accurate approximations. �
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Table 7

Example 4.5: Comparison of CPU times, relative errors, and truncation index values for TRSVD(q) and MTRSVD(q) 
and q ∈ {0, 1}. The order of the matrix A is n. For all experiments, we let ℓ = 100.

Method ǫ = 0.1 ǫ = 0.001

Time Err k or k̂ Time Err k or k̂

n = 2500

TRSVD(0) 0.0315 0.3869 5 0.108 0.1999 11

MTRSVD(0) 0.0324 0.3707 6 0.1094 0.1809 13

TRSVD(1) 0.1672 0.3716 6 0.2406 0.1783 12

MTRSVD(1) 0.1677 0.3708 6 0.2418 0.1731 13

n = 10000

TRSVD(0) 1.5632 0.3654 6 1.7336 0.1736 13

MTRSVD(0) 1.5639 0.3654 6 1.7353 0.1727 13

TRSVD(1) 2.9248 0.3646 6 3.5356 0.1718 13

MTRSVD(1) 2.9256 0.3646 6 3.537 0.1708 13

Example 4.5. This example is constructed using the baart test problem from [8], which stems from the discretization of a 
Fredholm integral equation of the first kind in one space-dimension discussed in [1]. Let Ã ∈ Rm×m be a matrix from the
baart test problem, and define

A = Ã ⊗ Ã ∈ R
m2×m2

,

where ⊗ denotes the Kronecker product. The singular values of A are products of the singular values of Ã. Since the latter 
singular values decay to zero rapidly with increasing index number, so do the singular values of A. In fact, A has only a 
few significant nonvanishing singular values, which well serves the purpose of illustrating that the basic MTRSVD method 
without power scheme may perform well for 2D problems when the singular values decay rapidly.

The true solution, ̂x, is the tensor product of the exact solution of the baart problem with itself. The noise-free right-
hand side b̂ equals Âx. The noise-contaminated vector b in (1.1) is defined by (1.2), where e models Gaussian white noise 
with different noise levels ǫ ∈ {0.1, 0.01, 0.001}. For all experiments in this example, we set ℓ = 100.

Table 7 compares the performance TRSVD(q) and MTRSVD(q) for q ∈ {0, 1}. Letting q = 1 gives computed approximations 
of ̂x of higher accuracy and computing cost than q = 0. However, differently from the situation in Example 4.4, q = 0 gives 
quite accurate results, especially for small noise levels and large problem sizes. �

5. Conclusion

The application of truncated random singular value decomposition methods to the solution of large-scale linear discrete 
ill-posed problems is discussed. Several methods are described and compared. The choice of method should depend on how 
quickly the singular values of the problem decay to zero with increasing index. When the singular values decay slowly, 
application of one step of power iteration is found to be beneficial, because this enhances the accuracy of the computed 
approximate singular vectors. Numerical examples illustrate the performance the methods discussed.
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