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This paper discusses several transform-based methods for solving linear discrete ill-posed
problems for third order tensor equations based on a tensor-tensor product defined by
an invertible linear transform. Linear transform-based tensor-tensor products were first
introduced in Kernfeld et al. (2015) [16]. These tensor-tensor products are applied to
derive Tikhonov regularization methods based on Golub-Kahan-type bidiagonalization and
Arnoldi-type processes. GMRES-type solution methods based on the latter process also are
described. By applying only a fairly small number of steps of these processes, large-scale
problems are reduced to problems of small size. The number of steps required by these
processes and the regularization parameter are determined by the discrepancy principle.
The data tensor is a general third order tensor or a tensor defined by a laterally oriented
matrix. A quite general regularization tensor can be applied in Tikhonov regularization.

Tensor Tikhonov regularization Applications to color image and video restorations illustrate the effectiveness of the

proposed methods.
© 2021 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction
We are concerned with the solution of large-scale least squares problem of the form

min  ||Ax, X —B|p, AeRY™M BeROP . pq, (1.1)
X cRmxpxn

with a third order tensor .4, whose singular tubes decay rapidly in the Frobenius norm with increasing index. In particular,
A has ill-determined tubal rank. Many of its singular tubes, which are analogues of the singular values of a matrix, are
nonvanishing with tiny Frobenius norm of different orders of magnitude. This makes (1.1) a linear discrete ill-posed problem;
cf. Definition 2.2 below, in which the tensor A specifies the model, the tensor 3 represents available data, e.g., a degraded
color image, and the operator %; is a tensor-tensor product defined in a transformed domain for an invertible linear operator
L. The *; product between A and X is computed by moving both tensors into the transform domain, evaluating n matrix-
matrix products in the transform domain, and computing the inverse transform of the result; cf. Definition 2.1 below. This
kind of tensor-tensor product was first described by Kernfeld et al. [16] and has found applications in data compression [18],
tensor neural networks [25], image deblurring [16], as well as image recovery by low-rank completion [22]. An extension of
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the %, product to k-order tensors for k > 3 is described by Han [11]. Further details on the operator *; will be provided in
Section 2. Throughout this paper, || - || denotes the Frobenius norm. For A = [aijl<]f'fél1- we have

IAllF =

In applications of interest to us, such as image and video processing, the data tensor B represents measured data that
are contaminated by a measurement error £ € R{*P*" je,

B:Btrue +¢&,

where Byue € RE*P*" denotes the unknown error-free data tensor. We will assume that the unavailable system of equations

A xp X = Birue (1.2)

is consistent and let Xiue € R™*P*" denote its solution of minimal Frobenius norm. Our aim is to determine an accurate
approximation of Xyye given A and B in (1.1). The consistency of (1.2) makes it possible to apply the discrepancy principle
for this purpose; see below.

Straightforward solution of (1.1) generally does not yield a meaningful approximation of Xie due to propagation and
severe amplification of the error £ in B into the solution of (1.1). We introduce Tikhonov regularization to reduce this
difficulty, i.e., instead of solving (1.1), we solve the penalized least squares problem

min A% X — B2 + p7! E*Xz}. 13
oomin A X = BIG 4 u IE L X (13)
The tensor £ € RS*™*" js a regularization operator and w > 0 is a regularization parameter. Let A'(M) denote the null
space of the tensor M under %, and assume that £ is such that

NA) NN(L) ={0},

where O € R™*P*" denotes the null tensor. Then (1.3) has a unique solution, X}, for any u > 0.
We will use the discrepancy principle to determine the regularization parameter. Its application requires that a bound

I€]F <6 (1.4)

is known. The discrepancy principle prescribes that u > 0 be determined so that the solution X, of (1.3) satisfies the
equation

AL Xy — Bl =né, (15)

where n > 1 is a user-specified constant that is independent of § > 0; see Engl et al. [8] for discussions on this approach to
determine the regularization parameter ©. We remark that other techniques, such as generalized cross validation [9,10] and
the L-curve criterion [12,20,26], also may be used to determine the regularization parameter, in particular, when a bound
(1.4) for the error tensor is not known.

We also will discuss the approximate solution of (1.1) by GMRES-type iterative methods when A € R™™x" and B €
R™M*PxN_Regularization is achieved by truncating the iterations sufficiently early. The discrepancy principle is used to decide
how many iterations to carry out. The GMRES method for the solution of linear discrete ill-posed problems (1.1), when A is
a square matrix and B a vector, was first described in [4] and is more recently investigated by Neubauer [23]. A variant of
the GMRES solution method is discussed in [24].

This paper focuses on tensor-tensor products defined with an invertible linear transform L. These products were intro-
duced by Kernfeld et al. [16] and are denoted by ;. The tensor t-product defined in the seminal work by Kilmer and Martin
[19] is a special case of the #; product. A disadvantage of the t-product is that its efficient evaluation requires the use of
the discrete Fourier transform (DFT), whose implementation demands complex arithmetic. The *; product can be chosen so
that no complex arithmetic is required, which may speed up the computations. Moreover, we can use linear transformations
that satisfy reflective or periodic boundary conditions when this is appropriate for the problem being solved.

It is the purpose of the present paper to generalize the Arnoldi-type and bidiagonalization-type solution methods for
(1.3), that are based on the t-product and are described in [7,27,28], to solution methods that use the x; tensor product
defined by an invertible linear transform L. This generalization allows us to consider applications of the x; product in
several contexts, e.g., in image and video processing, and to gain useful insights into the performance of these methods.
Iterative Krylov subspace methods defined by the *; product for image and video processing have so far not received much
attention in the literature. The discussion of the current paper builds on the image deblurring model considered by Kernfeld
et al. [16].
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The methods of this paper differ from the ones described in [7,27,28] in two ways:

i) We modify the generalized global t-product Golub-Kahan bidiagonalization (GG-tGKB) process described in [27] to
generate an orthogonal tensor basis for the tensor Krylov (t-Krylov) subspace

Ky (AT 51 A, AT %1 B) = span{ AT %, B, (AT s, A) %1 AT 5 B, ..., (AT 1 A}V s AT 5, B}

using the #; tensor product, where the superscript T denotes transposition. We refer to the method for generating an
orthogonal tensor basis for this t-Krylov subspace as the GG-LtGKB process. This process reduces A in (1.3) to a small
lower bidiagonal matrix by computing a few, say 1 <k « min{¢, m}, steps of the GG-LtGKB process. Each step requires
the evaluation of two tensor-tensor products, one with A and one with AT, We refer to the solution method for (1.3)
based on the GG-LtGKB process as the generalized global *; tensor Golub-Kahan-Tikhonov (GG-LtGKT) method.

ii) We adjust the T-global Arnoldi process described by El Guide et al. [7] to generate a t-Krylov subspace under the x|
tensor product. Generically, £ — 1 steps of this process determine an orthogonal tensor basis for the t-Krylov subspace

K¢ (A, B) =span{B, Ax B, ..., A" 1« B}. (1.6)

Here A € R™*™*"_ The method for determining this tensor basis will be referred to as the generalized global x; tensor
Arnoldi (GG-LtA) process. We assume that ¢ <« m. Then, generically, this process reduces the tensor .4 in (1.3) to a small
(£ 4+ 1) x £ upper Hessenberg matrix. Each step requires one tensor-tensor product evaluation (with .A). The subspace
(1.6) will be applied both in a Tikhonov-type regularization method, which will be referred to as a generalized global
* tensor Arnoldi-Tikhonov (GG-LtAT) method and in a GMRES-type method. The latter method extends the generalized
global t-product GMRES (GG-tGMRES) method recently described in [28] to the *; tensor product, and will be referred
to as the GG-LtGMRES method. Generically, the ¢th iterate determined by this method, X, € K, (A, B), satisfies

A% Xe—Bllp= min |[|Ax X —B|f, £=1,2,..., (1.7)
xeK,(A,B)

where we assume that Xy = O, and O denotes the null tensor. The iterations are terminated by the discrepancy

principle, i.e., as soon as the left-hand side of (1.7) is bounded by nd; cf. (1.5).

We also discuss the approximate solution of linear discrete ill-posed problems of the form

min s - B+ 1L DIR) (18)
X eRmx1xn

which are obtained when p =1 in (1.1). In this situation, the tensors X e RM<1Xn and B e R are laterally oriented
matrices. Here the data tensor B may represent a degraded laterally oriented gray-scale image. The problem (1.8) has
recently been considered in [17,27,28] in the special case when #; is the t-product.

Kernfeld et al. [16] described a solution method for the minimization problem (1.8) with £ the identity tensor, using the
discrete cosine transform product, denoted by .. This product can be computed by the MATLAB function dct along the
third dimension. The product . is a special case of the *; tensor product. Kernfeld et al. [16] also discuss the tensor product
*r, but its performance in the context of solving (1.8) is not considered. Our solution methods for (1.8) differ from the one
described by Kernfeld et al. [16] in the following ways: i) We use the global *; tensor Golub-Kahan bidiagonalization (G-
LtGKB) process, ii) we use the global %; tensor Arnoldi (G-LtA) process, iii) we allow a general regularization operator £ in
(1.8), and iv) we determine the regularization parameter with the aid of the discrepancy principle. Further discussions on
these topics are provided in Subsections 3.2 and 4.2. Solution methods for (1.8) that are based on the G-LtGKB and G-LtA
processes will be referred to as the global *; tensor Golub-Kahan-Tikhonov (G-LtGKT) and global *; tensor Arnoldi-Tikhonov
(G-LtAT) methods, respectively. _

Replacing the data tensor B in (1.7) by a lateral tensor slice B yields the minimization problems

lAs X —Bllp= _min _[|Asx X —Blp, £€=1,2,..., (1.9)
XeKy(A,B)

where .X_:g e Ky (A, é) and /'?o =0¢ R’”Xle. We solve (1.9) by a GMRES-type method, which we refer to as the global x|
tensor GMRES (G-LtGMRES) method. Here, O is a tensor determined by an m x n zero matrix oriented laterally.

We remark that several tensor-based methods, that do not apply the transform-based methods discussed in [7,16,17,
27,28], recently have been described in literature; see, e.g., [2,3,6]. The solution schemes of the current paper belong the
GKT_BTF and AT_BTF families of methods described by Beik et al. [2,3]. They involve flattening since they transform the
equations (1.3), (1.7), (1.8), and (1.9) to equivalent equations involving matrices and vectors, and they require additional
product definitions to the *; product.

This paper is organized as follows. Section 2 introduces notation and preliminaries associated with the x; product for-
malism, and Section 3 describes the GG-LtGKT and G-LtGKT methods. Both methods use a bidiagonalization process to
reduce A € R¢>™*" tg 3 small bidiagonal matrix. Section 4 describes the GG-LtAT, G-LtAT, GG-LtGMRES, and G-LtGMRES
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methods. They are based on reducing A € R™*™*" to a small upper Hessenberg matrix by carrying out a few steps of an
Arnoldi-type process. The solution methods for (1.3) discussed in Section 3 and 4 can be divided into two groups: those
that work with lateral slices Bj, j=1,2,..., p, of the data tensor B independently, and those that work with these slices
simultaneously. When applied to image restoration problems, computed examples in [27,28] showed the latter approach to
require less CPU time than the former, but often gave less accurate restorations. Section 5 presents computed examples that
illustrate the performance of the methods described in this paper. Concluding remarks can be found in Section 6.

2. Notation and preliminaries

The tensors in this paper are multidimensional arrays of real scalars of order three. We use notation described in [7,
16,21]. Thus, third order tensors are denoted by calligraphic script letters, say .4, capital letter, say A, stand for matrices,
and boldface lower case letters, say a, denote tubal scalars (tube fibers). A tube fiber of a third order tensor is a 1D section
obtained by fixing two of the indices of A [21]. Using MATLAB notation, A(, j, k), A(, :, k), and A(, j,:) denote mode-1,
mode-2, and mode-3 tube fibers, respectively. A slice of a tensor A is a 2D section obtained by fixing one of the indices
[21]. Using MATLAB notation, \A(i, 3, :), A(:, j,:), and \A(:, :, k) stand for the ith horizontal, jth lateral, and kth frontal slices,
respectively. The jth lateral slice, also denoted by A}, is a tensor, that sometimes is referred to as a tensor column, whereas

the kth frontal slice, oftentimes denoted by A®, is a matrix. The tensor-tensor product based on an invertible linear
transform L is defined as follows:

Definition 2.1 (x; product [16]). Let L : Rt*mxn _ REXMxn he ap jnvertible linear operator, and let B € R¢*P*" and C e
RP*Mx1_Then the %; product of the tensors 1 and C is the tensor A € R¢*™*" given by

A:=Bx, C=L"1(LB)ALQ)), (21)

where the face-product A is defined by
(AAB)(i) — A(i)B(i).

The product *; is associative since (Ax; B) x; C = Ax; (Bx*; C), and the expression L(B)AL(C) in (2.1) is equivalent to a
matrix-matrix product in the transform domain. If we consider a third order tensor A in (2.1) as a matrix of tubes oriented
in the third dimension, then its (i, j)th tube is given by

p
[Alij =Y B(i.k,2) % C(k, j.2).
k=1

This results in a circular convolution between tubes if *; is the t-product [19]. When instead *; is the cosine transform
product, the resulting multiplication between tubes is the dot-product [16].

Following Kernfeld et al. [16], we denote the transform-domain version of A by A, where A is a tensor whose tube
fibers a are computed as

ﬁij=[fl],'j =L@, i=1,2,...,¢ j=1,2,...,m.

Kernfeld et al. [16] also describe a more efficient way of computing A= L(A) than looping over the row and column
indices of A. It is based on computing the mode-3 matrix product, see [21], between A € R®™*" and the invertible
matrix M € R™™ associated with the linear transform L according to

LA =Ax3M and L' (A)=Ax3 M1, (2.2)
and folding the resulting matrix. Note that
Ax3M=MAg) e R M

where Ay € R™m s the mode-3 unfolding of 4, which can be obtained by using the squeeze operator defined in [17],
ie,

Az) = [(squeeze(/ﬂ))]— , (squeeze(;lz))T ey (squeeze(./im))T:| ,

where jj, j=1,2,...,m, are the lateral slices of 4, and the squeeze operator applied to X is identical to the MATLAB
squeeze function

X = squeeze(X) = X(i,k) = X(i,1,k) Vi,k.
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In particular, squeeze(,ij) eR>" for j=1,2,...,m.
The transformation matrix M acts along the tube fibers of A, even though it is written as M.A). Using (2.2), an
equivalent definition of (2.1) is given by

Bx C=L"YLB)ALC)) = [(B x3 M)A(C x3 M)] x3 M. (23)

This definition is described by Kernfeld et al. [16] and used in the computed examples of Section 5.

When M is used as the defining matrix for L in (2.3), the resulting product sometimes is referred to as the M-product
and denoted by *p;; see [18,25]. Choosing M as the normalized DFT matrix gives the t-product, whereas the DCT matrix
yields the cosine transform product; see Kernfeld et al. [16] for a detailed discussion of the cosine transform product, and
[1] for an extension to higher order tensors by using the mode-m tensor transform.

For any invertible linear operator L, the x; product between a pair of tensors can be computed by working only in the
transform domain using Algorithm 1.

Algorithm 1: %; product [16].

Input: B e RO*PX7, C e RPXM1
1 B=L(B)
2 (=L
3 fori=1ton do
4 | AD . BOED
5 end
6 A« LA

The following properties of the tensor product %; have been shown by Kernfeld et al. [16]. Given an invertible linear
transform L and a tensor A € R¢*™*" the tensor transpose under 7, AT € R™*¢X" satisfies

[LATD = (LD, i=1,2,....n.

This tensor transpose has similar properties as the matrix transpose. For instance, suppose the tensors .A and B are such
that A+, B and BT %; AT are well defined. Then (A x; B)T = BT x; AT; see [16]. We remark that the tensor transpose is
computed by transforming to and from the transform domain using an invertible linear transform matrix, and taking the
transpose of each of the frontal slices A(i), i=1,2,...,n, of A in the transform domain. When the DFT matrix is used to
define the *; product, a conjugate transpose is required to transform back to the spatial domain.

The identity tensor Z € R™<™*" ynder L is a tensor such that Z = L~! (f), where 7 is an m x m x n tensor, whose
frontal slices are the m x m identity matrix for i =1, 2,...,n. The diagonal tubes of Z are given by e; := L~!(e), where e
is a 1 x 1 x n tube fiber of ones and the off-diagonal entries of Z vanish; see [16]. An m x m x n tensor A has an inverse
A~1 under *; provided that Ax; A~' =7 and A~ %, A=17T; see [16].

A tensor Q € R™ ™" is orthogonal if QT %} Q = Q %, QT =T; see [16]. We remark that the lateral slices of Q are
orthonormal and satisfy

ep i=],

0 i ].

The tensor Q € R&™*" with ¢ > m is said to be partially orthogonal if QT %; Q is well defined and equal to the identity
tensor Z € RM*mxn,

The tensor singular value decomposition (SVD) *; factorization of A € R¢*™*" introduced by Kernfeld et al. [16] is given
by

ol (i, ) %L OC, :)={

A=Ux Sx VT,
where U/ € R®*¢*" and V € R™*™*" are orthogonal tensors, and the tensor

S =diag[s1,s2, ..., Sminge,my] € RO

is f-diagonal with singular tubes s; € R>1xn i—1 2 ... min{¢, m}, ordered according to

Is1lle > lIs2llF = -+ = lISmin{e,m} I F-

Note that a tensor is said to be f-diagonal if each frontal slice of the tensor is a diagonal matrix; see [19].

The number of nonzero singular tubes of A is referred to as the tubal rank of .A; see Kilmer et al. [17]. The singular
tubes of A are analogues of the singular values of a matrix A. A linear discrete ill-posed problem with a matrix A has
many singular values of different orders of magnitude close to zero. Definition 2.2 describes linear discrete ill-posed tensor
problems induced by the *; product.
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Definition 2.2. The tensor least squares problem (1.1) is said to be a linear discrete ill-posed problem for third order tensors
under *; if A has ill-determined tubal rank, i.e., the Frobenius norm of the singular tubes of .4 decays rapidly to zero
without a significant gap with increasing index, and there are many nonvanishing singular tubes of tiny Frobenius norm of
different orders of magnitude.

We remark that this definition describes a property of the whole tensor .4, ie., the singular tubes of A which are
computed by finding the SVD of each frontal slice A®D i=1,2,.... n, of Ain the transform domain; see [16] for details.
We conclude this section by introducing notation from EIl Gu1de et al. [7]. Let
Vie:=[V1, Vo, . Vil e RPN and Yy = [V, Vs, ..., Vi) € Rkxn

with V;j e R™P*" and Vj € R™IXM for j=1,2,...,p. Let y =[y1, Y2, ..., yx]" € R¥. Then El Guide el al. [7] defined the
product ® as

k k
Vi@y=>_yjVi, V@y=)_ yjV;
j=1 j=1

It is readily shown that for any orthogonal tensors V € R¢*kPxn and ) e RExkxn,

IVeylr=Ilyllz2, IV®ylr=Iyl-2, (2.4)

where | - || denotes the Euclidean vector norm; see [7] for details. _ _
Consider the tensors C = [cjjk], D = [d;ji] € R™P>" and their lateral slices C = [¢j1x], D = [dj1] € R™1x1 and define
the scalar products

m p n
:ZZZCdeUk, (5 ﬁ ZZandnk

i=1 j=1k=1 i=1 k=1
Suppose

=[A1, A2, ..., An] € RS™M and B :=[By, By, ..., Bp] € RVP*1,
=[A1, A, ..., An] e R”™M and B:=[By, By, ..., Byl e RPXM,
where A; € RSx4 e R § = 1,2, ... m, and Bj e Rxsxn, l§j e Rt>1xn j—1 2 ... p. Then the T-diamond
products [7] denoted by ATCB and AT<B result in m x p matrices with entries
[ATOBY; = (Ai, B)), [ATOBlj=(A;, Bj), i=1,2,....m, j=1,2,...,p.
The naming scheme for the solution methods for (1.3), (1.7), (1.8), and (1.9), that are described in Sections 3 and 4, is
summarized in Table 1.

3. Solution methods for (1.3) and (1.8) based on bidiagonalization processes

This section describes the generalized global *; tensor Golub-Kahan-Tikhonov (GG-LtGKT) method and the global
tensor Golub-Kahan-Tikhonov (G-LtGKT) method. The G-LtGKT method applied to the solution of (1.3) works with the
lateral slices Bj, j=1,2,...,p, of B independently; when applied to the solution of (1.8), there is only one data tensor

slice B. The GG-LtGKT method for the solution of (1.3) works with all lateral slices of B simultaneously.
3.1. The GG-LtGKT method for the solution of (1.3)

This subsection extends the generalized global t-product Golub-Kahan-Tikhonov (GG-tGKT) method for the solution of
(1.3) described in [27] to the %x; product. The latter method will be referred to as the GG-LtGKT method. A variant of the
GG-tGKT method has recently been presented in [7].

Algorithm 2 extends the generalized global t-product Golub-Kahan bidiagonalization (GG-tGKB) process described in [27]
to the x; product. This algorithm will be referred to as the generalized global *; tensor Golub-Kahan bidiagonalization
(GG-LtGKB) process. We assume that the number of steps, k, is chosen small enough to avoid breakdown. Then Algorithm 2
produces the partial GG-LtGKB decompositions

Axg Wy =Vip1 ®@ Py, AT 5, V=W ® P, (3.1)

where
Wi i= DV1, Wa, .o, Wi € RPX = (V1 V), Vi e ROPT e (kb +1)

191



L. Reichel and U.0. Ugwu Applied Numerical Mathematics 166 (2021) 186-207

Table 1

The prefix GG indicates that the method for the solution of tensor least squares problems (1.3) and (1.7)
with a general data tensor B € R“*P*" p > 1, works with the whole tensor B at a time, while the
prefix G indicates that the methodﬁis designed for the solution of tensor least squares problems (1.8)
and (1.9) with a data tensor slice B € R¢*1*" that is a laterally oriented matrix of size ¢ x n. The last
three methods with subscript , work with the lateral slices éj, j=1,2,...,p, of the data tensor B

independently.
Abbreviation Method Described in Section
GG-LtGKT generalized global x; tensor Golub-Kahan-Tikhonov 3.1
GG-LtGKB generalized global *; tensor Golub-Kahan bidiagonalization 3.1
GG-tQR generalized global tensor QR 31, 4.1
G-LtGKT global % tensor Golub-Kahan-Tikhonov 3.2
G-LtGKB global % tensor Golub-Kahan bidiagonalization 3.2
G-tQR global tensor QR 32,42
GG-LtAT generalized global *; tensor Arnoldi-Tikhonov 4.1
GG-LtA generalized global %, tensor Arnoldi 41
GG-LtGMRES  generalized global ; tensor GMRES 4.1
G-LtAT global x; tensor Arnoldi-Tikhonov 4.2
G-LtA global *; tensor Arnoldi 42
G-LtGMRES global *; tensor GMRES 42
G-LtGKT) G-LtGKT applied p times to solve (1.3) 3.2
G-LtAT, G-LtAT applied p times to solve (1.3) 4.2
G-LtGMRES, G-LtGMRES applied p times to solve (1.7) 4.2
and
Asxp W = [Asp Wy, Asg Wh, ..., Axp W] € RExkpxn (32)
5 . D (- D (- D (- xk .
Viy1 ® P i= [Vip1 ® Pr(, 1), Vip1 ® P, 2), .., Vip1 ® Pi(, k)] € RPEPXM
The matrix
241
B2 o2
Pr= e Rk+Dxk (3.3)
B ok
,3I<+1

is lower bidiagonal. The tensors V; € ROPX" and W; € R™*P*" for j=1,2,...,k, generated by Algorithm 2 form or-
thogonal tensor bases for the t-Krylov subspaces K (A % AT, Asx; AT %, B) and Ky (AT %; A, AT %; B), respectively. The
relations

B=V|IBllr = Vir1 ® e11|Blr = Vi1 ® €181, e1=[1,0,...,0]", (3.4)

follow from Algorithm 2.

Algorithm 2: The partial generalized global x; tensor Golub-Kahan bidiagonalization (GG-LtGKB) process.
Input: A € REX™M<1 B e REXPXN such that AT %, B# O

1 Set i < |[Bllr. V1 < 58, Wo < O

2 for j=1,2,...,k do

3 W« AT %, Vi —BiWj-1

4 aj < [[WIF, If aj =0, stop else

5 Wi < W/aj

6 V< Ax Wj —a;Vj

7 Bj+1 < IVIF, If Bjt1 =0, stop else
8 | Vi1 < V/Bin

9 end

Let X = W, ® y, substitute the left-hand side of (3.1) into (1.3), and use (3.4) to obtain the reduced minimization
problem

min {[|Vis1 © Pe®y — Vi ®e1Billf + L+ W ® y12). (3.5)
ye

192



L. Reichel and U.0. Ugwu Applied Numerical Mathematics 166 (2021) 186-207

Following an approach that is analogous to the one described in [15], we use Algorithm 3 to compute the generalized global
tensor QR (GG-tQR) factorization

Lx W=V, ® Rk, (3.6)

where Rz € Rk*K is an upper triangular matrix, and Veke Rs*kPxn has k orthogonal tensor columns. The factorization
(3.6) can be evaluated by updating the available GG-tQR factorization of £ x; Wj_;. The regularization operators £ used in
the computed examples are described in Section 5.

Algorithm 3: Generalized global tensor QR (GG-tQR) factorization [27].

Input: A :=[A;, Ay, ..., Al e ROkmxn | A, e RExmxn j—1q k, £>m.

Output: V:=[V;,V,, ..., Vil e RExkmxn iy, e RExmxnj— 1k, R=[r;j]le R¥* such that A=V @R, and VIOV =1
1 Set riq < (Aq, A)12, V) < %fh
2 for j=1,2...,k do

3 W <« A;j

4 fori=1,2,..., j—1do
5 rij < (Vi, W)

6 W < W —r1ijVi

7 end

8 | rjj— (W W2

9 Vj <—W/rjj
10 end

Substitute (3.6) into (3.5), and use the left-hand side of (2.4) to obtain

: 5 2 - 2
min {[|Pey — e1B1ll3 + 17 IR kY I13)- (37)
yeRk
We would like to transform (3.7) into a Tikhonov minimization problem in standard form. With this aim, define the quan-
tities

Z:=Rgoyy, Pr:= I_)RZ,]IC’ (3.8)

where we assume the matrix Rz  to be invertible and not very ill-conditioned. This holds for many regularization operators
L, and in particular for the ones used in the computed examples of Section 5. Then the transformation (3.8) is attractive to
apply. Substitution into (3.7) yields the Tikhonov minimization problem in standard form,

min{[| Pz — e1pull5 + ' |1zI13)- (3.9)

zeRk
The normal equations associated with (3.9) are given by

(P{Pe+p"hz="Pleip, (3.10)
and their solution, for any @ > 0, can be written as

zuk =PI P+ D7 "Pleipr. (3.11)
It follows that the computed approximate solution to the Tikhonov minimization problem (1.3) can be expressed as

Xk =W ® R, (P P+ ') Ples .

We remark that we compute the vector z, j in (3.11) by solving the least squares problem

P
|:lflk/21j| z— [61531}

because the condition number of the matrix in this problem is the square root of the condition number of the matrix
Bl P+ p~ 1 in (3.10).

The regularization parameter and the required number of steps k by the GG-LtGKB process are determined by the
discrepancy principle (1.5), which prescribes that © > 0 be chosen so that the solution (3.11) satisfies

min
zeRk

’

2

IPkzyk — e1pillz = né; (312)

see Proposition 3.1 below. We choose k as small as possible so that the above equality can be satisfied. Define the function
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A (1) = | Przyu i — e a3, (313)
substitute (3.11) into (3.13), and use the identity

I—Pe(PLPe+p 'R = (uP( Pl + 17!
to obtain

ok() = el (WP Pl + 1) 2e

It is readily shown that ¢y () is decreasing and convex with ¢y (0) = ;312; see [27] for details. A zero finder such as bisection
or Newton’s method can be used to determine the solution w of

Pr(p) — n*8* =0. (3.14)

We will use the bisection method in the computed examples of Section 5.
The following result shows that we can apply the discrepancy principle (1.5) to the reduced problem (3.9) to determine
> 0 that satisfy (3.12); see [27] for a proof of a related result.

Proposition 3.1. Let (& = jui solve (3.14) and suppose z,, i is the solution of the normal equations (3.10). Let y, i and z,, i be related
by (3.8). Then the associated approximate solution X, = Wy ® y, x of (1.3) satisfies

A% X — BI2 = Ble] (uPk P} + D%

We refer to the above solution method as the GG-LtGKT method. It is implemented by using [27, Algorithm 10] with the
t-product replaced by the *; product.

3.2. The G-LtGKT method for the solution of (1.8) and (1.3)

This subsection extends the global t-product Golub-Kahan-Tikhonov (G-tGKT) method described in [27] for the approxi-
mate solution of (1.8) and (1.3) to the %; product. The methods obtained will be referred to as the G-LtGKT and G-LtGKT),
methods, respectively. Algorithm 4 extends the global t-product Golub-Kahan bidiagonalization (G-tGKB) process described
in [27] to the x; product. The latter method is referred to as the G-LtGKB process.

Assume that the number of steps, k, with the G-LtGKB process is small enough to avoid breakdown. This is the generic
situation. Then Algorithm 4 yields the G-LtGKB decompositions

A Wi = Q1 ® Py, AT 5 Qe=Wi® P, (3.15)
where
Wiei= W1 Wa, .. o W € RN Q5= (01, Oy, ..., Oj1 e RN e (ke k+ 1)

The expressions A x; Wy and Q41 ® Pk are analogous to those in (3.2) and the lower bidiagonal matrix P e RKk+Dxk g
of the form (3.3). The tensor columns Q; € R&1XM and W; € R™*1*1 j=1,2, ...k, generated by Algorithm 4 make up
orthonormal tensor bases for the t-Krylov subspaces Ky (A % AT, A AT x| B) and Ky (AT %, A, AT 5, B), respectively. It
can easily be deduced from Algorithm 4 that

B= Q1 ®eipi. (3.16)

Algorithm 4: The partial global *; tensor Golub-Kahan bidiagonalization (G-LtGKB) process.
Input: A e ROm>n, B e R‘Z“X” AT x B#£O

1 Set B4 <—||B||F Q1 <« B W0<—(9

2 for j=1,2,..., k do

3 V-‘V<_-AT*L Qj 511;\}] 1

4 a}eHWHF If aj=0, stop else

5 W] <« W/Olj

6 Q <~ Axp WJ oj Qj

7

8

9

Bj+1 < HQHF. If Bj+1 =0, stop else
Qj1 < Q/Bjm1
end

Let X = Wi ® y. We follow a similar approach as in Subsection 3.1 to reduce (1.8) to a problem of small size. Thus,
substitute the left-side of (3.15) as well as (3.16) into (1.8). Then compute the G-tQR factorization
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Lxp W= Qrk® Rk

by Algorithm 5, and use the right-hand side of (2.4) to obtain the minimization problem
min ([|Pz — e1p1ll3 + p ' lzl13). (317)
yeRk

where

z:=Rery, Pp:= PR (3.18)

Lk

Here we assume the matrix R,  to be invertible and not very ill-conditioned. This holds for the regularization operator £
used in the computed examples in Section 5. The solution method for (3.17) is analogous to the method in Subsection 3.1,
and is referred to as the G-LtGKT method. It can be implemented by [27, Algorithm 13] with p =1.

Algorithm 5: Global tensor QR (G-tQR) factorization [27].

Input: A= [A] Az ..... .Am] e ROMXN g >m

Output: Q =[01, O, ..., Om] € RE™M R — [1;;] € R™™ such that A= Q® R and Q"0 Q = I,
1y« Ay, A2, QO < %Al
2 for j=1,2,..., m do
3 W <—AJ

fori=1,2,..., ] —1do

ru <Ql W)
W <—W7TUQ,

rjj < OV )12
QJ <—W/r]]

4

5

6

7 end
8

9

10 end

We determine the regularization parameter p >0 and the number of steps of the G-LtGKB process similarly as in
Subsection 3.1. Thus, let a bound for the error € in B be known, i.e.,

IEIF <.
The discrepancy principle prescribes that @ > 0 be determined so that the solution z,,  of (3.17) satisfies

I Pz — e1B1ll2 = né

for some constant 7 > 1 that is independent of 8. Define

() := | Pz — e1pall3.

We obtain similarly as in Subsection 3.1 that

V() = Ble] (WP Pl + 172

The following result is analogous to Proposition 3.1 and can be shown in a similar fashion.

Proposition 3.2. Let (1 = juy, solve Y (1) = 282 and suppose that Zy, k is the solution of the normal equations (3.17), i.e., of
(PP +p~"'Dz=Pleipr.

Let y,, k and z,, i be related by (3.18). Then the associated approximate solution ‘)?/L,k =W ® Yk of (1.8) satisfies
| At Xy — Bl = Bef (WPkP{ + 1)

Finally, we discuss the solution of (1.3) by applying the G-LtGKB process and the G-LtGKT method to each one of the p
Tikhonov minimization problems

_ min [||A*LQ?j—éj||%+u—1||£*m?j||%], i=1,2,....p, p>1, (3.19)

.cRmx1xn
XjeRmx1x

separately. We will refer to this solution approach as the G-LtGKT, method. It is implemented by replacing the t-product in
[27, Algorithm 13] by the x; product. The solution method for (3.19) obtained in this manner provides an alternative to the
GG-LtGKT method of Subsection 3.1. Its performance is illustrated in Section 5.
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4. Solution methods for (1.3) and (1.8) based on Arnoldi processes

This section describes the generalized global x; tensor Arnoldi-Tikhonov (GG-LtAT) method, which works with all lateral
slices of B simultaneously. We also present the global * tensor Arnoldi-Tikhonov (G-LtAT) method for the approximate
solution of (1.3). The latter method is also applied to determine the solution of (1.8) by working with the lateral slices B;,
j=1,2,...,p, of B independently.

4.1. The GG-LtAT method for the approximate solution of (1.3)

This subsection extends the generalized global t-product Arnoldi-Tikhonov (GG-tAT) method described in [28] to the x|
product. We refer to this solution scheme as the GG-LtAT method. It works with the whole data tensor B at a time. This
method applies an extension of the T-global Arnoldi process described by El Guide et al. [7] to the x; product. The resulting
process is described by Algorithm 6 below and will be referred to as the generalized global *; tensor Arnoldi (GG-LtA)
process.

Let A € R™™*" and assume that the number of steps, ¢, is small enough to avoid breakdown. This is the generic
situation. Algorithm 6 yields the GG-LtA decomposition

Asxp Vo= Ve ® H, (4.1)
where

Vi=[V1. Vo, ... VI eR™IPN e e 41},

and
h1q .. hie 7
ha1 hap
Ay = hsy  hss : c RUE+DxE
hee—1  heg
Y hetie |
is an upper Hessenberg matrix. The tensors Vj € R™P>" j=12 ... ¢, generated by Algorithm 6 form an orthogonal

tensor basis for the t-Krylov subspace (1.6). The tensors A x; V, and V,,; ® H, are defined similarly as in (3.2). The
relation

B=Vii®ef (4.2)

follows from Algorithm 6.

Algorithm 6: The generalized global *; tensor Arnoldi (GG-LtA) process.

Input: A € R™MM<1 13 e RMPX1 o£ O
1 Set B < |IBllr, V1 < 3B
2 for j=1,2,...,¢ do
3 W «— Ax* Vj
fori=1,2,..., j do
h,‘j <—<Vj,W)
W < W —hi;V;

4

5

6

7 end

8 hjy1,j < IWIlF, If hji1,; =0, stop; else
9 Vj-H <—W/hj+1.j
0 end

1

We proceed in the same manner as in Section 3.1. Let X = V; ® y and substitute (4.1) and (4.2) into (1.3) to obtain an
analogue of (3.5). Compute a GG-tQR factorization of £ x; Q, which is analogous to (3.6), by Algorithm 3. Then using the
left-hand side of (2.4), we obtain

min {[[Hey — e1ll3 + 1" IRc.ey113)- (43)
yeR¢

When the matrix R ¢ is invertible and not very ill-conditioned, we introduce the quantities
Zz:=Rgey, He:= I:IZRZ,]Z’
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which allow us to transform the problem (4.3) to a Tikhonov minimization problem in standard form,
min {|Hez — e1Bll3 + 1~ 1z113).
yeR¢

This problem can be solved similarly as the method described in Section 3.1. We refer to this solution method as the
GG-LtAT method. It can be implemented in the same manner as [28, Algorithm 11], which uses the t-product.

We remark that when @ = oo in (4.3), we obtain the minimization problem that is solved in step ¢ of the generalized
global *; tensor GMRES (GG-LtGMRES) method for the approximate solution of (1.7). The special case of this method when
the matrix that defines the linear transform L is the normalized DFT matrix has been described in [28]; its implementation
is given by [28, Algorithm 12]. The GG-LtGMRES method can be implemented in the same fashion.

4.2. The G-tLAT method for the solution of (1.3) and (1.8)

We extend the global t-product Arnoldi-Tikhonov (G-tAT) regularization method described in [28] to the *; product. The
method so obtained will be referred to as the G-LtAT method.

The G-LtAT method for the solution of (1.3) provides an alternative approach to the GG-LtAT method described in Sub-
section 4.1. It is applied to each lateral slice B;, j=1,2,...,p, of B in (1.3) independently. We will refer to this approach
of solving (3.19) as the G-LtAT, method. This method has been described in [28] when using the t-product, i.e., when
the defining matrix for the linear transform L in (3.19) is the normalized DFT matrix. The implementation of the G-LtAT,
method is similar to [28, Algorithm 14] with the main difference that the global t-Arnoldi process is replaced by the global
* Arnoldi (G-LtA) process described by Algorithm 7. As already mentioned, our interest in solution methods that work
with the tensor slices B; independently is that they were found in [27,28] to yield approximate solutions of (1.3) of higher
quality than when working with these lateral slices simultaneously.

We first consider the G-LtAT method for the solution of (1.8). As usual, we assume that the number of steps, ¢, is small
enough to avoid breakdown. Algorithm 7 yields the G-LtA decomposition

Axp Qp=0Qp11® Hy, (4.4)
where
Qj:=[01,0s,..., 0j] e R™I*" je(e, e+1).

The tensor columns Qj e Rmx1xn i —12 ... ¢ form an orthonormal tensor basis for the t-Krylov subspace K, (A, l§).

The tensors A, QO € R™**M and Qp.q ® Hy € R™M<(E+Dx1 are defined similarly as (3.2) and the matrix H € RE+DXC s
of upper Hessenberg form. We can deduce from Algorithm 7 that

B= Qi1 ®e1p.

Algorithm 7: The global *; tensor Arnoldi (G-LtA) process.
Input: A € Rm<mxn, B eRMxIxm £ &
1 Set < |IBllr, Q1 < 3B
2 for j=1,2,...,¢ do
3 W Ax 9;
fori=1,2,...,jdo
hij < (Qi, W)
W« W —h;

4

5

6

7 end

8 hjy1,j < ||W||F, If hji1,;j=0, stop; else
9 | Oy« Wihjj
0 end

1

Suppose that X = Q¢ ® y and assume, as usual, that ¢ is chosen small enough so that the factorization (4.4) with the
stated properties exists. Then, similarly as in Section 3.2, we reduce (1.8) to the minimization problem

min {[|[Hey —e1lI3 + 1 IRz.ey113)- (45)
yeR¢

Compute the G-tQR factorization of £ x; O, analogously to (3.6) by Algorithm 5, and introduce the quantities
z:=Rzy, He:= IZIU_?Z}Z,

which we assume exist. Then similarly as in Section 3, we obtain the Tikhonov minimization problem in standard form
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: [ 2 -1 2
min{||Hez —e1Bll3 + 1™ lzl3},
yeR¢

which we solve for z. We refer to this solution scheme as the G-LtAT method. It can be implemented similarly as [28,
Algorithm 14] with p =1 and the t-product replaced by the x;-product.

Similarly as above, we note that setting @ = oo in (4.5) results in the minimization problem that is solved at step ¢ of
the global *; tensor GMRES (G-LtGMRES) method for the approximate solution of (1.9). An implementation of this method
with the t-product is described by [28, Algorithm 15] with p = 1. The G-LtGMRES method can be implemented similarly._

We also apply the G-LtGMRES method to the solution of the minimization problem (1.7) using one lateral slice B;,

j=1,2,...,p, of B at a time, i.e., we solve separately the p minimization problems
lA*L Xj o= Bjllp= _ min _ A% Xj—Bjllp, j=1,2,....p, p>1, (46)
XeK,(A,B)

for .)E'j,z e Ky (A, é). This solution method is referred to as the G-LtGMRES, method. Analogues of the G-LtGMRES and
G-LtGMRES, methods, that use the t-product, have been described in [28].

5. Numerical examples

This section compares and illustrates the effectiveness of the methods described in Sections 3 and 4. Applications to
color image and video restoration are considered. All computations were carried in MATLAB 2019b on a Lenovo computer
with an Intel Core i3 processor and 4 GB RAM running Windows 10.

We use three different regularization operators in the computed examples with Tikhonov regularization: the identity
operator £ =Z, the operator £; € RM=2)Xmxn with a tridiagonal first frontal slice

-1 2 -1
1
E?)ZZ c RM=2)xm (5.1)
-1 2 -1
and the remaining frontal slices Egi) e Rm=2xm i —2 3 . n, equal to the zero matrix, as well as the regularization

operator £ € RM=Dxmxn with a bidiagonal first frontal slice

1 -1

n_1 _
L) = 5 e RM—Dxm (5.2)
1 -1
and the remaining frontal slices £§i) e Rm=Dxm i — 23 n equal to the zero matrix. The results for GMRES-type
methods are independent of the regularization operator £; cf. (1.7) and (1.9). The construction of the blurring operator A
follows a similar approach as described by Kernfeld et al. [16].

We apply the twist and squeeze operators defined by Kilmer et al. [17] to associate an image stored as an m x n
matrix to a tensor column of size m x 1 x n. Additionally, we use the multi twist and multi squeeze operators
described in [27,28] to relate an m x p x n image to a tensor of size m xn x p for p > 1.

Example 5.1. This example uses an orthogonal DCT matrix from MATLAB as the defining matrix for the linear transform L
to define the *;-product. This gives the x.-product introduced by Kernfeld [16]. We apply the regularization operator £;
defined above, and consider the restoration of the peppers image shown in Fig. 1 (left). This image is stored as a tensor
B e R300x3x300 by ysing the multi_ twist operator and is blurred by the operator A e R300%300x300 \hich is generated
by applying the function blur in [13]. Specifically, we use the MATLAB commands below, and the operator ten described
in [16] to generate A:

z = [exp(—([0 : band — 1].2)/(20?)), zeros(1,N —band)], N=300, ¢ =3, band =12,
vy = zeros(length(z),1), v(1:length(z)—1)=2z(2:end),

A1 =toeplitz(z), A;=flip(flip(hankel(y)))+ hankel(y), (5.3)
1
A=A+ Ay, A= ten(A ® A, 300, 300, 300),
! 2 J2mo

where A € R300%300 js 3 Toeplitz matrix and A, € R390%300 j5 3 Hankel matrix. Reflective boundary conditions are em-
ployed; see [14, Chapter 4] for discussions.
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Fig. 2. Reconstructed peppers images for § = 1073 by the G-LtAT, method (left) and the GG-LtGMRES method (right) after 17 iterations.

The condition number with regard to the spectral matrix norm of the frontal slices A® is 1.2.106 fori=1,2,...,12,
and the condition number of the remaining slices .A®, 13 <i < 300, is infinite. Here and below, we use the MATLAB
command cond to compute the condition number of the frontal slices of A.

Let Xiue € R300%3x300 represent the blur- and noise-free image that we would like to determine from the available
contaminated image that is represented by B; we assume that Xje is not available. The blur-contaminated but noise-free
image associated with Xjye is generated by Birye = A *| Xirue. This image will be contaminated by noise that is represented
by the tensor £ e R300%3x300 gjyen by

3 I€ollF ||Btrue||Fs (5-4)
where the entries of & are N(0, 1). Hence, the entries of £ are normally distributed with zero mean and are scaled to
have the specific noise level § > 0. The available blurred and noisy image is represented by B = Byye + £. This image is
displayed in Fig. 1 (right) using the multi_squeeze operator. We would like to determine an accurate approximation of
Xirue from B.

In all computed examples, the regularization parameter and the number of iterations (iter) required by each method are
determined with the aid of the discrepancy principle. In this example, we determine the regularization parameter(s) by the
bisection method over the interval [10~4, 10°] with n = 1.2 in (1.5). The reconstructed images determined by the G-LtAT,
and GG-LtGMRES methods are displayed in Fig. 2. Here and below, the effectiveness of each chosen method is measured by
the relative error

E:

||Xmethod — Xtrue ||F
E method = s

||Xtrue||F
where Xpethod denotes the computed approximate solution of (1.1) determined by a given method.

Throughout this section, the table entry ‘-’ indicates that a chosen method uses three different numbers of t-Arnoldi/bidi-
agonalization steps or computes three different values of the regularization parameter, or no regularization parameter or no
invertible linear transform is required. Table 2 shows the relative errors in the computed reconstructions, the CPU times
required, as well as the regularization parameters and the number of iterations. The GG-LtGMRES method, which works
with the whole data tensor B at a time, can be seen to yield the reconstruction of highest quality when § = 10~3 and
to require the least CPU time for both noise levels. The Golub-Kahan-Tikhonov-type methods require the most CPU time
for both noise levels and determine restorations of the worst quality for § = 10~3. The G-LtGKT, method, which works
with the lateral slices of the data tensor independently, requires the most CPU time, and determines for both noise levels
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Table 2
Results for Example 5.1.
5 Method iter  Liger Emethod CPU time (secs)
103 GG-LtAT 17 1.57-10° 6.8580-1072  4.55.10?
GG-LtGKT 51 6.34-10° 7.0629-1072  9.75.10°
GG-LtGMRES 17 - 6.7091-10"2  2.29-102
G-LtAT, - - 6.8706-1072  6.46- 102
G-LtGKT, - - 7.0194-1072  2.23.10%
G-LtGMRES, - - 6.9608-10"2  5.67-10?

1072 GG-LtAT 4 1.22-107'  1.0451-10"!  2.78-10'
GG-LtGKT 9 3.57-1073  1.0232-107'  3.14.10?
4

GG-LtGMRES - 1.0631-1071  1.33-10!
G-LtAT, - 1.0407-1071  5.18-10!
G-LtGKT, - - 1.0184-107!  6.81-10?
G-LtGMRES, - - 1.0635-10"1  3.82-10!

Fig. 3. True papav256 image (left), and blurred and noisy papav256 image (right) for §=10"3.

restorations of higher quality than the GG-LtGKT method, which works with all lateral slices simultaneously. The GG-LtGKT
method requires more iterations than the GG-LtAT method for both noise levels.

Example 5.2. We consider the restoration of the papav256 image shown in Fig. 3 (left) using the regularization operator
L =Z. The solution methods of Example 5.1 are compared. We use the DSC matrix to define the linear transformation L.
This matrix is not orthogonal; it is the sum of the DCT and the Discrete Sine Transform' (DST) matrices from MATLAB. The
frontal slices of the blurring operator A are defined by (5.3) with

. 1
AU):%m(i,l)A], i=1,2,...,256, N=256, 0 =2.5, band=12.

Then cond(A®)=1.94-108 for i =1,2,...12, and the condition number of each frontal slice of .4 is infinite for i > 13.
We use the discrepancy principle to determine the regularization parameter(s) by the bisection method over the interval
[1072,107] with n=1.1.

The true papav256 image is of size 256 x 256 x 3 and is stored as a tensor Xirye € using the multi twist
operator. This image is blurred by the tensor A defined above. Let Byye € R296%3%256 store the blurred image so obtained.
The blurred and noisy image is determined by B = Bye + £, where the “noise tensor” £ € R256%3%256 ig generated by (5.4).
The image represented by B is shown in Fig. 3 (right) using the multi_squeeze operator. The images reconstructed by
the GG-LtGKT and G-LtGMRES, methods for § = 103 are displayed similarly in Fig. 4.

Relative errors as well as CPU times are shown in Table 3. The GG-LtGKT method yields a restoration of the worst
quality for § = 1073, while the G-LtGKT, method requires the most CPU time for both noise levels. Moreover, the former
method requires more iterations than the GG-LtAT method for both noise levels. The solution methods that work with all
lateral slices of the data tensor B simultaneously, i.e., the GG-LtAT, GG-LtGKT, and GG-LtGMRES methods, can be seen to
give restorations of worse quality for §=10"3 than methods that work with the lateral slices of B independently, but the
GG-LtGMRES method requires the least CPU time for both noise levels. We will comment more on the relative performance
of the methods below.

R256%x3%x256

Example 5.3. This example considers the restoration of the sixth frame of the Xylophone video from MATLAB with
the regularization tensor £,. The defining matrix for L is the unnormalized DFT matrix from MATLAB. The regularization

1 https://www.mathworks.com/matlabcentral/fileexchange/26040-dct-and-dst-inverse-in-arbitrary-dimension.
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Fig. 4. Reconstructed images by the GG-LtGKT method (left) and the G-LtGMRES, method (right) for §=1073.

Table 3
Results for Example 5.2.
5 Method iter  Lliter E method CPU time (secs)
1073 GG-LtAT 10 1.56-10* 5.0166-1072  1.34-10?
GG-LtGKT 45  4.15-10* 5.0495-10% 5.57-10°
GG-LtGMRES 10 - 5.0179-1072  5.11-10'
G-LtAT, - - 5.0124-1072  1.60-10?
G-LtGKT, - - 5.0471-1072  1.29-10%
G-LtGMRES, - - 5.0079-1072  1.35-10%
1072 GG-LtAT 4 1.42-10°  7.3333.107%  2.40-10'
GG-LtGKT 10 227-10° 6.6785-1072  3.62-10?
GG-LtGMRES 4 - 7.3842-1072  8.43-10°
G-LtAT, - - 7.2670-1072  5.14-10'
G-LtGKT, - - 6.6788-1072  6.79-10%
G-LtGMRES, - - 7.4270-107%  2.40-10'

Fig. 5. True sixth frame (left), and blurred and noisy sixth frame (right) for §=1073.

parameter is determined by the discrepancy principle and computed by the bisection method over the interval [10~>, 10%]
with n =1.2 in (1.5).

The true sixth frame, which is of size 240 x 240 x 3, is shown in Fig. 5 (left). This frame is stored as the tensor Xipe €
R240x3x240 ysing the multi twist operator and blurred by A e R?40%240x240 "\hich is generated by (5.3) and

zz =[z(1) fliplr(z(end — length(z) + 2 :end))], A3z =toeplitz(z, zz),

; 1
AD = SAs(i, 1)Ay, i=1,2,...,240, N=240, 0 =3, band=12,
2mo
where Aj is a circulant matrix with cond(A®) = 1.41-10%, i=1,2,...,12. The remaining frontal slices have infinite

condition number. The blurred and noise-contaminated sixth frame is obtained by B = A s Xue + £ € R#40%3x240 apd s
shown in Fig. 5 (right) using the multi squeeze operator, where the “noise tensor” £ € R240x3%240 i generated by (5.4).

The relative errors and CPU times for each method are displayed in Table 4 for two noise levels. Restored images by the
G-LtGKT, and G-LtGMRES, methods are shown in Fig. 6 for § = 1073 using the multi squeeze operator. The GG-LtGKT
and G-LtGKT, methods yield the best restorations and of almost the same quality, but the latter method requires the most
CPU time for both noise levels. The G-LtGMRES, method determines restorations of the worst quality for §=1073, and the
GG-LtGMRES method is the fastest for both noise levels.
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Fig. 6. Reconstructed images by the G-LtGKT, (left) and G-LtGMRES,, (right) methods for §=1073.

Table 4
Results for Example 5.3.
5 Method iter  iter E method CPU time (secs)
1073 GG-LtAT 25 3.78-10° 5.1773-1072  9.46-10?
GG-LtGKT 29 5.14-10° 4.8805-10~2  3.39.10°
GG-LtGMRES 25 - 5.2055-1072  4.93.10?
G-LtAT, - - 5.1766-1072  1.37-103
G-LtGKT, - - 4.8806-1072  8.15-10°
G-LtGMRES, - - 5.2060-1072  1.17-10°
1072 GG-LtAT 9 1.11-10> 9.8577-107%  1.15-10%
GG-LtGKT 7 417-10°  7.3944-1072  2.14-10?
GG-LtGMRES 9 - 1.0711-10"!  6.08-10!
G-LtAT, - - 9.8867-1072  1.72-10%
G-LtGKT, - - 7.3932-1072  5.20-10%
G-LtGMRES, - - 1.0495-10""  1.42.10°

Example 5.4. We consider the restoration of the gray-scale analogue of the sixth frame of the Xylophone video in
Example 5.3. The regularization tensors £ and L, are used. The quality of the restorations determined by the G-LtAT,
G-LtGKT, and G-LtGMRES methods for the solution of (1.8) when the defining matrices for the transform L are the DFT, DCT,
and DSC matrices are compared to those determined by the generalized Arnoldi-Tikhonov (GAT) and generalized Golub-
Kahan-Tikhonov (G-GKT) regularization methods for the approximate solution of the minimization problem

min_ {1141 @ Anx = b3 + X3} (55)

xeR240
with the regularization matrices L = Lgl) € R(240°-2)x240* defined by (5.1) or L = LS) € R240°=1)x240> giyan by (5.2). The
vectors x = vec(X) and b = vec(BB) are defined by stacking the faces of the tensor columns X and B e R240x1x240 jp
order, respectively. The solution of (5.5) for u = oo is determined by the standard GMRES method. The G-GKT and GAT

methods are implemented similarly as described in Sections 3 and 4, respectively.
The blurring operator A € R240%240x240 5 defined by using (5.3) with frontal slices

AD = A1(i, DAy, i=1,2,...,240, N=240, 0 =2.5, band =12,

2o
where cond(A®) =1.35-107 for i =1,2,...,12. The condition number of the remaining frontal slices is infinite. The
regularization parameter 4 is determined by the bisection method over the interval [107>,107] using the discrepancy
principle with n =1.01. .

The true sixth frame of the Xylophone video, shown in Fig. 7, is stored as the tensor column Xiye € and
blurred by A. Blurred and noisy images corresponding to different x, tensor products are shown in Figs. 7 and 8 using the
squeeze operator. These images are generated according to B = A *| Xirue + £, Where the noise tensor & is determined
analogously to (5.4). The blurred and noisy image for (5.5) is generated by b = (A1 ® A1)vec(Xue) + vec(E) and is shown
in Fig. 7 (middle) by using the MATLAB reshape operator.

The intensity of the blur is different for (5.5), and also for each tensor product *;. Specifically, the blur- and noise-
contaminated image produced for (5.5), and also for (1.8) when the tensor product *; is defined by the DCT matrix, is more
blurred than when the DFT and DSC matrices are used to define the *; product. The reconstructed video frames determined
by the G-LtGKT method for £ = £, and shown in Fig. 9 using the squeeze operator correspond to the *; products defined
by the DFT, DCT, and DSC matrices, and the noise level § =1073. The reconstructed video frame by the G-GKT method is
displayed on the right-hand side of Fig. 8 using the MATLAB command reshape.

R 240x1x240

202



L. Reichel and U.0. Ugwu Applied Numerical Mathematics 166 (2021) 186-207

Fig. 7. True~sixth Xylophone video frame (left), blurred and noisy sixth frames generated for (5.5) (middle), and when L is defined by DCT matrix
(right) for § = 1073.

Fig. 8. Blurred and noisy sixth Erames generated when L is defined by DFT matrix (left), DSC matrix (middle), and reconstructed video frame by the G-GKT
method after 69 iterations for § = 1073,

Fig. 9. Reconstructed sixth frame by the G-LtGKT method for §=10"3 when the defining matrix for L is DFT matrix (left) after 35 iterations, the DCT
matrix (middle) after 116 iterations, and the DSC matrix (right) after 53 iterations.

Table 5 shows the number of iterations required by each method to satisfy the discrepancy principle, the computed
regularization parameters, as well as the relative errors and the CPU times. The table shows that the performance of the
methods depends on the invertible linear transform used. In particular, the G-LtGKT method yields restoration of the highest
quality for both noise levels when the defining matrices for L are the DFT or DSC matrices, and always gives near-best
restorations. This method requires the most CPU time for both noise levels, all invertible linear transforms and regularization
operators considered. Moreover, for § =103 and for any of the invertible linear transforms considered, the G-LtGKT method
with £ = £; yields restorations of the higher quality than when £ = £, is used. The relative performance is reversed for
§ =10"2. The GMRES method is the fastest for both noise levels but gives the worst quality restoration for §=1073.
Independently of the invertible linear transform L, the regularization operator, and the noise level, the G-LtGKT method
is the slowest and yields restorations of the best or near-best quality, while the GMRES method is the fastest and yields
restorations of worst or near-worst quality. In general, the “classical” approaches, e.g., the GAT, G-GKT and GMRES methods,
yield the worst quality restorations. Their performance may depend on the intensity of the blur.

Example 5.5. This example discusses the restoration of the flower image? with the regularization tensor £;. We compare

the quality of restorations determined by the GG-LtAT, G-LtAT,, GG-LtGMRES, and G-LtGMRES, methods with the transform
L defined by the DFT, DCT, or DSC matrices. Examples 5.1-5.4 show the GG-LtGKT and G-LtGKT, methods to be slow, and

2 http://www.hlevkin.com/Testimages.
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Table 5
Results for Example 5.4.

5 L Transform  Method iter Miter Emethod CPU time (secs)

1073 L4 DFT G-LtAT 25 3.66-10° 4.6321-1072  4.30-10?

G-LtGKT 35 1.83-102  4.1062-1072  3.75-10%

DCT G-LtAT 30 8.49-10° 6.5542-107%2  3.14-10°

G-LtGKT 116 1.75-10®* 6.5530-1072  1.78-10%

DSC G-LtAT 11 2.25-10°  4.0409-107%2  4.78-10'

G-LtGKT 53 5.38-10° 3.9429-102  3.59.10°

Lo DFT G-LtAT 25 5.18-10°  4.6322-107%2  4.49.10°

G-LtGKT 35 1.16-103>  4.1036-1072  3.94.103

DCT G-LtAT 30 3.58.10° 6.5510-1072  3.27.10°

G-LtGKT 116 8.16-10° 6.5515-107%  1.78.10%

DSC G-LtAT 11 3.57-10°  4.0418-1072  4.92.10'

G-LtGKT 53 3.29.-10° 3.9409-10"2  3.74-10°

- GAT 12 548.10° 7.9158.1072  6.82.10'

G-GKT 69 5.86-10° 7.2786-102  2.60-10°

- AT 12 1.88-10° 7.9162-1072  6.47-10'

GKT 69 4.84.10° 7.2778-1072  2.39.10?

DFT G-LtGMRES 25 - 4.7058-102  3.89-10°

DCT G-LtGMRES 30 - 6.5131-1072  3.03-10%

DSC G-LtGMRES 11 - 4.0871-1072  4.22-10!

- GMRES 12 - 8.1534-107%  4.17-10°

1072 L4 DFT G-LtAT 9 1.55-10° 1.0185-10"!  6.32-10'

G-LtGKT 16 1.09-10° 5.9297-1072  3.04-10%

DCT G-LtAT 6 5.06-102 1.1994-10"'  1.59.10'

G-LtGKT 16 5.38-10° 9.6204-107%2  3.63-10°

DSC G-LtAT 5 1.69-102 6.8818-1072  1.21-10'

G-LtGKT 14 2.17-10°  56424-1072  2.78-10%

L DFT G-LtAT 9 2.06-10> 1.0185-10"'  7.04-10!

G-LtGKT 9 1.13-10'  5.9110-1072  3.06-102

DCT G-LtAT 6 6.81-10> 1.1995-10"'  1.65-10'

G-LtGKT 16 433.10' 9.6128-1072  3.60-10?

DSC G-LtAT 5 2.33-10> 6.8827-1072  1.50-10'

G-LtGKT 14 2.32-10'  5.6317-1072  2.79-10°

- GAT 5 2.06-10° 1.1193-107'  6.97-10°

G-GKT 13 1.12-102  9.2457-107%2  8.93-10°

- GAT 5 6.91-102  1.1193-10'  6.54-10°

G-GKT 13 9.78-10"  9.2424-102  8.95-10°

DFT G-LtGMRES 9 - 1.0287-10""  5.47.10!

DCT G-LtGMRES 6 - 1.3644-10"'  1.31-10!

DSC G-LtGMRES 5 - 7.3642-1072  9.32.10°

- GMRES 5 - 1.2654-10""  0.81-10°

therefore are not considered here. We use the normalized DFT matrix for L in this example. Numerical experiments suggest
that we can save some computing time by using this matrix instead of the unnormalized DFT matrix of Examples 5.3
and 5.4. The blurring operator A e R300x300x300 s generated similarly as in Example 5.2 with ¢ =3 and band = 12. The
condition number of the first 12 frontal slices A® is 7.58-108; the remaining frontal slices have infinite condition numbers.
Using the discrepancy principle (1.5) with n = 1.2, we determine the regularization parameter(s) by the bisection method
over the interval [1072,10°]. The true £lower image, shown in Fig. 10, is stored as the tensor Xyye € R300%3x300 yging
the multi_ twist operator and is blurred by .4 similarly as described above.

The blurred and noisy images B € R300%3x300 y550ciated with the DFT, DCT, and DSC matrices are shown in Fig. 11 for
§ =1073. These images are generated by B = A #; Xyue + &, where £ € R300x3x300 5 4 “nojse tensor” determined by (5.4).
The images restored by the G-LtAT, method, that correspond to the above transforms, are displayed in Fig. 12 for §=10"3
using the multi squeeze operator.

Table 6 shows the relative errors and CPU times for each method. Among the GMRES-type methods, the G-LtGMRES,
method, which works with the lateral slices of B independently, is seen to yield restorations of near-best quality for both
noise levels and for all transforms considered. Moreover, the GG-LtGMRES method is faster than the G-LtGMRES,, GG-LtAT,
and G-LtAT, methods. A similar behavior also can be noted for the Arnoldi-Tikhonov-type methods. These observations
are consistent with our findings in [27,28]. The G-LtAT, method, which works independently with the lateral slices of the
data tensor, is seen to yield restorations of near-best quality, but is the slowest method for both noise levels and for all
transforms considered. The GG-LtGMRES method yields restorations of near-worst quality.
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Fig. 10. True £lower image.

Fig. 11. Blurred and noisy flower image generated when L is defined by the DFT matrix (left), the DCT matrix (middle), and the DSC matrix (right) for
§=1073.

Fig. 12. Reconstructed images by the G-LtAT, method for 3=10"3 when the defining matrix for L is the DFT matrix (left) after 29 iterations, the DCT
matrix (middle) after 16 iterations, and the DSC matrix (right) after 10 iterations.

6. Conclusions

This paper discusses several transform-based methods for solving linear discrete ill-posed tensor problems and extends
available global tensor Krylov subspace methods defined by a t-product to global tensor Krylov subspace methods defined
by an invertible linear transform tensor product *; introduced by Kernfeld et al. [16]. The latter tensor product and its
performance in tensor Krylov subspace iterative methods has not received much attention in the literature.

Both orthogonal and non-orthogonal invertible linear transform matrices are considered. The blurring effects and the
performance of the described methods depend on the transformation used.

We found Golub-Kahan-type bidiagonalization methods, i.e., the G-LtGKT, GG-LtGKT, and G-LtGKT methods, in general
to be slow. Their performance is sensitive to the noise levels used. Independently of the regularization operator, the G-
LtGKT, and GG-LtGKT methods yield the worst quality restorations for 0.1% noise when the DCT and DSC matrices are used
to define the *; product. Moreover, they are the best methods when the DFT is used to define %; product. Additionally,
irrespective of the choice of regularization operator and invertible linear transform, both methods give restorations of the
best quality for 1% noise. The GG-LtGKT method, which works with the lateral slices of the data tensor simultaneously,
yields worst or near-worst quality restorations for both noise levels than the G-LtGKT, method, which works with the
lateral slices independently. The latter method is slower than the GG-LtGKT method.
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Table 6
Results for Example 5.5.

5 Transform  Method iter  Liter Emethod CPU time (secs)

103 DFT GG-LtAT 29 1.33-10' 6.5252-107%  3.09-103

GG-LtGMRES 29 - 6.6161-1072  1.55-10%

G-LtAT, - - 6.5239-1072  4.25.103

G-LtGMRES, - - 6.5836-1072  3.69-103

DCT GG-LtAT 16 2.58-10° 8.8341-1072  4.13-10%

GG-LtGMRES 16 - 9.0044-1072  2.02-102

G-LtAT, - - 8.4814-1072  5.40-10°

G-LIGMRES, - - 8.6098-1072  4.74-10%

DSC GG-LtAT 10 8.74-10° 5.8140-1072  1.62-10%

GG-LtGMRES 10 - 5.7754-10"%  8.00-10!

G-LtAT, - - 5.8071-1072  2.88.10°

G-LtGMRES, - - 5.7581-1072  2.40-10%

1072 DFT GG-LtAT 8 4.10-107!  1.0306-10"!  2.22-10%

GG-LtGMRES 8 - 1.1034-10"'  1.09-10?

G-LtAT), - - 1.0324-107'  3.25.10?

G-LtGMRES, - - 1.0653-10"!'  2.55.10?

DCT GG-LtAT 4 1.30-107'  1.0527-10"'  2.95.10'

GG-LtGMRES 4 - 1.0669-10""  1.37-10!

G-LtAT, - - 1.0511-107"  5.29.10!

G-LtGMRES, - - 1.0670-10"!  3.87-10!

DSC GG-LtAT 4 2.55-10"!  83032-1072  2.70-10!

GG-LtGMRES 4 - 8.3178-107%  1.32-10'

G-LtAT), - - 8.2905-1072  5.07-10'

G-LtGMRES, - - 8.3190-1072  3.75.10'

The G-LtGKT method is seen to give restorations of higher quality than the G-LtAT and G-LtGMRES methods. Its perfor-
mance depends on the invertible linear transform, regularization operator, and noise level used. It is often the case that the
quality of the restoration improves with Tikhonov regularization. However, this behavior is different when the DCT matrix
is used to define the *; product, since for 0.1% noise and independently of the choice of regularization operator for the
G-LtAT method, the G-LtGMRES method gives higher quality restoration.

The performances of the G-LtGMRES, G-LtGMRES,, and GG-LtGMRES methods are almost independent of the transform
used and the noise levels. The G-LtGMRES and GG-LtGMRES methods are the fastest but often yield restorations of the
worst or near-worst quality.

Among the Arnoldi-type methods applied to color and video image processing, i.e., G-LtAT,, GG-LtAT, G-LtGMRES,, and
GG-LtGMRES methods, the G-LtAT, method, which works with the lateral slices of the data tensor independently, is the
best or near-best method when the DCT and DFT matrices are used to define the %, product. Similarly, the G-LtGMRES,
method gives the best or near-best quality restoration when the DSC matrix is used to define the % product.

The performance of the Golub-Kahan bidiagonalization-type and GMRES-type methods leads us to recommend the use
of Tikhonov regularization methods together with Arnoldi-type methods for the reduction of a large problem to a problem
of fairly small dimension. Though, we have to add that Arnoldi-type reduction methods may perform poorly for pronounced
motion blur. The latter has been illustrated for matrix problems in [5].
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