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This paper discusses several transform-based methods for solving linear discrete ill-posed 
problems for third order tensor equations based on a tensor-tensor product defined by 
an invertible linear transform. Linear transform-based tensor-tensor products were first 
introduced in Kernfeld et al. (2015) [16]. These tensor-tensor products are applied to 
derive Tikhonov regularization methods based on Golub-Kahan-type bidiagonalization and 
Arnoldi-type processes. GMRES-type solution methods based on the latter process also are 
described. By applying only a fairly small number of steps of these processes, large-scale 
problems are reduced to problems of small size. The number of steps required by these 
processes and the regularization parameter are determined by the discrepancy principle. 
The data tensor is a general third order tensor or a tensor defined by a laterally oriented 
matrix. A quite general regularization tensor can be applied in Tikhonov regularization. 
Applications to color image and video restorations illustrate the effectiveness of the 
proposed methods.

 2021 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

We are concerned with the solution of large-scale least squares problem of the form

min
X∈Rm×p×n

‖A ∗L X − B‖F , A ∈ R
ℓ×m×n, B ∈ R

ℓ×p×n, p > 1, (1.1)

with a third order tensor A, whose singular tubes decay rapidly in the Frobenius norm with increasing index. In particular, 
A has ill-determined tubal rank. Many of its singular tubes, which are analogues of the singular values of a matrix, are 
nonvanishing with tiny Frobenius norm of different orders of magnitude. This makes (1.1) a linear discrete ill-posed problem; 
cf. Definition 2.2 below, in which the tensor A specifies the model, the tensor B represents available data, e.g., a degraded 
color image, and the operator ∗L is a tensor-tensor product defined in a transformed domain for an invertible linear operator 
L. The ∗L product between A and X is computed by moving both tensors into the transform domain, evaluating n matrix-

matrix products in the transform domain, and computing the inverse transform of the result; cf. Definition 2.1 below. This 
kind of tensor-tensor product was first described by Kernfeld et al. [16] and has found applications in data compression [18], 
tensor neural networks [25], image deblurring [16], as well as image recovery by low-rank completion [22]. An extension of 
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the ∗L product to k-order tensors for k > 3 is described by Han [11]. Further details on the operator ∗L will be provided in 
Section 2. Throughout this paper, ‖ · ‖F denotes the Frobenius norm. For A = [ai jk]ℓ,m,n

i, j,k=1
, we have

‖A‖F =

√√√√√
ℓ∑

i=1

m∑

j=1

n∑

k=1

a2
i jk

.

In applications of interest to us, such as image and video processing, the data tensor B represents measured data that 
are contaminated by a measurement error E ∈ Rℓ×p×n , i.e.,

B = Btrue + E,

where Btrue ∈ Rℓ×p×n denotes the unknown error-free data tensor. We will assume that the unavailable system of equations

A ∗L X = Btrue (1.2)

is consistent and let Xtrue ∈ Rm×p×n denote its solution of minimal Frobenius norm. Our aim is to determine an accurate 
approximation of Xtrue given A and B in (1.1). The consistency of (1.2) makes it possible to apply the discrepancy principle 
for this purpose; see below.

Straightforward solution of (1.1) generally does not yield a meaningful approximation of Xtrue due to propagation and 
severe amplification of the error E in B into the solution of (1.1). We introduce Tikhonov regularization to reduce this 
difficulty, i.e., instead of solving (1.1), we solve the penalized least squares problem

min
X∈Rm×p×n

{
‖A ∗L X − B‖2F + µ−1‖L ∗L X‖2F

}
. (1.3)

The tensor L ∈ Rs×m×n is a regularization operator and µ > 0 is a regularization parameter. Let N (M) denote the null 
space of the tensor M under ∗L , and assume that L is such that

N (A) ∩N (L) = {O},
where O ∈ Rm×p×n denotes the null tensor. Then (1.3) has a unique solution, Xµ , for any µ > 0.

We will use the discrepancy principle to determine the regularization parameter. Its application requires that a bound

‖E‖F ≤ δ (1.4)

is known. The discrepancy principle prescribes that µ > 0 be determined so that the solution Xµ of (1.3) satisfies the 
equation

‖A ∗L Xµ − B‖F = ηδ, (1.5)

where η > 1 is a user-specified constant that is independent of δ > 0; see Engl et al. [8] for discussions on this approach to 
determine the regularization parameter µ. We remark that other techniques, such as generalized cross validation [9,10] and 
the L-curve criterion [12,20,26], also may be used to determine the regularization parameter, in particular, when a bound 
(1.4) for the error tensor is not known.

We also will discuss the approximate solution of (1.1) by GMRES-type iterative methods when A ∈ Rm×m×n and B ∈
Rm×p×n . Regularization is achieved by truncating the iterations sufficiently early. The discrepancy principle is used to decide 
how many iterations to carry out. The GMRES method for the solution of linear discrete ill-posed problems (1.1), when A is 
a square matrix and B a vector, was first described in [4] and is more recently investigated by Neubauer [23]. A variant of 
the GMRES solution method is discussed in [24].

This paper focuses on tensor-tensor products defined with an invertible linear transform L. These products were intro-
duced by Kernfeld et al. [16] and are denoted by ∗L . The tensor t-product defined in the seminal work by Kilmer and Martin 
[19] is a special case of the ∗L product. A disadvantage of the t-product is that its efficient evaluation requires the use of 
the discrete Fourier transform (DFT), whose implementation demands complex arithmetic. The ∗L product can be chosen so 
that no complex arithmetic is required, which may speed up the computations. Moreover, we can use linear transformations 
that satisfy reflective or periodic boundary conditions when this is appropriate for the problem being solved.

It is the purpose of the present paper to generalize the Arnoldi-type and bidiagonalization-type solution methods for 
(1.3), that are based on the t-product and are described in [7,27,28], to solution methods that use the ∗L tensor product 
defined by an invertible linear transform L. This generalization allows us to consider applications of the ∗L product in 
several contexts, e.g., in image and video processing, and to gain useful insights into the performance of these methods. 
Iterative Krylov subspace methods defined by the ∗L product for image and video processing have so far not received much 
attention in the literature. The discussion of the current paper builds on the image deblurring model considered by Kernfeld 
et al. [16].
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The methods of this paper differ from the ones described in [7,27,28] in two ways:

i) We modify the generalized global t-product Golub-Kahan bidiagonalization (GG-tGKB) process described in [27] to 
generate an orthogonal tensor basis for the tensor Krylov (t-Krylov) subspace

Kk(A
T ∗L A,AT ∗L B) = span{AT ∗L B, (AT ∗L A) ∗L A

T ∗L B, . . . , (AT ∗L A)k−1 ∗L A
T ∗L B}

using the ∗L tensor product, where the superscript T denotes transposition. We refer to the method for generating an 
orthogonal tensor basis for this t-Krylov subspace as the GG-LtGKB process. This process reduces A in (1.3) to a small 
lower bidiagonal matrix by computing a few, say 1 ≤ k ≪ min{ℓ, m}, steps of the GG-LtGKB process. Each step requires 
the evaluation of two tensor-tensor products, one with A and one with AT . We refer to the solution method for (1.3)
based on the GG-LtGKB process as the generalized global ∗L tensor Golub-Kahan-Tikhonov (GG-LtGKT) method.

ii) We adjust the T-global Arnoldi process described by El Guide et al. [7] to generate a t-Krylov subspace under the ∗L

tensor product. Generically, ℓ − 1 steps of this process determine an orthogonal tensor basis for the t-Krylov subspace

Kℓ(A,B) = span{B,A ∗L B, . . . ,Aℓ−1 ∗L B}. (1.6)

Here A ∈ Rm×m×n . The method for determining this tensor basis will be referred to as the generalized global ∗L tensor 
Arnoldi (GG-LtA) process. We assume that ℓ ≪m. Then, generically, this process reduces the tensor A in (1.3) to a small 
(ℓ + 1) × ℓ upper Hessenberg matrix. Each step requires one tensor-tensor product evaluation (with A). The subspace 
(1.6) will be applied both in a Tikhonov-type regularization method, which will be referred to as a generalized global 
∗L tensor Arnoldi-Tikhonov (GG-LtAT) method and in a GMRES-type method. The latter method extends the generalized 
global t-product GMRES (GG-tGMRES) method recently described in [28] to the ∗L tensor product, and will be referred 
to as the GG-LtGMRES method. Generically, the ℓth iterate determined by this method, Xℓ ∈ Kℓ(A, B), satisfies

‖A ∗L Xℓ − B‖F = min
X∈Kℓ(A,B)

‖A ∗L X − B‖F , ℓ = 1,2, . . . , (1.7)

where we assume that X0 = O, and O denotes the null tensor. The iterations are terminated by the discrepancy 
principle, i.e., as soon as the left-hand side of (1.7) is bounded by ηδ; cf. (1.5).

We also discuss the approximate solution of linear discrete ill-posed problems of the form

min
�X∈Rm×1×n

{
‖A ∗L

�X − �B‖2F + µ−1‖L ∗L
�X‖2F

}
, (1.8)

which are obtained when p = 1 in (1.1). In this situation, the tensors �X ∈ Rm×1×n and �B ∈ Rℓ×1×n are laterally oriented 
matrices. Here the data tensor �B may represent a degraded laterally oriented gray-scale image. The problem (1.8) has 
recently been considered in [17,27,28] in the special case when ∗L is the t-product.

Kernfeld et al. [16] described a solution method for the minimization problem (1.8) with L the identity tensor, using the 
discrete cosine transform product, denoted by ∗c . This product can be computed by the MATLAB function dct along the 
third dimension. The product ∗c is a special case of the ∗L tensor product. Kernfeld et al. [16] also discuss the tensor product 
∗L , but its performance in the context of solving (1.8) is not considered. Our solution methods for (1.8) differ from the one 
described by Kernfeld et al. [16] in the following ways: i) We use the global ∗L tensor Golub-Kahan bidiagonalization (G-
LtGKB) process, ii) we use the global ∗L tensor Arnoldi (G-LtA) process, iii) we allow a general regularization operator L in 
(1.8), and iv) we determine the regularization parameter with the aid of the discrepancy principle. Further discussions on 
these topics are provided in Subsections 3.2 and 4.2. Solution methods for (1.8) that are based on the G-LtGKB and G-LtA 
processes will be referred to as the global ∗L tensor Golub-Kahan-Tikhonov (G-LtGKT) and global ∗L tensor Arnoldi-Tikhonov 
(G-LtAT) methods, respectively.

Replacing the data tensor B in (1.7) by a lateral tensor slice �B yields the minimization problems

‖A ∗L
�Xℓ − �B‖F = min

�X∈Kℓ(A, �B)

‖A ∗L
�X − �B‖F , ℓ = 1,2, . . . , (1.9)

where �Xℓ ∈ Kℓ(A, �B) and �X0 = �O ∈ Rm×1×n . We solve (1.9) by a GMRES-type method, which we refer to as the global ∗L

tensor GMRES (G-LtGMRES) method. Here, �O is a tensor determined by an m × n zero matrix oriented laterally.
We remark that several tensor-based methods, that do not apply the transform-based methods discussed in [7,16,17,

27,28], recently have been described in literature; see, e.g., [2,3,6]. The solution schemes of the current paper belong the 
GKT_BTF and AT_BTF families of methods described by Beik et al. [2,3]. They involve flattening since they transform the 
equations (1.3), (1.7), (1.8), and (1.9) to equivalent equations involving matrices and vectors, and they require additional 
product definitions to the ∗L product.

This paper is organized as follows. Section 2 introduces notation and preliminaries associated with the ∗L product for-
malism, and Section 3 describes the GG-LtGKT and G-LtGKT methods. Both methods use a bidiagonalization process to 
reduce A ∈ Rℓ×m×n to a small bidiagonal matrix. Section 4 describes the GG-LtAT, G-LtAT, GG-LtGMRES, and G-LtGMRES 

188



L. Reichel and U.O. Ugwu Applied Numerical Mathematics 166 (2021) 186–207

methods. They are based on reducing A ∈ Rm×m×n to a small upper Hessenberg matrix by carrying out a few steps of an 
Arnoldi-type process. The solution methods for (1.3) discussed in Section 3 and 4 can be divided into two groups: those 
that work with lateral slices �B j , j = 1, 2, . . . , p, of the data tensor B independently, and those that work with these slices 
simultaneously. When applied to image restoration problems, computed examples in [27,28] showed the latter approach to 
require less CPU time than the former, but often gave less accurate restorations. Section 5 presents computed examples that 
illustrate the performance of the methods described in this paper. Concluding remarks can be found in Section 6.

2. Notation and preliminaries

The tensors in this paper are multidimensional arrays of real scalars of order three. We use notation described in [7,
16,21]. Thus, third order tensors are denoted by calligraphic script letters, say A, capital letter, say A, stand for matrices, 
and boldface lower case letters, say a, denote tubal scalars (tube fibers). A tube fiber of a third order tensor is a 1D section 
obtained by fixing two of the indices of A [21]. Using MATLAB notation, A(:, j, k), A(i, :, k), and A(i, j, :) denote mode-1, 
mode-2, and mode-3 tube fibers, respectively. A slice of a tensor A is a 2D section obtained by fixing one of the indices 
[21]. Using MATLAB notation, A(i, :, :), A(:, j, :), and A(:, :, k) stand for the ith horizontal, jth lateral, and kth frontal slices, 
respectively. The jth lateral slice, also denoted by �A j , is a tensor, that sometimes is referred to as a tensor column, whereas 
the kth frontal slice, oftentimes denoted by A(k) , is a matrix. The tensor-tensor product based on an invertible linear 
transform L is defined as follows:

Definition 2.1 (∗L product [16]). Let L : Rℓ×m×n → Rℓ×m×n be an invertible linear operator, and let B ∈ Rℓ×p×n and C ∈
Rp×m×n . Then the ∗L product of the tensors B and C is the tensor A ∈ Rℓ×m×n given by

A := B ∗L C = L−1
(
L(B)△L(C)

)
, (2.1)

where the face-product △ is defined by

(A△B)(i) = A(i)B(i).

The product ∗L is associative since (A ∗L B) ∗L C =A ∗L (B ∗L C), and the expression L(B)△L(C) in (2.1) is equivalent to a 
matrix-matrix product in the transform domain. If we consider a third order tensor A in (2.1) as a matrix of tubes oriented 
in the third dimension, then its (i, j)th tube is given by

[A]i j =
p∑

k=1

B(i,k, :) ∗L C(k, j, :).

This results in a circular convolution between tubes if ∗L is the t-product [19]. When instead ∗L is the cosine transform 
product, the resulting multiplication between tubes is the dot-product [16].

Following Kernfeld et al. [16], we denote the transform-domain version of A by Â, where Â is a tensor whose tube 
fibers â are computed as

âi j = [Â]i j := L(ai j), i = 1,2, . . . , ℓ, j = 1,2, . . . ,m.

Kernfeld et al. [16] also describe a more efficient way of computing Â = L(A) than looping over the row and column 
indices of A. It is based on computing the mode-3 matrix product, see [21], between A ∈ Rℓ×m×n and the invertible 
matrix M ∈ Rn×n associated with the linear transform L according to

L(A) = A×3 M and L−1(A) = A×3 M−1, (2.2)

and folding the resulting matrix. Note that

A×3 M = MA(3) ∈ R
n×ℓm,

where A(3) ∈ Rn×ℓm is the mode-3 unfolding of A, which can be obtained by using the squeeze operator defined in [17], 
i.e.,

A(3) =
[(
squeeze( �A1)

)T

,

(
squeeze( �A2)

)T

, . . . ,

(
squeeze( �Am)

)T
]

,

where �A j , j = 1, 2, . . . , m, are the lateral slices of A, and the squeeze operator applied to �X is identical to the MATLAB 
squeeze function

X = squeeze( �X ) =⇒ X(i,k) = �X (i,1,k) ∀i,k.
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In particular, squeeze( �A j) ∈ Rℓ×n for j = 1, 2, . . . , m.

The transformation matrix M acts along the tube fibers of A, even though it is written as MA(3) . Using (2.2), an 
equivalent definition of (2.1) is given by

B ∗L C = L−1(L(B)△L(C)) = [(B ×3 M)△(C ×3 M)] ×3 M−1. (2.3)

This definition is described by Kernfeld et al. [16] and used in the computed examples of Section 5.

When M is used as the defining matrix for L in (2.3), the resulting product sometimes is referred to as the M-product

and denoted by ∗M ; see [18,25]. Choosing M as the normalized DFT matrix gives the t-product, whereas the DCT matrix 
yields the cosine transform product; see Kernfeld et al. [16] for a detailed discussion of the cosine transform product, and 
[1] for an extension to higher order tensors by using the mode-m tensor transform.

For any invertible linear operator L, the ∗L product between a pair of tensors can be computed by working only in the 
transform domain using Algorithm 1.

Algorithm 1: ∗L product [16].

Input: B ∈ Rℓ×p×n , C ∈ Rp×m×n

1 B̂ = L(B)

2 Ĉ = L(C)

3 for i = 1 to n do

4 Â(i) ← B̂(i)Ĉ(i)

5 end

6 A ← L−1(Â)

The following properties of the tensor product ∗L have been shown by Kernfeld et al. [16]. Given an invertible linear 
transform L and a tensor A ∈ Rℓ×m×n , the tensor transpose under ∗L , AT ∈ Rm×ℓ×n , satisfies

[L(AT )](i) = [L(A)(i)]T , i = 1,2, . . . ,n.

This tensor transpose has similar properties as the matrix transpose. For instance, suppose the tensors A and B are such 
that A ∗L B and BT ∗L A

T are well defined. Then (A ∗L B)T = BT ∗L A
T ; see [16]. We remark that the tensor transpose is 

computed by transforming to and from the transform domain using an invertible linear transform matrix, and taking the 
transpose of each of the frontal slices Â(i) , i = 1, 2, . . . , n, of Â in the transform domain. When the DFT matrix is used to 
define the ∗L product, a conjugate transpose is required to transform back to the spatial domain.

The identity tensor I ∈ Rm×m×n under L is a tensor such that I = L−1(Î), where Î is an m × m × n tensor, whose 
frontal slices are the m ×m identity matrix for i = 1, 2, . . . , n. The diagonal tubes of I are given by e1 := L−1(e), where e
is a 1 × 1 × n tube fiber of ones and the off-diagonal entries of I vanish; see [16]. An m ×m × n tensor A has an inverse 
A−1 under ∗L provided that A ∗L A

−1 = I and A−1 ∗L A = I; see [16].
A tensor Q ∈ Rm×m×n is orthogonal if QT ∗L Q = Q ∗L Q

T = I; see [16]. We remark that the lateral slices of Q are 
orthonormal and satisfy

QT (:, i, :) ∗L Q(:, j, :) =
{
e1 i = j,

0 i �= j.

The tensor Q ∈ Rℓ×m×n with ℓ > m is said to be partially orthogonal if QT ∗L Q is well defined and equal to the identity 
tensor I ∈ Rm×m×n .

The tensor singular value decomposition (SVD) ∗L factorization of A ∈ Rℓ×m×n introduced by Kernfeld et al. [16] is given 
by

A = U ∗L S ∗L V
T ,

where U ∈ Rℓ×ℓ×n and V ∈ Rm×m×n are orthogonal tensors, and the tensor

S = diag[s1, s2, . . . , smin{ℓ,m}] ∈ R
ℓ×m×n

is f-diagonal with singular tubes s j ∈ R1×1×n , j = 1, 2, . . . , min{ℓ, m}, ordered according to

‖s1‖F ≥ ‖s2‖F ≥ · · · ≥ ‖smin{ℓ,m}‖F .

Note that a tensor is said to be f-diagonal if each frontal slice of the tensor is a diagonal matrix; see [19].
The number of nonzero singular tubes of A is referred to as the tubal rank of A; see Kilmer et al. [17]. The singular 

tubes of A are analogues of the singular values of a matrix A. A linear discrete ill-posed problem with a matrix A has 
many singular values of different orders of magnitude close to zero. Definition 2.2 describes linear discrete ill-posed tensor 
problems induced by the ∗L product.
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Definition 2.2. The tensor least squares problem (1.1) is said to be a linear discrete ill-posed problem for third order tensors 
under ∗L if A has ill-determined tubal rank, i.e., the Frobenius norm of the singular tubes of A decays rapidly to zero 
without a significant gap with increasing index, and there are many nonvanishing singular tubes of tiny Frobenius norm of 
different orders of magnitude.

We remark that this definition describes a property of the whole tensor A, i.e., the singular tubes of A which are 
computed by finding the SVD of each frontal slice Â(i) , i = 1, 2, . . . , n, of Â in the transform domain; see [16] for details.

We conclude this section by introducing notation from El Guide et al. [7]. Let

Vk := [V1,V2, . . . ,Vk] ∈ R
m×kp×n and Vk := [ �V1, �V2, . . . , �Vk] ∈ R

m×k×n

with V j ∈ Rm×p×n and �V j ∈ Rm×1×n for j = 1, 2, . . . , p. Let y = [y1, y2, . . . , yk]T ∈ Rk . Then El Guide el al. [7] defined the 
product ⊛ as

Vk ⊛ y =
k∑

j=1

y jV j, Vk ⊛ y =
k∑

j=1

y j
�V j.

It is readily shown that for any orthogonal tensors V ∈ Rℓ×kp×n and V ∈ Rℓ×k×n ,

‖V ⊛ y‖F = ‖y‖2, ‖V ⊛ y‖F = ‖y‖2, (2.4)

where ‖ · ‖2 denotes the Euclidean vector norm; see [7] for details.
Consider the tensors C = [ci jk], D = [di jk] ∈ Rm×p×n and their lateral slices �C = [ci1k], �D = [di1k] ∈ Rm×1×n , and define 

the scalar products

〈C,D〉 =
m∑

i=1

p∑

j=1

n∑

k=1

ci jkdi jk, 〈 �C, �D〉 =
m∑

i=1

n∑

k=1

ci1kdi1k.

Suppose

A := [A1,A2, . . . ,Am] ∈ R
ℓ×sm×n and B := [B1,B2, . . . ,Bp] ∈ R

ℓ×sp×n,

A := [ �A1, �A2, . . . , �Am] ∈ R
ℓ×m×n and B := [ �B1, �B2, . . . , �Bp] ∈ R

ℓ×p×n,

where Ai ∈ Rℓ×s×n , �Ai ∈ Rℓ×1×n , i = 1, 2, . . . , m, and B j ∈ Rℓ×s×n , �B j ∈ Rℓ×1×n , j = 1, 2, . . . , p. Then the T-diamond 
products [7] denoted by AT

�B and AT
�B result in m × p matrices with entries

[AT
�B]i j = 〈Ai, B j〉, [AT

�B]i j = 〈 �Ai, �B j〉, i = 1,2, . . . ,m, j = 1,2, . . . , p.

The naming scheme for the solution methods for (1.3), (1.7), (1.8), and (1.9), that are described in Sections 3 and 4, is 
summarized in Table 1.

3. Solution methods for (1.3) and (1.8) based on bidiagonalization processes

This section describes the generalized global ∗L tensor Golub-Kahan-Tikhonov (GG-LtGKT) method and the global ∗L

tensor Golub-Kahan-Tikhonov (G-LtGKT) method. The G-LtGKT method applied to the solution of (1.3) works with the 
lateral slices �B j , j = 1, 2, . . . , p, of B independently; when applied to the solution of (1.8), there is only one data tensor 
slice �B. The GG-LtGKT method for the solution of (1.3) works with all lateral slices of B simultaneously.

3.1. The GG-LtGKT method for the solution of (1.3)

This subsection extends the generalized global t-product Golub-Kahan-Tikhonov (GG-tGKT) method for the solution of 
(1.3) described in [27] to the ∗L product. The latter method will be referred to as the GG-LtGKT method. A variant of the 
GG-tGKT method has recently been presented in [7].

Algorithm 2 extends the generalized global t-product Golub-Kahan bidiagonalization (GG-tGKB) process described in [27]
to the ∗L product. This algorithm will be referred to as the generalized global ∗L tensor Golub-Kahan bidiagonalization 
(GG-LtGKB) process. We assume that the number of steps, k, is chosen small enough to avoid breakdown. Then Algorithm 2

produces the partial GG-LtGKB decompositions

A ∗L Wk = Vk+1 ⊛ P̄k, AT ∗L Vk = Wk ⊛ P̄ T
k , (3.1)

where

Wk := [W1,W2, . . . ,Wk] ∈ R
m×kp×n, V j := [V1,V2, . . . ,V j] ∈ R

ℓ× jp×n, j ∈ {k,k + 1}
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Table 1

The prefix GG indicates that the method for the solution of tensor least squares problems (1.3) and (1.7)
with a general data tensor B ∈ Rℓ×p×n , p > 1, works with the whole tensor B at a time, while the 
prefix G indicates that the method is designed for the solution of tensor least squares problems (1.8)
and (1.9) with a data tensor slice �B ∈ Rℓ×1×n that is a laterally oriented matrix of size ℓ × n. The last 
three methods with subscript p work with the lateral slices �B j , j = 1, 2, . . . , p, of the data tensor B
independently.

Abbreviation Method Described in Section

GG-LtGKT generalized global ∗L tensor Golub-Kahan-Tikhonov 3.1

GG-LtGKB generalized global ∗L tensor Golub-Kahan bidiagonalization 3.1

GG-tQR generalized global tensor QR 3.1, 4.1

G-LtGKT global ∗L tensor Golub-Kahan-Tikhonov 3.2

G-LtGKB global ∗L tensor Golub-Kahan bidiagonalization 3.2

G-tQR global tensor QR 3.2, 4.2

GG-LtAT generalized global ∗L tensor Arnoldi-Tikhonov 4.1

GG-LtA generalized global ∗L tensor Arnoldi 4.1

GG-LtGMRES generalized global ∗L tensor GMRES 4.1

G-LtAT global ∗L tensor Arnoldi-Tikhonov 4.2

G-LtA global ∗L tensor Arnoldi 4.2

G-LtGMRES global ∗L tensor GMRES 4.2

G-LtGKTp G-LtGKT applied p times to solve (1.3) 3.2

G-LtATp G-LtAT applied p times to solve (1.3) 4.2

G-LtGMRESp G-LtGMRES applied p times to solve (1.7) 4.2

and

A ∗L Wk := [A ∗L W1,A ∗L W2, . . . ,A ∗L Wk] ∈ R
ℓ×kp×n,

Vk+1 ⊛ P̄k := [Vk+1 ⊛ P̄k(:,1),Vk+1 ⊛ P̄k(:,2), . . . ,Vk+1 ⊛ P̄k(:,k)] ∈ R
ℓ×kp×n.

(3.2)

The matrix

P̄k =




α1

β2 α2

. . .
. . .

βk αk

βk+1




∈ R
(k+1)×k (3.3)

is lower bidiagonal. The tensors V j ∈ Rℓ×p×n and W j ∈ Rm×p×n , for j = 1, 2, . . . , k, generated by Algorithm 2 form or-
thogonal tensor bases for the t-Krylov subspaces Kk(A ∗L A

T , A ∗L A
T ∗L B) and Kk(A

T ∗L A, AT ∗L B), respectively. The 
relations

B = V1‖B‖F = Vk+1 ⊛ e1‖B‖F = Vk+1 ⊛ e1β1, e1 = [1,0, . . . ,0]T , (3.4)

follow from Algorithm 2.

Algorithm 2: The partial generalized global ∗L tensor Golub-Kahan bidiagonalization (GG-LtGKB) process.

Input: A ∈ Rℓ×m×n , B ∈ Rℓ×p×n , such that AT ∗L B �= O

1 Set β1 ← ‖B‖F , V1 ← 1
β1
B, W0 ← O

2 for j = 1, 2, . . . , k do

3 W ← AT ∗L V j − β jW j−1

4 α j ← ‖W‖F , If α j = 0, stop else

5 W j ← W/α j

6 V ← A ∗L W j − α jV j

7 β j+1 ← ‖V‖F , If β j+1 = 0, stop else

8 V j+1 ← V/β j+1

9 end

Let X = Wk ⊛ y, substitute the left-hand side of (3.1) into (1.3), and use (3.4) to obtain the reduced minimization 
problem

min
y∈Rk

{‖Vk+1 ⊛ P̄k ⊛ y − Vk+1 ⊛ e1β1‖2F + µ−1‖L ∗L Wk ⊛ y‖2F }. (3.5)
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Following an approach that is analogous to the one described in [15], we use Algorithm 3 to compute the generalized global 
tensor QR (GG-tQR) factorization

L ∗L Wk = VL,k ⊛ RL,k, (3.6)

where RL,k ∈ Rk×k is an upper triangular matrix, and VL,k ∈ Rs×kp×n has k orthogonal tensor columns. The factorization 
(3.6) can be evaluated by updating the available GG-tQR factorization of L ∗L Wk−1 . The regularization operators L used in 
the computed examples are described in Section 5.

Algorithm 3: Generalized global tensor QR (GG-tQR) factorization [27].

Input: A := [A1, A2, . . . , Ak] ∈ Rℓ×km×n, A j ∈ Rℓ×m×n, j = 1, . . . , k, ℓ ≥m.

Output: V := [V1, V2, . . . , Vk] ∈ Rℓ×km×n, V j ∈ Rℓ×m×n, j = 1, . . . , k, R = [ri j ] ∈ Rk×k such that A = V ⊛ R , and V T
�V = Ik

1 Set r11 ← 〈A1, A1〉1/2 , V1 ← 1
r11

A1

2 for j = 1, 2 . . . , k do

3 W ← A j

4 for i = 1, 2, . . . , j − 1 do

5 ri j ← 〈Vi , W〉
6 W ← W − ri jVi

7 end

8 r j j ← 〈W, W〉1/2
9 V j ← W/r j j

10 end

Substitute (3.6) into (3.5), and use the left-hand side of (2.4) to obtain

min
y∈Rk

{‖ P̄k y − e1β1‖22 + µ−1‖RL,k y‖22}. (3.7)

We would like to transform (3.7) into a Tikhonov minimization problem in standard form. With this aim, define the quan-
tities

z := RL,k y, P̃k := P̄ R−1
L,k

, (3.8)

where we assume the matrix RL,k to be invertible and not very ill-conditioned. This holds for many regularization operators 
L, and in particular for the ones used in the computed examples of Section 5. Then the transformation (3.8) is attractive to 
apply. Substitution into (3.7) yields the Tikhonov minimization problem in standard form,

min
z∈Rk

{‖ P̃kz − e1β1‖22 + µ−1‖z‖22}. (3.9)

The normal equations associated with (3.9) are given by

( P̃ T
k P̃k + µ−1 I)z = P̃ T

k e1β1, (3.10)

and their solution, for any µ > 0, can be written as

zµ,k = ( P̃ T
k P̃k + µ−1 I)−1 P̃ T

k e1β1. (3.11)

It follows that the computed approximate solution to the Tikhonov minimization problem (1.3) can be expressed as

Xµ,k = Wk ⊛ R−1
L,k

( P̃ T
k P̃k + µ−1 I)−1 P̃ T

k e1β1.

We remark that we compute the vector zµ,k in (3.11) by solving the least squares problem

min
z∈Rk

∥∥∥∥
[

P̃k

µ−1/2 I

]
z −

[
e1β1

0

]∥∥∥∥
2

,

because the condition number of the matrix in this problem is the square root of the condition number of the matrix 
P̃ T
k
P̃k + µ−1 I in (3.10).
The regularization parameter and the required number of steps k by the GG-LtGKB process are determined by the 

discrepancy principle (1.5), which prescribes that µ > 0 be chosen so that the solution (3.11) satisfies

‖ P̃kzµ,k − e1β1‖2 = ηδ; (3.12)

see Proposition 3.1 below. We choose k as small as possible so that the above equality can be satisfied. Define the function

193



L. Reichel and U.O. Ugwu Applied Numerical Mathematics 166 (2021) 186–207

φk(µ) := ‖ P̃kzµ,k − e1β1‖22, (3.13)

substitute (3.11) into (3.13), and use the identity

I − P̃k( P̃
T
k P̃k + µ−1 I)−1 P̃ T

k = (µ P̃k P̃
T
k + I)−1

to obtain

φk(µ) = β2
1e

T
1 (µ P̄k P̄

T
k + I)−2e1.

It is readily shown that φk(µ) is decreasing and convex with φk(0) = β2
1 ; see [27] for details. A zero finder such as bisection 

or Newton’s method can be used to determine the solution µk of

φk(µ) − η2δ2 = 0. (3.14)

We will use the bisection method in the computed examples of Section 5.

The following result shows that we can apply the discrepancy principle (1.5) to the reduced problem (3.9) to determine 
µ > 0 that satisfy (3.12); see [27] for a proof of a related result.

Proposition 3.1. Let µ = µk solve (3.14) and suppose zµ,k is the solution of the normal equations (3.10). Let yµ,k and zµ,k be related 
by (3.8). Then the associated approximate solution Xµ,k = Wk ⊛ yµ,k of (1.3) satisfies

‖A ∗L Xµ,k − B‖2F = β2
1e

T
1 (µ P̃k P̃

T
k + I)−2e1.

We refer to the above solution method as the GG-LtGKT method. It is implemented by using [27, Algorithm 10] with the 
t-product replaced by the ∗L product.

3.2. The G-LtGKT method for the solution of (1.8) and (1.3)

This subsection extends the global t-product Golub-Kahan-Tikhonov (G-tGKT) method described in [27] for the approxi-
mate solution of (1.8) and (1.3) to the ∗L product. The methods obtained will be referred to as the G-LtGKT and G-LtGKTp

methods, respectively. Algorithm 4 extends the global t-product Golub-Kahan bidiagonalization (G-tGKB) process described 
in [27] to the ∗L product. The latter method is referred to as the G-LtGKB process.

Assume that the number of steps, k, with the G-LtGKB process is small enough to avoid breakdown. This is the generic 
situation. Then Algorithm 4 yields the G-LtGKB decompositions

A ∗L Wk = Qk+1 ⊛
¯̄Pk, AT ∗L Qk = Wk ⊛

¯̄P T
k , (3.15)

where

Wk := [ �W1, �W2, . . . , �Wk] ∈ R
m×k×n, Q j := [ �Q1, �Q2, . . . , �Q j] ∈ R

ℓ× j×n, j ∈ {k,k + 1}.

The expressions A ∗L Wk and Qk+1 ⊛
¯̄Pk are analogous to those in (3.2) and the lower bidiagonal matrix ¯̄P ∈ R(k+1)×k is 

of the form (3.3). The tensor columns �Q j ∈ Rℓ×1×n and �W j ∈ Rm×1×n , j = 1, 2, . . . , k, generated by Algorithm 4 make up 
orthonormal tensor bases for the t-Krylov subspaces Kk(A ∗L A

T , A ∗L A
T ∗L

�B) and Kk(A
T ∗L A, AT ∗L

�B), respectively. It 
can easily be deduced from Algorithm 4 that

�B = Qk+1 ⊛ e1β1. (3.16)

Algorithm 4: The partial global ∗L tensor Golub-Kahan bidiagonalization (G-LtGKB) process.

Input: A ∈ Rℓ×m×n, �B ∈ Rℓ×1×n , AT ∗L
�B �= �O

1 Set β1 ← ‖ �B‖F , �Q1 ← 1
β1

�B, �W0 ← �O
2 for j = 1, 2, . . . , k do

3 �W ← AT ∗L
�Q j − β j

�W j−1

4 α j ← ‖ �W‖F . If α j = 0, stop else

5 �W j ← �W/α j

6 �Q← A ∗L
�W j − α j

�Q j

7 β j+1 ← ‖ �Q‖F . If β j+1 = 0, stop else

8 �Q j+1 ← �Q/β j+1

9 end

Let �X = Wk ⊛ y. We follow a similar approach as in Subsection 3.1 to reduce (1.8) to a problem of small size. Thus, 
substitute the left-side of (3.15) as well as (3.16) into (1.8). Then compute the G-tQR factorization
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L ∗L Wk = QL,k ⊛ R̄L,k

by Algorithm 5, and use the right-hand side of (2.4) to obtain the minimization problem

min
y∈Rk

{‖ P̆kz − e1β1‖22 + µ−1‖z‖22}, (3.17)

where

z := R̄L,k y, P̆k := ¯̄P R̄−1
L,k

. (3.18)

Here we assume the matrix RL,k to be invertible and not very ill-conditioned. This holds for the regularization operator L
used in the computed examples in Section 5. The solution method for (3.17) is analogous to the method in Subsection 3.1, 
and is referred to as the G-LtGKT method. It can be implemented by [27, Algorithm 13] with p = 1.

Algorithm 5: Global tensor QR (G-tQR) factorization [27].

Input: A = [ �A1, �A2, . . . , �Am] ∈ Rℓ×m×n, ℓ ≥m

Output: Q = [ �Q1, �Q2, . . . , �Qm] ∈ Rℓ×m×n, R = [ri j ] ∈ Rm×m such that A = Q ⊛ R̄ and QT
�Q = Im

1 r11 ← 〈 �A1, �A1〉1/2 , �Q1 ← 1
r11

�A1

2 for j = 1, 2, . . . , m do

3 �W ← �A j

4 for i = 1, 2, . . . , j − 1 do

5 ri j ← 〈 �Qi , �W〉
6 �W ← �W − ri j �Qi

7 end

8 r j j ← 〈 �W, �W〉1/2
9 �Q j ← �W/r j j

10 end

We determine the regularization parameter µ > 0 and the number of steps of the G-LtGKB process similarly as in 
Subsection 3.1. Thus, let a bound for the error �E in �B be known, i.e.,

‖ �E‖F ≤ δ.

The discrepancy principle prescribes that µ > 0 be determined so that the solution zµ,k of (3.17) satisfies

‖ P̆kzµ,k − e1β1‖2 = ηδ

for some constant η > 1 that is independent of δ. Define

ψk(µ) := ‖ P̆kzµ,k − e1β1‖22.
We obtain similarly as in Subsection 3.1 that

ψk(µ) = β2
1e

T
1 (µ P̆k P̆

T
k + I)−2e1.

The following result is analogous to Proposition 3.1 and can be shown in a similar fashion.

Proposition 3.2. Let µ = µk solve ψk(µ) = η2δ2 and suppose that zµ,k is the solution of the normal equations (3.17), i.e., of

( P̆ T
k P̆k + µ−1 I)z = P̆ T

k e1β1.

Let yµ,k and zµ,k be related by (3.18). Then the associated approximate solution �Xµ,k =Wk ⊛ yµ,k of (1.8) satisfies

‖A ∗L
�Xµ,k − �B‖2F = β2

1e
T
1 (µ P̆k P̆

T
k + I)−2e1.

Finally, we discuss the solution of (1.3) by applying the G-LtGKB process and the G-LtGKT method to each one of the p
Tikhonov minimization problems

min
�X j∈Rm×1×n

{
‖A ∗L

�X j − �B j‖2F + µ−1‖L ∗L
�X j‖2F

}
, j = 1,2, . . . , p, p > 1, (3.19)

separately. We will refer to this solution approach as the G-LtGKTp method. It is implemented by replacing the t-product in 
[27, Algorithm 13] by the ∗L product. The solution method for (3.19) obtained in this manner provides an alternative to the 
GG-LtGKT method of Subsection 3.1. Its performance is illustrated in Section 5.
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4. Solution methods for (1.3) and (1.8) based on Arnoldi processes

This section describes the generalized global ∗L tensor Arnoldi-Tikhonov (GG-LtAT) method, which works with all lateral 
slices of B simultaneously. We also present the global ∗L tensor Arnoldi-Tikhonov (G-LtAT) method for the approximate 
solution of (1.3). The latter method is also applied to determine the solution of (1.8) by working with the lateral slices �B j , 
j = 1, 2, . . . , p, of B independently.

4.1. The GG-LtAT method for the approximate solution of (1.3)

This subsection extends the generalized global t-product Arnoldi-Tikhonov (GG-tAT) method described in [28] to the ∗L

product. We refer to this solution scheme as the GG-LtAT method. It works with the whole data tensor B at a time. This 
method applies an extension of the T-global Arnoldi process described by El Guide et al. [7] to the ∗L product. The resulting 
process is described by Algorithm 6 below and will be referred to as the generalized global ∗L tensor Arnoldi (GG-LtA) 
process.

Let A ∈ Rm×m×n and assume that the number of steps, ℓ, is small enough to avoid breakdown. This is the generic 
situation. Algorithm 6 yields the GG-LtA decomposition

A ∗L Vℓ = Vℓ+1 ⊛ H̄ℓ, (4.1)

where

V j := [V1,V2, . . . ,V j] ∈ R
m× jp×n, j ∈ {ℓ, ℓ + 1},

and

H̄ℓ =




h11 . . . h1ℓ
h21 h22

h32 h33
...

. . .
. . .

hℓ,ℓ−1 hℓ,ℓ

O hℓ+1,ℓ




∈ R
(ℓ+1)×ℓ

is an upper Hessenberg matrix. The tensors V j ∈ Rm×p×n , j = 1, 2, . . . , ℓ, generated by Algorithm 6 form an orthogonal 
tensor basis for the t-Krylov subspace (1.6). The tensors A ∗L Vℓ and Vℓ+1 ⊛ H̄ℓ are defined similarly as in (3.2). The 
relation

B = Vℓ+1 ⊛ e1β (4.2)

follows from Algorithm 6.

Algorithm 6: The generalized global ∗L tensor Arnoldi (GG-LtA) process.
Input: A ∈ Rm×m×n, B ∈ Rm×p×n �= O

1 Set β ← ‖B‖F , V1 ← 1
β
B

2 for j = 1, 2, . . . , ℓ do

3 W ← A ∗L V j

4 for i = 1, 2, . . . , j do
5 hi j ← 〈Vi , W〉
6 W ← W − hi jVi

7 end

8 h j+1, j ← ‖W‖F , If h j+1, j = 0, stop; else
9 V j+1 ← W/h j+1, j

10 end

We proceed in the same manner as in Section 3.1. Let X = Vℓ ⊛ y and substitute (4.1) and (4.2) into (1.3) to obtain an 
analogue of (3.5). Compute a GG-tQR factorization of L ∗L Qℓ , which is analogous to (3.6), by Algorithm 3. Then using the 
left-hand side of (2.4), we obtain

min
y∈Rℓ

{‖H̄ℓ y − e1β‖22 + µ−1‖RL,ℓ y‖22}. (4.3)

When the matrix RL,ℓ is invertible and not very ill-conditioned, we introduce the quantities

z := RL,ℓ y, H̃ℓ := H̄ℓR
−1
L,ℓ,
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which allow us to transform the problem (4.3) to a Tikhonov minimization problem in standard form,

min
y∈Rℓ

{‖H̃ℓz − e1β‖22 + µ−1‖z‖22}.

This problem can be solved similarly as the method described in Section 3.1. We refer to this solution method as the 
GG-LtAT method. It can be implemented in the same manner as [28, Algorithm 11], which uses the t-product.

We remark that when µ = ∞ in (4.3), we obtain the minimization problem that is solved in step ℓ of the generalized 
global ∗L tensor GMRES (GG-LtGMRES) method for the approximate solution of (1.7). The special case of this method when 
the matrix that defines the linear transform L is the normalized DFT matrix has been described in [28]; its implementation 
is given by [28, Algorithm 12]. The GG-LtGMRES method can be implemented in the same fashion.

4.2. The G-tLAT method for the solution of (1.3) and (1.8)

We extend the global t-product Arnoldi-Tikhonov (G-tAT) regularization method described in [28] to the ∗L product. The 
method so obtained will be referred to as the G-LtAT method.

The G-LtAT method for the solution of (1.3) provides an alternative approach to the GG-LtAT method described in Sub-
section 4.1. It is applied to each lateral slice �B j , j = 1, 2, . . . , p, of B in (1.3) independently. We will refer to this approach 
of solving (3.19) as the G-LtATp method. This method has been described in [28] when using the t-product, i.e., when 
the defining matrix for the linear transform L in (3.19) is the normalized DFT matrix. The implementation of the G-LtATp

method is similar to [28, Algorithm 14] with the main difference that the global t-Arnoldi process is replaced by the global 
∗L Arnoldi (G-LtA) process described by Algorithm 7. As already mentioned, our interest in solution methods that work 
with the tensor slices �B j independently is that they were found in [27,28] to yield approximate solutions of (1.3) of higher 
quality than when working with these lateral slices simultaneously.

We first consider the G-LtAT method for the solution of (1.8). As usual, we assume that the number of steps, ℓ, is small 
enough to avoid breakdown. Algorithm 7 yields the G-LtA decomposition

A ∗L Qℓ = Qℓ+1 ⊛
¯̄Hℓ, (4.4)

where

Q j := [ �Q1, �Q2, . . . , �Q j] ∈ R
m× j×n, j ∈ {ℓ, ℓ + 1}.

The tensor columns �Q j ∈ Rm×1×n , j = 1, 2, . . . , ℓ, form an orthonormal tensor basis for the t-Krylov subspace Kℓ(A, �B). 

The tensors A ∗L Qℓ ∈ Rm×k×n and Qℓ+1 ⊛ H̄ℓ ∈ Rm×(ℓ+1)×n are defined similarly as (3.2) and the matrix ¯̄H ∈ R(ℓ+1)×ℓ is 
of upper Hessenberg form. We can deduce from Algorithm 7 that

�B = Qℓ+1 ⊛ e1β.

Algorithm 7: The global ∗L tensor Arnoldi (G-LtA) process.

Input: A ∈ Rm×m×n, �B ∈ Rm×1×n �= �O
1 Set β ← ‖ �B‖F , �Q1 ← 1

β
�B

2 for j = 1, 2, . . . , ℓ do

3 �W ← A ∗L
�Q j

4 for i = 1, 2, . . . , j do
5 hi j ← 〈 �Qi , �W〉
6 �W ← �W − hi j �Qi

7 end

8 h j+1, j ← ‖ �W‖F , If h j+1, j = 0, stop; else
9 �Q j+1 ← �W/h j+1, j

10 end

Suppose that �X = Qℓ ⊛ y and assume, as usual, that ℓ is chosen small enough so that the factorization (4.4) with the 
stated properties exists. Then, similarly as in Section 3.2, we reduce (1.8) to the minimization problem

min
y∈Rℓ

{‖ ¯̄Hℓ y − e1β‖22 + µ−1‖R̄L,ℓ y‖22}. (4.5)

Compute the G-tQR factorization of L ∗L Qℓ analogously to (3.6) by Algorithm 5, and introduce the quantities

z := R̄L,ℓ y, H̆ℓ := ¯̄Hℓ R̄
−1
L,ℓ,

which we assume exist. Then similarly as in Section 3, we obtain the Tikhonov minimization problem in standard form
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min
y∈Rℓ

{‖H̆ℓz − e1β‖22 + µ−1‖z‖22},

which we solve for z. We refer to this solution scheme as the G-LtAT method. It can be implemented similarly as [28, 
Algorithm 14] with p = 1 and the t-product replaced by the ∗L-product.

Similarly as above, we note that setting µ = ∞ in (4.5) results in the minimization problem that is solved at step ℓ of 
the global ∗L tensor GMRES (G-LtGMRES) method for the approximate solution of (1.9). An implementation of this method 
with the t-product is described by [28, Algorithm 15] with p = 1. The G-LtGMRES method can be implemented similarly.

We also apply the G-LtGMRES method to the solution of the minimization problem (1.7) using one lateral slice �B j , 
j = 1, 2, . . . , p, of B at a time, i.e., we solve separately the p minimization problems

‖A ∗L
�X j,ℓ − �B j‖F = min

�X∈Kℓ(A, �B)

‖A ∗L
�X j − �B j‖F , j = 1,2, . . . , p, p > 1, (4.6)

for �X j,ℓ ∈ Kℓ(A, �B). This solution method is referred to as the G-LtGMRESp method. Analogues of the G-LtGMRES and 
G-LtGMRESp methods, that use the t-product, have been described in [28].

5. Numerical examples

This section compares and illustrates the effectiveness of the methods described in Sections 3 and 4. Applications to 
color image and video restoration are considered. All computations were carried in MATLAB 2019b on a Lenovo computer 
with an Intel Core i3 processor and 4 GB RAM running Windows 10.

We use three different regularization operators in the computed examples with Tikhonov regularization: the identity 
operator L = I , the operator L1 ∈ R(m−2)×m×n with a tridiagonal first frontal slice

L
(1)
1 = 1

4




−1 2 −1

. . .
. . .

. . .

−1 2 −1


 ∈ R

(m−2)×m (5.1)

and the remaining frontal slices L(i)
1 ∈ R(m−2)×m , i = 2, 3, . . . , n, equal to the zero matrix, as well as the regularization 

operator L2 ∈ R(m−1)×m×n with a bidiagonal first frontal slice

L
(1)
2 = 1

2




1 −1

1 −1

. . .
. . .

1 −1


 ∈ R

(m−1)×m (5.2)

and the remaining frontal slices L(i)
2 ∈ R(m−1)×m , i = 2, 3, . . . , n, equal to the zero matrix. The results for GMRES-type 

methods are independent of the regularization operator L; cf. (1.7) and (1.9). The construction of the blurring operator A
follows a similar approach as described by Kernfeld et al. [16].

We apply the twist and squeeze operators defined by Kilmer et al. [17] to associate an image stored as an m × n

matrix to a tensor column of size m × 1 × n. Additionally, we use the multi_twist and multi_squeeze operators 
described in [27,28] to relate an m × p × n image to a tensor of size m × n × p for p > 1.

Example 5.1. This example uses an orthogonal DCT matrix from MATLAB as the defining matrix for the linear transform L
to define the ∗L-product. This gives the ∗c-product introduced by Kernfeld [16]. We apply the regularization operator L1

defined above, and consider the restoration of the peppers image shown in Fig. 1 (left). This image is stored as a tensor 
B ∈ R300×3×300 by using the multi_twist operator and is blurred by the operator A ∈ R300×300×300 , which is generated 
by applying the function blur in [13]. Specifically, we use the MATLAB commands below, and the operator ten described 
in [16] to generate A:

z= [exp(−([0 : band− 1].2)/(2σ 2)),zeros(1,N− band)], N = 300, σ = 3, band= 12,

y= zeros(length(z),1), y(1 : length(z) − 1) = z(2 : end),

A1 = toeplitz(z), A2 = flip(flip(hankel(y))′) + hankel(y),

A = A1 + A2, A = 1√
2πσ

ten(A ⊗ A,300,300,300),

(5.3)

where A1 ∈ R300×300 is a Toeplitz matrix and A2 ∈ R300×300 is a Hankel matrix. Reflective boundary conditions are em-

ployed; see [14, Chapter 4] for discussions.
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Fig. 1. True peppers image (left), and blurred and noisy peppers image (right) for δ̃ = 10−3 .

Fig. 2. Reconstructed peppers images for δ̃ = 10−3 by the G-LtATp method (left) and the GG-LtGMRES method (right) after 17 iterations.

The condition number with regard to the spectral matrix norm of the frontal slices A(i) is 1.2 · 106 for i = 1, 2, . . . , 12, 
and the condition number of the remaining slices A(i) , 13 ≤ i ≤ 300, is infinite. Here and below, we use the MATLAB 
command cond to compute the condition number of the frontal slices of A.

Let Xtrue ∈ R300×3×300 represent the blur- and noise-free image that we would like to determine from the available 
contaminated image that is represented by B; we assume that Xtrue is not available. The blur-contaminated but noise-free 
image associated with Xtrue is generated by Btrue =A ∗L Xtrue . This image will be contaminated by noise that is represented 
by the tensor E ∈ R300×3×300 given by

E := δ̃
E0

‖E0‖F

‖Btrue‖F , (5.4)

where the entries of E0 are N(0, 1). Hence, the entries of E are normally distributed with zero mean and are scaled to 
have the specific noise level δ̃ > 0. The available blurred and noisy image is represented by B = Btrue + E . This image is 
displayed in Fig. 1 (right) using the multi_squeeze operator. We would like to determine an accurate approximation of 
Xtrue from B.

In all computed examples, the regularization parameter and the number of iterations (iter) required by each method are 
determined with the aid of the discrepancy principle. In this example, we determine the regularization parameter(s) by the 
bisection method over the interval [10−4, 105] with η = 1.2 in (1.5). The reconstructed images determined by the G-LtATp

and GG-LtGMRES methods are displayed in Fig. 2. Here and below, the effectiveness of each chosen method is measured by 
the relative error

Emethod = ‖Xmethod −Xtrue‖F

‖Xtrue‖F

,

where Xmethod denotes the computed approximate solution of (1.1) determined by a given method.

Throughout this section, the table entry ‘-’ indicates that a chosen method uses three different numbers of t-Arnoldi/bidi-
agonalization steps or computes three different values of the regularization parameter, or no regularization parameter or no 
invertible linear transform is required. Table 2 shows the relative errors in the computed reconstructions, the CPU times 
required, as well as the regularization parameters and the number of iterations. The GG-LtGMRES method, which works 
with the whole data tensor B at a time, can be seen to yield the reconstruction of highest quality when δ̃ = 10−3 and 
to require the least CPU time for both noise levels. The Golub-Kahan-Tikhonov-type methods require the most CPU time 
for both noise levels and determine restorations of the worst quality for δ̃ = 10−3 . The G-LtGKTp method, which works 
with the lateral slices of the data tensor independently, requires the most CPU time, and determines for both noise levels 
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Table 2

Results for Example 5.1.

δ̃ Method iter µiter Emethod CPU time (secs)

10−3 GG-LtAT 17 1.57 · 100 6.8580 · 10−2 4.55 · 102
GG-LtGKT 51 6.34 · 100 7.0629 · 10−2 9.75 · 103
GG-LtGMRES 17 - 6.7091 · 10−2 2.29 · 102
G-LtATp - - 6.8706 · 10−2 6.46 · 102
G-LtGKTp - - 7.0194 · 10−2 2.23 · 104
G-LtGMRESp - - 6.9608 · 10−2 5.67 · 102

10−2 GG-LtAT 4 1.22 · 10−1 1.0451 · 10−1 2.78 · 101
GG-LtGKT 9 3.57 · 10−3 1.0232 · 10−1 3.14 · 102
GG-LtGMRES 4 - 1.0631 · 10−1 1.33 · 101
G-LtATp - - 1.0407 · 10−1 5.18 · 101
G-LtGKTp - - 1.0184 · 10−1 6.81 · 102
G-LtGMRESp - - 1.0635 · 10−1 3.82 · 101

Fig. 3. True papav256 image (left), and blurred and noisy papav256 image (right) for δ̃ = 10−3 .

restorations of higher quality than the GG-LtGKT method, which works with all lateral slices simultaneously. The GG-LtGKT 
method requires more iterations than the GG-LtAT method for both noise levels.

Example 5.2. We consider the restoration of the papav256 image shown in Fig. 3 (left) using the regularization operator 
L= I . The solution methods of Example 5.1 are compared. We use the DSC matrix to define the linear transformation L. 
This matrix is not orthogonal; it is the sum of the DCT and the Discrete Sine Transform1 (DST) matrices from MATLAB. The 
frontal slices of the blurring operator A are defined by (5.3) with

A(i) = 1√
2πσ

A1(i,1)A1, i = 1,2, . . . ,256, N = 256, σ = 2.5, band= 12.

Then cond(A(i)) = 1.94 · 108 for i = 1, 2, . . .12, and the condition number of each frontal slice of A is infinite for i ≥ 13. 
We use the discrepancy principle to determine the regularization parameter(s) by the bisection method over the interval 
[10−2, 107] with η = 1.1.

The true papav256 image is of size 256 ×256 ×3 and is stored as a tensor Xtrue ∈ R256×3×256 using the multi_twist
operator. This image is blurred by the tensor A defined above. Let Btrue ∈ R256×3×256 store the blurred image so obtained. 
The blurred and noisy image is determined by B = Btrue +E , where the “noise tensor” E ∈ R256×3×256 is generated by (5.4). 
The image represented by B is shown in Fig. 3 (right) using the multi_squeeze operator. The images reconstructed by 
the GG-LtGKT and G-LtGMRESp methods for ̃δ = 10−3 are displayed similarly in Fig. 4.

Relative errors as well as CPU times are shown in Table 3. The GG-LtGKT method yields a restoration of the worst 
quality for δ̃ = 10−3 , while the G-LtGKTp method requires the most CPU time for both noise levels. Moreover, the former 
method requires more iterations than the GG-LtAT method for both noise levels. The solution methods that work with all 
lateral slices of the data tensor B simultaneously, i.e., the GG-LtAT, GG-LtGKT, and GG-LtGMRES methods, can be seen to 
give restorations of worse quality for δ̃ = 10−3 than methods that work with the lateral slices of B independently, but the 
GG-LtGMRES method requires the least CPU time for both noise levels. We will comment more on the relative performance 
of the methods below.

Example 5.3. This example considers the restoration of the sixth frame of the Xylophone video from MATLAB with 
the regularization tensor L2 . The defining matrix for L is the unnormalized DFT matrix from MATLAB. The regularization 

1 https://www.mathworks .com /matlabcentral /fileexchange /26040 -dct -and -dst -inverse -in -arbitrary-dimension.
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Fig. 4. Reconstructed images by the GG-LtGKT method (left) and the G-LtGMRESp method (right) for δ̃ = 10−3 .

Table 3

Results for Example 5.2.

δ̃ Method iter µiter Emethod CPU time (secs)

10−3 GG-LtAT 10 1.56 · 104 5.0166 · 10−2 1.34 · 102
GG-LtGKT 45 4.15 · 104 5.0495 · 10−2 5.57 · 103
GG-LtGMRES 10 - 5.0179 · 10−2 5.11 · 101
G-LtATp - - 5.0124 · 10−2 1.60 · 102
G-LtGKTp - - 5.0471 · 10−2 1.29 · 104
G-LtGMRESp - - 5.0079 · 10−2 1.35 · 102

10−2 GG-LtAT 4 1.42 · 103 7.3333 · 10−2 2.40 · 101
GG-LtGKT 10 2.27 · 103 6.6785 · 10−2 3.62 · 102
GG-LtGMRES 4 - 7.3842 · 10−2 8.43 · 100
G-LtATp - - 7.2670 · 10−2 5.14 · 101
G-LtGKTp - - 6.6788 · 10−2 6.79 · 102
G-LtGMRESp - - 7.4270 · 10−2 2.40 · 101

Fig. 5. True sixth frame (left), and blurred and noisy sixth frame (right) for δ̃ = 10−3 .

parameter is determined by the discrepancy principle and computed by the bisection method over the interval [10−5, 106]
with η = 1.2 in (1.5).

The true sixth frame, which is of size 240 × 240 × 3, is shown in Fig. 5 (left). This frame is stored as the tensor Xtrue ∈
R240×3×240 using the multi_twist operator and blurred by A ∈ R240×240×240 , which is generated by (5.3) and

zz= [z(1) fliplr(z(end− length(z) + 2 : end))], A3 = toeplitz(z,zz),

A(i) = 1

2πσ 2
A3(i,1)A1, i = 1,2, . . . ,240, N = 240, σ = 3, band= 12,

where A3 is a circulant matrix with cond(A(i)) = 1.41 · 106 , i = 1, 2, . . . , 12. The remaining frontal slices have infinite 
condition number. The blurred and noise-contaminated sixth frame is obtained by B = A ∗L Xtrue + E ∈ R240×3×240 and is 
shown in Fig. 5 (right) using the multi_squeeze operator, where the “noise tensor” E ∈ R240×3×240 is generated by (5.4).

The relative errors and CPU times for each method are displayed in Table 4 for two noise levels. Restored images by the 
G-LtGKTp and G-LtGMRESp methods are shown in Fig. 6 for ̃δ = 10−3 using the multi_squeeze operator. The GG-LtGKT 
and G-LtGKTp methods yield the best restorations and of almost the same quality, but the latter method requires the most 
CPU time for both noise levels. The G-LtGMRESp method determines restorations of the worst quality for ̃δ = 10−3 , and the 
GG-LtGMRES method is the fastest for both noise levels.
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Fig. 6. Reconstructed images by the G-LtGKTp (left) and G-LtGMRESp (right) methods for δ̃ = 10−3 .

Table 4

Results for Example 5.3.

δ̃ Method iter µiter Emethod CPU time (secs)

10−3 GG-LtAT 25 3.78 · 103 5.1773 · 10−2 9.46 · 102
GG-LtGKT 29 5.14 · 102 4.8805 · 10−2 3.39 · 103
GG-LtGMRES 25 - 5.2055 · 10−2 4.93 · 102
G-LtATp - - 5.1766 · 10−2 1.37 · 103
G-LtGKTp - - 4.8806 · 10−2 8.15 · 103
G-LtGMRESp - - 5.2060 · 10−2 1.17 · 103

10−2 GG-LtAT 9 1.11 · 102 9.8577 · 10−2 1.15 · 102
GG-LtGKT 7 4.17 · 100 7.3944 · 10−2 2.14 · 102
GG-LtGMRES 9 - 1.0711 · 10−1 6.08 · 101
G-LtATp - - 9.8867 · 10−2 1.72 · 102
G-LtGKTp - - 7.3932 · 10−2 5.20 · 102
G-LtGMRESp - - 1.0495 · 10−1 1.42 · 102

Example 5.4. We consider the restoration of the gray-scale analogue of the sixth frame of the Xylophone video in 
Example 5.3. The regularization tensors L1 and L2 are used. The quality of the restorations determined by the G-LtAT, 
G-LtGKT, and G-LtGMRES methods for the solution of (1.8) when the defining matrices for the transform L are the DFT, DCT, 
and DSC matrices are compared to those determined by the generalized Arnoldi-Tikhonov (GAT) and generalized Golub-
Kahan-Tikhonov (G-GKT) regularization methods for the approximate solution of the minimization problem

min
x∈R2402

{
‖(A1 ⊗ A1)x− b‖22 + µ−1‖̂Lx‖22

}
, (5.5)

with the regularization matrices ̂L = L
(1)
1 ∈ R(2402−2)×2402 defined by (5.1) or ̂L = L

(1)
2 ∈ R(2402−1)×2402 given by (5.2). The 

vectors x = vec( �X ) and b = vec( �B) are defined by stacking the faces of the tensor columns �X and �B ∈ R240×1×240 in 
order, respectively. The solution of (5.5) for µ = ∞ is determined by the standard GMRES method. The G-GKT and GAT 
methods are implemented similarly as described in Sections 3 and 4, respectively.

The blurring operator A ∈ R240×240×240 is defined by using (5.3) with frontal slices

A(i) = 1

2πσ 2
A1(i,1)A1, i = 1,2, . . . ,240, N = 240, σ = 2.5, band= 12,

where cond(A(i)) = 1.35 · 107 for i = 1, 2, . . . , 12. The condition number of the remaining frontal slices is infinite. The 
regularization parameter µ is determined by the bisection method over the interval [10−5, 107] using the discrepancy 
principle with η = 1.01.

The true sixth frame of the Xylophone video, shown in Fig. 7, is stored as the tensor column �Xtrue ∈ R240×1×240 and 
blurred by A. Blurred and noisy images corresponding to different ∗L tensor products are shown in Figs. 7 and 8 using the
squeeze operator. These images are generated according to �B = A ∗L

�Xtrue + �E , where the noise tensor �E is determined 
analogously to (5.4). The blurred and noisy image for (5.5) is generated by b = (A1 ⊗ A1)vec( �Xtrue) +vec( �E) and is shown 
in Fig. 7 (middle) by using the MATLAB reshape operator.

The intensity of the blur is different for (5.5), and also for each tensor product ∗L . Specifically, the blur- and noise-
contaminated image produced for (5.5), and also for (1.8) when the tensor product ∗L is defined by the DCT matrix, is more 
blurred than when the DFT and DSC matrices are used to define the ∗L product. The reconstructed video frames determined 
by the G-LtGKT method for L = L2 and shown in Fig. 9 using the squeeze operator correspond to the ∗L products defined 
by the DFT, DCT, and DSC matrices, and the noise level δ̃ = 10−3 . The reconstructed video frame by the G-GKT method is 
displayed on the right-hand side of Fig. 8 using the MATLAB command reshape.
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Fig. 7. True sixth Xylophone video frame (left), blurred and noisy sixth frames generated for (5.5) (middle), and when L is defined by DCT matrix 
(right) for ̃δ = 10−3 .

Fig. 8. Blurred and noisy sixth frames generated when L is defined by DFT matrix (left), DSC matrix (middle), and reconstructed video frame by the G-GKT 
method after 69 iterations for ̃δ = 10−3 .

Fig. 9. Reconstructed sixth frame by the G-LtGKT method for δ̃ = 10−3 when the defining matrix for L is DFT matrix (left) after 35 iterations, the DCT 
matrix (middle) after 116 iterations, and the DSC matrix (right) after 53 iterations.

Table 5 shows the number of iterations required by each method to satisfy the discrepancy principle, the computed 
regularization parameters, as well as the relative errors and the CPU times. The table shows that the performance of the 
methods depends on the invertible linear transform used. In particular, the G-LtGKT method yields restoration of the highest 
quality for both noise levels when the defining matrices for L are the DFT or DSC matrices, and always gives near-best 
restorations. This method requires the most CPU time for both noise levels, all invertible linear transforms and regularization 
operators considered. Moreover, for ̃δ = 10−3 and for any of the invertible linear transforms considered, the G-LtGKT method 
with L = L2 yields restorations of the higher quality than when L = L1 is used. The relative performance is reversed for 
δ̃ = 10−2 . The GMRES method is the fastest for both noise levels but gives the worst quality restoration for δ̃ = 10−3 . 
Independently of the invertible linear transform L, the regularization operator, and the noise level, the G-LtGKT method 
is the slowest and yields restorations of the best or near-best quality, while the GMRES method is the fastest and yields 
restorations of worst or near-worst quality. In general, the “classical” approaches, e.g., the GAT, G-GKT and GMRES methods, 
yield the worst quality restorations. Their performance may depend on the intensity of the blur.

Example 5.5. This example discusses the restoration of the flower image2 with the regularization tensor L1 . We compare 
the quality of restorations determined by the GG-LtAT, G-LtATp , GG-LtGMRES, and G-LtGMRESp methods with the transform 
L defined by the DFT, DCT, or DSC matrices. Examples 5.1-5.4 show the GG-LtGKT and G-LtGKTp methods to be slow, and 

2 http://www.hlevkin .com /TestImages.
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Table 5

Results for Example 5.4.

δ̃ L Transform Method iter µiter Emethod CPU time (secs)

10−3 L1 DFT G-LtAT 25 3.66 · 103 4.6321 · 10−2 4.30 · 102
G-LtGKT 35 1.83 · 102 4.1062 · 10−2 3.75 · 103

DCT G-LtAT 30 8.49 · 102 6.5542 · 10−2 3.14 · 102
G-LtGKT 116 1.75 · 103 6.5530 · 10−2 1.78 · 104

DSC G-LtAT 11 2.25 · 103 4.0409 · 10−2 4.78 · 101
G-LtGKT 53 5.38 · 103 3.9429 · 10−2 3.59 · 103

L2 DFT G-LtAT 25 5.18 · 103 4.6322 · 10−2 4.49 · 102
G-LtGKT 35 1.16 · 103 4.1036 · 10−2 3.94 · 103

DCT G-LtAT 30 3.58 · 103 6.5510 · 10−2 3.27 · 102
G-LtGKT 116 8.16 · 103 6.5515 · 10−2 1.78 · 104

DSC G-LtAT 11 3.57 · 103 4.0418 · 10−2 4.92 · 101
G-LtGKT 53 3.29 · 103 3.9409 · 10−2 3.74 · 103

L
(1)
1 - GAT 12 5.48 · 104 7.9158 · 10−2 6.82 · 101

G-GKT 69 5.86 · 103 7.2786 · 10−2 2.60 · 102

L
(1)
2 - AT 12 1.88 · 104 7.9162 · 10−2 6.47 · 101

GKT 69 4.84 · 103 7.2778 · 10−2 2.39 · 102

DFT G-LtGMRES 25 - 4.7058 · 10−2 3.89 · 102
DCT G-LtGMRES 30 - 6.5131 · 10−2 3.03 · 102
DSC G-LtGMRES 11 - 4.0871 · 10−2 4.22 · 101
- GMRES 12 - 8.1534 · 10−2 4.17 · 100

10−2 L1 DFT G-LtAT 9 1.55 · 103 1.0185 · 10−1 6.32 · 101
G-LtGKT 16 1.09 · 100 5.9297 · 10−2 3.04 · 102

DCT G-LtAT 6 5.06 · 102 1.1994 · 10−1 1.59 · 101
G-LtGKT 16 5.38 · 100 9.6204 · 10−2 3.63 · 102

DSC G-LtAT 5 1.69 · 102 6.8818 · 10−2 1.21 · 101
G-LtGKT 14 2.17 · 100 5.6424 · 10−2 2.78 · 102

L2 DFT G-LtAT 9 2.06 · 103 1.0185 · 10−1 7.04 · 101
G-LtGKT 9 1.13 · 101 5.9110 · 10−2 3.06 · 102

DCT G-LtAT 6 6.81 · 102 1.1995 · 10−1 1.65 · 101
G-LtGKT 16 4.33 · 101 9.6128 · 10−2 3.60 · 102

DSC G-LtAT 5 2.33 · 102 6.8827 · 10−2 1.50 · 101
G-LtGKT 14 2.32 · 101 5.6317 · 10−2 2.79 · 102

L
(1)
1 - GAT 5 2.06 · 103 1.1193 · 10−1 6.97 · 100

G-GKT 13 1.12 · 102 9.2457 · 10−2 8.93 · 100

L
(1)
2 - GAT 5 6.91 · 102 1.1193 · 10−1 6.54 · 100

G-GKT 13 9.78 · 101 9.2424 · 10−2 8.95 · 100

DFT G-LtGMRES 9 - 1.0287 · 10−1 5.47 · 101
DCT G-LtGMRES 6 - 1.3644 · 10−1 1.31 · 101
DSC G-LtGMRES 5 - 7.3642 · 10−2 9.32 · 100
- GMRES 5 - 1.2654 · 10−1 0.81 · 100

therefore are not considered here. We use the normalized DFT matrix for L in this example. Numerical experiments suggest 
that we can save some computing time by using this matrix instead of the unnormalized DFT matrix of Examples 5.3

and 5.4. The blurring operator A ∈ R300×300×300 is generated similarly as in Example 5.2 with σ = 3 and band= 12. The 
condition number of the first 12 frontal slices A(i) is 7.58 ·108; the remaining frontal slices have infinite condition numbers. 
Using the discrepancy principle (1.5) with η = 1.2, we determine the regularization parameter(s) by the bisection method 
over the interval [10−2, 105]. The true flower image, shown in Fig. 10, is stored as the tensor Xtrue ∈ R300×3×300 using 
the multi_twist operator and is blurred by A similarly as described above.

The blurred and noisy images B ∈ R300×3×300 associated with the DFT, DCT, and DSC matrices are shown in Fig. 11 for 
δ̃ = 10−3 . These images are generated by B =A ∗L Xtrue + E , where E ∈ R300×3×300 is a “noise tensor” determined by (5.4). 
The images restored by the G-LtATp method, that correspond to the above transforms, are displayed in Fig. 12 for ̃δ = 10−3

using the multi_squeeze operator.

Table 6 shows the relative errors and CPU times for each method. Among the GMRES-type methods, the G-LtGMRESp
method, which works with the lateral slices of B independently, is seen to yield restorations of near-best quality for both 
noise levels and for all transforms considered. Moreover, the GG-LtGMRES method is faster than the G-LtGMRESp , GG-LtAT, 
and G-LtATp methods. A similar behavior also can be noted for the Arnoldi-Tikhonov-type methods. These observations 
are consistent with our findings in [27,28]. The G-LtATp method, which works independently with the lateral slices of the 
data tensor, is seen to yield restorations of near-best quality, but is the slowest method for both noise levels and for all 
transforms considered. The GG-LtGMRES method yields restorations of near-worst quality.
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Fig. 10. True flower image.

Fig. 11. Blurred and noisy flower image generated when L is defined by the DFT matrix (left), the DCT matrix (middle), and the DSC matrix (right) for 
δ̃ = 10−3 .

Fig. 12. Reconstructed images by the G-LtATp method for ̃δ = 10−3 when the defining matrix for L is the DFT matrix (left) after 29 iterations, the DCT 
matrix (middle) after 16 iterations, and the DSC matrix (right) after 10 iterations.

6. Conclusions

This paper discusses several transform-based methods for solving linear discrete ill-posed tensor problems and extends 
available global tensor Krylov subspace methods defined by a t-product to global tensor Krylov subspace methods defined 
by an invertible linear transform tensor product ∗L introduced by Kernfeld et al. [16]. The latter tensor product and its 
performance in tensor Krylov subspace iterative methods has not received much attention in the literature.

Both orthogonal and non-orthogonal invertible linear transform matrices are considered. The blurring effects and the 
performance of the described methods depend on the transformation used.

We found Golub-Kahan-type bidiagonalization methods, i.e., the G-LtGKT, GG-LtGKT, and G-LtGKT methods, in general 
to be slow. Their performance is sensitive to the noise levels used. Independently of the regularization operator, the G-
LtGKTp and GG-LtGKT methods yield the worst quality restorations for 0.1% noise when the DCT and DSC matrices are used 
to define the ∗L product. Moreover, they are the best methods when the DFT is used to define ∗L product. Additionally, 
irrespective of the choice of regularization operator and invertible linear transform, both methods give restorations of the 
best quality for 1% noise. The GG-LtGKT method, which works with the lateral slices of the data tensor simultaneously, 
yields worst or near-worst quality restorations for both noise levels than the G-LtGKTp method, which works with the 
lateral slices independently. The latter method is slower than the GG-LtGKT method.
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Table 6

Results for Example 5.5.

δ̃ Transform Method iter µiter Emethod CPU time (secs)

10−3 DFT GG-LtAT 29 1.33 · 101 6.5252 · 10−2 3.09 · 103
GG-LtGMRES 29 - 6.6161 · 10−2 1.55 · 103
G-LtATp - - 6.5239 · 10−2 4.25 · 103
G-LtGMRESp - - 6.5836 · 10−2 3.69 · 103

DCT GG-LtAT 16 2.58 · 102 8.8341 · 10−2 4.13 · 102
GG-LtGMRES 16 - 9.0044 · 10−2 2.02 · 102
G-LtATp - - 8.4814 · 10−2 5.40 · 102
G-LtGMRESp - - 8.6098 · 10−2 4.74 · 102

DSC GG-LtAT 10 8.74 · 100 5.8140 · 10−2 1.62 · 102
GG-LtGMRES 10 - 5.7754 · 10−2 8.00 · 101
G-LtATp - - 5.8071 · 10−2 2.88 · 102
G-LtGMRESp - - 5.7581 · 10−2 2.40 · 102

10−2 DFT GG-LtAT 8 4.10 · 10−1 1.0306 · 10−1 2.22 · 102
GG-LtGMRES 8 - 1.1034 · 10−1 1.09 · 102
G-LtATp - - 1.0324 · 10−1 3.25 · 102
G-LtGMRESp - - 1.0653 · 10−1 2.55 · 102

DCT GG-LtAT 4 1.30 · 10−1 1.0527 · 10−1 2.95 · 101
GG-LtGMRES 4 - 1.0669 · 10−1 1.37 · 101
G-LtATp - - 1.0511 · 10−1 5.29 · 101
G-LtGMRESp - - 1.0670 · 10−1 3.87 · 101

DSC GG-LtAT 4 2.55 · 10−1 8.3032 · 10−2 2.70 · 101
GG-LtGMRES 4 - 8.3178 · 10−2 1.32 · 101
G-LtATp - - 8.2905 · 10−2 5.07 · 101
G-LtGMRESp - - 8.3190 · 10−2 3.75 · 101

The G-LtGKT method is seen to give restorations of higher quality than the G-LtAT and G-LtGMRES methods. Its perfor-
mance depends on the invertible linear transform, regularization operator, and noise level used. It is often the case that the 
quality of the restoration improves with Tikhonov regularization. However, this behavior is different when the DCT matrix 
is used to define the ∗L product, since for 0.1% noise and independently of the choice of regularization operator for the 
G-LtAT method, the G-LtGMRES method gives higher quality restoration.

The performances of the G-LtGMRES, G-LtGMRESp , and GG-LtGMRES methods are almost independent of the transform 
used and the noise levels. The G-LtGMRES and GG-LtGMRES methods are the fastest but often yield restorations of the 
worst or near-worst quality.

Among the Arnoldi-type methods applied to color and video image processing, i.e., G-LtATp , GG-LtAT, G-LtGMRESp , and 
GG-LtGMRES methods, the G-LtATp method, which works with the lateral slices of the data tensor independently, is the 
best or near-best method when the DCT and DFT matrices are used to define the ∗L product. Similarly, the G-LtGMRESp
method gives the best or near-best quality restoration when the DSC matrix is used to define the ∗L product.

The performance of the Golub-Kahan bidiagonalization-type and GMRES-type methods leads us to recommend the use 
of Tikhonov regularization methods together with Arnoldi-type methods for the reduction of a large problem to a problem 
of fairly small dimension. Though, we have to add that Arnoldi-type reduction methods may perform poorly for pronounced 
motion blur. The latter has been illustrated for matrix problems in [5].
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