
J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

Published for SISSA by Springer

Received: November 25, 2020
Revised: July 23, 2021

Accepted: August 12, 2021
Published: September 9, 2021

Parameter inference from event ensembles and the
top-quark mass

Forrest Flesher, Katherine Fraser, Charles Hutchison, Bryan Ostdiek
and Matthew D. Schwartz
Department of Physics, Harvard University,
Cambridge, MA 02138, U.S.A.
NSF AI Institute for Artificial Intelligence and Fundamental Interactions
E-mail: forrestflesher@college.harvard.edu, kfraser@g.harvard.edu,
hutchison@college.harvard.edu, bostdiek@g.harvard.edu,
schwartz@g.harvard.edu

Abstract: One of the key tasks of any particle collider is measurement. In practice, this is
often done by fitting data to a simulation, which depends on many parameters. Sometimes,
when the effects of varying different parameters are highly correlated, a large ensemble of
data may be needed to resolve parameter-space degeneracies. An important example is
measuring the top-quark mass, where other physical and unphysical parameters in the
simulation must be profiled when fitting the top-quark mass parameter. We compare
four different methodologies for top-quark mass measurement: a classical histogram fit
similar to one commonly used in experiment augmented by soft-drop jet grooming; a 2D
profile likelihood fit with a nuisance parameter; a machine-learning method called DCTR;
and a linear regression approach, either using a least-squares fit or with a dense linearly-
activated neural network. Despite the fact that individual events are totally uncorrelated,
we find that the linear regression methods work most effectively when we input an ensemble
of events sorted by mass, rather than training them on individual events. Although all
methods provide robust extraction of the top-quark mass parameter, the linear network
does marginally best and is remarkably simple. For the top study, we conclude that the
Monte-Carlo-based uncertainty on current extractions of the top-quark mass from LHC
data can be reduced significantly (by perhaps a factor of 2) using networks trained on
sorted event ensembles. More generally, machine learning from ensembles for parameter
estimation has broad potential for collider physics measurements.

Keywords: Hadron-Hadron scattering (experiments), Top physics

ArXiv ePrint: 2011.04666

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP09(2021)058

mailto:forrestflesher@college.harvard.edu
mailto:kfraser@g.harvard.edu
mailto:hutchison@college.harvard.edu
mailto:bostdiek@g.harvard.edu
mailto:schwartz@g.harvard.edu
https://arxiv.org/abs/2011.04666
https://doi.org/10.1007/JHEP09(2021)058

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

Contents

1 Introduction 1

2 Event generation and uncertainty estimation 4

3 Classical fitting methods 6
3.1 Histogram fitting 6
3.2 Profile likelihood fitting 8

4 Regression on sorted ensembles 10
4.1 Inputs 10
4.2 Dense network 11
4.3 Ordinary least squares regression 16

5 DCTR with ParticleFlow 17
5.1 Network architecture 18
5.2 DCTR on a single tune 20
5.3 DCTR on Var 1 tunes 21
5.4 DCTR on full set of A14 tunes 23

6 Conclusions 24

A DCTR on a toy model 28

B Training curves 32

1 Introduction

The number one goal of collider physics experiments is to determine the existence and
properties of particles in nature. In some rare cases first-principles theoretical calculations
can be compared directly to data. More commonly, theory is used to construct sophisticated
simulations with adjustable parameters that are then fit to data. Some of these simulation
parameters, like coupling constants or masses, have straightforward physical interpretations
while other parameters, such as elements of Pythia’s string fragmentation model [1], are
required to provide enough flexibility for the data to be described. Often the parameters are
highly correlated: varying one can sometimes be entirely compensated by varying another.
Typically the uncertainty generated by profiling the unphysical parameters is smaller than
other sources of uncertainty, however for precision studies it can be important.

The example of parameter extraction studied in this paper is the determination of the
top-quark mass. The top mass is one of the few parameters in the Standard Model for

– 1 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

which a measurement with improved precision is both extremely important and feasible
at the LHC. For example, our current best estimate of the lifetime of our metastable
vacuum in the universe is limited by precision on top quark mass and the strong coupling
constant [2–5]. Moreover, the lifetime is exponentially sensitive to the top quark mass.
Using mpole

t = 173.1GeV, our universe is predicted to last 10167 years, but if the top mass
were 0.6GeV higher it would last only 10111 years, and if it were 0.6GeV lower, the universe
would last 10252 years [5]. Another example, is searches for certain supersymmetry (SUSY)
models, in which stop squarks that are nearly degenerate with the top quark are difficult
to constrain because the signal is so similar to tt̄ background. This similarity allows the
stops to contaminate precision measurements of the top quark, so the consistency of top
measurements can be used to search the SUSY parameter space [6–11].

It is possible to measure the top-quark mass by direct theory-data comparison, for
example through total cross section measurements [12]. The cross-section approach has
two main advantages: it allows for a direct comparison between data and precision theory
and the top mass extracted has a clean short-distance definition (typically the MS mass).
However, current mass determination by this method has an uncertainty of 1–2GeV [8, 13–
17]. The method for extracting the top-quark mass from LHC data that currently has the
smallest uncertainty is fitting the invariant mass peak from the decay products of top
quarks in tt̄ events [18–22]. While such fits typically have errors at the sub-GeV level,
there are systematic and theoretical uncertainties associated with such a procedure that
are not present in the cross section method. The main complication is that one is more
reliant on simulation. For example, there is an uncertainty about how to translate the
mass extracted this way, called the Monte Carlo mass, to a scheme like the MS mass which
is more theoretically sound.

It is important to separate the challenges in converting between a Monte Carlo mass
parameter and a short distance scheme like MS from the extraction of the Monte Carlo
mass parameter itself. Typically, the conversion to MS is done by equating the Monte Carlo
mass with the pole mass. One could attempt to systematically improve this mapping, for
example by comparing precision theory and simulation directly (without data) [23–29].
Regardless of how or whether this is done, one cannot hope to begin converting from the
Monte Carlo mass to another scheme if different Monte Carlo tunes lead to a different
value of the top mass when fit to the same data. Thus, a prerequisite for considering the
conversion between Monte Carlo and pole mass is to reduce the tune-dependence of the
extracted mass. This reduction is the primary target of this paper.

The problem of reducing tune uncertainty of the top mass was examined in [30]. There
it was estimated that using classical histogram fitting, the tune-uncertainty on the top
Monte Carlo mass was around 500MeV. This number results from a comparison among
the masses extracted using a standard set of tunes in Pythia. It was then shown that the
uncertainty could be reduced to 200MeV by calibrating to the W mass (as is often done by
the experiments), and further reduced to 140MeV by applying soft-drop jet grooming [31]
to the data before fitting. In this paper, we reproduce the main results of [30] and explore
whether further reduction is possible using machine learning or with linear regression on
ensembles of events. Additionally, we also compare these methods to a profile likelihood
fit that is similar to what is currently done in the best experimental measurements.

– 2 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 50 100 150

∆mMC
t [MeV]

Histogram Fit

2D Likelihood Fit

DCTR

Ordinary Least
Squares Regression

Dense Linear
Network

65.3+21.8
−20.2 MeV

59.4+18.5
−25.7 MeV

55.8+42.8
−28.1 MeV

36.5+19.7
−13.6 MeV

29.6+12.9
−11.4 MeV

Envelope excluding PDF variations

Figure 1. Summary of main results. The bars show the estimate of the Monte-Carlo tuning un-
certainty in top-quark mass extraction from top events at the LHC. The errors on the uncertainties
include uncertainties from training and statistical variations. The top row is a histogram fit, using
soft drop and normalizing to theW -mass (following [30]). The second row uses a 2D likelihood fit to
profile over correlations between the top and W masses. The third row uses the DCTR technique
of [34]. The fourth row is an ordinary least squares linear regression on an ensemble of 30,000
events. The fifth row shows the result of using a linear network for regression, also on an ensemble
of 30,000 events. Numbers here correspond to the total envelope excluding PDF uncertainties, as
in figure 14.

Using machine learning (ML) to fit a parameter like the top Monte Carlo mass involves
complementary challenges to typical collider physics ML applications. Typical collider ML
applications such as top-tagging or pileup removal have essentially a right answer: which
event was a top and which was background, or what does an event look like with pileup
removed? For top mass measurement, there is no right answer: a perfect oracle would not
be able to determine the mass from a single event. Instead, only after a collection of events
are observed can the top mass be extracted.

There are a number of approaches that have been suggested for learning from ensembles
of events. For example, the JUNIPR framework uses a jet-physics inspired architecture to
construct the likelihood distribution [32, 33]. This can be done as a function of the top
mass, or other training parameters which can then be regressed on data. This application
for JUNIPR was suggested in [33] but has not yet been implemented to our knowledge.

Another approach is the DCTR method proposed in [34]. DCTR works by learning
the relative weights of a distribution of events as a function of some reference tuning
parameters. Then it can be used for regression by minimizing the loss over the tuning
parameters to find the best fit. DCTR takes as input events processed through a Particle
Flow Network [35], which is an adaptation of the “Deep Sets” framework developed in [36]
to particle physics. In [34], it was shown to be able to fit simultaneously three Monte Carlo
tuning parameters in e+e− → jet events with good results. Thus it is a natural candidate
method to test on top-mass extraction where there is a clear metric for what a “good”

– 3 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

fit would be. Although the top mass is physical, the top mass parameter in the Monte
Carlo can be treated as a tuning parameter and fit in the same way as other Monte Carlo
parameters. A discussion of the DCTR method is given in section 5.

While the DCTR method is promising, it is somewhat cumbersome to implement and
train. Moreover, learning the full likelihood ratio as a function of a very high-dimensional
input (such as ParticleFlow) may not be necessary if the goal is the regression of a single
parameter, like the top mass. Thus we also consider a simpler approach, where ordered sets
of high-level observables are input to a dense neural network. We discuss this approach in
section 4. The dense network is very effective, even if the activation functions connecting
the nodes are linear. Thus, the entire network is a linear function acting on a sorted
ensemble of events. We compare the linear network performance to an ordinary least
squares regression, finding similar performance. Moreover, the linear mapping can be
examined to see how it depends on the tune and the various elements of the input ensemble.
This analysis is also included in section 4. A summary of our main findings is given in
figure 1.

The paper is organized as follows. Event generation and general elements of our fitting
procedure are discussed in section 2. Section 3 describes our implementation of classical
fitting methods that are similar to what is often done in experimental work, including a
histogram fit modeled after [30] and a 2D profile likelihood fit, to benchmark our samples
and fits. Section 4 discusses the regression approach, using both a linear network and an
ordinary least squares regression. Section 5 discusses the DCTR approach of [34]. Our
conclusions and a discussion are given in section 6.

2 Event generation and uncertainty estimation

For this study, events with pairs of top quarks are produced using Pythia 8, including
both qq̄ and gg production channels in

√
s = 13TeV proton-proton collisions. We restrict

to semi-leptonic events with t → b `+ ν` and t̄ → b̄ q q̄′, where ` stands for electrons
or muons. The events are showered to final state particles, which are then clustered into
jets using the anti-kt [37] algorithm in Fastjet [38] with R = 0.5. For simplicity, we do
not attempt to include any realistic detector effects or experimental efficiencies. Thus, we
mark any jet within ∆R < 0.4 of one of the b’s from the top decays as a b-jet and assume
the lepton is correctly tagged. A more realistic study would of course need to incorporate
b-tagging, jet energy scale resolution, pileup, backgrounds, and so on. Each of these effects
will necessarily increase the top-quark mass uncertainty. However, since our goal is mainly
to understand the relative performance of different ensemble regression methods, we do
not believe our simplifying assumptions will affect the qualitative conclusions.

The event selection is as follows. We require a final state ` with p`T > 20 GeV and∣∣η∣∣ < 2.4. We only keep jets if they have pjT > 30 GeV and
∣∣η∣∣ < 2.4 and demand that there

are exactly 2 b-tagged jets and at least 2 un-tagged jets. The invariant mass of pairs of un-
tagged jets is scanned to find the pair with a mass closest to mW = 80.3 GeV. If this two-jet
invariant mass,m2j is not within (70 GeV, 90 GeV), the event is discarded. Next, we find the
three-jet invariant mass for the two jets of the W and b-tagged jet coming from the b̄. This

– 4 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

is overly simplified and ignores combinatoric background.1 However, we take a tight cut on
the three-jet invariant mass, and only accept events with 150 GeV < m3j < 200 GeV,2 which
reduces such contamination. This still allows for a comparison of the different methods.

The uncertainty in the regression of the Monte Carlo top mass from each of the meth-
ods is computed using the A14 Pythia 8 Tunes of the ATLAS 7TeV data [40]. The 14
tunes cover 4 different families of variations: VarPDF, Var1, Var2, and Var3. VarPDF
covers variations in the parton distribution functions with tunepp:19-22 corresponding
to the CTEQL1 [41], MSTW2008LO [42], NNPDF2.3LO [43], and HERAPDF1.5LO [44]
PDFs, respectively. Var1, Var2, and Var3 all use the NNPDF2.3LO [43] PDF but vary
other parameters, with Var1 covering underlying event effects, Var2 accounting for jet sub-
structure, and Var3 covering different aspects of extra jet production. Var3 includes three
separate variations (Var3a, Var3b, and Var3c) since it could not be reduced to a single
pair. The tuning parameters for all A14 variations are shown in table 1.

There are of course many more tunes one can consider. But again, since the main
purpose of this study is to compare the relative strengths of different approaches, not to
produce a final numerical value of the uncertainty, we believe this set should be sufficient.

We attempt as much as is possible to use the same fitting procedure to compare
different methods. In all cases, after a method is fit or trained, it provides a mapping from
an ensemble of events to a regressed mass. To assess the uncertainty of the regressed mass,
we first assess its variation for fixed Monte Carlo mass within each tune family. We denote
the maximum, minimum and mean regressed mass within the family for the fixed mass by
mmax

fit , mmin
fit , and m̄fit, respectively. We compute the uncertainty for the given mMC

t and
tune family as

∆mMC
t = 1

2
(
mmax

fit −mmin
fit
)mMC

t

m̄fit
t

. (2.1)

The factor of mMC
t /m̄fit

t reflects that the fit mass (especially in the histogram fit with soft
drop) can be linearly offset from the true Monte Carlo mass.

An example of this procedure is shown figure 2 for the Var1 tunes. The blue, orange,
and green data points denote the fits from the central, +, and − variations, respectively.
The x-axis shows the true Monte Carlo mass of the sample and the y-axis gives the fit
value. We compute ∆mMC

t for five different values of the top mass: mMC
t =172.0, 172.5,

173.0, 173.5, and 174.0 GeV. The spread between the maximum and minimum fit mass at
each point is marked, and the average mass is reported along with ∆mMC

t for each Monte
Carlo mass. Note that the value of ∆mMC

t is different for each mMC
t .

In order to get a statistical estimation of the uncertainty, we repeat the analysis on
the same five masses using four more independent data sets generated with new random
seeds. The maximum and mean uncertainties from the 25 samples (5 masses times 5 data
sets) are presented in the following figures. To visualize these uncertainties, we show box-
and-whisker plots. These start by placing a box covering the 25th-75th percentiles of the

1Ref. [39] introduces a machine learning method to identify the correct combination of jets in tt̄ without
the factorial scaling of scanning each combinatorial permutation.

2In the dense network section, we also generate events without this cut to see the effect of the m3j range
on ∆mMC

t .

– 5 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

Variation Tunes ColorRec αMPI
S pRefT 0

VarPDF 19–22 1.71 0.126 1.56

Var1 21, 23, 24 [1.69, 1.73] [0.121, 0.131] 1.56

Var2 21, 25, 26 1.71 0.126 [1.50, 1.60]

Var3a 21, 27, 28 1.71 [0.125, 0.127] [1.51, 1.67]

Var3b 21, 29, 30 1.71 0.126 1.56

Var3c 21, 31, 32 1.71 0.126 1.56

Variation pdampFudge
T αFSRS pmaxFudge

T αISRS

VarPDF 1.05 0.127 0.91 0.127

Var1 1.05 0.127 0.91 0.127

Var2 [1.04,1.08] [0.124,0.136] 0.91 0.127

Var3a [0.93, 1.36] [0.124, 0.136] [0.88, 0.98] 0.127

Var3b [1.04, 1.07] [0.114, 0.138] [0.83, 1.00] [0.126, 0.129]

Var3c 1.05 0.127 0.91 [0.115, 0.140]

Table 1. Table shows the relevant parameters for the A14 tune variations. Var1 through Var3 tunes
are listed in order of central, +, then −. The relevant tuning parameters are the strength of the
color reconnection (ColourReconnection:range), the strong coupling constant for multiparticle
interactions αMP I

S (MultipartonInteractions:alphaSvalue), the initial state radiation (ISR)
pT cutoff pRefT 0 (SpaceShower:pT0Ref), the factorization/renormalization scale damping pdampFudge

T

(SpaceShower:pTdampFudge), the strong coupling constant for final state radiation (FSR) αFSRS

(TimeShower:alphaSvalue), the multiplicative factor on the max ISR evolution scale pmaxFudge
T

(SpaceShower:pTmaxFudge), and the ISR strong coupling αISRS (SpaceShower:alphaSvalue).

∆mMC
t values. The whiskers then extend as a line out to the maximum and minimum,

unless these are further away from the box than 1.5 box lengths, in which case the points
are considered to be outliers and denoted by open circles. The line in the box denotes the
median. An example of this statistical estimate is also shown in figure 2.

3 Classical fitting methods

In order to benchmark the tune uncertainties for the top mass, we first implement two
template fitting procedures modeled roughly on what is often done for actual experimen-
tal data.

3.1 Histogram fitting

We employ an iterated Gaussian histogram fit, similar to that used in [30]. For each test
set at each tune and mass, we create a histogram of the three-jet invariant mass, m3j ,
using anti-kT R = 0.5 jets. We then fit a Gaussian to the distribution along the full range

– 6 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

172 173 174 175 176 177

mMC
t [GeV]

171

172

173

174

175
m

fi
t

[G
eV

]

∆mMC
t = 1

2
(mmax

fit −mmin
fit)m

MC
t

mfit

mfit ±∆mMC
t

172.003 ± 0.186 GeV

172.508 ± 0.186 GeV

173.001 ± 0.182 GeV

173.510 ± 0.179 GeV

173.998 ± 0.183 GeV

Test set 1

Center
Var1+
Var1-

175 180 185 190

∆mMC
t [MeV]

Test set 1

Test set 2

Test set 3

Test set 4

Test set 5

Combined

Summary

Uncertainty

172.0

172.5

173.0

173.5

174.0

Figure 2. How uncertainties on mMC
t are estimated. These particular numbers are from the

uncorrected histogram fitting method using the Var1 tune, but the same error estimation is used
throughout. Left: we show the fitted mass for different truth mMC

t values and + and − variations
of the tune parameters. For each mMC

t , the uncertainty ∆mMC
t is computed using equation (2.1).

We repeat the fits with 5 test sets. Right: the values of ∆mMC
t for each test set and each mass are

shown. The markers correspond to specific mMC
t samples. The distribution of these uncertainties

are shown in the box-and-whiskers plots (“summary” row of right panel).

150GeV < m3j < 200GeV. The fit range is then adjusted to include one standard deviation
on either side of the mean of this Gaussian and a new Gaussian is fit to this new range.
We continue to iterate this fitting procedure until the mean and width of the Gaussian
converge to stable values. The mean is then used as the fitted top mass mfit

t and the width
discarded. The left panel of figure 3 depicts this procedure. We also tested iterated fits of
different functions such as a crystal ball function and a skewed gaussian, but do not display
the results since they do not improve the top mass fit compared to the Gaussian case.

The top mass mfit
t extracted from this method is very nearly linearly proportional to

the top Monte Carlo mass mMC
t . This linear fit is shown on the right panel of figure 3. We

then use the fitted mass and Monte Carlo mass to compute an uncertainty as described in
the previous section.

We consider three variants of this method, again following [30]. We first fit directly to
the 3-jet mass histograms. Second, we calibrate to the W mass. To do this, we rescale the
3-jet mass so that the 2-jet mass, m2j , is equal to the W mass:

mcalibrated = mW
m3j
m2j

. (3.1)

Finally, we apply the soft drop algorithm [31] with parameters β = 0, 1, 2 on the jets before
computing the histogram.

A summary of the resulting uncertainties from the histogram-fitting approach is pre-
sented in figure 4. We find that the best variant, including both W calibration and soft
drop with β = 0, yields a mean total envelope uncertainty of about 65MeV and an un-
certainty of about 100MeV when the variations are added in quadrature. This is roughly
consistent with the values in [30], and similar to values found by ATLAS [20].

– 7 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

150 160 170 180 190

mt [GeV]

0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
er

 o
f
ev

en
ts

Gaussian fit 1

Gaussian fit 2

Gaussian fit 3

MC Data

171.5 172.0 172.5

mfit
t [GeV]

172.00

172.25

172.50

172.75

173.00

173.25

173.50

173.75

174.00

m
M

C
t

 [
G

eV
]

Figure 3. Shows the iterative fitting procedure used to fit a top mass to the 3-jet mass distribution.
The left panel shows the distribution and several fits. In each iteration the fit range is adjusted
to include one standard deviation on either side of the mean of the previous fit. The right panel
demonstrates the linear relation between the fitted values of mfit

t from tune 21 data and the Monte
Carlo mass mMC

t used to generate the events. The fit ranges shown are 150–200GeV, then 159.4–
185.6GeV and finally 162.3–183.1GeV.

3.2 Profile likelihood fitting

The histogram fitting method does not easily extend to more than one observable and
does not include information from every event. A second method which is used by the
experiments is to perform a profile likelihood fit. The idea behind this method is to find
the mass which is most likely to have generated the observed events. To do so, a likelihood
function is used to model the distribution. The likelihood function is able to incorporate
more than one observable, allowing for more flexibility than the histogram fitting.

Here, we model the top and W resonances as Gaussian distributions. The mean value
of the top distribution will be fit, and the mean of the W distribution is set to 80.3 GeV.
The standard deviations of the distributions are determined from fitting the resonances
across all tunes simultaneously and are σt = 6.5 GeV and σW = 3.5 GeV. In addition, we
include a nuisance parameter, c, in the model to help account for fluctuations in the ratio
of the reconstructed top and W masses coming from differences in the tune parameters.
Explicitly, the likelihood is given as

L
(
mfit
t , c

)
=

∏
i∈Events

(
G
(
m3j c |mfit

t , σt
)
G (m2j c |mW , σW)G (c |1, σc)

)
, (3.2)

where G(x|µ, σ) is the probability density evaluated at x for Gaussian distribution with
mean µ and standard deviation σ, and σc is the standard deviation of the fitted value of
the m2j peaks across a range of tunes. We use σc = 0.13.

For a set of events with a fixed tune, the value of the top mass is extracted by max-
imizing the likelihood function over both mfit

t and c. The value of mfit
t that maximizes

the likelihood does not equal mMC
t , but is linearly correlated. The linear relation between

mMC
t and mfit

t is used for the inference of top mass.

– 8 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 100 200 300 400 500 600

∆mMC
t [MeV]

Tune uncertainties
added in quadrature

Envelope
including PDFS

Envelope
excluding PDFS

Var3c

Var3b

Var3a

Var2

Var1

VarPDF

mean: 274.7, max: 297.9
mean: 70.8, max: 89.5

mean: 31.6, max: 53.9
mean: 248.9, max: 285.1

mean: 36.4, max: 64.3

mean: 349.1, max: 369.7
mean: 67.2, max: 92.1

mean: 20.3, max: 40.6
mean: 40.0, max: 64.1
mean: 33.3, max: 68.9

mean: 444.8, max: 473.7
mean: 73.7, max: 93.3

mean: 52.2, max: 77.4
mean: 101.2, max: 123.9

mean: 38.7, max: 64.6

mean: 268.1, max: 294.2
mean: 57.7, max: 84.3

mean: 36.8, max: 77.4
mean: 63.4, max: 88.1

mean: 29.3, max: 45.9

mean: 382.0, max: 412.5
mean: 67.2, max: 86.7

mean: 49.1, max: 73.0
mean: 90.9, max: 110.3

mean: 29.8, max: 59.9

mean: 120.1, max: 149.3
mean: 29.7, max: 56.5

mean: 19.5, max: 49.8
mean: 22.4, max: 54.3
mean: 27.8, max: 54.2

mean: 451.4, max: 474.1
mean: 91.0, max: 108.5

mean: 65.3, max: 87.1
mean: 108.3, max: 123.9

mean: 59.4, max: 77.9

mean: 535.9, max: 552.0
mean: 108.7, max: 133.4

mean: 66.5, max: 87.1
mean: 293.8, max: 335.5

mean: 60.5, max: 77.6

mean: 792.7, max: 812.7
mean: 156.7, max: 179.0

mean: 95.4, max: 127.8
mean: 295.4, max: 328.8

mean: 85.3, max: 107.0

Histogram Fitting Comparison

Uncorrected

W calibration

W calibration
Soft drop (β= 0)

W calibration
Soft drop (β= 1)

2D Likelihood Fit

Figure 4. Box-and-whisker plot for the uncertainties on the top mass histogram fit and profile
likelihood fit within each group of variations in the A14 set of tunes, as in figure 2. The open circles
denote outliers which are further away from the box than 1.5 box lengths. The uncertainties are
calculated with and without W calibration and soft drop grooming methods. The bottom three
rows show several ways of combining the error for the different variations.

Figure 4 shows the results using this method as the brown bars denoted by “2D Like-
lihood Fit”. Overall, this method does similar to the histogram fitting with grooming and
calibration, even though these are not done explicitly here. The likelihood fit improves the
mean ∆mMC

t by around 10% when taking the envelope of the tunes or adding the uncer-
tainties in quadrature. This improvement comes as a result of using the values of m2j and
m3j from every event and including a nuisance parameter. In principle, it is possible to
implement a nuisance parameter for each of the tuning parameters, but this is challenging

– 9 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

in practice, as the effects of each tuning parameter may not be well modeled by a Gaussian.
Instead, we advocate for the method presented in the next section, which still includes the
values of m2j and m3j from every event, but allows for a flexible function-unlike the fixed
form of eq. (3.2) — which uses changes in the distributions to account for tune variations.

4 Regression on sorted ensembles

In this section, we study whether doing regression on ensembles of events can improve on
the traditional template histogram fit. We consider both using a dense neural network
(DNN) to do the regression with machine learning, and alternatively an ordinary least
squares (OLS) linear regression. The two methods give comparable results. The DNN
with linear activations is slightly better, but the OLS regression is simpler and faster (but
uses more memory).

4.1 Inputs

We take as inputs to the regression ensembles of observables computed from simulated
events, sorted by one of the observables. We use these sorted ensembles as inputs to
regress out the top-quark Monte Carlo mass, mMC

t .
For training, we use events simulated with mMC

t ranging from 170 to 176GeV in in-
tervals of 0.2GeV. For each mass we generate 300,000 training events for each of the A14
tunes. We have also tested using a larger total number of events in each sample and finer
spacings between the masses, but this does not improve our results. There is no apriori
reason why a uniform prior necessarily gives the best performance, but we find it to be
sufficient for our purpose. To train the regression, we use a random ensemble of 30,000
events (with replacement) from the total set of 300,000 at a given tune and mMC

t . The
number 30,000 is chosen because taking a smaller number of events per ensemble gives
a larger error, while taking a larger number is prohibitively slow (at least in the DNN
case) and does not lead to noticeable improvement. Both the DNN and OLS regression see
many different ensembles from each training sample, but the total number of ensembles
and which samples they are from differs between the two regression methods. For the
DNN, batches of 100 ensembles are seen in each training step, and each ensemble is from a
randomly selected mass and tune. In contrast, the best OLS regression uses 20 ensembles
for each mass and tune.

The basic observables we consider are the 3-jet invariant mass (i.e. top), m3j , the
2-jet invariant mass (i.e. the W boson mass), m2j , and their ratio R32 = m3j

m2j
[45, 46].

The inputs to the regression are the values of these observables, sorted by one (or more)
of them. Sorting the ensemble is important because it determines which parts of each
observables’ distribution the different weights are applied to, and allows the regression
to exploit correlations in different observables across tunes. Example input distributions
sorted by m3j are shown in figure 5. We tested different orderings and several different
observables as inputs (discussed more in section 4.2), and find that sorting by increasing
m3j tends to give the best results.

– 10 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

30000 events
sorted by m3j

0 10000 20000 30000
Event Number

160

180

200

m
3
j
 [
G

eV
]

0 10000 20000 30000
Event Number

70

80

90

m
2j

 [
G

eV
]

0 10000 20000 30000
Event Number

1.75

2.00

2.25

2.50

R
32

concatenate

Dense
[90000 × 1]

Dense
[1 × 1]

DNN

Predicted

mass

Figure 5. Example DNN and its inputs. Example inputs are m3j , m2j , and R32 for 30,000 events,
sorted according to increasing m3j .

To extract the uncertainty from the regression, we generate five more statistically
independent samples of 400,000 events at each mass between 172.0 and 174.0GeV (in
intervals of 0.5GeV) and for each of the A14 tunes. From each of these test samples (at
fixed mass and tune), we take an ensemble of 30,000 events and evaluate the network to
get an output value. We repeat this 100 times for each sample and take the mean of those
values to get a final predicted value for a given trial, mass, and tune. We then use those
predicted values to compute the error as described in section 2.

4.2 Dense network

First, we discuss using a linear network. We use a two layer network implemented in
keras [47], with one node in each layer and linear activation functions between nodes.3

This is shown in figure 5. While more than one layer is not strictly necessary since our
activation functions are linear, additional layers can help with training and hyperparameter
optimization. We also tested more complicated neural networks with different filter con-
figurations (including deeper networks), removing various node connections, and nonlinear
activation functions, none of which seemed to improve performance. Networks were trained
with the Adam algorithm [48] for 600 epochs of 750 steps each, with an early stopping pa-
tience of 60 and a batch size of 100. The initial learning rate was 0.0005, with a learning
rate decay of 0.7 after 8 epochs without improvement. We did not exhaustively optimize
these hyperparameters, so it is possible that there would be further performance gains with
a more systematic hyperparameter search. We also normalize all inputs by subtracting a
constant so that the mean of each sorted ensemble is small compared to its spread, which
helps ensure consistent results when the network is trained multiple times. This amounts

3The exceptions to this are the R32 only networks, which train better when we use a third layer.

– 11 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 100 200 300 400 500

∆mMC
t [MeV]

Envelope
including PDFs

Var3c

Var3b

Var3a

Var2

Var1

VarPDF

mean: 25.5, max: 42.7
mean: 25.5, max: 43.3

mean: 28.9, max: 61.6
mean: 25.1, max: 42.0

mean: 20.8, max: 32.5
mean: 31.5, max: 44.8

mean: 33.5, max: 53.9
mean: 50.1, max: 78.9

mean: 133.0, max: 176.5
mean: 213.1, max: 226.3

mean: 21.2, max: 36.1
mean: 19.6, max: 43.2
mean: 22.4, max: 40.7
mean: 19.6, max: 40.8
mean: 19.9, max: 41.8

mean: 16.8, max: 37.6
mean: 18.1, max: 42.5
mean: 20.1, max: 42.3

mean: 241.7, max: 295.7
mean: 295.3, max: 319.6

mean: 17.8, max: 41.3
mean: 16.4, max: 34.6
mean: 16.8, max: 35.4
mean: 16.4, max: 36.4
mean: 15.2, max: 34.1

mean: 21.2, max: 49.3
mean: 63.5, max: 86.1

mean: 63.7, max: 100.8
mean: 137.0, max: 196.0

mean: 107.6, max: 126.5

mean: 16.9, max: 31.5
mean: 17.2, max: 30.8
mean: 17.1, max: 36.5
mean: 16.9, max: 34.3

mean: 17.2, max: 27.6
mean: 17.8, max: 40.3

mean: 38.2, max: 78.1
mean: 47.4, max: 74.2

mean: 150.3, max: 255.6
mean: 103.4, max: 124.5

mean: 15.4, max: 29.1
mean: 15.0, max: 32.1
mean: 17.0, max: 37.5

mean: 15.6, max: 32.8
mean: 15.3, max: 28.6

mean: 23.0, max: 51.9
mean: 55.9, max: 78.4

mean: 55.4, max: 74.2
mean: 126.3, max: 188.8

mean: 93.9, max: 113.8

mean: 15.1, max: 39.7
mean: 14.5, max: 25.8

mean: 16.0, max: 34.7
mean: 15.2, max: 35.7

mean: 16.6, max: 30.4
mean: 19.4, max: 37.5
mean: 19.8, max: 36.0

mean: 59.5, max: 90.7
mean: 44.7, max: 104.5

mean: 131.5, max: 148.6

mean: 34.3, max: 47.0
mean: 34.0, max: 45.3

mean: 39.0, max: 61.6
mean: 34.5, max: 51.7

mean: 31.7, max: 42.2
mean: 43.4, max: 55.3

mean: 71.2, max: 92.8
mean: 102.6, max: 124.6

mean: 271.8, max: 335.0
mean: 373.4, max: 387.2

Linear Network Comparison

m3j & m2j

m3j, m2j & R32

m3j & m2j, No m3j Cut

m3j, m2j, m
β= 0
3j & mβ= 0

2j

m3j, m2j, m
R= 0.4
3j & mR= 0.4

2j

R32, No m3j Cut

R32

m3j & m2j, Averages Only

m3j

m3j & m2j, Tune 21 only

Figure 6. Uncertainties on the top mass linear network fits within each group of variations in
the A14 set of tunes, with different observables as inputs. The Total Envelope section contains the
envelope of all tunes. For every network displayed (except that trained only on the means of the
distributions and the soft drop example), the distributions are sorted by increasing m3j . For the
soft drop example, the distributions are sorted by m3j with β = 0 rather than the original m3j . We
have restricted m3j to between 150–200, except for those networks labeled “No m3j cut”.

to subtracting 173GeV from m3j , 80GeV from m2j , and 2 from R32. We also tested other
normalization methods, but found they do not improve performance noticeably. We tested
several loss functions and determined that the network is mostly insensitive to which loss
function was used and performs equivalently for loss functions such as logcosh and mean
squared error. The results presented use the logcosh loss.

We tested multiple different sets of observables as inputs. We considered including
combinations of m3j , m2j , R32, and m`b (the invariant mass of the lepton and b-quark

– 12 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

on the leptonically decaying top quark side of the event). For each of these inputs, we
considered sorting the ensembles in different ways before putting them into the network.
Sometimes, we sorted the events the same way for all the observables, and sometimes
we sorted the events differently for different observables. In either case, the orderings
were determined by making sure the sorted variables were strictly increasing, and then
applying one of these orderings to each of the other, unsorted variables. We find sorting is
necessary to train the network, and that the results depend on how the inputs were sorted.
Generically, we find that sorting by m3j works best.

Additionally, we recomputed these observables for subjets determined in different ways
and tested combining these subjet observable ensembles with those for the original jets. We
used subjets obtained by applying soft drop [31] with z = 0.1 and β = 0, 1, 2 to the initial
jet, as well as telescoping subjets at different radii [49–51]. We found that our results are
not sensitive to the value of z used in soft drop as long as it is small enough. Changing β
has a small effect which is not noticeable in the best case of m3j & m2j inputs. For single
observable networks, β = 0 often does best. For both types of subjets, our results depend
on the specific network inputs, but none of these networks perform noticeably better than
the best network without subjet observables.

A subset of our results for various different inputs is shown in figure 6. As previously
mentioned, a combination of m3j and m2j , both sorted by increasing m3j , is sufficient to
give our best results. This is shown in blue. From the figure, we can see that most of the
contributions from the different variations are a similar order of magnitude, in contrast
to the histogram fitting case. The largest contributions to the error are from Var1 and
VarPDF.

For completeness, figure 6 contains several other results, considering both different
input variables and different m3j ranges. We find many networks with additional variables
perform similarly to the m3j & m2j combination (which can be seen by comparing the blue
errors to the orange and green ones), while networks that do not include both m3j and m2j
tend to perform worse. Like in the case of the histogram fit, using mass alone (shown in
yellow) gives the worst results, while R32 alone (shown in pink and brown) improves upon
the mass, though both do better than the histogram fit when the same inputs are used.4

Examples including soft drop variables and subjets at different radaii are shown in red and
purple respectively. Including soft drop variables or subjets at smaller radii can help when
compared to networks trained on single variables, but there is no further improvement on
the m3j & m2j combination. For reference, we also include two other networks that do
not use the full distributions for every tune as input. In gray, we show the case of taking
the average of the ensemble before inputting to the network. In turquoise, we show a
network trained on tune 21 only (but still tested on all the A14 tunes). Unsurprisingly, we
find that in both of these cases the networks perform worse than the full sorted ensembles
marginalized across tunes.

4The improvement between R32 and using multiple observables is dependent on the range of m3j used;
for m3j between 150–200 the difference is larger than when the full m3j distribution is used. This can be
seen in the difference between the pink and brown errors.

– 13 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 5000 10000 15000 20000 25000
Event Number

-0.0002

0.0000

0.0002

0.0004

R
o
ll
in

g
 A

v
er

a
g
e

o
f
C

o
n
tr

ib
u
ti
on

 t
o

P
re

d
ic

te
d
 M

a
ss

Tune 23 Mass 174

Tune 26 Mass 174

Tune 21 Mass 174

Tune 25 Mass 174

Tune 24 Mass 174

Tune 23 Mass 173

Tune 26 Mass 173

Tune 21 Mass 173

Tune 25 Mass 173

Tune 24 Mass 173

Tune 23 Mass 172

Tune 26 Mass 172

Tune 21 Mass 172

Tune 25 Mass 172

Tune 24 Mass 172

(a)

0 5000 10000 15000 20000 25000 30000
Event Number

-1

0

1

2

C
u
m

u
la

ti
v
e

S
u
m

 o
f
C

on
tr

ib
u
ti
on

 t
o

P
re

d
ic

te
d
 M

a
ss

174

173.5

173

172.5

172

(b)

0 5000 10000 15000 20000 25000 30000
Event Number

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

C
u
m

u
la

ti
v
e

S
u
m

 o
f
C

on
tr

ib
u
ti
on

 t
o

P
re

d
ic

te
d
 M

as
s

Tune 19

Tune 20

Tune 21

Tune 22

Tune 23

Tune 24

Tune 25

Tune 26

Tune 27

Tune 28

Tune 29

Tune 30

Tune 31

Tune 32

(c)

0 5000 10000 15000 20000 25000 30000
Event Number

172

173

174

175

176

C
u
m

u
la

ti
v
e

S
u
m

 o
f
C

on
tr

ib
u
ti
on

 t
o

P
re

d
ic

te
d
 M

a
ss

174

173.5

173

172.5

172

(d)

Figure 7. Graphical representations of the contribution to the predicted mass as a function of
entry number in the ensemble using the m3j & m2j network. In (a), we show a rolling average of
the product of the (normalized) m3j input multiplied by the network weight for each event number.
Each color denotes a different mass and tune. Only a subset of masses and tunes have been shown
for clarity. In (b)-(d), each point is the cumulative sum up to that event number of the (normalized)
input value multiplied by the network weight. (b) includes only the m3j contribution, with colors
denoting masses and each mass including 1 sample from each of the A14 tunes. (c) includes only
the m2j contribution, with colors denoting tunes. One sample at each mass is included for each
tune. (d) sums over both m3j and m2j with colors again denoting masses. The bias is included in
the zeroth entry.

Next, we would like to understand why these networks are able to perform better
than the histogram fit. In the histogram fit, the mass is given by the center of a Gaussian
which is similar to our average-only network. Therefore, we look for improvements over the
average-only network as a proxy for understanding why the dense network does better than

– 14 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 5000 10000 15000 20000 25000 30000
Event Number

171

172

173

174

175

176

177

178
C

u
m

u
la

ti
v
e

S
u
m

 o
f
C

on
tr

ib
u
ti
on

 t
o

P
re

d
ic

te
d
 M

as
s

174

173.5

173

172.5

172

(a)

150 160 170 180 190

mMC
t

0

100

200

300

400

500

E
v
en

ts
 p

er
 B

in

5k
 E

ve
nt

s

15
k

Ev
en

ts

25
k

Ev
en

ts Tune 23 Mass 173

Tune 24 Mass 173

Tune 21 Mass 173

Tune 23 Mass 172

Tune 24 Mass 172

Tune 21 Mass 172

(b)

Figure 8. (a): graphical representation of the contribution to the predicted mass as a function of
entry number in the sorted ensemble using the network that depends only on the average of the
ensemble. The zeroth entry includes the bias. Each point is the cumulative sum up to that entry of
the (normalized) input values multiplied by the network weight and divided by the total number of
samples. Color denotes the mass. There are fourteen different lines for each color; one example for
each tune. (b): histogram showing an example distribution. The solid lines drawn show 5k, 15k,
and 25k events for several masses and VAR1 tunes.

the histogram fit. In order to understand how different parts of the ensembles contribute,
we examined the weights of the networks.

We use these weights to construct figures 7 and 8(a). Since these weights are shared
by all masses and tunes, we multiply the weights by example input ensembles to construct
the plots. Specifically, we plot a rolling average of the input times the weights (as in
figure 7(a)) or a cumulative sum of the inputs times the weights (as in figures 7(b)-7(d)
and 8(a)) as a function of event number. For figures 7(d) and 8(a), which include all input
observables, we have also added the constant bias learned by the network and accounted
for the normalization of the labels by adding 173 to the predicted outputs. In these two
plots, we can read off the predicted mMC

t value from event number 30,000. We include
figure 8(b) for reference, to see which parts of the top mass distribution are contributing
the most in each network.

In general, we want to design a procedure that is sensitive to the Monte Carlo mass but
not the tuning parameters. The difficulty with this is that most variables that are strongly
affected bymMC

t (such asm3j) are also strongly affected by the tuning parameters, which we
can see from figure 7(b). This can be partially corrected by including other variables (such
as m2j , seen in figure 7(c)) which are more sensitive to the tune than the MC mass. When
we just fit the mean of each distribution, there is not much more that we can do, aside from
trying to clean up the distributions themselves. However, in the case of directly inputting
a sorted ensemble into the regression, the network can look for other combinations that are
less sensitive to the tune than the mean. The network can learn to use a particular part

– 15 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

of an observables’ distribution to differentiate the masses, and a different part to partially
correct for the difference in tunes. This can be seen in figure 7(a), where the middle of the
ensemble distinguishes the mass, whereas the upper tail is more strongly correlated with
the tune. We can also see this from comparing the average only network in figure 8(a)
with the full m3j&m2j network in figure 7(d). In 8(a), most of the difference in masses
comes from events between 5,000–15,000, where the original distributions differ most, and
the width of each mass band in the upper half of the ensemble remains mostly constant.
In contrast, in 7(d), most of the difference in regressed mass comes from event numbers
greater than 15,000, and the difference in tunes shrinks substantially at the top tail of the
m3j ensemble.

For completeness, we also tried generating new samples uniformly spaced in the other
tuning parameters and regressing out these tuning parameters in addition to the mass. For
this test we restricted to the VAR1 tunes, but an equivalent test could be conducted across
all variations. We might think this type of network would improve our results since the loss
function explicitly depends on tuning parameters in addition to mMC

t . However, we found
that in the case of a linear regression, a multidimensional output did not help improve
the predicted top mass (in contrast to what we found with the DCTR method, discussed
in section 5). In particular, we find that sorting the inputs encodes enough information
about the other tuning parameters that additional outputs are unnecessary. This can be
seen from the solid lines in figure 8(b). While the value of the 15,000th event near the
peak depends primarily on the Monte Carlo mass, the value of the 25,000th event is also
strongly dependent on the tune.

4.3 Ordinary least squares regression

Since non-linearities and a deep network structure do not seem to improve results, it is
natural to ask if we can reproduce the same results with something simpler. Therefore, we
test the case of using a projection matrix to do the ordinary least squares linear regression
exactly (rather than using the Adam algorithm to do the minimization). We implement this
regression using scikit-learn [52], and consider three separate cases: using the full ensembles
of 30,000 events, using the means across the ensemble only, and using the ensemble means
and their standard deviations. For the full ensembles we use 20 random samples from the
300,000 event training sets with each mass and tune; for the other cases we resample 200
times from each mass and tune. We find that with full ensembles the results are worse
when fewer samples are used, but including more than 20 samples decreases performance.
We suspect this is due to overparameterization, but that it could be improved through
regularization or dimensionality reduction techniques. Additionally, the matrix operations
in the OLS regression become memory intensive (using over 32 GB) with many samples.
The other regression methods are mostly insensitive to the number of samples, as long as
there enough for fitting. Results from the OLS approach are shown in figure 9. We find
roughly similar, but slightly inferior, performance to the linear network for comparable
inputs. Though the linear network does slightly better, it takes longer to train than OLS
regression and is not deterministic.

– 16 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 50 100 150 200 250

∆mMC
t [MeV]

Envelope
including PDFs

Var3c

Var3b

Var3a

Var2

Var1

VarPDF

mean: 25.5, max: 42.7
mean: 29.0, max: 48.4

mean: 30.9, max: 56.2
mean: 49.3, max: 70.1

mean: 21.2, max: 36.1
mean: 27.0, max: 41.8
mean: 18.0, max: 40.4
mean: 20.5, max: 40.3

mean: 17.8, max: 41.3
mean: 20.2, max: 32.2

mean: 26.5, max: 45.5
mean: 63.3, max: 107.2

mean: 16.9, max: 31.5
mean: 16.2, max: 30.7

mean: 24.5, max: 54.0
mean: 46.7, max: 79.0

mean: 15.4, max: 29.1
mean: 16.7, max: 42.4
mean: 20.1, max: 44.0

mean: 54.0, max: 74.5

mean: 15.1, max: 39.7
mean: 15.9, max: 36.3

mean: 35.1, max: 61.5
mean: 59.1, max: 84.1

mean: 34.3, max: 47.0
mean: 39.7, max: 56.1

mean: 54.0, max: 68.6
mean: 100.5, max: 119.6

Regression Comparison, m3j & m2j Inputs

Linear Network
on Distributions

Linear Regression
on Distributions

Linear Regression
on Means and
Standard Deviations

Linear Regression
on Means

Figure 9. Uncertainties on the top mass fit within each group of variations in the A14 set of tunes
for the OLS regressions, compared to the best linear network.

5 DCTR with ParticleFlow

An alternative machine learning method developed to fit parameters is DCTR [34]. This
method is based upon parameterized neural networks [53] and exploits a relationship be-
tween the loss function and the likelihood ratio [54–64].

The DCTR method works as follows. Suppose we have some parameters θ and some
observables x. The probability distribution p(x|θ) of the observables depends on the values
chosen for θ. An ambitious goal is to learn a function f(x, θ) which gives the full likelihood
distribution of the observables x for any θ (as in JUNIPR [32, 33]). In practice, DCTR
learns this distribution relative to the distribution over x for a fixed reference value θ0. To
do so, we give it observables xθ0 drawn from the distribution at fixed θ = θ0 (the reference
sample) as well as observables xθS drawn from the distribution using many values of θ ∈ θS
(the scanned sample). We do not tell the network the value of θ0, however. Instead, we
pretend that θ0 is equal to θ and the network will learn that this is inconsistent. In practice,
we train the network over pairs of events {xi, x0

i } ∈ {xθS ,xθ0} chosen over a distribution
of θ values and compute the binary cross-entropy loss

f = argmin
f ′

(
−
∑
θ

∑
{xi,x0

i }∈{xθS ,xθ0},

[
log

(
f ′(xi, θ)

)
+ log

(
1− f ′(x0

i , θ)
)])

(5.1)

It is important that f ′ in the second term takes θ and not θ0, otherwise the classification
would be trivial.

– 17 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

Using such a loss function, the DCTR process for inferring model parameters from an
ensemble of events involves two steps.

1. Train a parameterized classifier f(x, θ). In the application to top mass extraction, the
reference sample has θ0 corresponding to a fixed mass and tune. The scanned sample
has θ which varies among values of mMC

t and many values for the tune parameters.

2. Use the function f(x, θ) for regression. To do so, we re-minimize the loss for an
unknown sample compared with an independent sample drawn using the same pa-
rameters as the reference sample. Now the network is fixed, but the parameters θ are
varied to minimize the loss. The values which minimize the loss are the prediction.

To give a better sense of how DCTR works, we include a toy example with a one-
dimensional Gaussian in appendix A. For more details on DCTR, see [34] or [65].

5.1 Network architecture

In order to use DCTR to infer the top-quark mass, we need a parameterized neural network,
f(x, θ) which is flexible enough to learn the likelihood ratio. The parameter(s) θ must
include mMC

t , but can also include the other tune parameters, depending on whether we
try to regress those tune parameters or marginalize over them and only extract mMC

t . We
find the most effective network takes as input both low-level and high-level observables.
The architecture of the network is sketched in figure 10.

For the high-level variables we take m3j (the “top mass”) and m2j (the “W mass”),
as in previous sections. We consider optionally applying soft-drop jet grooming to the
jets before constructing the invariant masses. These are indicated by the blue portion of
the figure.

For low-level observables, following DCTR [34] we use four-vectors of the constituent
particles of the jets represented with a ParticleFlow Network [35]. This is shown in the
green region of the figure. For the inputs to ParticleFlow, we include up to 75 particles, with
a maximum of 25 from each of the three jets. Each particle contains eight input variables:
four variables are the four vector in (px, py, pz, E), three variables are the momenta in a
transformed coordinate system (pT , η, φ), and a discrete tag for which jet the constituent
came from (0 for the b-tagged jet, 1 for the hardest un-tagged jet, and 2 for the softer
un-tagged jet). A function Φ is applied to each of the particles in the event, mapping from
an eight-dimensional input to a k-dimensional output. To ensure that the ordering of the
particles is unimportant, each k-dimensional output is symmetrized (summed) over the
particles. These are marked by the λk nodes in the figure. For Φ we use a neural network
with two hidden layers. Each hidden layer contains 32 nodes with the ELU activation
function and use a dropout rate of 10% during training. The final layer of Φ contains eight
nodes, also using the ELU activation.5 Many applications of ParticleFlow find that a larger
latent space is needed, however, we found our results to be much more stable with 8, rather
than 16 nodes. We also tried not including the ParticleFlow part of the network, but found

5The weights of Φ are trained along with the rest of the network, but could be pre-trained from a similar
application.

– 18 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

Figure 10. Architecture used to infer the top-quark mass with DCTR. The green portion shows
the low-level information from the constituents of the jets. These are combined with a ParticleFlow
Network, denoted by Φ acting on each constituent, with the resulting output being summed across
the particles. The Φ network is shown in the breakout box. Next are the high-level inputs of the
three-jet and two-jet invariant masses, shown in the blue portion. The last elements are the Monte
Carlo parameters to be inferred, shown in yellow. All of these are combined in the latent space,
which is then connected to the final output with a dense neural network shown in red.

better performance when it is included. As an additional input, we sum the four-vectors
of each of the constituent particles and pass the sum top-quark 4-vector directly to the
latent space.

The combined information from the Monte Carlo parameters, the high-level inputs, and
the low-level inputs are concatenated together. From this space, another neural network
is applied to generate the final event level classification, shown in the red region of the
figure. We use three hidden layers with 32, 32, and 8 nodes, respectively. We again use
the ELU activation function and apply a 10% dropout rate during training. The output
is a single node activated with the sigmoid function. This results in networks that have
between approximately 1400 and 3600 weights, depending on the number of Monte Carlo
parameters included in the parameterization.

– 19 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 50 100 150 200 250

Error [MeV]

m3j

m3j m2j

Particle Flow

Train and test on central tune

No soft drop

β= 0, zcut = 0.1

β= 1, zcut = 0.1

β= 2, zcut = 0.1

Figure 11. Errors on the mass of the top quark returned by the DCTR methods when trained
and tested only on the central tune, for different soft drop parameters. Adding extra information
(such as the mass of the W jet) does not seem to increase the accuracy. The uncertainty for the
method is on the order of 50MeV.

5.2 DCTR on a single tune

First we test DCTR’s ability to regress mMC
t for a fixed tune (A14 tune 21). For the fixed

reference sample θ0, we chose the top-quark mass to be 175GeV.6 In the scanned sample θ,
we randomly choose mMC

t for each event from a uniform distribution between 170–176GeV.
We use 1 million events each for the fixed and reference samples. The data set is split with
25% for validation and 75% for training.

As part of the study, we want to see if more information than just the three jet invariant
mass can help the network extract the top mass better. To do so, we allow the network to
use only m3j ; to use m3j and m2j ; or to use m3j , m2j and the low-level inputs (as described
above). In addition to these observables, the network is also given a value for θ = mMC

t .
For the scanned sample, this is simply the value chosen in the random draw for the event.
In the fixed reference sample, where θ0 = 175GeV, the value of θ input is masked to a
random value, chosen from the same range as in the scanned sample.

The networks are trained using the Adam optimizer to minimize the binary cross
entropy loss function. We set the initial learning rate to 10−3 and use the default β values
for Adam. When the loss on the validation set has not improved for 10 epochs, the learning
rate is decreased by a factor of

√
10, with a minimum rate of 10−6. We also implement

early stopping; if the validation loss has not improved for 25 epochs, training is halted.
Training typically takes around 80 epochs.

After training the networks, the mass is extracted by computing the loss of the classifier
between a test set and an independent reference set. We repeat this with the same five

6We found empirically that the DCTR procedure works better in practice if the Monte Carlo mass of
the reference sample is larger than the values to be inferred.

– 20 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

masses and five iterations of the test sets as in the regression methods presented earlier,
with 4 × 105 events in each data set. The loss is minimized for the combined (test and
reference) data as a function of mMC

t .
In figure 11 we summarize the results for different soft-drop grooming parameter, and

with and without the low-level inputs. Numbers shown are the absolute difference between
the true and extracted Monte Carlo mass. The median error for nearly all of the methods
here is . 50MeV, while the maximum error is around 100–150MeV. For this exercise,
where the tune is fixed and only mMC

t varies, there does not seem to be an advantage
to using extra information (such as the mass of the jets from the W) or performing jet
grooming. This conclusion will change when we include tune variations.

5.3 DCTR on Var 1 tunes

We saw that with no tune uncertainties, the DCTR method can regress mMC
t with an

uncertainty of order 50MeV. When other parameters related to tunes are varied, such
as in the showering or hadronization models, DCTR offers multiple ways to proceed. We
could train only on a single tune, trying to learn mMC

t ; we could train on multiple different
tunes, again trying to learn only mMC

t ; or we could train over different tuning parameters
and try to learn those as well as mMC

t .
To asses which of these options works the best, we train networks on data using the

Var1 tunes. We again use 106 samples for the reference set and 106 sample for the scanned
set with 75% of these samples for training and 25% for validation. For the reference set,
we use samples drawn from the central tune (tune 21). The scanned set uses a uniform
distribution for the mass (mMC

t), the color re-connection range, and the strong coupling
constant for multiple parton interactions (αMPI

S). To remove edge effects, the sampling
space is larger than the tune variations we eventually test against. Explicitly, the ranges
are given by

mMC
t ∈ [170 GeV, 176 GeV],

Color re-connection range ∈ [1.67, 1.75], and
αMPI
S ∈ [0.116, 0.136],

(5.2)

and there is no correlation in the random samples. The training procedure is the same
as above.

After training the network, we use DCTR to infer the mass (and possibly the color
re-connection range and strong coupling) on three different tunes: 21, 23, and 24. These
are the central, up, and down tunes of Var1. For reference the color re-connection range
and the strong coupling constant for the tunes are (1.71, 0.126), (1.73, 0.131), and (1.69,
0.121) for 21, 23, and 24, respectively. For each test mass, we evaluate the spread in the
inferred mass from the different tunes. This process is repeated for five separate test sets,
each with 4× 105 events for the reference and test set.

The results of the spreads are summarized in figure 12 with box-and-whisker plots.
The results for the ungroomed jets are in the upper left panel, using soft drop with β = 0
in the upper right panel, using soft drop with β = 1 in the bottom left, and using soft drop
with β = 2 are in the bottom right panel. In the top row of each panel, the only observable

– 21 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 200 400 600

∆mMC
t [MeV]

ParticleFlow

m3j m2j

m3j

(427.9, 488.1)
(480.9, 643.0)

(487.5, 591.5)

(226.2, 286.8)
(252.0, 299.7)

(280.8, 353.1)

(94.6, 116.5)
(176.0, 233.8)

(49.3, 108.6)

No soft drop

0 200 400 600

∆mMC
t [MeV]

(132.9, 152.9)
(131.9, 182.5)
(145.2, 201.3)

(79.2, 113.1)
(93.9, 119.6)

(110.0, 159.3)

(28.8, 67.8)
(101.2, 173.8)

(89.4, 159.8)

β= 0, zcut = 0.1

0 200 400 600

∆mMC
t [MeV]

ParticleFlow

m3j m2j

m3j

(288.9, 343.9)
(323.6, 388.8)

(320.5, 365.1)

(157.0, 209.7)
(191.6, 234.4)

(210.2, 265.1)

(82.3, 114.1)
(132.9, 195.0)

(68.1, 122.0)

β= 1, zcut = 0.1

0 200 400 600

∆mMC
t [MeV]

(342.1, 412.2)
(384.0, 502.2)

(396.3, 479.9)

(197.0, 277.5)
(219.3, 291.2)
(171.5, 311.8)

(111.5, 133.7)
(164.6, 228.5)

(70.4, 117.9)

β= 2, zcut = 0.1

Applied to tunes of Var1

Trained for
central tune

Trained for
Var1: marginalize

Trained for
Var1: fit

Figure 12. Results testing the input data for DCTR to use as well as the method of inference on
VAR1. Including both m3j and m2j along with the low-level information captured by ParticleFlow
results in the lowest uncertainty. DCTR works best when inferring all of the tune parameters
(orange) as opposed to marginalizing over them (blue).

given to the classifier is the three jet invariant mass. The networks of the middle row
have access to the two-jet invariant mass in addition, and the bottom row also includes a
ParticleFlow network for the constituents of the three jets.

There are many noteworthy trends in these results. First, we examine how the different
grooming methods affect the reconstruction. We saw before that the using soft drop for the
histogram fitting methods greatly reduced the uncertainty. A similar pattern is observed
here, especially when looking at the first two rows (not using ParticleFlow). For instance,
all of the color bars for both the β = 0 and β = 1 panels have significantly lower mean
and maximum ∆mMC

t than the corresponding colors for not using soft drop. The option
of soft drop with β = 2 still does better than no soft drop, but not as good as the others.

The next noteworthy trend is that adding more information to the network helps to
reduce the uncertainty. In each panel, the uncertainty is largest when only using m3j
and improves when adding in m2j . The uncertainty is further reduced when including the
ParticleFlow information in most panels. However, these networks are more challenging to
train and often do not work for the full mass range. This is why the mean (and median)
values drop, while sometimes still having large maximum uncertainties.

The last important observation is that the networks with ParticleFlow do better when
they are also fitting to the tune parameters. The white data is for networks trained on the
central tune alone, and thus only capable of inferring the mass. The blue data sees the
scan across the tune parameters, but only tries to infer the mass, while the orange data

– 22 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 50 100 150 200 250 300

∆mMC
t [MeV]

β= 2
zcut = 0.1

β= 1
zcut = 0.1

β= 0
zcut = 0.1

No
Soft drop

mean: 59.4, max: 89.5

mean: 65.9, max: 102.6

mean: 54.1, max: 104.0

mean: 57.0, max: 98.6

mean: 62.6, max: 106.0

mean: 92.3, max: 177.9

mean: 81.9, max: 97.6

mean: 72.8, max: 138.3

mean: 74.1, max: 164.0

mean: 71.4, max: 94.2

mean: 93.8, max: 179.6

mean: 52.4, max: 75.4

mean: 69.3, max: 97.4

mean: 61.7, max: 109.1

mean: 78.3, max: 120.0

mean: 42.4, max: 65.5

mean: 54.5, max: 103.8

mean: 51.9, max: 93.6

mean: 60.9, max: 88.1

mean: 54.2, max: 76.2

mean: 52.8, max: 88.9

mean: 54.6, max: 112.1

mean: 62.1, max: 134.5

mean: 37.3, max: 83.5

Envelope without PDFS

0 50 100 150 200 250 300

∆mMC
t [MeV]

mean: 77.8, max: 100.5

mean: 93.3, max: 124.0

mean: 71.7, max: 119.8

mean: 89.1, max: 131.0

mean: 85.4, max: 131.8

mean: 109.5, max: 185.2

mean: 100.4, max: 126.6

mean: 108.8, max: 183.6

mean: 100.8, max: 179.7

mean: 97.1, max: 125.7

mean: 120.8, max: 179.6

mean: 105.2, max: 129.4

mean: 71.5, max: 104.5

mean: 91.3, max: 154.6

mean: 94.6, max: 138.9

mean: 60.7, max: 107.3

mean: 75.4, max: 133.0

mean: 67.7, max: 103.9

mean: 66.2, max: 93.9

mean: 87.0, max: 107.3

mean: 66.4, max: 110.2

mean: 66.6, max: 129.6

mean: 84.4, max: 171.1

mean: 75.1, max: 128.2

Envelope with PDFS

Reference tune

Central tune

Var1+

Var2+

Var3a+

Var3b+

Var3c+

Figure 13. Total correlated uncertainty on the DCTR extraction of mMC
t coming from only the

Pythia tunes (left) and additionally including the PDF variation (right). The different rows show
various grooming options and the colors denote different tunes used as the reference sample (θ0) for
the DCTR training. The no soft drop option trained using the central tune is chosen to compare
with the other regression methods.

also infers the tune parameters. For the m3j alone or m3j and m2j rows, marginalizing
over or fitting the tune parameters actually tends to make the uncertainties worse. With
such a small amount of information (either one or two observables), the network does not
learn how to correlate the changes in the tune parameters to changes in the observables.
However, when the network also includes ParticleFlow, it can learn these correlations, and
thus the uncertainty is reduced when fitting the tune parameters.

To summarize these results, DCTR works better with more input observables. Using
the information contained in the four vectors of the constituents of the jets coming from
the top quark decay allows DCTR to correct for differences in the distributions caused by
changing the tune parameters. Therefore, for the full set of tuning parameters in the next
section, we restrict to the case of including ParticleFlow in the inputs and fitting each of
the Monte Carlo parameters.

5.4 DCTR on full set of A14 tunes

We now apply the DCTR methodology to the A14 variations. The PDF variations are not
included in the training, although we do evaluate on them. The reason for this is that PDF
selection is a discrete choice, and DCTR is designed to work on continuous parameters.

– 23 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

That is, there are not specific Monte Carlo parameters for DCTR to infer from the different
PDFs. One can nevertheless assume that PDF variations are within the range of other tune
variations and test how well DCTR works on samples generated with different PDF sets.

When considering multiple tunes, we must also decide which tune to use as the reference
sample θ0. Using the central tune would be the most obvious choice. However, since we
found that the DCTR algorithm works better when we use higher reference masses, we
allow for the possibility that it will work better using non-central tunes. We therefore test
taking as the reference sample both the central tune as well as each of the “+” tunes for
each of the variations.

For the scanned sample, the Monte Carlo parameters are randomly sampled for each
event. The mass is drawn from a uniform distribution with a range of 170GeV to 176GeV.
The tune parameters are sampled from (min z−0.5∆z,max z+ 0.5∆z), where z represents
the value of and individual tune parameter, min z is the minimum value across the varia-
tions, max z is the maximum value across the variations, and ∆z is the difference between
the maximum and the minimum. The sampling space is larger than the values we will be
testing at to remove possible edge effects.

The results are summarized in figure 13. The left panel shows the total envelope of
∆mMC

t caused by changing the Pythia tune parameters across the 11 variations. The
right panel additionally includes the 3 remaining PDF variations. The different rows show
different amounts of grooming, with no grooming on top and the three different soft drop
options in the remaining rows. Each color denotes a different tune used as the reference set.

Overall, there is not an obvious best choice for the reference tune. In some choices of
grooming, one tune will do better, but then it will not do as well on the different grooming
choice. Similarly, some reference tunes that do well without the PDF variations do not
generalize as well to including the variations from the PDF. However, we do note that
using soft drop with β = 0 seems to consistently lead to worse results.

With an unclear best option, we chose to use no soft drop trained on the central tune
to compare with the other regression models. This option generalizes well from training
without the PDFs to including the PDF variations, only increasing the uncertainty by
around 10MeV.

6 Conclusions

In this paper we have investigated an example of how machine-learning methods could
help with measurement tasks at particle colliders. In particular, we explored a situation
in which regression is assisted by learning simultaneously on an ensemble of events rather
than on individual events. Despite the fact the individual events are totally uncorrelated,
we find the best performance when variables constructed from the events are concatenated
into an array, sorted, then input to the regression algorithm.

The case we explored is when the measurement is done by curve-fitting to simulated
data to regress a single simulation parameter marginalizing over other parameters. In
particular, we looked at the top-quark mass measurement. The traditional method is to
extract the top-quark Monte Carlo massmMC

t by fitting to histograms, and then to estimate

– 24 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 100 200 300 400 500 600

∆mMC
t [MeV]

Tune uncertainties
added in quadrature

Envelope
including PDFS

Envelope
excluding PDFS

Var3c

Var3b

Var3a

Var2

Var1

VarPDF

mean: 274.7, max: 297.9
mean: 31.6, max: 53.9

mean: 36.4, max: 64.3
mean: 62.2, max: 107.0

mean: 29.0, max: 48.4
mean: 24.8, max: 45.2

349.1, 369.7
20.3, 40.6

33.3, 68.9
42.9, 92.4

27.0, 41.8
19.5, 35.8

444.8, 473.7
52.2, 77.4

38.7, 64.6
26.2, 53.0

20.2, 32.2
16.5, 37.4

268.1, 294.2
36.8, 77.4

29.3, 45.9
28.8, 59.5

16.2, 30.7
15.8, 32.5

382.0, 412.5
49.1, 73.0

29.8, 59.9
28.5, 54.9

16.7, 42.4
14.8, 27.9

120.1, 149.3
19.5, 49.8
27.8, 54.2

15.3, 38.4
15.9, 36.3
14.5, 33.7

451.4, 474.1
65.3, 87.1

59.4, 77.9
55.8, 98.6

36.5, 56.1
29.6, 42.6

535.9, 552.0
66.5, 87.1

60.5, 77.6
87.9, 131.0

39.7, 56.1
32.6, 45.2

792.7, 812.7
95.4, 127.8

85.3, 107.0
95.2, 163.2

55.8, 80.1
47.1, 69.4

Methods Comparison

Histogram fit
Uncorrected

Histogram fit
W calibration
Soft drop (β= 0)

2D Likelihood fit

DCTR
No soft drop

Ordinary Least
Squares Regression
No soft drop

Linear Network
No soft drop

Figure 14. Summary comparison of the different methods. Upper six boxes show top quark
tuning uncertainty among six different families of variations. The bottom boxes combine the sepa-
rate uncertainties either by taking the envelope over the variations or by adding the uncertainties
in quadrature. Here, DCTR uses ParticleFlow to simultaneously extract the mass and the tune
parameters, and both the ordinary least squares regression and linear network are trained on en-
sembles of re-sampled events. The various methods are discussed more in the text.

an uncertainty ∆mMC
t on this extracted value due to Monte-Carlo tuning uncertainty.

This tuning uncertainty might be of order 500MeV, which is comparable to statistical
uncertainties, experimental systematic uncertainties, and theoretical uncertainties (such as
converting the top mMC

t mass to a short-distance mass). In this paper we focus only on
reducing the tuning uncertainty.

– 25 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

We explored 4 classes of methodology to regress mMC
t . First, we looked at histogram

curve fitting. Uncertainties from this method are around 500MeV but reduce to around
100MeV if jet substructure techniques are used to clean the data before fitting (as shown
in [30]). Second, we used a 2D likelihood fit using the raw m2j and m3j observables
incorporating a nuisance parameter to account for Monte Carlo tune differences. Third,
we looked at linear regression techniques, both using a dense but shallow linear network
and using ordinary least squares regression. Fourth, we used a machine-learning method
called DCTR. DCTR is a two-step method: first the weights of a distribution are learned
as a function of tuning parameters relative to a fiducial sample, and second the tuning
parameters are optimized for a given test data sample.

The results of our study are summarized in detail in figure 14, with more details of
each method in the appropriate section, and fewer details in the concise summary plot
shown in figure 1. Figure 14 shows the box-and-whisker plots for the different families of
variations, while the final three rows show different methods of combining the variations.
Probably the most realistic estimate of error is the “envelope including PDFs”, which
means we take the maximum and minimum values for the fit top mass across the A14
tunes. Such an approach assumes that the tunes are correlated and that actual data will
lie somewhere within the complete range of variation. For completeness, we also include a
more conservative estimate where each variation is assumed to probe completely different
physics and is uncorrelated with other tune variations. In this case we add the errors in
quadrature. The PDF variations are special because they are discrete: there is no way
to interpolate between different A14 PDF sets as we could for other parameters such as
αs.7 It is unclear how to train DCTR for PDF variations because of this complication. We
thus include also numbers for the total envelope not including PDFs. Note that for most
tune parameters there is no “right” answer: approximations such as the parton shower are
made so the data can never be described perfectly. Thus in the context of a particular
Monte Carlo simulation there is an irreducible uncertainty on how well the data could ever
be described. In contrast, there is, in principle, a right answer for the PDFs, although in
practice they are always used and fit in conjunction with calculations at a fixed perturbative
order. In any case, our purpose is not advocating any particular choice of how to combine
errors for an experimental analysis. We are simply providing various metrics by which the
different methodologies can be compared.

The main take-home lesson from the summary in figure 14 is that in practice regression
on sorted event ensembles does better than the classical histogram fitting approach or the
profile likelihood fit. Using such methods reduce the Monte-Carlo-based uncertainty on
current extractions on the top-quark mass from LHC data, perhaps even by a factor of 2.
This is on top of the reduction gained from using jet grooming as advocated in [30]. We
found that DCTR works fine for the families of variations for which it was trained (not
the PDFs), and has similar uncertainties to the histogram method. It has the potential
benefit of being able to fit other tuning parameters well, but if one is only interested in a

7There are other ways to study continuous variations of the PDF sets, but they are beyond the scope of
this study.

– 26 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

specific measurement, such as the top mass, then DCTR may be over-kill. Indeed, DCTR
is somewhat challenging to implement and train, sensitive to how the inputs are refined,
and requires some hyperparameter adjustment to get reasonable results at all. Its killer
application may be more along the lines of [65] than direct parameter estimation.

Having established that a regression on sorted event ensembles is more effective than
curve fitting a histogram, we also looked into what features of the ensemble the regression
uses. In contrast to the histogram fitting approach, which focuses on the center of each
observable’s distribution, ensemble learning methods can weigh various parts of each ob-
servable’s distribution differently. In section 4, we showed how the ensemble methods can
use the center of the m3j distribution to learn the difference in masses, while using the
upper tail of m3j and the other observables to correct for the difference in tunes.

It is worth emphasizing that the point of this study is not a total numerical estimate for
the uncertainty. Values throughout this paper do not include any estimate of experimental
systematic effects on the Monte Carlo tuning uncertainties, such as smearing due to jet
energy resolution or detector effects. Thus one should not take the absolute size of the
numbers as indicative that the tuning uncertainty could be reduced to the 30MeV level. We
do, however, conclude that linear regression, either through a linear network or an ordinary
least squared regression on an ensemble of events, is a promising technique that has the
potential to significantly reduce the dependence of the measured top-quark mass on Monte
Carlo tuning parameters beyond the methodology already being employed. Although the
uncertainty from marginalizing over unphysical parameters in simulation is smaller than
other sources, it can be important for precision studies such as SUSY searches or vacuum
stability, as discussed in the introduction.

In conclusion, we have shown that machine learning regression methods can work
most effectively when trained on a sorted ensemble of uncorrelated events. We found these
methods can improve upon a traditional histogram-fitting procedure for determining the
top-quark Monte Carlo mass. In particular, performing linear regression using a shallow
but dense network trained on sorted ensembles of events (30,000 at a time in our study)
seems to combine excellent performance with simplicity.

Acknowledgments

We thank Anders Andreassen and Benjamin Nachman for feedback on this manuscript.
The computations in this paper were run on the FASRC Cannon cluster supported by
the FAS Division of Science Research Computing Group at Harvard University. KF is
supported by the National Science Foundation Graduate Research Fellowship Program
under Grant No. DGE1745303. BO was supported in part by the U.S. Department of
Energy (DOE) under contract DE-SC0013607 and DOE Grant No. DE-SC0020223. MS
was supported by DOE Grant No. DE-SC0013607. This work is supported by the National
Science Foundation under Cooperative Agreement PHY-2019786 (The NSF AI Institute
for Artificial Intelligence and Fundamental Interactions, http://iaifi.org/)

– 27 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

A DCTR on a toy model

The overall idea of the DCTR method to extract the top mass is inspired by finding the
value of the Monte Carlo mass (and other tune parameters) which are most likely to have
produced the data. In order to assess this, one needs the likelihood function covering the
range of data and parameters. However, this is extremely difficult to obtain. Instead,
DCTR uses the fact that, given two data sets, the likelihood ratio between the data sets
is given by an ideal classifier. While we cannot access the likelihood function itself, it is
still possible to find the parameters which maximize the likelihood using the ratio. We
gain access to an approximation of the likelihood ratio using a well-trained, flexible, neural
network, which is close to an ideal classifier. In this appendix, we review the two of the main
components necessary for DCTR to work, (a) training a parameterized neural network to
find the likelihood ratio and (b) using the likelihood ratio to maximize the likelihood and
infer the most probable Monte Carlo parameter.

In a parameterized neural network, unobserved properties are included as input to the
network. This can be useful when needing to scan over a property. For instance, when
looking for BSM physics, the mass of a new resonance is unknown, and a classifier trained
at one mass will be sub-optimal if the mass is substantially different. Rather than training
many classifiers for different masses, one can train a single classifier where the mass is
included as an input. This helps the classifier to interpolate between masses and reduces
the amount of training data needed, because features are shared across the feature space.

The first step is to use a parameterized neural network as a classifier to derive an
estimate for the likelihood ratio between samples. In our full set up, we include the Monte
Carlo mass of the top quark as an input parameter. For this appendix, we will start by
considering a simpler example. Consider the case of Gaussian distributions with different
values for the mean µ. Draw samples x from this Gaussian, where the mean µ is changed
for each draw. This produces a two dimensional array S = (µ, x). We can train a network
f(µ, x) to distinguish between S and a uniform 2D distribution, U . This network will yield
the ratio of their probability densities at any given point,

f(µ, x) = S(µ, x)
S(µ, x) + U(µ, x) . (A.1)

The probability density for the data distribution can easily be solved for in terms of the
output of the network,

S(µ, x) = f(µ, x)
1− f(µ, x) U(µ, x) . (A.2)

From this, we can use f to obtain the probability density of S for any µ and x within the
range of the training data. This is possible because we know the probability density of the
uniform distribution which we were using as a reference. In fact, we did not need to use a
uniform distribution at all; the processes generalizes to choosing a different fixed reference
sample. For the rest of this simple example, we will use a Gaussian with fixed mean µ = 3
as the reference sample. In the main text, we use a sample of events with a fixed Monte
Carlo top-quark mass and fixed tune as a reference, since a uniform distribution does not
make sense in the context of jets with differing numbers of particles.

– 28 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

Figure 15. DCTR works by using a classifier to approximate the likelihood ratio. In this example,
we use Gaussian distributions to show the procedure using exact likelihood ratios. The left panel
shows the probability density for a sample of data in which the mean of the Gaussian can take
any value between 0 and 5; this is referred to as the scanned sample. The middle panel shows the
probability density for the fixed sample, where the mean is always set to 3 and µ has no meaning.
The right panel shows what the probability is for a point in the µ, x parameter space to come from
the scanned sample as opposed to the fixed sample, which is the result of an ideal classifier.

This is shown in figure 15. Specifically, we show this initial setup and the idealized
network output. The first panel shows the probability density for our scanned sample P (S),
where the x-axis denotes the Monte Carlo parameter and the y axis denotes the observed
value. The middle panel displays the same probability density for the fixed reference
sample, P (F). We can see that P(F) is uniform for all values along the x-axis (the fake
input parameters) but has a non-uniform y-axis, since the sample is drawn with a specific
fixed parameter. The final panel shows the ratio of these probability densities,

R(µ, x) =
P
(
S(µ, x)

)
P
(
S(µ, x)

)
+ P

(
F (x)

) , (A.3)

which would be the output of an ideal network trained to classify events as coming from
the scanned or reference sets.

The next step is to use the classifier to infer the most probable Monte Carlo parameter
for a new dataset. In this example, we use µ = 1.5 as the new dataset, and denote this set
by T (x). If we had access to the full likelihood S(µ, x), we could infer the value of µ by
multiplying the probabilities from each event in T to maximize the likelihood,

µ̂ = argmax
µ

∏
xi∈T

S(µ, xi) = argmax
µ

∏
x

S(µ, x)T (x). (A.4)

In going from the first expression to the second expression, we transition from discrete to
continuous distributions. An example of this is shown in figure 16. The first panel again
shows the true probability density S(µ, x) and the second panel shows the distribution of x
for the unknown set. The third panel shows S(µ, x)T (x) which is the probability of observing
each element in T given S. In the final panel, we take the product of the probabilities to
obtain the total probability of obtaining the data T as a function of µ. The true value is
the most probable one.

– 29 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

Figure 16. If the full probability density is known (shown in the left panel), the parameter of an
unknown sample (second panel) can be obtained by maximizing the likelihood. The third panel
shows the probability of observing each element in the unknown set, T . The final panel shown the
total probability, obtained by taking the product of the individual probabilities, and is maximized
at the true underlying parameter.

When using DCTR, we do not actually have access to S(µ, x) but only the ratio
R(µ, x). However, a similar procedure still works. We want to maximize the probability,
but now we must also include the reference set. This is done by maximizing the likelihood
that the new set will be classified as part of the scanned set while the reference set will be
classified as the reference set. We define the total probability of events from T (x) to get
classified as coming from the scanned sample as

PT (µ) =
∏
x

R(µ, x)T (x). (A.5)

Similarly, let PF (µ) define the probability of events from the fixed sample F (x) getting
classified correctly,

PF (µ) =
∏
x

(
1−R(µ, x)

)F (x)
. (A.6)

Combining these two expressions yields total probability of classification,

C(µ) =
∏
x

R(µ, x)T (x)(1−R(µ, x)
)F (x)

. (A.7)

The value of µ which maximizes C(µ) then corresponds to the most probable value to have
produced the test dataset, T .

We make this more explicit in figure 17. The panels on the left show the output of the
ideal classifier (the ratio of probability densities from the scanned and fixed sample) for
the scanned (top) and reference (bottom) datasets. The second column shows the new test
PDF which we are trying to infer (top) and the reference PDF (bottom). The third column
displays the classifier output (R or 1-R) convolved with the probability distributions. The
top panel in the last column displays the product of these. In the bottom right panel, we
show the total probabilities. The new set PT (µ) is shown in blue, the fixed reference set
PF (µ) is shown in orange, and C(µ) is the green line. Note that the blue and orange lines
have quite different shapes, however, when they are combined to make the green line, it
is maximized at µ = 1.5, which is the value of the test set. The works for all values of

– 30 –

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

0 2 4
Gaussian µ

0

1

2

3

4

5

x

New PDF

0 2 4
Gaussian µ

0

1

2

3

4

5
x

Reference PDF

0 2 4
Gaussian µ

0

1

2

3

4

5

x

R

0 2 4
Gaussian µ

0

1

2

3

4

5

x

(1−R)

0 2 4
Gaussian µ

0

1

2

3

4

5

x

RNew PDF

0 2 4
Gaussian µ

0

1

2

3

4

5

x

(1−R)Reference PDF

0 2 4
Gaussian µ

0

1

2

3

4

5

x

RNew PDF × (1−R)Reference PDF

0 1 2 3 4 5
Gaussian µ

10-15

10-11

10-7

10-3

T
ot

al
 p

ro
b
ab

il
it
y

Π P|µ

New sample (µ= 1.5)

Figure 17. The classifier is now applied to a new unknown sample and the reference sample. The
upper left panel shows the classifier output R, which is the probability for a point in the space to
belong the scanned sample. Similarly, (1−R) is the probability to have come from the fixed sample,
and is shown in the lower left panel. The probability density for the new set and the reference set are
displayed in the second column, where neither depends on the model parameter µ. The third column
displays the classifier output (R or 1-R) convolved with the probability distributions. The total
probability is displayed in the top right panel; it is the product of the individual probabilities for
each sample in the datasets. In the bottom right panel, the product of the individual probabilities
along the y axis is shown as a function of the model parameter. The blue, orange, and green lines
denote the probabilities for the new sample, the reference sample, and the combination, respectively.
The green line is maximized at the value of the unknown parameter used to generate the new PDF.

µ; a video showing a scan can be found at https://bostdiek.github.io/Videos/DCTR_
Gaussian_Example.mp4.

While DCTR is overly complicated for a single dimension, it can prove useful when
the datasets have many dimensions. We now generalize the method by taking the single
observable x to be set of observations, xi → Xi, where the subscript represents a given
event. Similarly, the underlying parameter µ is generalized to many model parameters
µ→ θ. In many dimension, an explicit likelihood ratio can be challenging to obtain, thus
a neural network will be used as an approximation. The network is trained to classify
events from a scanned set xi ∈ xθS from events in a fixed reference set xi ∈ xθ0 . We
now represent the network output by f(x, θ) and train it to maximize the probability of
correctly assigning the training events. Namely,

f(x, θ) = argmax
f ′

(∏
xi∈xθS

f ′(xi, θ)×
∏

xi∈xθ0

(
1− f ′(xi, θ)

))

= argmin
f ′

(
−

∑
xi∈xθS

log f ′(xi, θ)−
∑

xi∈xθ0

log
(
1− f ′(xi, θ)

)). (A.8)

The second line is just the usual binary cross-entropy loss function which is used to train
binary classification neural networks.

– 31 –

https://bostdiek.github.io/Videos/DCTR_Gaussian_Example.mp4
https://bostdiek.github.io/Videos/DCTR_Gaussian_Example.mp4

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

Once the network is trained, we can infer the parameters of a new data, xi ∈ xθT set
by minimizing the loss of classifying the new data versus the reference set. Thus,

θ̂ = argmin
θ′

(
−

∑
xi∈xθT

log f ′(xi, θ′)−
∑

xi∈xθ0

log
(
1− f(xi, θ′)

))
. (A.9)

This is equivalent to maximizing the probability as we did in the Gaussian example.

B Training curves

For completeness, we show training loss curves for DCTR and the linear network. As can
be seen, training is stable and early stopping only becomes relevant once a plateau has
been reached.

100 200 300
Training Epoch

0.000

0.005

0.010

0.015

0.020

0.025

0.030

L
og

C
os

h
 L

os
s

Decrease learning rate

DNN training curve

Training Set

(a)

0 50 100
Training Epoch

0.66

0.67

0.68

0.69

0.70

0.71

0.72

B
in

ar
y
 C

ro
ss

 E
n
tr

op
y

Decrease learning rate

DCTR training curve

Training Set

Validation Set

(b)

Figure 18. (a): training loss curve for linear network. (b): training loss curve for DCTR classifier.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015)
159 [arXiv:1410.3012] [INSPIRE].

[2] S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous
symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

[3] G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum,
Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

– 32 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.3012
https://doi.org/10.1103/PhysRevD.7.1888
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD7%2C1888%22
https://doi.org/10.1016/S0550-3213(01)00302-9
https://arxiv.org/abs/hep-ph/0104016
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0104016

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

[4] G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP
08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

[5] A. Andreassen, W. Frost and M.D. Schwartz, Scale invariant instantons and the complete
lifetime of the standard model, Phys. Rev. D 97 (2018) 056006 [arXiv:1707.08124]
[INSPIRE].

[6] M. Czakon, A. Mitov, M. Papucci, J.T. Ruderman and A. Weiler, Closing the stop gap, Phys.
Rev. Lett. 113 (2014) 201803 [arXiv:1407.1043] [INSPIRE].

[7] T. Eifert and B. Nachman, Sneaky light stop, Phys. Lett. B 743 (2015) 218
[arXiv:1410.7025] [INSPIRE].

[8] ATLAS collaboration, Measurement of the tt̄ production cross-section using eµ events with
b-tagged jets in pp collisions at

√
s = 7 and 8TeV with the ATLAS detector, Eur. Phys. J. C

74 (2014) 3109 [Addendum ibid. 76 (2016) 642] [arXiv:1406.5375] [INSPIRE].

[9] T. Cohen, W. Hopkins, S. Majewski and B. Ostdiek, Magnifying the ATLAS Stealth Stop
Splinter: impact of spin correlations and finite widths, JHEP 07 (2018) 142
[arXiv:1804.00111] [INSPIRE].

[10] T. Cohen, S. Majewski, B. Ostdiek and P. Zheng, On the ATLAS top mass measurements
and the potential for stealth stop contamination, JHEP 06 (2020) 019 [arXiv:1909.09670]
[INSPIRE].

[11] ATLAS collaboration, Measurements of top-quark pair spin correlations in the eµ channel at√
s = 13 TeV using pp collisions in the ATLAS detector, Eur. Phys. J. C 80 (2020) 754

[arXiv:1903.07570] [INSPIRE].

[12] CMS collaboration, Measurement of the tt̄ production cross section, the top quark mass, and
the strong coupling constant using dilepton events in pp collisions at

√
s = 13 TeV, Eur.

Phys. J. C 79 (2019) 368 [arXiv:1812.10505].

[13] CMS collaboration, Measurement of the tt̄ production cross section in the e-µ channel in
proton-proton collisions at

√
s = 7 and 8 TeV, JHEP 08 (2016) 029 [arXiv:1603.02303]

[INSPIRE].

[14] CMS collaboration, Measurement of the tt̄ production cross section, the top quark mass, and
the strong coupling constant using dilepton events in pp collisions at

√
s = 13 TeV, Eur.

Phys. J. C 79 (2019) 368 [arXiv:1812.10505] [INSPIRE].

[15] ATLAS collaboration, Measurement of the tt̄ production cross-section and lepton differential
distributions in eµ dilepton events from pp collisions at

√
s = 13 TeV with the ATLAS

detector, Eur. Phys. J. C 80 (2020) 528 [arXiv:1910.08819].

[16] ATLAS collaboration, Measurement of lepton differential distributions and the top quark
mass in tt̄ production in pp collisions at

√
s = 8 TeV with the ATLAS detector, Eur. Phys. J.

C 77 (2017) 804 [arXiv:1709.09407] [INSPIRE].

[17] CMS collaboration, Measurement of tt̄ normalised multi-differential cross sections in pp
collisions at

√
s = 13 TeV, and simultaneous determination of the strong coupling strength,

top quark pole mass, and parton distribution functions, Eur. Phys. J. C 80 (2020) 658
[arXiv:1904.05237] [INSPIRE].

[18] ATLAS collaboration, Measurement of the top quark mass in the tt̄→ dilepton channel from√
s = 8 TeV ATLAS data, Phys. Lett. B 761 (2016) 350 [arXiv:1606.02179] [INSPIRE].

– 33 –

https://doi.org/10.1007/JHEP08(2012)098
https://doi.org/10.1007/JHEP08(2012)098
https://arxiv.org/abs/1205.6497
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.6497
https://doi.org/10.1103/PhysRevD.97.056006
https://arxiv.org/abs/1707.08124
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08124
https://doi.org/10.1103/PhysRevLett.113.201803
https://doi.org/10.1103/PhysRevLett.113.201803
https://arxiv.org/abs/1407.1043
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.1043
https://doi.org/10.1016/j.physletb.2015.02.039
https://arxiv.org/abs/1410.7025
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.7025
https://doi.org/10.1140/epjc/s10052-016-4501-2
https://doi.org/10.1140/epjc/s10052-016-4501-2
https://arxiv.org/abs/1406.5375
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.5375
https://doi.org/10.1007/JHEP07(2018)142
https://arxiv.org/abs/1804.00111
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.00111
https://doi.org/10.1007/JHEP06(2020)019
https://arxiv.org/abs/1909.09670
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.09670
https://doi.org/10.1140/epjc/s10052-020-8181-6
https://arxiv.org/abs/1903.07570
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.07570
https://doi.org/10.1140/epjc/s10052-019-6863-8
https://doi.org/10.1140/epjc/s10052-019-6863-8
https://arxiv.org/abs/1812.10505
https://doi.org/10.1007/JHEP08(2016)029
https://arxiv.org/abs/1603.02303
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.02303
https://doi.org/10.1140/epjc/s10052-019-6863-8
https://doi.org/10.1140/epjc/s10052-019-6863-8
https://arxiv.org/abs/1812.10505
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.10505
https://arxiv.org/abs/1910.08819
https://doi.org/10.1140/epjc/s10052-017-5349-9
https://doi.org/10.1140/epjc/s10052-017-5349-9
https://arxiv.org/abs/1709.09407
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.09407
https://doi.org/10.1140/epjc/s10052-020-7917-7
https://arxiv.org/abs/1904.05237
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.05237
https://doi.org/10.1016/j.physletb.2016.08.042
https://arxiv.org/abs/1606.02179
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.02179

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

[19] ATLAS collaboration, Top-quark mass measurement in the all-hadronic tt decay channel at√
s = 8 TeV with the ATLAS detector, JHEP 09 (2017) 118 [arXiv:1702.07546] [INSPIRE].

[20] ATLAS collaboration, Measurement of the top quark mass in the tt̄→ lepton+jets channel
from

√
s = 8 TeV ATLAS data and combination with previous results, Eur. Phys. J. C 79

(2019) 290 [arXiv:1810.01772] [INSPIRE].

[21] CMS collaboration, Measurement of the top quark mass with lepton+jets final states using
pp collisions at

√
s = 13TeV, Eur. Phys. J. C 78 (2018) 891 [arXiv:1805.01428] [INSPIRE].

[22] CMS collaboration, Measurement of the top quark mass in the all-jets final state at
√
s = 13

TeV and combination with the lepton+jets channel, Eur. Phys. J. C 79 (2019) 313
[arXiv:1812.10534] [INSPIRE].

[23] A.H. Hoang, S. Plätzer and D. Samitz, On the cutoff dependence of the quark mass parameter
in angular ordered parton showers, JHEP 10 (2018) 200 [arXiv:1807.06617] [INSPIRE].

[24] S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles:
top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].

[25] A.H. Hoang and I.W. Stewart, Top mass measurements from jets and the tevatron top-quark
mass, Nucl. Phys. B Proc. Suppl. 185 (2008) 220 [arXiv:0808.0222] [INSPIRE].

[26] M. Butenschoen, B. Dehnadi, A.H. Hoang, V. Mateu, M. Preisser and I.W. Stewart, Top
quark mass calibration for Monte Carlo event generators, Phys. Rev. Lett. 117 (2016) 232001
[arXiv:1608.01318] [INSPIRE].

[27] A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a short distance top mass
with light grooming, Phys. Rev. D 100 (2019) 074021 [arXiv:1708.02586] [INSPIRE].

[28] A.H. Hoang, What is the top quark mass?, Ann. Rev. Nucl. Part. Sci. 70 (2020) 225
[arXiv:2004.12915] [INSPIRE].

[29] J. Kieseler, K. Lipka and S.-O. Moch, Calibration of the top-quark Monte Carlo mass, Phys.
Rev. Lett. 116 (2016) 162001 [arXiv:1511.00841] [INSPIRE].

[30] A. Andreassen and M.D. Schwartz, Reducing the top quark mass uncertainty with jet
grooming, JHEP 10 (2017) 151 [arXiv:1705.07135] [INSPIRE].

[31] A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146
[arXiv:1402.2657] [INSPIRE].

[32] A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a framework for unsupervised
machine learning in particle physics, Eur. Phys. J. C 79 (2019) 102 [arXiv:1804.09720]
[INSPIRE].

[33] A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, Binary JUNIPR: an interpretable
probabilistic model for discrimination, Phys. Rev. Lett. 123 (2019) 182001
[arXiv:1906.10137] [INSPIRE].

[34] A. Andreassen and B. Nachman, Neural networks for full phase-space reweighting and
parameter tuning, Phys. Rev. D 101 (2020) 091901 [arXiv:1907.08209] [INSPIRE].

[35] P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow networks: deep sets for particle
jets, JHEP 01 (2019) 121 [arXiv:1810.05165] [INSPIRE].

[36] M. Zaheer et al., Deep sets, in Advances in Neural Information Processing Systems, I. Guyon
et al. eds., Curran Associates, U.S.A. (2017).

– 34 –

https://doi.org/10.1007/JHEP09(2017)118
https://arxiv.org/abs/1702.07546
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.07546
https://doi.org/10.1140/epjc/s10052-019-6757-9
https://doi.org/10.1140/epjc/s10052-019-6757-9
https://arxiv.org/abs/1810.01772
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.01772
https://doi.org/10.1140/epjc/s10052-018-6332-9
https://arxiv.org/abs/1805.01428
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.01428
https://doi.org/10.1140/epjc/s10052-019-6788-2
https://arxiv.org/abs/1812.10534
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.10534
https://doi.org/10.1007/JHEP10(2018)200
https://arxiv.org/abs/1807.06617
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.06617
https://doi.org/10.1103/PhysRevD.77.074010
https://arxiv.org/abs/hep-ph/0703207
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0703207
https://doi.org/10.1016/j.nuclphysBPS.2008.10.028
https://arxiv.org/abs/0808.0222
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.0222
https://doi.org/10.1103/PhysRevLett.117.232001
https://arxiv.org/abs/1608.01318
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.01318
https://doi.org/10.1103/PhysRevD.100.074021
https://arxiv.org/abs/1708.02586
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.02586
https://doi.org/10.1146/annurev-nucl-101918-023530
https://arxiv.org/abs/2004.12915
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.12915
https://doi.org/10.1103/PhysRevLett.116.162001
https://doi.org/10.1103/PhysRevLett.116.162001
https://arxiv.org/abs/1511.00841
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FPhysRevLett.116.162001%22
https://doi.org/10.1007/JHEP10(2017)151
https://arxiv.org/abs/1705.07135
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.07135
https://doi.org/10.1007/JHEP05(2014)146
https://arxiv.org/abs/1402.2657
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.2657
https://doi.org/10.1140/epjc/s10052-019-6607-9
https://arxiv.org/abs/1804.09720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.09720
https://doi.org/10.1103/PhysRevLett.123.182001
https://arxiv.org/abs/1906.10137
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.10137
https://doi.org/10.1103/PhysRevD.101.091901
https://arxiv.org/abs/1907.08209
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.08209
https://doi.org/10.1007/JHEP01(2019)121
https://arxiv.org/abs/1810.05165
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.05165
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

[37] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)
063 [arXiv:0802.1189] [INSPIRE].

[38] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896
[arXiv:1111.6097] [INSPIRE].

[39] M.J. Fenton, A. Shmakov, T.-W. Ho, S.-C. Hsu, D. Whiteson and P. Baldi, Permutationless
many-jet event reconstruction with symmetry preserving attention networks,
arXiv:2010.09206 [INSPIRE].

[40] ATLAS collabroation, ATLAS Pythia 8 tunes to 7 TeV data, ATL-PHYS-PUB-2014-021
(2014).

[41] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New
generation of parton distributions with uncertainties from global QCD analysis, JHEP 07
(2002) 012 [hep-ph/0201195] [INSPIRE].

[42] G. Watt and R.S. Thorne, Study of Monte Carlo approach to experimental uncertainty
propagation with MSTW 2008 PDFs, JHEP 08 (2012) 052 [arXiv:1205.4024] [INSPIRE].

[43] S. Carrazza, S. Forte and J. Rojo, Parton distributions and event generators,
arXiv:1311.5887 [INSPIRE].

[44] A.M. Cooper-Sarkar, HERAPDF1.5LO PDF Set with Experimental Uncertainties, PoS
DIS2014 (2014) 032 [INSPIRE].

[45] S. Argyropoulos and T. Sjöstrand, Effects of color reconnection on tt̄ final states at the LHC,
JHEP 11 (2014) 043 [arXiv:1407.6653] [INSPIRE].

[46] P.Z. Skands and D. Wicke, Non-perturbative QCD effects and the top mass at the Tevatron,
Eur. Phys. J. C 52 (2007) 133 [hep-ph/0703081] [INSPIRE].

[47] F. Chollet et al., Keras, https://keras.io (2015).

[48] D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980
[INSPIRE].

[49] S.D. Ellis, A. Hornig, T.S. Roy, D. Krohn and M.D. Schwartz, Qjets: a non-deterministic
approach to tree-based jet substructure, Phys. Rev. Lett. 108 (2012) 182003
[arXiv:1201.1914] [INSPIRE].

[50] Y.-T. Chien, Telescoping jets: Probing hadronic event structure with multiple R’s, Phys. Rev.
D 90 (2014) 054008 [arXiv:1304.5240] [INSPIRE].

[51] Y.-T. Chien, D. Farhi, D. Krohn, A. Marantan, D. Lopez Mateos and M. Schwartz,
Quantifying the power of multiple event interpretations, JHEP 12 (2014) 140
[arXiv:1407.2892] [INSPIRE].

[52] F. Pedregosa et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12
(2011) 2825.

[53] P. Baldi, K. Cranmer, T. Faucett, P. Sadowski and D. Whiteson, Parameterized neural
networks for high-energy physics, Eur. Phys. J. C 76 (2016) 235 [arXiv:1601.07913]
[INSPIRE].

[54] K. Cranmer, J. Pavez and G. Louppe, Approximating likelihood ratios with calibrated
discriminative classifiers, arXiv:1506.02169 [INSPIRE].

[55] J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, Constraining effective field theories with
machine learning, Phys. Rev. Lett. 121 (2018) 111801 [arXiv:1805.00013] [INSPIRE].

– 35 –

https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.1189
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.6097
https://arxiv.org/abs/2010.09206
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.09206
https://cds.cern.ch/record/1966419
https://doi.org/10.1088/1126-6708/2002/07/012
https://doi.org/10.1088/1126-6708/2002/07/012
https://arxiv.org/abs/hep-ph/0201195
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0201195
https://doi.org/10.1007/JHEP08(2012)052
https://arxiv.org/abs/1205.4024
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.4024
https://arxiv.org/abs/1311.5887
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.5887
https://doi.org/10.22323/1.203.0032
https://doi.org/10.22323/1.203.0032
https://inspirehep.net/search?p=find+J%20%22PoS%2CDIS2014%2C032%22
https://doi.org/10.1007/JHEP11(2014)043
https://arxiv.org/abs/1407.6653
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.6653
https://doi.org/10.1140/epjc/s10052-007-0352-1
https://arxiv.org/abs/hep-ph/0703081
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0703081
https://keras.io
https://arxiv.org/abs/1412.6980
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.6980
https://doi.org/10.1103/PhysRevLett.108.182003
https://arxiv.org/abs/1201.1914
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1201.1914
https://doi.org/10.1103/PhysRevD.90.054008
https://doi.org/10.1103/PhysRevD.90.054008
https://arxiv.org/abs/1304.5240
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.5240
https://doi.org/10.1007/JHEP12(2014)140
https://arxiv.org/abs/1407.2892
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.2892
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://arxiv.org/abs/1601.07913
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.07913
https://arxiv.org/abs/1506.02169
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.02169
https://doi.org/10.1103/PhysRevLett.121.111801
https://arxiv.org/abs/1805.00013
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.00013

J
H
E
P
0
9
(
2
0
2
1
)
0
5
8

[56] J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, A guide to constraining effective field
theories with machine learning, Phys. Rev. D 98 (2018) 052004 [arXiv:1805.00020]
[INSPIRE].

[57] J. Brehmer, G. Louppe, J. Pavez and K. Cranmer, Mining gold from implicit models to
improve likelihood-free inference, Proc. Nat. Acad. Sci. 117 (2020) 5242 [arXiv:1805.12244]
[INSPIRE].

[58] M. Stoye, J. Brehmer, G. Louppe, J. Pavez and K. Cranmer, Likelihood-free inference with
an improved cross-entropy estimator, arXiv:1808.00973 [INSPIRE].

[59] J. Brehmer, F. Kling, I. Espejo and K. Cranmer, MadMiner: machine learning-based
inference for particle physics, Comput. Softw. Big Sci. 4 (2020) 3 [arXiv:1907.10621]
[INSPIRE].

[60] A. Andreassen, P.T. Komiske, E.M. Metodiev, B. Nachman and J. Thaler, OmniFold: a
method to simultaneously unfold all observables, Phys. Rev. Lett. 124 (2020) 182001
[arXiv:1911.09107] [INSPIRE].

[61] M. Erdmann et al., Adversarial Neural Network-based data-simulation corrections for
jet-tagging at CMS, J. Phys. Conf. Ser. 1525 (2020) 012094.

[62] J. Hollingsworth and D. Whiteson, Resonance searches with machine learned likelihood
ratios, arXiv:2002.04699 [INSPIRE].

[63] F.A. Di Bello et al., Efficiency parameterization with neural networks, Comput. Softw. Big
Sci. 5 (2021) 14 [arXiv:2004.02665] [INSPIRE].

[64] A. Andreassen, B. Nachman and D. Shih, Simulation assisted likelihood-free anomaly
detection, Phys. Rev. D 101 (2020) 095004 [arXiv:2001.05001] [INSPIRE].

[65] A. Andreassen, S.-C. Hsu, B. Nachman, N. Suaysom and A. Suresh, Parameter estimation
using neural networks in the presence of detector effects, Phys. Rev. D 103 (2021) 036001
[arXiv:2010.03569] [INSPIRE].

– 36 –

https://doi.org/10.1103/PhysRevD.98.052004
https://arxiv.org/abs/1805.00020
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.00020
https://doi.org/10.1073/pnas.1915980117
https://arxiv.org/abs/1805.12244
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.12244
https://arxiv.org/abs/1808.00973
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.00973
https://doi.org/10.1007/s41781-020-0035-2
https://arxiv.org/abs/1907.10621
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.10621
https://doi.org/10.1103/PhysRevLett.124.182001
https://arxiv.org/abs/1911.09107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.09107
http://dx.doi.org/10.1088/1742-6596/1525/1/012094
https://arxiv.org/abs/2002.04699
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.04699
https://doi.org/10.1007/s41781-021-00059-x
https://doi.org/10.1007/s41781-021-00059-x
https://arxiv.org/abs/2004.02665
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.02665
https://doi.org/10.1103/PhysRevD.101.095004
https://arxiv.org/abs/2001.05001
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.05001
https://doi.org/10.1103/PhysRevD.103.036001
https://arxiv.org/abs/2010.03569
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.03569

	Introduction
	Event generation and uncertainty estimation
	Classical fitting methods
	Histogram fitting
	Profile likelihood fitting

	Regression on sorted ensembles
	Inputs
	Dense network
	Ordinary least squares regression

	DCTR with ParticleFlow
	Network architecture
	DCTR on a single tune
	DCTR on Var 1 tunes
	DCTR on full set of A14 tunes

	Conclusions
	DCTR on a toy model
	Training curves

