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Abstract

The need to compute matrix functions of the form f(A)v, where A € is a
large symmetric matrix, f is a function such that f(A) is well defined, and v # 0
is a vector, arises in many applications. This paper is concerned with the situation
when A is so large that the evaluation of f(A) is prohibitively expensive. Then, an
approximation of f(A)v often is computed by applying a few, say 1 <n < N, steps
of the symmetric Lanczos process to A with initial vector v to determine a symmetric
tridiagonal matrix 7, € R"*" and a matrix V,, € RN X" whose orthonormal columns
span a Krylov subspace. The expression Vj, f (T)e ||v|| furnishes an approximation
of f(A)v. The evaluation of f(7},) is inexpensive, because the matrix 7, is small.
It is important to be able to estimate the error in the computed approximation. This
paper describes a novel approach that is based on a technique proposed by Spalevic¢
for estimating the error in Gauss quadrature rules.
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1 Introduction

Many problems in science and engineering require the evaluation of expressions of
the form

f(A)v, (1)
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where A € RV*V is a large symmetric matrix, v € RV\{0} is a vector, and f is
a function such that f(A) is well defined and continuous on the convex hull of the
spectrum of A. Applications arise, for instance, in the solution of partial differential
equations, ill-posed problems, and network analysis; see, e.g., [2—4, 6, 12].

One way to define f(A) is via the spectral factorization

A=U0AUT, A = diag[A1, A, ..., An], )

where the A ; are eigenvalues of A, the columns of the matrix U € RNXN are suitably
normalized orthogonal eigenvectors (see below for details about the normalization),
and the superscript 7 denotes transposition. Then

fA) =Ufu’, f(A) =diag[f (A1), f(R2), ..., fFAN)]; 3)

see, e.g., Golub and Van Loan [22] or Higham [23] for several ways to define matrix
functions.

When the matrix A is of small to moderate size, we can easily compute the spectral
factorization (2) and evaluate f(A) according to (3). This and many other techniques
for evaluating functions of small to moderately sized matrices are described by Hig-
ham [23]. When f(A) is known, it is straightforward to evaluate the expression (1).

However, when the matrix A is large, the computation of the spectral factoriza-
tion (2) may be too expensive to be practical. Also other techniques that require
factorization of A to compute f(A) may be too expensive when A is large without
an exploitable structure. In this situation, the expression (1) commonly is approxi-
mated by using a Lanczos decomposition. Application of a few, say 1 < n < N,
steps of the symmetric Lanczos process to A with initial vector v gives the Lanczos
decomposition

AVy =V Ty + Buvnsiel, 4

where the columns of the matrix V,, = [v1, v2, ..., v,] € RY>*" form an orthonormal
basis for the Krylov subspace

Ku(A, v) := span{v, Av, ..., A y)

with v; = v/||v||, the unit vector v, € RY is such that VnTvn_H =0,and 8, > 0.
Throughout this paper e, denotes the nth column of an identity matrix of suitable

order, || - || stands for the Euclidean vector norm, and the symmetric tridiagonal matrix
a0 Bi 0
Br a1 B
Tn= ... ... ... ER}’IXI’I (5)
Brn—2 an—2 Bn-1
0 ﬂn—] Up—1

is an orthogonal section of A. We assume that the number of steps, #, of the Lanc-
zos process is small enough so that the decomposition (4) with the stated properties
exists; see, e.g., Golub and Van Loan [22], Golub and Meurant [21], or Saad [31]
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for detailed discussions on the symmetric Lanczos process, which is described by
Algorithm 1.

Algorithm 1 The symmetric Lanczos process.

1: Input: symmetric matrix A € R"*", initial unit vector v € R”,
2 number of steps m.
3: U()Z:OE]R",,BQI:O,U[Z:U
4: forj=1tom
5: w:i=Av; —vj_18j-1
6 oj = v]Tw
7 wi=w— vl
8 Bj = lwll; vj+1 = w/B;
9: end for
10: Output: Entries o1, an, ..., oy and By, B2, ..., By of the matrix (5).

The Lanczos decomposition (4) is used to approximate the expressions (1) by

Vi f (Toerllvll; (6)

see, e.g., [2, 18, 24] for discussions and error bounds. Hence, the difficult problem
of evaluating f(A) for a large matrix A is replaced by the much simpler task of first
applying n steps of the Lanczos process to A and then computing f(7;). One way to
evaluate the latter expression is to compute the spectral factorization of 7,, and use
a formula analogous to (3). The existence of f(7},) is secured when f is continuous
on the convex hull of the spectrum of A.

We are interested in determining an easily computable estimate of the norm of the
approximation error

E,(f) = I f(ADv = Vo f(Terlv]ll. (N

An elegant recent paper by Frommer and Schweitzer [18] provides easily com-
putable error bounds when f is a Stieltjes function. However, for general functions
f error bounds for matrix function approximations are not available or impractical to
compute; see, e.g., [2, 12, 17, 24] for discussions of a variety of error bounds.

It is the purpose of the present paper to describe a novel approach to estimate the
error norm (7). Our approach is based on a technique for estimating the error in Gauss
quadrature rules proposed by Spalevi¢ [32]. The symmetric tridiagonal matrix (5) can
be associated with an n-node Gauss quadrature rule G,, with respect to a measure that
is determined by the matrix A and vector v. Since quadrature rules are important in
what follows, we outline the connection. A thorough discussion is provided by Golub
and Meurant [21]. The representation (3) yields

N
o' f(A =0"UFUTv =) fO ] = f f@dp@), ®)

j=1
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where UTv = [, o, ..., ;J,N]T. The above sum can be interpreted as a Stieltjes
integral associated with a measure d o shown in the right-hand side of (8); the distri-
bution function affiliated with this measure can be chosen to be nondecreasing and
piece-wise constant with jumps ,u? at the eigenvalues A ;. The Gauss rule G, men-
tioned above is associated with the measure d . Its nodes are the eigenvalues of the
matrix (5) and its weights are the square of the first components of suitably normal-
ized eigenvectors of this matrix. We recall that the eigenvectors of the matrix (5) are
orthogonal; they should be normalized so that their Euclidean norm is ||v||. Since the
matrix (5) is an orthogonal section of A, its eigenvalues are contained in the convex
hull of the eigenvalues of A. We refer to the difference

En(f) =0 f(A) = Gu(f) )

as the quadrature error in G, (f). It vanishes for f € Py,_1, where P>, denotes the
set of all polynomials of degree at most 2n — 1. This property makes G, a Gaussian
quadrature rule; see Golub and Meurant [21] for details.

We also will be interested in the (n — 1)-node Gauss rule, G,_1, affiliated with
the measure du. Its nodes are the eigenvalues of the leading (n — 1) x (n — 1)
principal submatrix 7;,—1 of (5), and its weights are the square of the first components
of eigenvectors of 7,,_1, that are normalized to have Euclidean norm ||v]|.

Spalevi¢ [32] described a (2n — 1)-node quadrature rule, which we denote by
Syn—1, for the estimation of the quadrature error £,—1(f). We will refer to Sy, —1 as
a (2n — 1)-node Spalevi¢ rule. This rule is associated with a symmetric tridiagonal
matrix Sp,_; € R®"=Dx@=D gimilarly as the Gauss rule G, is associated with
the matrix (5). It is straightforward to determine the matrix Sy, from the matrix
(5) and the coefficient B, in (4). We describe in Section 2 how a leading principal
submatrix of S»,—; can be applied to provide an estimate of the error (7). A few
computed examples are presented in Section 3 and concluding remarks can be found
in Section 4.

2 A new error estimation method

Assume for the moment that we apply n + ¢ steps of the symmetric Lanczos process
to A with initial vector v for some g > 1. This gives the decomposition

Avn—i-q = VarqTh+q + lgn+qvn+q+le£+q’ (10)

which is analogous to (4). In particular, the matrix V14 = [v1,v2,..., Upqq] €
RN* #1449 hag orthonormal columns with vy = v/||v|. Its first n columns agree with
those of the matrix Vj, in (4). The unit vector v, 441 is such that VnT+q Vppgt1 =0,
and B, 14 > 0. The matrix T, is symmetric and tridiagonal with the n x n leading
principal submatrix (5). We assume the decomposition (10) to exist and we can use
it to evaluate the expression

Vatg [ (Tnrgerllvll, (1)

which is analogous to (6).
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We will need the matrix

[f(OTn) 8} € RO x0+q)

which is obtained by zero-padding of f(7,,) € R"*". Typically, the expression (11)
is a more accurate approximation of the matrix function (1) than (6). This suggests
that it may be possible to estimate the error norm (7) as

| Viitg £ (Turer vl = Vi f (Terllvll | (12)

- ‘ Vasad Graerlol = Voo | 07 0 eatol

which simplifies to

)

Briga(0)i= | rTgper = [ 707 0 er o, (13)

where we note that this expression does not require knowledge of the columns of
the matrix V;, 4, in (10). However, the need to evaluate f(7},1,) makes it necessary
to carry out n 4+ g > n steps of the Lanczos process to determine the entries of the
matrix Ty, 1.

Estimates of the quadrature error (9) that are analogous to the error estimate (13)
have been applied by Golub and Meurant [20, 26]. Specifically, they estimate the
error (9) by G,14(f) — Gu(f), and use this estimate to assess the error in iterates
determined by the conjugate gradient method. To determine an accurate estimate of
the error (9), the parameter g has to be sufficiently large. In computed examples
reported in [20], this parameter is chosen to be 2 < g < 20, while Meurant [26] uses
g = 5. Itis known that ¢ = 1 is not large enough; see Clenshaw and Curtis [7] for a
discussion on the estimation of the error (9) by G, +1(f) — G, (f).

We would like to determine an estimate of the expression (13) without having to
carry out more than the n steps of the Lanczos process required to evaluate the expres-
sion (6). To describe our approach for achieving this, we first define the truncated
Spalevi¢ rules. These rules have been discussed and analyzed in [8, 9, 29]. They are
truncated versions of the Spalevi¢ rule presented in [32].

Introduce the symmetric tridiagonal matrix

an-2 Bn-2 0
Bn—2 an-3 PBn-3
Ty= e R7* (14)
Ianq+1 Op—g ﬂnfq
0 ﬂnfq An—g—1

for some 1 < g < n. This matrix is obtained by first reversing the rows and columns
of the (n—1) x (n—1) leading principal submatrix of (5), and then retaining the first g
rows and columns of the matrix so obtained. Define the symmetric tridiagonal matrix
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determined by concatenating the matrices (5) and (14), and including the coefficient
Bn in (4),

~ T e

Tn+q,q — [ﬂnzr{ :B%qn ] e RO+ x(n+q) (15)
Note that all entries of this matrix can be determined from the Lanczos decomposition
4).

If g = n — 1, then (15) is the symmetric tridiagonal matrix S>,_; associated with
the (2n — 1)-node Spalevi¢ quadrature rule for estimating the error in the Gauss rule
Gn—1 commented on at the end of Section 1. The quadrature rule G, integrates all
polynomials in [P>,_3 exactly; see, e.g., [21]. The associated (2n — 1)-node Spalevié
rule is exact for all polynomials in [Py, and is described in [32-34]. When 1 < ¢ <
n — 1, the resulting matrix (15) is associated with an (n + ¢)-node truncated Spalevié¢
rule. These rules also are exact for all polynomials in P, ; see, e.g., [29].

Our error estimate for (1) is based on replacing the matrix 7}, 4 in (13) by (15).
This yields the error estimate

F(Tn) O}el o]l (16)

f(%n—&—q,q)el - |: 0 0

En,q(f) = ‘

We remark that other approaches to estimating the error in (1) based on quadrature
rules that are commonly used for error estimation also can be developed. For instance,
a classical approach to estimate the error in the Gauss rule G,_1(f) is to use the
associated (2n — 1)-node Gauss—Kronrod rule. The latter rule corresponds to a real
symmetric tridiagonal matrix of order 2n — 1 when the Gauss—Kronrod rule has real
nodes and the n — 1 Gauss nodes interlace the n non-Gauss nodes; see Notaris [28] for
a recent discussion on Gauss—Kronrod quadrature. However, Gauss—Kronrod rules
with nodes with this property are not guaranteed to exist. Moreover, they are more
complicated to compute than the Spalevi¢ rules; see [1, 5, 25] for computational
aspects.

The following results shed some light on the accuracy of the expressions in (16).

Theorem 1 We have
fAv =V, f(T)er|v] VfeP, 1, (I7)

where the right-hand side is defined by (6), and
FAW = Vg f(Targg)erllv] VfePy, (18)

when 1 < g < n — 1, where the matrix Tn+q,q is given by (15) and the matrix Vy
is defined in (11). It follows that the error estimate (16) satisfies

Enq(f) = 11f(Av =V, f(Terlvll VfeP, 19)
i.e., the error estimate is exact for f € Pp,.

Proof The property (17) is well known. It can easily be shown for increasing powers
f@®)y=t¢t,j=0,1,...,n—1;see, e.g., [11, 30]. We turn to (18) and obtain from
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(10) that
AVirg = Vasg fn+q,q + Varqg(Tntq — fn+q,q) + ,Bn+qvn+q+leZ+q-
It follows that

~ ~ T
Avy = Vg Thtg gl + Varg(Tovg — Tavg.g)er + ,3n+qvn+q+len+qel~

If n > 1and n + g > 1, then this expression simplifies to
Avi = VargTurgqer, (20)
i.e., property (18) holds for f € Py.
Multiplying (20) from the left by A and substituting (10) gives
A%0) = AVyiyThig g€t
= (Va+qTatg + Bnq Un+q+leZ+q)fn+q,qel
= VitgThtq Tn+q,q el

. 2
= Vitg Tn+q,qel >

where the last two equalities hold if » + ¢ > 2 and n > 2. Thus, under these
conditions (18) is valid for f € P,. Similarly,

A3U1 = AVyyy Tn2+q,qel
= (VatqTh+q + Butqg vn+q+1€,{+q)fn2+q,qel
= VatgTn+q i12+q,qel
= Vn+q ?n‘:_q,qel,
where the last two equalities hold if n +¢ > 3 and n > 3. We can similarly show that

k Tk
A*v = Vn+an+q,qel,

provided that n + g > k and n > k. This shows (18).
The property (19) can be shown by expressing (16) in the form

Eng(f) = | Vatg f Tusg.g)erlvll — Va f(Terlv]l|

: 2

which is obtained by replacing the matrix 7,4 in (12) by fn+q’q. Equation (19) now
follows from (18). O]

We remark that a special case of this result is stated in [16, Corollary 2.3]. More-
over, the expression (18) may hold for a larger set of polynomials when the matrices
T,,n=1,2,...,in (i) have a special structure. For instance, if T}, 1 is a tridiagonal
Toeplitz matrix, then T}, 4 4 = Ty14, and it follows that

Vg f Tuvg.erllvll = Varg f Turgderlvll = F(Av  Vf €Pyigoi,
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where the last equality follows from (17). It follows that higher accuracy than (18)
also can be achieved if only a trailing principal submatrix of the matrix (5) is Toeplitz.
Measures du that give rise to orthogonal polynomials with recursion coefficients
that determine a symmetric tridiagonal matrix (5) of this kind are said to belong to
the class Mf(f’”g )[a, b], which was introduced by Gautschi and Notaris [19]. Sub-
sequently, this kind of measures were used by Spalevi¢ [34] and more recently by
Djukic et al. [10] in their investigations of Spalevi¢ quadrature rules.

Our error estimation technique is based on replacing the matrix 7;,+4 in the Lanc-
zos decomposition (10) by the matrix 7,4 4. It is natural to ask whether there is a
matrix A € RV*V such that

~ ~ T
AVitrg = VarqTatg.q + BrtgUntgtien iy

is a Lanczos decomposition. Here the matrix V.44, VeCtor vy 44+1, and scalar B4
are the same as in (10). The following result shows how a matrix A can be deter-
mined from A if the matrix an differs from 7},4 4 in one entry only. Such rank-one
modifications can be applied repeatedly to determine the matrix (15) from 7}, 1.

Theorem 2 Assume that the Lanczos decomposition (10) exists and let ?,Hq =
Thiyg —i—otel-eijor somea € Rand 1 <i,j <n+q. Then

XVn+q = Vn+q7:n+q + ﬂn+qvn+q+le;+qv (22)

with the matrix Vy g = [v1, v2, ..., Unyq), vector v, g1, and scalar B, the same
as in (10), is a Lanczos decomposition of the matrix

A=A+avvl. (23)
Proof We obtain from (10) that

ES T T
AViig = VargThtq — avie; + lgn+qvn+q+len+q,
which we express as
(A4 aviv)) Vg =V, T, ~+ Bn+qV el
iYj n+q — Yn+qin+q n+q Vn+q+1 n+q-

Thus, the decomposition (22) holds for A given by (23). O]

The theorem shows that the matrix TH(M defined by (15) can be determined by
applying n + g steps of the Lanczos process to some matrix. However, we do not use
this fact in the computations.

3 Numerical examples
We present a few computed examples that illustrate the accuracy of the proposed error

estimates. All computations were carried out using MATLAB R2016b on a 64-bit
Lenovo personal computer with approximately 15 significant decimal digits.
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Table 1 Example 3.1: Relative errors E, (f)/| f(A)|l and relative error estimates E, ,(f)/Il f(A)| for
A € RVXN 4 symmetric positive definite Toeplitz matrix, v = [1, 1, ..., l]T e RV, and f() = exp(t)
whenn =5and g € {1, 2, 3}

N ILf (Al g=1 g=2 g=3
200 2.74836 - 10! % 2.90175- 1078 2.90175 - 1078 2.90175- 1078
TR 2.90006 - 10~% 2.90175 - 1078 2.90175 - 108
2000 8.70859 - 10! f;(ﬁ{))u 9.25347-107° 9.25347 -107° 9.25347 - 1072
TR 9.24808 - 1077 9253471079 9.25347 - 1079
5000 1.37713 - 10? % 5.85533- 1077 5.85533-107° 5.85533-107°
% 5.85192-107° 5.85533 - 1079 5.85533- 1070

Example 3.1 Let A € R¥*N be the symmetric positive definite Toeplitz matrix with
firstrow [1/3, ..., 1/3N]. The initial vector is chosentobe v = [1, 1, ..., 117 € RY
unless explicitly stated otherwise. We will let N € {200, 2000, 5000}. The matrices
A € RV*N 50 defined have the smallest eigenvalue about 1/6.

We first apply n = 5 steps of the symmetric Lanczos process to A. This yields
the Lanczos decomposition (4). Even though A is Toeplitz, the symmetric tridiago-
nal matrix 7, in the Lanczos decomposition is not. Define the matrix (15) for g €
{1, 2, 3}. Table 1 shows the relative approximation errors E, (f)/| f(A)|l defined by
(7) and relative error estimates E, ,(f)/|l f(A)|l given by (16) for f(t) = exp(?).
The errors estimates are seen to be quite accurate for all values of N and g.

Table 2 differs from Table 1 only in that the initial vector v € R" has normally dis-
tributed random entries with mean zero and variance one. The value of f(A)v differs
for this table from that for Table 1, but the computed error estimates £y, 4 (f) /|l f (A) |l
for all values of N and g can be seen to be quite accurate.

Table 2 Example 3.1: Relative errors E, (f)/| f(A)|l and relative error estimates E, ,(f)/Il f(A)| for
A € RV*N a symmetric positive definite Toeplitz matrix, v € RY is a random vector, and f (1) = exp(t)
whenn =5andq € {1, 2,3}

N ILf (Al g=1 g=2 g=3
200 2.00852 - 10! % 3.08261 - 1077 3.08261 - 1077 3.08261 - 1077
et 3.08010 - 1077 3.08261 - 1077 3.08261 - 10~
2000 6.63092 - 10! ”’;"(S())H 3.56874 - 1077 3.56874 - 1077 3.56874 - 1077
et 3.56669 - 10~ 3.56874 - 1077 3.56874 - 10~
5000 1.02805 - 10? % 3.61104 - 1077 3.61104 - 1077 3.61104 - 1077
% 3.60899 - 1077 3.61104 - 1077 3.61104 - 1077
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Table 3 Example 3.1: Relative errors E, (f)/| f(A)|l and relative error estimates E, ,(f)/Il f(A)| for
A € RNVXN 3 symmetric positive definite Toeplitz matrix, v = [1,1,..., 117 € R¥, and f(r) = 1/t
whenn =5and g € {1, 2,3}

N ILf (Al g=1 g=2 g=3
200 2.13454 . 10! f;(ﬁ{))u 6.43076 - 10~* 6.43076 - 1074 6.43076 - 10~*
ﬁff'zifn) 5423031074 6.26182- 1074 6.40509 - 10~4
2000 6.71240 - 10! f;(ﬁ{))u 2.05517 - 104 2.05517 - 1074 2.05517 - 1074
ﬁff'zifn) 1.73306 - 1074 2.00118 - 1074 2.04698 - 10~4
5000 1.06092 - 10? % 130069 - 10~# 1.30069 - 10~ 130069 - 10~4
% 1.09683 - 10~ 1.26651 - 10~* 1.29550 - 10~

Tables 3 and 5 are analogous to Table 1 and shows error estimates E, 4(f)/| f
(A)| for f(tr) = 1/t and f(r) = +/t — 0.1, respectively; in the interest of brevity
the latter table only displays results for N = 2000. Tables 4 and 6 are analogous to
Tables 3 and 5; they differ in the initial vector, which is of the same kind as in Table 2.

The error in the computed approximation of f(A)v can be expected to converge to
zero slower as n increases, the closer there is an eigenvalue of A to a singularity of f.
Slow convergence of the error to zero also may result in less accurate error estimates
than when convergence is fast. Since f(#) = exp(¢) has no singularity in the finite
complex plane, we expect faster convergence of the error to zero with increasing n
for this function than for the other functions of this example. The distance between
the singularity of f and the closest eigenvalue of A is about 1/6 for f (1) = 1/¢, and
about 1/15 for f(t) = +/t — 0.1 for all values of N in this example. Nevertheless,
Tables 1, 2, 3, 4, 5 and 6 show the error estimates to be quite accurate for all functions
and for both kinds of initial vectors v used. The accuracy of the error estimates is
seen to increase with q.

Table 4 Example 3.1: Relative errors E, (f)/| f(A)|l and relative error estimates E, ,(f)/Il f(A)| for
A € RV*N a symmetric positive definite Toeplitz matrix, v € RV a random vector, and f(t) = 1/¢ when
n=>5andqg €{1,2,3}

N ILf (Al g=1 g=2 g=3
200 5.59057 - 10! % 4627151073 4.62715- 1073 46271510~
T 3.67313- 1073 446681-1073  4.60622 1073
2000 1.87581 - 10! ”’;"(S())H 5.09331-1073 5.09331-1073 5.09331-1073
ﬁfg/gl\) 4.31285-1073 4.96157 - 1073 5.07309 - 103
5000 2.89799 - 102 % 5.13185- 1073 5.13185- 1073 5.13185-1073
Tl 434610 - 107 4.99922 - 1073 511160 - 10-3
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Table 5 Example 3.1: Relative errors E, (f)/| f(A)|l and relative error estimates E, ,(f)/Il f(A)| for
A eRN*N 4 symmetric positive definite Toeplitz matrix, v = [1, 1, ..., 117 e RV, and f(@) =+t—0.1
whenn =5and g € {1, 2, 3}

N I/ (Al g=1 g=2 g=3
2000 3.36576 - 10! = 1.11024 - 1075 1.11024 - 107 1.11024 - 1075
ﬁ%ﬂ\) 9.09738 - 10~° 1.06697 - 1073 1.10102- 1073

__ We conclude this example with a comparison of the accuracy of the error estimates
Entq.q(f) eg}d E, 4(f) defined by (13) and (16), respectively. Note that the com-
putation of E,4 4(f) demands that n + ¢ steps of the Lanczos process be carried
out, while the calculation of E, ,(f) only requires n steps of the Lanczos process.
Table 7 displays the error estimates Ej 4 4(f) forn = 5 and g € {1, 3} for three
functions f and initial vector v = [1, 1, ..., 117. Table 8 differs from Table 7 only
in the choice of initial vector v for the Lanczos process; it is a random vector with
normally distributed entries with mean zero and variance one in the latter table.

Comparing results for f(r) = exp() in Tables 1 and 7 shows the error estimate
Es 1(f) to be as accurate as E¢ 1(f), and the estimate Es3(f) to be as accurate
as Eg3(f), but the estimates Es5 1(f) and E53(f) o~nly require tlle evaluation of
5 steps of the Lanczos process, while the estimates Eg 1(f) and Eg3(f) demand
the execution of 6 and 8 Lanczos steps, respectively. Analogous conclusions can be
drawn for the other functions in Table 7. Tables 2 and 8 shows similar results. In
summary, the error estimates (16) are as accurate as the error estimates (13), but
require less computational effort to evaluate.

It is clear that executing more steps of the Lanczos process demands more com-
puting time. For instance, for the matrices in Table 7 the execution time increases
by 24% when increasing the number of steps of the Lanczos process from 5 to 10,
but the total CPU time is small, less than 0.1 s for both 5 or 10 steps. However, the
CPU time grows quickly with the matrix size. An example that employs hierarchi-
cal compression of H2-matrices is described in [15, Example 1.1]. The evaluation of
one matrix-vector product with an H?-matrix of order N = 262246 required 26.6
min of CPU time on a laptop computer; see [15] for details. Here it suffices to point
out that there are problems for which it is important to keep the number of matrix-
vector product evaluations as small as possible. For those problems, the evaluation of

Table 6 Example 3.1: Relative errors E, (f)/| f(A)|l and relative error estimates E, 4(f)/Il f(A)| for
A e RVxN 3 symmetric positive definite Toeplitz matrix, v € RY random vector, and f@) =+/t—0.1
whenn =5and g € {1, 2, 3}

N 7 (Aol g=1 g=2 g=3
2000 2.23382- 10! o 1.26399 - 1073 1.26399 - 1073 1.26399 - 1073
il 1.02055 - 1077 1.20801 - 1073 1.25135- 107
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Table 7 Example 3.1: Relative error estimates Enﬂ[.q (/N1 f(A)]l for A € RN*N a symmetric positive

definite Toeplitz matrix, v = [1,1,...,1]7 € R¥, and several functions f for N = 2000, n = 5, and

g €{1,3}

@ THAT AT

exp(t) 9.24808 - 102 9.25347 - 10~

1/t 1.73306 - 10~ 2.04698 - 1074
t—0.1 9.09738 - 1076 1.10102 - 1073

the estimates (13) is more attractive than the evaluation of the estimates (16). Unfor-
tunately, we cannot evaluate the exact error (7) for problems of very large size and,
thus, cannot assess the accuracy of the estimates (21). We therefore in the following
restrict ourselves to problems that are small enough to allow the evaluation of (7) in
moderate time.

Example 3.2 Let A € RV*N be a symmetric positive semidefinite matrix. It is
defined by A = (B — A/ )2, where B € RV*N g5 a symmetric Toeplitz matrix
with first row [1/3, ..., 1/3"] and largest eigenvalue A;. We apply n = 5 steps
of the symmetric Lanczos process to A with initial vector v = [1,1,..., 117
RY and compute the relative errors Es(f)/[f(A)|| and relative error estimates
Es4(f)/|lf(A)] for the functions f(t) = exp(¢) and f(t) = 1/(t + 0.1). Thus, we
choose ¢ to be as large as possible, i.e., n — 1.

Tables 9 and 10 display the relative errors and relative error estimates for N €
{200, 2000, 5000}. The tables show the relative errors in the approximation (6) to be
larger for f(t) = 1/(t 4+ 0.1) than for the exponential function, but the relative error
estimates are seen to be quite accurate for both functions.

Example 3.3 We let A € RV*N with N e {200, 2000, 5000} be symmetric posi-
tive definite Toeplitz matrices with first row [1, 1/2,...,1/ 2N _1)]. The aim of this
example is to illustrate how the error in the function approximation (6) decreases
when increasing the number of Lanczos steps n. Note that the symmetric tridiagonal
matrices T, determined by the Lanczos process are not Toeplitz.

Table 11 shows results for the exponential function f(¢) = exp(¢) and n € {5, 10}.
The parameter g is chosen as large as possible, i.e., ¢ = n — 1. The error in the

Table 8 Example 3.1: Relative error estimates E,,_,_q,q O/ F A for A € RV*N a symmetric positive
definite Toeplitz matrix, v € RY a random vector, and several functions f for N = 2000, n = 5, and

q €({1,3}

6.1(f) 3.3(f)

f® ILf Al £ (A
exp(t) 3.56669 - 107 3.56874 - 1077
1/t 4.13285 - 1073 5.07309 - 103
t—0.1 1.02055 - 103 1.25135 - 1073
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Table 9 Example 3.2: Relative errors E, (f)/| f(A)|l and relative error estimates E, ,(f)/Il f(A)| for

A e RVxN 34 symmetric positive semidefinite matrix, v = [1, 1, ..., l]T, and f(t) = exp(t), whenn =5
andg =n—1
N Il f (Al
1 En(f) -9
200 1.812147 - 10 7T 1.66291 - 10
Eng(f) -9
\If(IA)H 1.66265 - 10
1 En(f) —10
2000 5.74098 - 10 7T 5.32845- 10
Enq(f) —-10
Hng)H 5.32759 - 10
1 En(f) . 10-10
5000 9.07839 - 10 IFCAI 3.37257 - 10
Eng(f) —10
Hsz)H 3.37202 - 10

function approximation (6) is seen to be much smaller for n = 10 than for n = 5;
the error estimates (16) are accurate for both values of n. Table 12 is analogous to
Table 11 and shows results for f(¢) = /z. The errors are larger in this table than in
Table 11, but the error estimates are quite accurate.

Our last example is concerned with the analysis of large networks. A network is
represented by a graph G = {V, £} that is defined by a set of vertices V and a set of
edges £. We assume G to be a simple connected graph with N nodes, i.e., G is undi-
rected, unweighted, and without self-loops and multiple edges. The adjacency matrix
A = [a; j]fY =1 associated with G has the entry a;; = 1 if there is an edge between
node i and node j, and a;; = 0 otherwise. The adjacency matrix is symmetric. Typi-
cally, the number of edges in a graph is much smaller than N2. Therefore, adjacency
matrices generally are sparse; see, e.g., [13, 27] for more details.

A walk of length k in an undirected graph is a sequence of k + 1 vertices
V1, V2, ..., Vg+1 such that there is an edge between vertex v; and vertex v;4+1 for
i=1,2,..., k. Vertices and edges in a walk may be repeated. The entry ai(f) of the

Table 10 Example 3.2: Relative errors E, (f)/|l f(A)| and relative error estimates E, 4(f) for A €

RNXN 4 symmetric positive semidefinite matrix, v = [1, 1, ..., l]T, and f(t) =1/(t +0.1), whenn =5
andg =n—1
N Ilf (A)vll
1 En(f) —4
200 4.09089 - 10 TFeon 7.93734 - 10
Eng(f) —4
Hf(]A>H 8.07596 - 10
2 En(f) 4
2000 1.27946 - 10 7T 2.55772 - 10
Eng(f) —4
Hng)H 2.60275 - 10
2 Eq(f) —4
5000 2.02150 - 10 TFeon 1.61959 - 10
Enq(f) —4
H]CElT)H 1.64812 - 10
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Table 11 Example 3.3: Relative errors E,(f)/|l f(A)|| and relative error estimates E, ,(f)/|l f (A)|| for
symmetric positive definite Toeplitz matrices A € RNXN oy = [1,1,..., l]T e RN, forn = {5, 10} and

f(#) = exp(r)

N £ (Al n=5 n=10

200 2.80339 - 102 % 6.72185 - 1073 2.54432.10710
Enq(f) -5 —10
Tl 6.72198 - 10 2.54436 - 10

2000 8.97085 - 102 ﬁ;}i{}u 2.14220 - 1075 8.12756 - 10~ 11
Enq(f) -5 —11
Ll 2.14220 - 10 8.12755 - 10

5000 1.41952 - 103 % 1.35532.1073 5.14173 - 101
Enq(f) -5 —11
T 1.35532 - 10 5.14173 - 10

matrix A = [ai(f)] lN =1 is equal to the number of walks of length £ between node i
and node j.
Consider a function

fA) =) ceA’ (24)

£=0

with positive coefficients ¢, chosen to guarantee convergence. The entry [ f(A)];;
of f(A) can be interpreted as a measure of the ease of traveling between nodes i
and j. The term co/ has no specific meaning and is introduced for convenience. The
coefficients ¢, are generally chosen to be strictly decreasing functions of £, since this
models that short walks are more important than long walks. A popular choice is
c¢ = 1/£! for all £ > 0, which yields f(A) = exp(A); see, e.g., Estrada and Higham
[14] for a nice introduction to the application of matrix functions in network analysis.
The expression f(A)v withv = [1,1,..., 117 can be used to measure the relative
importance of nodes in a network. If the entry [ f(A)v]; is relatively large, when
compared to the other entries of the vector f(A)v, then this indicates that node i is
important in the network; see, e.g., Benzi and Klymko [4]. A nice recent discussion

Table 12 Example 3.3: Relative error of errors E, (f) and error estimates E, ,(f) for symmetric positive
definite Toeplitz matrices A € RV*N v =[1,1,..., 11T e RV, forn = {5, 10} and f(z) = /1

N Lf (A)v]| n=>5 n=10

200 2.44131 - 10! "Ef(i(/{)’u 4.65712- 1073 4.42032 - 107
Enq(f) -5 -7
e 4.61394 - 10 4.41994 - 10

2000 7.74338 - 10! "’?’(%1' 1.47928 - 1073 1.40452 - 1077
Eng(f) -5 —7
R 1.46549 - 10 1.40450 - 10

5000 1.22458 - 10° fﬂ% 9.35800 - 106 8.88454 - 1078
Eng(f) —6 —8
et 9.27069 - 10 8.88441 - 10
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Table 13 Example 3.4: Relative errors E, (f)/|l f (A)|| and relative error estimates E,, ,—1(f)/|l f (A)|| for
an adjacency matrix A € RN*N defined by anetworkandv =[1,1,..., ]]T e RN, forn = {5, 10, 15}
and f(t) = exp(t)

N ILf (Al n=>5 n=10 n=15
2114 2.53067 - 10* % 1.33460 - 10! 1.06073 - 103 9.30448 - 1077
Euci) 1300360107 110350410 9430311077

on the use of matrix functions in network analysis is provided by Benzi and Boito
[3]. The following example determines error estimates for approximations of f(A)v.

Example 3.4 Consider the network yeast, which is represented by an undirected
graph with 2114 vertices and 4480 edges. It describes the protein-protein interac-
tion of yeast. Each node represents a protein and each edge represents an interaction
between two proteins. The adjacency matrix A € RZ!4X2114 for this graph is
symmetric and is available at [35].

Table 13 shows the relative error of the function approximations (6) and relative
error estimates obtained from (16) for the exponential function f(¢) = exp(¢) when
g =n— landn € {5, 10, 15}. The relative error in the function approximations (6)
can be seen to decrease rapidly as n increases. The relative error estimates (16) are
quite accurate for all values of n.

4 Conclusion

A new method for estimating the error in approximations of functions of symmetric
matrices is presented. The tables in Section 3 show the proposed error estimates
to be quite accurate. For large matrices A, the dominating computational effort for
computing the matrix function approximation (6) is the evaluation of n steps of the
symmetric Lanczos process. An attraction of the error estimates (16) is that their
computation does not require that additional Lanczos steps be carried out.
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