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ABSTRACT

Coarse-grained models have long been considered indispensable tools in the investigation of
biomolecular dynamics and assembly. However, the process of simulating such models is
arduous because unconventional force fields and particle attributes are often needed, and some
systems are not in thermal equilibrium. Although modern molecular dynamics programs are
highly adaptable, software designed for preparing all-atom simulations typically makes
restrictive assumptions about the nature of the particles and the forces acting on them.
Consequently, the use of coarse-grained models has remained challenging. Moltemplate is a
file format for storing coarse-grained molecular models and the forces that act on them, as well
as a program that converts moltemplate files into input files for LAMMPS, a popular molecular
dynamics engine. Moltemplate has broad scope and an emphasis on generality. It
accommodates new kinds of forces as they are developed for LAMMPS, making it a popular
tool with thousands of users in computational chemistry, materials science, and structural
biology. To demonstrate its wide functionality, we provide examples of using moltemplate to
prepare simulations of fluids using many-body forces, coarse-grained organic semiconductors,

and the motor-driven supercoiling and condensation of an entire bacterial chromosome.
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INTRODUCTION

Simulation methods are currently used to explore biological systems from atoms to entire
organisms and beyond. Given current computational capabilities, the representation must be
tailored to the scale level being studied. Detailed quantum mechanical and molecular
mechanics simulations explore the details of covalent bonding, molecular geometry and
interaction, and other sub-molecular properties [1]. Molecular dynamics simulations are widely
employed to look at the dynamic properties of entire biomolecules and their complexes [2],
effectively providing a “computational microscope” to probe biomolecular processes [3,4].
Moving to larger systems and/or longer time scales often requires coarse-graining methods that
represent collections of atoms with simpler primitives to make the simulation computationally
tractable. For example, popular force fields such as MARTINI [5] replace individual amino acids
with a small number of spheres, and are widely used to explore protein folding and other
dynamic processes. Currently, even simpler representations, where individual beads represent
multiple amino acids/nucleotides, domains, subunits or entire molecules, become necessary
when simulating even larger systems such as entire genomes or whole cells [6]. These “coarse-
grained” representations have many advantages: they form a bridge between the atomic
properties of molecules and the continuum properties of cell biology and materials science.
Some coarse-grained models are designed with a small number of parameters, making it easier
to pinpoint the aspects of the model or force field that lead to emergent functional properties [7].
Some coarse-grained models are carefully parameterized, matching the placement of beads,
force-fields parameters, and (if applicable) internal state transition rates, with atomistic

simulation and experimental data [6,8—12].

The loss of resolution during coarse-graining often results in the design and use of complex and

unconventional force fields not available in conventional molecular modeling software.



Consequently, these coarse-grained representations are often designed and implemented in a
one-off manner, typically by writing large custom simulation programs to address a system of
interest. For example, REMODELER is a specialized tool written in 20000 lines of FORTRAN
for simulating the growth of bacterial cell walls [13]. Similarly, POLYCHROM
(https://zenodo.org/record/3579473) is a tool for building coarse-grained simulations of
eukaryotic chromosomes. Specialized tools like these typically require a large investment of skill

and labor for each system that the investigators wish to study.

Numerous tools exist for building fully atomistic simulations [14—16], however, tools for
specifying coarse-grained simulations are not as widely available. Specialized tools are
available for building simulations of membranes and proteins using the MARTINI force field,
including PyCGTool, a method for adding new molecules to MARTINI [17], MERMAID [18] and
CHARMM-GUI Martini Maker [19]. Several general tools are also available with goals similar to
the work described here. For example, TopoTools (https://doi.org/10.5281/zenodo.3845031) is a
VMD plugin that streamlines access to LAMMPS. mBUILD [20] and ParmEd
(http://parmed.github.io/ParmEd) provide different APls allowing Python programmers to
prepare (typically all-atom) simulations using OpenMM [21], a powerful molecular dynamics

engine.

Moltemplate is an intuitive, compact, user-readable file format (the LT “LAMMPS-Template”
format) for storing coarse-grained molecular models that can be simulated in LAMMPS [22].
The moltemplate software converts these moltemplate files into files that may be run directly in
LAMMPS with minimal editing. The moltemplate file format was conceived with several goals in
mind: to be a general as possible, to streamline coarse-grained modeling for new and expert
users, and to provide an easy way to store and document coarse-grained simulations to

improve reproducibility. This file format is designed to be easily extensible, compatible with



other molecular building programs, and to simplify the design of custom coarse-grained
representations of chemical and biological systems, from single biomolecules to entire cells,
such as the bacterial chromosome and liposome included in Figure 1. A simple example of a
moltemplate file is shown in Figure 2. Users can combine a variety of point-like, rigid, and
continuum-field/atomistic hybrid representations. Building on the generality of the LT format,

moltemplate has also been widely used for building complex atomistic simulations.

Note that coarse-grained models are only as good as the force fields being employed.

Extensive work is required to choose particle placement, force-field parameters, and (if
applicable) transition rates for internal state changes [6,8—10]. Moltemplate does not solve these
critically important problems; rather, moltemplate is a tool for storing and using coarse-grained
models once they are developed. This report presents the basic concept of moltemplate, the LT

file format, and several applications to demonstrate the scope of simulations that are possible.

METHODS

Overview of moltemplate methods. Once users have created moltemplate files describing a
system they want to simulate, the files must be converted into files that LAMMPS understands.
Moltemplate does this using a collection of Python scripts for generating text files, generating
coordinates, and assigning force field parameters. Moltemplate also includes LAMMPS-specific
tools for parsing and converting LAMMPS files and converting arbitrary curves into polymers in
LAMMPS format. These Python scripts can be run independently, however the majority of them
communicate with each other through a BASH script (moltemplate.sh), which provides the main

user interface.

Moltemplate is built around a template-based strategy that streamlines ease of use and

extensibility of the method. In order to run a molecular simulation, a user needs to: 1) choose



the initial state of a system (including the positions of the particles that comprise the system and
any other degrees of freedom), and 2) describe the interactions (forces or energies) between
these particles. For systems that are driven out of thermal equilibrium, users must also: 3)
control how these forces evolve over time. The LT file language is designed to store these
object definitions, force fields, and process descriptions. The template-based strategy allows
users to define subassemblies in small, manageable LT files, and then duplicate and combine

them hierarchically to generate larger systems of interest.

Moltemplate duplicates blocks of text in LT files, substituting user-defined counters as new
copies are created. Typically, these text blocks fall into four or five types, defining: 1) particles
(“atoms”), 2) bonds between particles, 3) higher-order interactions between particles such as
angles and dihedrals, 4) the parameters needed to define or modify these interactions during a
simulation, and (in some cases), 5) rules explaining the circumstances when they are to be
applied. Text blocks are written directly in the file formats used by LAMMPS. Within these text
blocks, counter variables are defined that will be incremented as the text blocks are duplicated
when molecules are added to the system. This generates output files with a full enumeration of
the atom, bond, interaction and force field information. A simple example is presented in Figure
2a, with four “write” statements that create files with the first four types of information. Variables
with “$” represent individual atoms or bonds and will be incremented each time the molecule it
belongs to is duplicated, whereas variables with “@” represent types and will not be
incremented. Moltemplate includes a rich language for controlling the position and orientation of
individual molecules (eg. Figure 2c¢) and customizing them (Supplementary Figure 1). Similar
commands can be used to generate polymers and other assemblies of arbitrary shape and
connectivity. More complex geometries can be generated using external tools like PACKMOL
or our polymer generator “genpoly_lt.py” and imported into moltemplate (eg. using

‘moltemplate.sh system.It -xyz coords.xyz”). A summary of moltemplate commands is included



in Supplementary Table 1 and the documentation (http://moltemplate.org/doc). Detailed

examples for all figures in this paper are included at http://doi.org/10.5281/zen0d0.4392267.

More examples are available online (http://moltemplate.org/examples.html), including coarse-

grained polymer melts, proteins, lipid membranes, and examples with custom force fields.

Moltemplate provides a file format (documented in the moltemplate manual) that advanced
moltemplate users can use to store force field parameters, as well as rules that describe when
these forces should be applied. These force-field rules can automatically generate angle,
dihedral, or improper interactions between atoms whose type and bond connectivity matches a
user-supplied template. This file format is flexible enough to describe the many kinds of forces
that LAMMPS supports. A wide variety of popular force fields have been converted into
moltemplate format (including OPLSAA, AMBER, COMPASS, DREIDING, and MARTINI).

However, moltemplate does not infer force-field-specific atom types or calculate partial charges.

Coarse-grained representations often present an additional challenge: they may include custom
particle attributes and/or move under the influence of unconventional forces, such as the many-
body “mW” water particle used in Figure 2b [23], as well as forces that drive the system out of
equilibrium. A diverse and growing list of methods exist for running non-equilibrium simulations
in LAMMPS, such as time-varying external forces, motors used to twist DNA in Figure 1ab
(explained in the supplemental data), the collective motion of self-propelled colloidal particles

(https://lammps.sandia.gov/doc/fix_propel_self.html), and chemical reactions [24]. The data

required to characterize these non-standard forces is often encoded in domain-specific file
formats that are not supported in traditional molecule builder software. In fact, the majority of the
hundreds of force field styles and features that are available in LAMMPS have been created by
LAMMPS users, and each of these features is controlled by text commands invented by

different users. Any program that attempts to generate text files for all of these different formats



will need to use some form of template substitution. This is what moltemplate does: it has wide
applicability because (for most files) it is intentionally ignorant about the format or structure of
the text files that it creates. This allows it to make nearly any kind of text file that LAMMPS can
read. By keeping the design of moltemplate simple and general, our goal is that moltemplate will

also retain utility for the diverse kinds of files that future coarse-grained modelers will need.

Moltemplate is primarily used with LAMMPS, but it can be customized to prepare files for other
molecular dynamics engines by customizing the ~2000 lines of code that process the format
and syntax of “Data” sections of moltemplate files. For example, we have also implemented

moltemplate tools for Espresso (http://moltemplate.org/espresso).

RESULTS

Sample applications. Moltemplate has been used in a wide range of applications in materials
science and biology. To introduce new users to moltemplate and LAMMPS, progressively-
complex examples are available on the moltemplate site (https://moltemplate.org), ranging from
simple all-atom simulations of small molecules in periodic boxes to a coarse-grained simulation
of a liposome with protein inclusions (Figure 1f). To demonstrate what is possible with
moltemplate, files for running several advanced examples have been deposited at Zenodo

(http://doi.org/10.5281/zen0d0.4392267), along with the moltemplate code and a distribution of

LAMMPS that includes several modifications needed by the examples. The examples are

described briefly below, and in more detail in the Supplementary Text File.

Simulating DNA superhelicity. DNA is a particularly challenging topic for study, given the
need to capture the topology of the double-helical arrangement of strands, the specific
interaction between strands, and the complex stiffness and non-uniform bending properties of

the helix. Moltemplate provides tools to create DNA models of arbitrary detail and sophistication



including OxDNA2 [25,26]. Figure 1a shows a Kratky-Porod-like polymer model of DNA [27,28]
containing a twist motor, with three beads representing 42bp and with dummy atoms to

represent the local superhelical twist of the chain.

The example included with this manuscript explores supercoiling of an entire bacterial
chromosome (Figure 1b). This simulation demonstrates that supercoiling caused by enzymes
like DNA gyrase is enough to generate compact, spatially segregated circular bottlebrush-like
structures seen in prokaryotic chromosomes such as Caulobacter crescentus[29]. Early in the
process of cell division, the new origin of replication is transported from one end of the cell by
the ParABS system and anchored to the opposite pole and the small amount of DNA that has
been replicated is stretched across the length of the cell (Supplementary Figure 5). The
stretched DNA gradually relaxes as replication continues and more DNA is supplied to fill the
space [30]. To approximate this, we simulate a 4Mbp ring of circular DNA that is initially
stretched until it is straight. 400 twist motors are inserted evenly along the length of the DNA.
(For details how add control twist motors using moltemplate, see the Supplemental text file.)
During the simulation they maintain torsional tension throughout the polymer. Then the DNA is
slowly relaxed, roughly mimicking the process of DNA relaxation after replication in C.
crescentus. In this example, the branched plectonemic supercoils (up to ~15kb in length) form

naturally under tension as the DNA relaxes.

Particles with custom attributes. Mesoscale modeling requires aggressive coarse-graining.
As the size of each coarse-grained particle grows to encompass more atoms, the state of the
system is no longer adequately described by those particles’ X,Y,Z coordinates. Additional
degrees of freedom must be added to each particle to compensate for the information that was
discarded [8,10]. Recent “ultra-coarse-grained” models contain particles with internal states that

change over time [10,11] and LAMMPS can simulate chemical reactions that alter particles’



types over time (see Future Directions). LAMMPS also allows particles to have directional
attributes as well as other custom attributes created by the user. In the MOLC model [31], large
organic molecules are represented in terms of ellipsoidal beads connected by directional bonds.
Moltemplate format is used for storing the force-field parameters, ellipsoid shape and
orientation, and bond topology of each coarse-grained molecule in a compact and human-
readable way, and for constructing assemblies from these molecules for simulation in LAMMPS.
The supplemental files include MOLC models of simple organic molecules and organic

semiconductors, prepared using moltemplate.

DISCUSSION

User community and usability. Moltemplate is, by design, not a black box, so users (or 3rd-
party programs) can customize the (human-readable) LT files with a text editor. The many
worked examples distributed with moltemplate get users started quickly, and the simple LT
syntax allows new users to add specific interactions between molecules and other details to

customize subsequent LAMMPS simulations for their particular application.

The success of this approach is exemplified by the current large, diverse moltemplate user
community. Currently, moltemplate software tools have been downloaded >70000 times, from
>12000 unique IP addresses from the moltemplate.org web site (this excludes downloads using
git and pip). Moltemplate also has a growing user community in materials science and biology.
For example, moltemplate has been used to model the assembly of potential drug-delivery
vehicles made from ssDNA polymers fused to dialkyl tails [32] and has been used to explore the
structural transitions of genomic RNA in HIV virions, which includes defined secondary structure
in the RNA chain and interaction with crosslinking proteins [33]. Living systems are also not in
thermal equilibrium, posing a challenge for simulation: often, methods must be devised to model

irreversible or directional processes. For example, moltemplate has been used in non-
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equilibrium simulations to explore how ring-like motors walk along DNA and remodel the

conformation of eukaryotic chromosomes at the megabase scale [34].

Moltemplate is increasingly being used as a glue or backend to connect domain-specific

programs to LAMMPS. For example, two commercial services use moltemplate as a backend,

ATB [35] and MaterialX ( https://materialx.co.uk/). We have used moltemplate as an essential
step in a modeling pipeline for building detailed models of entire cells with CellPACK [36], a
suite of software for the generation of structural models of entire cellular organelles and
bacterial cells (Figure 3). We have created a tool

(https://github.com/jewettaij/cellpack2moltemplate) that enables CellPACK to generate input

files for moltemplate so that the user need not be familiar with moltemplate file format to run
LAMMPS simulations based on CellPACK models. In collaboration with the Covert laboratory,
we are generating models of Mycoplasma genitalium cells based on discrete time points from
WholeCell simulations [37] which can be simulated in LAMMPS. The models contain several
hundred types of molecular entities with a variety of shapes and sizes, including long fibers and
membrane-spanning proteins. Models are generated using CellPACKgpu [38], with DNA,

messenger RNA, and associated proteins placed using LatticeNucleoids [39].

Extensibility. Modern MD programs are written in a modular style so that users can add new
features and force fields when needed. For example, we added new features to LAMMPS to
implement the DNA twist motor and the directional bonded ellipsoids used in the MOLC
examples. The majority of LAMMPS features have similarly been contributed by users to
simulate new types of representations, and LAMMPS currently includes hundreds of user-
defined force-fields and features. This poses a challenge, since there is no universal file format
for characterizing how these particles should move in a coarse-grained simulation. Future

coarse-grained model builders are likely to create their own interactions, and it is not possible to
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anticipate what their file syntax will be. The agnostic design of moltemplate fills this need,
generating the text files needed for diverse current and future methods. Moltemplate currently
prepares files that work with the vast number of force field styles that LAMMPS currently
supports as well as diverse exotic molecular models. More importantly, moltemplate will likely

be able to generate the kinds of files that users invent in the future.

Reproducibility. It has been estimated that 75%-90% of biomedical research is not
reproducible [40]. However, simulation science is comparatively verifiable and reproducible.

The state of the field of coarse-grained modeling is still quite experimental. In the most popular
and well-studied applications, such as the MARTINI model, this ideal of reproducibility is
achieved, however, for new methods, developers often are required to build code from scratch
to explore hypotheses, and the resultant code is often domain-specific and not written for
general use or extensibility. The LT file format used by moltemplate provides a way for scientists
to design and share a general class of particle-based coarse-grained models with their peers for
verification. Moltemplate includes approximately 50 examples that can be used as templates
and modified to create new coarse-grained models. In this way, moltemplate accelerates the
pace that scientists can innovate by taking someone's model, modifying it, and creating a new
model to address a different question, while at the same time, reproducibly documenting the

new methods.

Future Directions. LAMMPS currently has the ability to create and destroy bonds during a
simulation and modify particle types [24], although the file format is complex and difficult to
master. We are currently developing a user-friendly method to control these simulations using
only a few lines of moltemplate code (https://github.com/jewettaij/lammps_mca_examples). This
will make it possible to simulate “active matter” processes in the cell such as replication,

transcription and translation, enzymatic reactions, cell division machinery, cytoskeletal

12



dynamics, trafficking, cell signaling, and many others. A Python API is also being developed
allowing future moltemplate users to build molecules using Python syntax which is independent

of LAMMPS whenever LAMMPS-specific features are not being used.

Code availability

Moltemplate (available at http://moltemplate.orqg) is free open-source software. It is distributed

under the MIT and PSF licenses. Moltemplate uses modern tools for public collaborative
development and has many contributors. Users contribute suggestions, bug-reports, code,
force-fields, examples, and documentation using GitHub. TravisCl is used for continuous-

integration.
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FIGURES

Figure 1. Coarse-grained physics-based models of chromosomes and organelles.

a) Coarse-grained DNA represented with three particles every 42 bp, including a dummy
particle to represent the local superhelical state. A rotating motor (white) applies a constant
torque to 4 particles. 219 lines of text files were required to implement this example including
moltemplate files, tabulated potentials, minimization and run protocols. b) Predicted
conformation of the entire genome of Caulobacter crescentus (4Mbp) in the absence of DNA-
binding proteins, created by relaxing, twisting, and compressing a circular polymer that was
originally stretched while confined in a tube of radius 320nm. Bottle-brush-like supercoils form
as a result of maintaining the polymer at constant torsional tension. This example was
implemented using 397 lines of text. ¢) Detail of a large, highly-branched plectonemic supercoil
(10kbp). d)-e) Simulating the formation of a lipid bilayer using the MARTINI force field. This
example contains 300 lipids, 6000 waters, and requires 220 lines of text. f) A liposome with
protein inclusions containing 120 proteins, 65000 lipids, and implemented with 544 lines of text
(including PACKMOL files). PACKMOL was used to randomize the molecular positions, and
moltemplate was used to assemble the LAMMPS simulation files. Files for these examples can

be downloaded at http://doi.org/10.5281/zen0d0.4392267. Systems visualized using VMD and

TopoTools.
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wn 113 0.3717 2.0681 1.625
a /" eropank { e £ 212 1.6250 1.1819 1.625
write("Data Atoms") { S 313 2.8783 2.0681 1.625
“$atom:cl $mol:m @atom:CH3I -1.253370.4431 @ o 4 23 0.3717 2.0681 11.375
‘$atom:c2 $mol:m @atom:CHZ 0.0000 -0.4431 522 1.6250 1.1819 11.375
{$atom:c3 $mol:m @atom:CH3 1,2533 0.4431 E 1623 2.8783 2.0681 11.375
" 3*[1719(,",!3@#3,,39"“") { Q 11919 1791 1 35.75 35.75 32.5
-~ i$bond:bl @bond:CC $atom:cl $atom:c2 11920 1792 1 35.75 35.75 35.75 . .
g {$bond:b2 @bond:CC $atom:c2 $atom:c3 | V ‘..g
}
8 write(*Data Angles") { Bl s
0 {$angle:a @angle:CCC $atom:cl $atom:c2 Satom:c3! m
= }
o write once("system.in.settings") { iE .
fpair coeff @atom:CH2 @atom:CH2 1j/cut 0.118 3.905 ég 1127 1 62 63
ipair coeff @atom:CH3 @atom:CH3 1j/cut 0.175 3.905
‘bond_coeff  @hond:CC harmonic 260.0 1.526 | 0
iangle_coeff @angle:CCC harmonic 63.0 112.4 iE
e o
1 c
< 64 17196 191 192
b [ water { S system.in.settings
write("Data Atoms") { T
{satom:mw Smol:w @atom:iW 0.0 0.0 6.0 | 0 Q  pair coeff 22 1j/cut 8.118 3.905
-~ } ipair_coeff 3 3 1j/cut 0.175 3.905
:: w[iﬁgfgpggﬁ"params_sw.txt") { §bond coeff 1 harmonic 260.0 1.526
Q mW mW mW 6.189 2.3925 1.8 23.15 1.2 | ‘angle coeff 2 harmonic 63.0 112.4 i
o~ 1-0.333333 7.0495562 0.602224558 4 0 0 | §pair coeff * * sw params sw.txt mW NULL NULL
g } ipair coeft 172 1j/cut 8.17 3.5 |
write once("system.in.settings") { ipair_coeff 1 3 1j/cut 0.17 3.5
ErT o
}jpalr_cggff” sw params_sw.txt mW NULL NULL: paramsisw.txt
¥ ‘mW mwW mW 6.189 2.3925 1.8 23.15 1.2
1-0.333333 7.0495562 ©.602224558 4 0 0 |
c import "water.lt" #(defines "Water") o | §
propanes= new Propane [4].move(9.75,0,0) ! 7 ” .
- [4].move(0,9.75,0) b g~ run.in .
= [4].move(0,0,9.75) 7 | ¥ T —
S waters= new Water [12].move(3.25,0.0,0.0) y « [units real # specify unit system
b [12].move(0.0,3.25,0.0) ] ? atom style mole;ular # specify atgm atFrlbutes
] [12].move(0.0,0.0,3.25) | “ |bond_style hybr}d harmon}c #use spr;ng-l}ke bonds
gl propanes[*][*] [*].move(1.625,1.625,1.625) angle_style hybr}d harmon}c #use spring-like angles
n write once("system.in.settings") { palrfstyle” hybrid ﬁw 1j/cut 11:0 #us? SW ﬁnd Ll
[pair Coetf @atom:Water/MW @atom:Propane/CH2 1§7¢ut 071773 5, read data "system.data®  # contains all "Data” text
‘pair coeff @atom:Water/MW @atom:Propane/CH3 1lj/cut 8.17 3.5/ include "sytem.in.settings" # force field parameters
} ' mass * 18.0 # set all masses to 18
minimize 1.0e-5 1.0e-7 100000 400000 #(reduce overlap)
timestep 2.0
d fix 1 all nvt temp 277 277 200.0 #(temperature=277K)

run 2000000

Figure 2. Files needed prepare and run a LAMMPS simulation with moltemplate

a) The “propane.lt” file contains the definition of a coarse-grained “Propane” molecule containing

3 particles, 2 bonds, and one angular spring. b) A similar file defining a coarse-grained “Water”

molecule includes a text block (“params_sw.txt”) describing parameters for its more complicated

(many-body) force-field. ¢) These molecule objects can be used as building blocks to create text

files describing more complex systems using the “new” command (for example a water-

hydrocarbon mixture containing 64 Propanes and 1728 WatMWs, inset). Text enclosed in each

“write(FILENAME)” statement will be appended to the generated file (eg. “Data Bonds”) each

time a copy of the molecule is created, and the counter variables ($atom:, $bond:, $angle:) will
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be replaced by integers and incremented. However, type variables beginning with @ are not
incremented. Interactions between water and propane are also specified. Generated files are
shown in e), with rectangles enclosing the portion of text generated by each molecule copy. d)
Command used to run moltemplate. The optional “-atomstyle” argument customizes particle
attributes. e) Files generated by moltemplate. Note: Coordinates are modified by the move()
commands in part c). “Data” files are concatenated together by moltemplate and renamed
“system.data”. f) Command used to run LAMMPS g) The “run.in” file contains links to these

generated files as well as LAMMPS-specific run-time settings.
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Figure 3. Integrated pipeline for building models of entire bacterial cells.

3D structures for the ~500 types of proteins in a mycoplasma proteome are curated in the online
tool Mesoscope and used to create interactive draft models in cellPACKgpu. Moltemplate, with
the utility program cellPack2moltemplate, then converts molecular location and orientation
information into a LAMMPS input file, to perform a coarse-grained simulation that eliminates
steric clashes and generates more realistic 3D models. Final models are interactively explored

with cellPACKgpu. Molecules with steric clashes are shown in red in both model images.
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