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ARTICLE INFO ABSTRACT

Keywords: Microclimatic refugia (microrefugia) are ecologically important for the conservation of biodiversity under
Forest management climate change. Year-to-year climatic consistency is an important requirement for most types of microrefugia,
H. J. Andrews but refugia are often modeled using only a few years of data. Here, we used a decade-long (2009-2018) fine-
Long-term research . . . .

Microclimate scale, undercanopy microclimate temperature dataset from a landscape in the Cascades Mountains of Oregon,
Microtopography USA to assess the inter-annual temporal consistency of microrefugia. We used boosted regression tree micro-
Old-growth climate models to quantify overall consistency and map locations of stable microrefugia for six biologically

relevant annual temperature metrics. Microclimate temperature offsets (i.e., microclimate minus macroclimate
temperatures) were remarkably stable over time, with R? ranging from 0.69 for minimum temperature during
spring to 0.90 for mean temperature during spring. We observed a high degree of coupling; that is, broad-scale
climatic variation, as reflected in free-air temperature, has a major effect on microclimate temperatures —
particularly in hot years — with the potential to overwhelm thermal buffering effects. In spite of this, we iden-
tified potential microrefugia locations throughout our study area, especially with respect to spring minimum and
mean temperatures. To maintain microrefugia in a rapidly changing climate, conservation of old-growth and
other structurally complex forest habitat is critical, especially at sites with high elevation relative to their

surroundings.

1. Introduction

While habitat loss and overexploitation are currently the dominant
threats to much of Earth’s biodiversity, climate change may greatly
elevate extinction risk for many species (Maclean & Wilson 2011).
Species distribution and bioclimatic envelope models, which link the
geographic distributions of species to environmental and climatic
covariates, can be used to predict the effects of climate change on species
and as a basis for effective conservation planning (Elith & Leathwick
2009; Franklin 2013). However, such models can be sensitive to the
spatial resolution(s) considered (Pearson & Dawson 2003; Seo et al.
2008) and often fail to account for microclimatic refugia (“micro-
refugia”) — spatially restricted habitats with favorable microclimate
conditions that support species populations in otherwise inhospitable
regions (Gavin et al. 2014; De Frenne et al. 2021). Commonly used
climatic datasets for species distribution modeling, especially in global
studies, have low resolution (often > 1 km) compared to the scales at
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which many organisms interact with their environments (Potter et al.
2013; Lenoir et al. 2017; Lembrechts et al. 2019). This mismatch mo-
tivates the analysis and modeling of microclimate at much finer scales,
with grain sizes ideally approaching 1 to 10 times the length of the or-
ganisms of interest (Potter et al. 2013; De Frenne et al. 2019).
Microrefugia, which can provide small areas of habitat that would
likely be overlooked when using coarse-scale climatic grids, are
important to the biology and persistence of species (Ashcroft 2010).
While microrefugia have been defined in multiple ways, the term was
first used to reflect the possibility that some relic vegetation species
could persist at favorable sites during dry periods in the Pleistocene
(Rull et al. 1988). Thus, the temporal aspect of microrefugia is funda-
mental to their original formulation. Moreover, temporal consistency of
microrefugia locations as characterized by similar seasonal temperature
patterns (that match with species habitat requirements) among years is
especially relevant when forecasting species’ responses to climate
change. Unfortunately, collecting temperature or other data suitable for
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microclimate modeling can be expensive, labor intensive, and requires
careful validation. As a consequence, the temporal consistency of
microrefugia locations is often treated more as an assumption of ana-
lyses, rather than as an essential component of identifying and modeling
microrefugia (but see Von Arx et al. 2013). For example, a recent
meta-analysis of forest microclimate temperature buffering (De Frenne
et al. 2019) identified 74 relevant studies, but just one of these studies
used more than 1,095 days (three years) of data (Renaud et al. 2011).

Temporal consistency of microrefugia is likely critical to the survival
of species’ populations, particularly for longer-lived, low-vagility spe-
cies. Taxa generally fitting this profile include lichens, mosses, long-
lived low dispersing herbaceous plants, tree seedlings, forest terrestrial
amphibians, and many species of scorpions (Bryson Jr et al. 2013;
Zellweger et al. 2020). Other species may also have restricted mobility.
For example, red tree voles (Arborimus longicaudus) are arboreal rodents
with maximum dispersal distance of ~75 meters (Swingle 2005; Linnell
& Lesmeister 2019). Even species that travel long distances can be
heavily reliant on microrefugia — depending on their phenology. For
example, migratory birds require temporally consistent microrefugia in
order for their movements to match the availability of resources in
critical periods of their life cycle, with mismatches being linked to
negative outcomes at the population level (Jones & Cresswell 2010;
Miller-Rushing et al. 2010; Saino et al. 2010). Geographic factors may
also predict species’ dependence on temporally consistent microrefugia.
Species restricted to mountains or islands may be more reliant on
microrefugia because they have reduced potential for range shifts (Elsen
& Tingley 2015; Graae et al. 2018). Where high-severity disturbances
are rare, animal species may be less mobile, and consequently more
reliant on stable microrefugia (Betts et al. 2019). In summary, life his-
tory traits, ecological community composition and biotic environment,
and geography all interact to potentially predispose metapopulations to
being dependent on temporally consistent microrefugia. Notably, spe-
cies not presently dependent on microrefugia may be so in the future
given climate and land-use change projections (Arneth et al. 2019).

Previous work has established that forest vegetation structure can
have strong influences on microclimate conditions; specifically, old-
growth forest characteristics appear to moderate temperatures during
both hot and cold periods over the short term (Frey et al. 2016). How-
ever, the capacity of forests to buffer plant and animal populations from
the negative effects of climate change depends on the temporal consis-
tency of this thermal effect during periods of climatic extremes. Thus,
temporal consistency of microrefugia is most important when macro-
climate conditions are at the extremes of their distribution. Importantly,
if forest structure itself can predict temporally reliable refugia, then
conservation and management prescriptions can indirectly influence
species responses to climate change (Betts et al. 2018).

Here, we conducted a spatiotemporal analysis of microclimate and
microrefugia using a decade-long temperature dataset from the H. J.
Andrews Experimental Forest (HJA) in the Willamette National Forest of
Oregon, United States (Johnson & Frey 2019). Our objectives were (1) to
quantify the temporal consistency in thermal characteristics in a
mountain landscape, thereby identifying microrefugia and (2) to
determine the biotic and abiotic drivers of these putative thermal
microrefugia. We hypothesized that the temporal consistency of sites’
thermal characteristics would depend on the extent to which they are
governed by factors that are relatively stable across seasons and years
(vegetation structure and topographic shading) versus the dynamics of
local weather patterns and airflows, which vary on daily and seasonal as
well as inter-annual time scales.

2. Materials and methods
2.1. Terminology

Here, we provide definitions of the key concepts referenced in our
analysis. All definitions except the ones related to microrefugia are
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adapted from those presented in De Frenne et al. (2021). Macroclimate
temperatures are free-air temperatures associated with open conditions
whereas (forest) microclimate temperatures are undercanopy tem-
peratures. Temperature offsets refer to the differences between
microclimate and macroclimate temperatures (microclimate minus
macroclimate), whereas unadjusted temperatures refer to actual
microclimate temperatures (see Supplementary Methods). When
considering microclimate versus macroclimate temperatures, we
distinguish between three possibilities for p, the regression slope of a
model in which macroclimate temperatures are used to predict micro-
climate temperatures: coupling (p=1), decoupling ($=0), and buff-
ering (0 < p < 1) (De Frenne et al. 2021). A microrefugium (at a
specific time) is an area with suitable temperatures and/or temperature
offsets for a given organism. Finally, temporally consistent micro-
refugia are microrefugia with stable locations across time.

These definitions are intended to clarify our analysis and to align
with standard usage, where appropriate (De Frenne et al. 2021). Ulti-
mately, operationalized definitions, which may require specifying
spatial and/or temporal scales (e.g., with regard to microrefugia or
microclimate), are almost certainly context dependent. That is, they can
vary depending on the focal organism(s) being considered, research
questions being studied, processes involved, and so on. For example,
microrefugia that are not temporally consistent in terms of their loca-
tions over time, but rather shift around on a landscape, may be adequate
for some highly mobile organisms. While we acknowledge such organ-
ism dependence (Biitikofer et al. 2020), it is beyond the scope of our
analysis (described below) to fully consider. Here, we consider micro-
refugia with respect to (1) unadjusted temperatures, (2) offset temper-
atures, and (3) their combination (our primary focus) because each may
be relevant to different species.

2.2. Study area

Our study area (HJA) is a 6,400 ha experimental forest located in
western Oregon, USA (44.23° N, 122.188° W). Elevation ranges from
410-1630 m, and the forest is dominated by Douglas-fir (Pseudotsuga
mengziessii) and western hemlock (Tsuga heterophylla) at lower elevations
and Pacific silver fir (Abies amabilis) at higher elevations. Variation in
disturbance history, including fire, landslides, wind storms, and timber
harvesting, produce a mosaic of forest ages, from 30-700 years. Steep,
complex topography is common. At the primary meteorological station
(elevation: 426 m), mean monthly temperatures range from 0.6°C in
January to 17.8°C in July and annual precipitation averages 2.30 m
(Bierlmaler & McKee 1989). Precipitation is highly seasonal, leading to a
dry growing season.

2.3. Data sources and processing

We obtained fine-scale, undercanopy temperature data for the HJA
from Johnson & Frey (2019). Specifically, we used undercanopy daily
minimum, mean, and maximum temperatures between 2009 and 2018
associated with 184 sites in the HJA (Supplementary Methods,
Figure S1). As described in Frey et al. (2016), sampling locations were
selected by stratifying by forest type, elevation, and distance to roads.
We aggregated the data to the annual scale using six biologically rele-
vant temperature metrics: spring minimum, mean, and maximum tem-
perature, summer mean and maximum temperature, and winter
growing degree days (GDD) (Table S1). While there are other temper-
ature summaries that could be calculated, these six are associated with
species phenology and survival (Supplementary Methods; Miller et al.
2001; Sparks et al. 2005; Yang et al. 2017).

Because fine-scale temperatures are influenced by regional weather
patterns reflected in broad-scale, free-air (i.e., macroclimate) tempera-
tures, we obtained ~4-km resolution daily minimum and maximum
temperatures from the gridMET dataset (Abatzoglou 2013) to act as a
region-wide baseline (Figure S2). GridMET synthesizes multiple climatic
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datasets (PRISM, NLDAS-2) to accurately track temperatures and other
variables over time (Abatzoglou 2013). We averaged gridMET free-air
temperature estimates across the entire HJA for each day. As an alter-
native free-air reference temperature baseline, we also considered data
from the Vanilla Leaf Meteorological Station (VANMET)—one of the
benchmark meteorological stations in the HJA (Supplementary
Methods). These data are more accurate at the station location (since
they are obtained through direct measurement), although they may not
be as representative of the HJA as a whole. For comparison, we redid the
main parts of our analysis (detailed below) using the VANMET data for
free-air temperature (Supplementary Methods).

We used a suite of spatial predictor variables to model microclimate
temperatures with temperature metrics as described above (Table S1,
Figure S3). These predictors were selected to capture the important el-
ements of our hypothesized drivers of microclimate: vegetation, mac-
rotopography (elevation), and microtopography. These three categories
were considered because of prior evidence for (1) old-growth tempera-
ture buffering effects, (2) surface temperature lapse rates, and (3)
topographic shading and cold air pooling respectively (Minder et al.
2010; Curtis et al. 2014; Frey et al. 2016; Macek et al. 2019; Rupp et al.
2020). The vegetation and elevation variables are based on a 2008 lidar
(light detection and ranging) survey of the HJA (Spies 2019). Thus, the
vegetation variables do not reflect changes in forest structure that may
have occurred after 2008, which could be significant in some areas.
Lidar has been shown to accurately characterize both topography and
vegetation structure in forest ecosystems (Lefsky et al. 2002; Kane et al.
2010; Zald et al. 2016). The microtopography variables — slope, aspect,
topographic position index (TPI), and topographic convergence
(wetness) index (TCI) — were all calculated directly from elevation.

2.4. Statistical modeling

Because relationships between microclimate temperature metrics
and vegetation and topography predictor variables can be complex and
non-linear, we used boosted regression trees (BRTs) as our primary tool
for statistical modeling (Elith et al. 2008). Briefly, BRTs use a sequence
of regression (decision) trees to model a response variable where each
successive tree predicts the residuals from the previous tree, which helps
to increase the diversity of trees in the ensemble, thus potentially
improving predictive performance (Elith et al. 2008; Hastie et al. 2009).
BRTs are well-suited to large datasets and may outperform other
methods, including random forests, neural networks, and kriging in
temperature modeling (Appelhans et al. 2015). For our analysis, we used
the ‘LightGBM’ high performance BRT framework (Ke et al. 2017). We
varied the predictor variable sets, spatial extents (for smoothing), model
loss functions, and other parameters to address different research
questions as described in this section.

We first modeled microclimatic conditions across years using the full
suite of predictor variables summarized at multiple extents (Table S1,
Figure S3, Supplementary Methods). We calculated the mean value of
each predictor at radii 10 m, 20 m, ..., 100 m for vegetation variables,
and by resampling elevation at 25 m, 100 m, 250 m, and 500 m before
calculating microtopographic variables (elevation as a predictor was not
averaged). In this context, we use spatial “extent” to refer to the area
associated with smoothing or coarsening (rather than the extent of the
entire study area); for example, an extent of 100 m means that infor-
mation within roughly 100 m of each point was used in the associated
calculation (Holland et al. 2004). To assess accuracy, we used
prediction-based R?> and mean absolute error (MAE) with
cross-validation based on blocking by year, which accounts for simi-
larity within years (Roberts et al. 2017). This accuracy assessment
quantifies temporal consistency across years in that high model accuracy
indicates that the relationships between temperature metrics and land-
scape drivers are similar regardless of inter-annual climatic variation.
We used the associated plots of observed versus predicted values to
provide insight into the degree of microclimate-macroclimate coupling;
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specifically, strong coupling would be evidenced by additive shifts in
microclimate temperatures from year to year, paralleling shifts in
macroclimate temperatures. Additionally, we calculated MAE for each
year separately to determine if temperatures in certain years were
especially difficult to predict using data from the other years. We used
two versions of the response variables: (1) the “unadjusted” under-
canopy annual temperature summaries and (2) the associated temper-
ature offsets (undercanopy minus free-air) annual temperature
summaries (De Frenne et al. 2019). We used the latter approach to
quantify the effect of adjusting for year-to-year changes in broad-scale
temperatures. This approach provides insight into how both
broad-scale climatic patterns and local-scale spatial variables together
drive microclimate temperatures. To further assess temporal consis-
tency, we computed Spearman’s rank correlations between years. In this
case, we only considered unadjusted temperatures because rank corre-
lation is less sensitive to year-to-year variation.

Predicting temperatures in one year using data from other years does
not directly address the temporal consistency aspect of microrefugia,
although it is implicitly tested. We therefore used BRTs with quantile
loss functions to model temperature extremes (Cade & Noon 2003). The
quantile loss function, defined as p,(u) = ufr — I(u< 0)], has the prop-
erty that, for a random variable Y and constant u, the expected value of
Y — u is minimized when u equals the t-quantile of Y (Koenker 2004).
This approach therefore allowed us to directly model extreme quantiles
of the response variables, thereby identifying areas where the most
extreme temperatures are moderated. Although extreme cold or hot
temperatures can be problematic for some species, we focused on the hot
upper-tail (90% quantile of the response distribution) for all of the
temperature metrics. Thermal refugia are therefore the locations across
the entire landscape that exhibit the most dampened temperature ex-
tremes (i.e., where the 90% quantile of the response variable is relatively
low in comparison to the rest of the landscape). This reflects temporal
consistency (i.e., annual temperatures can be predicted well using fac-
tors that vary little between years) in the sense that such locations are
more likely to be consistently habitable by temperature-sensitive or-
ganisms (Fig. 1). In particular, when temperatures are hottest across the
landscape as a whole, the relatively cold places (in unadjusted terms
and/or relative to macroclimate) are most important as potential
microrefugia. In contrast, directly modeling variability instead (e.g.,
standard deviations) could be used to identify areas with temporally
consistent microclimatic conditions. However, these areas are not
necessarily microrefugia since they can be, for example, too hot for or-
ganisms to persist. Modeling the upper-tails of the response variable
distributions avoids this problem because they incorporate information
about both the mean (which areas are cool on average?) and the stan-
dard deviation (which areas have consistent temperatures?) (Figure S4).

The focus of our analysis is on temporal consistency of microclimatic
refugia, which we note is different from temporal consistency of micro-
climate. Microrefugia are organism-dependent because they are defined
in terms of habitat, which is itself an organism-dependent concept (Betts
et al. 2014). Thus, a small area that is consistently hot would have a
temporally consistent (thermal) microclimate, but would not be a
microrefugium for species requiring cooler temperatures. Conversely,
sites where temperatures are low but more variable could function as
microrefugia for certain organisms (Fig. 1). Because our interest is in
modeling microrefugia, we used quantile regression to identify areas
that are consistently cool (in both absolute terms and relative to free-air
conditions) from year to year and thus likely to function as microrefugia
for many species, especially in the face of climate change.

For our main quantile regression models, we used the full set of
predictors (Table S1). We quantified overall model performance using
the pseudo-R? (Koenker & Machado 1999). We mapped predictions (i.e.,
predicted 90% quantile values for each 5-m pixel in the HJA as a
function of local vegetation and topographic characteristics) for extreme
values of the temperature metrics (both unadjusted values and offsets).
This provides some information about where microrefugia may be
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D Stable microclimate [

Stable microrefugium

Frequency

Maximum summer temperature

Fig. 1. Illustration of the difference between stability of microclimate versus
stability of microrefugia. Hypothetical distributions of an example annual sta-
tistic at two sites are shown. The right distribution is associated with greater
microclimatic stability with respect to maximum summer temperature because
it has lower variability. In contrast, for a species that requires maximum
summer temperatures below the vertical line, only the left distribution is
characteristic of a stable microrefugium. Importantly, these definitions are both
statistic and species dependent.

located spatially, which can be of use to future studies (e.g., a study of
patterns of mortality rates or persistence of temperature-sensitive spe-
cies). To further facilitate spatial identification of microrefugia, we
calculated a “microrefugial suitability index” for each temperature
metric, which we defined as:

M =1 — max{prop,, prop,}

where prop; and prop, represent the proportions of (90% quantile)
predicted values with lower unadjusted temperatures and temperature
offsets respectively. Thus, M takes on high values (indicating high po-
tential suitability) when both unadjusted temperatures are low and
negative offsets relative to free-air are large (in the predicted 90%
quantiles; see Supplementary Methods). Although unadjusted and offset
temperatures may be individually useful when identifying microrefugia,
this hybrid approach combines two important criteria into a single
index.

To quantify the relative importance of each temperature metric
predictor (and their summaries at multiple extents; Table S1, Supple-
mentary Methods), we used the ‘gain’ metric, which measures the in-
crease in model performance associated with each variable. We
summarized relative gain in two ways: (1) total gain summed across
variables within groups, calculated separately for each predictor spatial
extent, and (2) gain associated with each variable summed across spatial
extents. Together, these summaries show which groups of variables are
particularly important for each temperature metric, and how this
importance varies with respect to spatial extent. To determine how gain
varies with respect to quantile, we repeated the variable-specific gain
calculations separately for quantiles ranging from 10% to 80% in in-
crements of 10%, although our main results are for the 90% quantile
only.

We used accumulated local effects (ALE) plots to assess relationships
between each predictor and each temperature metric response (both
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unadjusted responses and offsets) (Apley 2018). To estimate the effect of
an individual predictor, it is necessary to specify the distribution of the
other covariates (because of interactions). For ALE plots, the estimated
conditional distribution of the other covariates is used, which improves
interpretability. To further facilitate interpretability, we used principal
components analysis (PCA) on the vegetation predictor variables
(Table S1) to calculate two primary principal components that
adequately captured stand-structure characteristics — particularly, a
gradient in forest complexity (Schulze & Lienkaemper 2015; Frey et al.
2016). As a sensitivity analysis, we used only data from the four most
complete years (2012-2015), omitting sites that did not have data for all
four years. This helps to mitigate issues with some sites potentially
lacking data in unusual years.

3. Results

Inter-annual variation in gridMET (regional baseline) temperatures
was often on the order of several degrees Celsius (Figure S2). VANMET
(meteorological baseline) daily minimum and maximum temperatures
were generally comparable to gridMET estimates, although VANMET
daily maximum temperature estimates tended to be consistently lower
than gridMET ones (Figure S2). This effect could be due to the location
of VANMET at an elevation of 1,275 meters (since the HJA has a sig-
nificant elevational gradient and mean elevation of roughly 1,000 me-
ters) or possibly due to small or large scale buffering effects associated
with forested land (the primary land cover type in the HJA). GridMET
and VANMET temperature metrics (e.g., winter growing degree days)
showed similar patterns as evidenced by associated slope parameter
estimates (predicting VANMET from gridMET) being near 1 in most
cases, although gridMET temperatures were consistently higher
(Figure S5). Summer maximum temperature was a notable exception to
this pattern, exhibiting high year-to-year variation in temperature oft-
sets (Figure S5).

3.1. Model performance

Microclimate temperature offset models were highly predictive
(despite substantial inter-annual variation in the response variables;
Figure S6): R? based on cross-validation by year ranged from 0.69 for
spring minimum temperature to 0.90 for spring mean temperature
(Fig. 2). Performance was mixed for the unadjusted temperature models
(i.e., those that did not account for year-to-year variation in free-air
temperatures) (Fig. 2). R> and MAE by year were consistent with these
overall patterns, both tending to indicate better performance when
modeling temperature offsets (Figure S7). However, performance was
often poor in 2009 and 2010, when relatively few sites had data loggers
(Figures S1, S7). Quantile regression models for the unadjusted tem-
perature metrics (with the full suite of predictors; Table S1) had pseudo-
R? values ranging from 0.29 (summer maximum temperature) to 0.76
(winter GDD).

3.2. Temporal consistency in thermal characteristics

The cross-validated results show that temperature offsets in a given
year can be effectively predicted using data from other years (Fig. 2).
That is, relatively cold spots (putative refugia) tended to be in consistent
locations year to year since they could be identified in one year using
data from the other years (provided the data logger locations cover the
entire gradient of conditions in the HJA). This provides strong evidence
for temporal consistency in our microclimate temperature response
variables. This was further supported by the remarkably high Spear-
man’s (rank) correlation values between cross-validated unadjusted
predictions in different years. All 450 correlations (each associated with
a different variable and pair of years), were greater than 0.93
(Figure S8). The mean of the correlations was 0.99 and the median was
1.00. Among the response variables, summer maximum temperature
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Fig. 2. Observed and predicted temperature metric values using cross-validation by year. The predicted values for each year were obtained using models fit to all
other years of data (to guard against overfitting). For each temperature metric (Table S1), the left plot is based on undercanopy temperatures, while the right plot is
for temperature offsets (differences between corresponding free-air and undercanopy temperature metric values). Taking the difference accounts for some years being
overall hotter or colder than others (Figure S2), which improves the predictive performance of vegetation and topographic variables as indicated by mean absolute

error (Figure S7).

had the highest mean correlation (1.00) and winter GDD had the lowest
mean correlation (0.98).

3.3. Predictors of microclimatic extremes and potential microrefugia

The vegetation variables collectively were strongly predictive of
microclimate temperature extremes, with combined relative influences
ranging from 46.4% (spring minimum temperature) to 52.2% (winter
GDD) (Fig. 3). Although variable relative influence estimates indicate
that site-scale temperatures are dependent on elevation, micro-
topography, and vegetation structure, there was substantial variability
in covariate contributions across temperature metrics (Fig. 3). Elevation
was most predictive of spring mean temperature (11.8%) and spring
minimum temperature (7.36%). Microtopography variables collectively
had relatively consistent influence, ranging from 41.4% for spring mean
temperature to 47.7% for summer maximum temperature (Fig. 3). In
general, elevation had the greatest relative importance at intermediate

quantiles, and less importance at extremes, which were the primary
focus of our analysis because they highlight the coldest (or hottest) areas
across time (Figure S9).

Potential microrefugia — locations with consistently low tempera-
tures and temperature offsets (i.e., large negative offsets) occurred in
many parts of the HJA, especially at higher elevations (Figs. 4, S10).
Across the entire HJA, total microrefugia area, when calculated using a
0.8 threshold for M, was smallest when temperatures were summarized
using summer maximum (4.85 km?) and winter growing degree days
(5.44 km?) and highest when spring minimum (8.08 km?) and spring
mean (8.01 kmz) were used (Fig. 4). This amounts to between 7.5%
(summer max) and 12.5% (spring min) of the HJA.

The vegetation variables were generally highly positively correlated
with each other (Figure S11). This supported our decision to focus on the
first two principal components for these variables when constructing
accumulated local effects plots. Together, the first two principal com-
ponents explained 69.7% of the total variance and were generally
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successful in separating plantation sites from mature forest or old-
growth sites (Figure S12). In particular, the first principal component
was strongly associated with the plantation to mature forest or old-
growth gradient, with scaled values greater than ~0.45 being associ-
ated with mature forest or old-growth (Figure S12).

The ALE plots show large variation in effect magnitudes and di-
rections for the elevation, microtopographic, and forest structure and
composition variables (Fig. 5). A shift from young plantations to older
undisturbed forests (represented by the first vegetation principal
component) tended to result in cooler spring and summer maximum
temperatures (Fig. 5). As expected, the effect of elevation on tempera-
tures was generally negative, even after subsetting to exclude incom-
plete data (Figure S13). Patterns were also generally similar, especially
for elevation and the first vegetation principal component, when using
the VANMET free-air temperature baseline instead of gridMET
(Figure S14). In contrast, the effects of microtopographic variables were
mixed—possibly a consequence of the extent considered (10 m)—
although topographic convergence index frequently had a negative ef-
fect on temperatures.

3.4. Spatial extent

Elevation, microtopography, and vegetation all helped to explain
microclimate temperatures (Figs. 4, S8). This shows that the importance
of these variable groups holds over longer time scales. The robustness of
these results may be partly attributable to the use of multi-extent
modeling, with spatial extents of covariates ranging from 5 to 500 me-
ters. The relative influence of these variable groups was frequently
extent-dependent. Together, the vegetation-related variables declined in
relative influence with increasing extent (Figure S15). In contrast, the
microtopographic variables tended to maintain their relative influence
across spatial extents, even out to 500 meters (Figure S15), although the
associated relationships (i.e., effects on temperatures) likely depended
on the extent considered.

4. Discussion

Our model R? and MAE results show that spatial patterns in tem-
peratures in the HJA tend to be consistent and predictable over the long
term - a critical criterion for thermal refugia (Figs. 2, S7). The fact that
temperatures for a given location (i.e., data logger position) in each year
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Fig. 4. Predicted microrefugia locations in the HJA for each temperature metric using data from 2009 to 2018 (Table S1). Predictions are based on a “microrefugial
suitability” index which has high values when both the temperature metrics themselves (e.g., winter growing degree days) and the associated temperature offsets
(relative to free-air) have low values. Blue regions (top two rows) show locations of microrefugia based on a 0.8 threshold. For context, maps of elevation and forest
structure gradient are shown in the bottom row. The forest structure gradient ranges from plantations (outlined in black) to mature forest and old-growth, and is
based on principal component analysis (with values linearly rescaled to range from O to 1 at data logger sites). Predicted temperature and temperature offset maps are

also available (Fig. S10).

can be predicted well given data from the other years strongly supports
this expectation. Moreover, this provides evidence for our hypothesis
that the consistency of sites’ thermal characteristics is largely driven by
relatively stable factors (i.e., topography and, to a lesser extent, vege-
tation). This is especially true when we considered temperature offsets
(i.e., controlled for year-to-year changes in free-air temperature), an
adjustment that had a modest impact on the locations of cool spots
(Figure S10). The high predictability of microclimate temperature off-
sets (Figs. 2, S16) provides evidence for microclimate coupling (additive
shifts in temperature), rather than decoupling (Lenoir et al. 2017; De
Frenne et al. 2021). That is, the magnitude of the offset remains rela-
tively stable over time despite the current macroclimate warming trend
(2009-2018; Fig. 2), thus suggesting a strong coupling between micro-
climate warming and macroclimate warming (De Frenne et al. 2021).
Thus, areas that are consistently cool relative to their surroundings still
track free-air temperatures, and can be hot in hot years; that is, although
cold areas are consistently cold, they are less so (in absolute terms) in
years when macroclimate conditions are hotter. The HJA contains a
diversity of forest types that are representative of much of the

old-growth and older plantation area throughout the Washington and
Oregon Cascades. This suggests that microrefugia are likely to be
temporally consistent at broader scales as well.

The connection between old-growth and microrefugia is particularly
important in unmanaged forests where the length of time between major
disturbances can be 500+ years, with old-growth potentially giving
species a chance to persist over the long term in the face of broad-scale
climatic events (Zellweger et al. 2020). The thermal effects of forest
structure can be dominated by year-to-year temperature variation —
which may be greater in magnitude than thermal buffering effects.
However, even when the magnitude of thermal buffering is overcome by
macroclimate warming, consistently “cold” microrefugia are still more
hospitable than anywhere else in the landscape, and thus might buy time
for species to move or adapt. In the cases of spring and summer
maximum temperatures, old-growth forest structure was associated with
cooler temperatures (relative to all vegetation present) on the order of
3-5°C (Fig. 5), often exceeding inter-annual variation in free-air tem-
perature in magnitude (Figure S2). These larger effects are comparable
to the ~5°C shifts in monthly minimum and maximum temperatures



C. Wolf et al.

Agricultural and Forest Meteorology 307 (2021) 108520

A Unadjusted

Offset (relative to free—air)

xew Bunds

0- I A

uesw Bundg

Change in average prediction

N o
1 i
T
)
1
ujw buds

»
o
3
3
®
Sj
)
x
»
c
3
3
o
3
(0]
o
=}
=
250 5i
o
01 &
o)
-250 7w
_500- T T T T T T Q
0.0 0.5 1.0 0.0 0.5 1.0
Scaled predictor
—— PC1 — Elevation Aspect (eastness) —— Convergence index
— PC2 Slope —— Aspect (northness) —— Position index

Fig. 5. Accumulated local effects (ALE) plots indicating the effects of each predictor on the extremes of different temperature metrics (90% quantile, panel A).
Predictors have been scaled so they can be plotted on the same axis. Large negative effects associated with elevation are apparent. Additionally, the first principal
component “PC 1” (Fig. S12), which spans the gradient from tree plantations (B) to old-growth (C), often has a negative effect, consistent with old-growth buffering of

microclimate temperatures. Photo credit: Matthew Betts.

linked to habitat type (grassland, heathland, or deciduous woodland) in
northern England (Suggitt et al. 2011) and to reductions in microclimate
maximum temperatures of up to 3.3°C associated with forest ecosystems
in Switzerland (Von Arx et al. 2013). They are also comparable to the
Intergovernmental Panel on Climate Change’s projected surface tem-
perature change of 3.7°C (likely range: 2.6°C to 4.8°C) for 2081-2100
under the RCP8.5 high emission scenario (Stocker et al. 2013). If man-
agers wish to maintain landscapes that incorporate some less climati-
cally stressful habitats for species of interest, conserving old-growth
forests may remain a priority. Such management could prioritize sites
where elevation and microtopographic characteristics also favor the
occurrence of microrefugia (Figs. 3, S3). Importantly, the bulk of PC1’s

negative effect was realized prior to reaching a value of 0.45, the value
associated with the transition to old-growth (Figure S12). More work is
needed to identify the specific forest structure characteristics shaping
understory microclimate; knowledge about such characteristics could
form the basis for silvicultural prescriptions aiding the development of
microrefugia.

Our results indicate that vegetation, particularly forest structure,
effectively reduces maximum temperatures, which can be an important
driver of species distributions at the landscape scale (Macek et al. 2019),
but has weaker effects on minimum and mean temperatures. This is
generally consistent with the results of prior forest microclimate studies
(e.g., Zellweger et al. 2019) and with the overall pattern of microclimate
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buffering derived using a global meta-analysis, which estimated the
average forest buffering effect relative to macroclimate temperatures
was 1.7°C, 4.1°C, and -1.1°C for mean, maximum, and minimum tem-
peratures respectively (De Frenne et al. 2019). However, our results for
mean temperatures were more mixed (“PC 1” in Fig. 5). This discrepancy
may be due to fine-scale variation in vegetation near the data loggers or
to our focus on undercanopy temperatures in general, rather than forest
versus non-forest temperatures (although sites on the upper left of the
PC1-PC2 plot correspond to nearly open conditions). The observed
patterns in summer maximum temperatures may be important for forest
wildfire behavior and management. Recent evidence that high severity
fires may be less likely in some types of older forests (Zald & Dunn 2018;
Meigs et al. 2020) could, in part, be explained by the capacity of these
old forests to temper extreme temperatures. This implies that the prev-
alence of old-growth forest could help determine forest landscape
resistance to high severity fire in the western Cascade Mountains.

As expected, the relative influence and effects of microtopographic
variables varied greatly depending on the temperature metric consid-
ered (Figs. 3, 5). This is a consequence of the dynamic nature of the
interaction between topography and local airflows (Daly et al. 2010).
Among drivers of microclimate variability, some effects of topography
(e.g., cold air flows and pooling) tend to be more transient than those of
old-growth vegetation. Ultimately, the locations and stability of micro-
refugia are dependent on complex interactions between predictors that
vary at daily, seasonal, annual, and likely even centennial, and millen-
nial (for topography) temporal scales.

4.1. Future work

While our analysis shows that certain spots have been consistently
cool relative to free-air temperatures and other locations within the
same watershed over the last decade (Fig. 4), in the future, it will be
important to understand the varying and interacting drivers of micro-
refugia consistency in order to accurately quantify the medium- and
long-term stability of microrefugia. An important step toward improving
assessments of microrefugia is to incorporate other response variables,
such as measurements related to water balance, snow cover, snow depth,
and snow duration (Lenoir et al. 2017; McLaughlin et al. 2017; Davis
et al. 2019). Long-term temperature patterns under old-growth canopy
in the HJA suggest that vegetation and topography combine to influence
local air flow and understory temperature dynamics (Rupp et al. 2020)
and that cold air pooling driven by local topography can lead to
decoupling from free-air temperatures (Daly et al. 2010). These findings
provide some potential mechanisms for buffering to climate change via
combined vegetation and topographic influences, which can be helpful
in refining our understanding of the strength and stability of micro-
refugia in forested landscapes. This understanding will ideally be based
on mechanistic models — for example, simulating the flow of air across
the landscape and directly modeling shading and solar radiation (Ogée
et al. 2003; Bennie et al. 2008; Dobrowski et al. 2009; Maclean et al.
2019). Such mechanistic or process-based models may offer greater
predictive power than purely statistical methods when generalizing to
novel circumstances, including anthropogenic climate change (Cud-
dington et al. 2013). This is supported by the promising results shown by
recently developed, global microclimate models (e.g., Kearney et al.
2020; Maclean, 2020), although these models do not incorporate the
mechanistic approach of Ogée et al. (2003) and may have limited ability
to predict forest microclimate (undercanopy) conditions [but see
(Maclean and Klinges, 2021)]. Importantly, long-term studies, such as
the one described here, offer an ideal data source for developing and
validating such mechanistic models, which could then be linked to
biodiversity responses (Supplementary Discussion).

4.2. Conclusion

For microrefugia to be effective in a changing climate, they must be
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temporally consistent. Generalizing our results over the last decade to
long-term future climate conditions is difficult, but important for setting
conservation priorities at the landscape-scale and broader scale. The
strong elevational gradient in temperatures means that high-elevation
sites are likely to be doubly important: first, they may function as
microrefugia for species populations at lower elevations, and second,
high-elevation sites with high temporal consistency due to factors such
as topographic shading and vegetation structure are vital because spe-
cies that are already dependent on high-elevation microrefugia may
have little potential for further range shifts. Because vegetation is also
predictive of microrefugia locations, when managing for and protecting
microrefugia, old-growth in high elevation and high topographic posi-
tion index areas should be conserved when possible (Morelli et al. 2016).
Conversely, mid elevation old growth stands with low topographic po-
sition might be equally important in managing species responses to
climate change because they have the added benefit of being some of the
locations that have served as fire refugia over the last 500 years, in
contrast to a lot of the higher elevation forests in the HJA. While our
analysis deals with the effects of vegetation on microclimate, microcli-
matic conditions associated with forest can, in turn, promote tree
recruitment (Badano et al. 2015). Thus, positive feedback loops wherein
decreases in forest structural complexity and increases in undercanopy
temperatures reinforce each other can lead to undesirable alternative
stable states, providing additional motivation to conserve old-growth
and mature forest (Schroder et al. 2005).

Another management consideration is that minimum, maximum,
and mean temperatures may be differentially affected by both climate
change and the presence of old-growth (Dobrowski 2011; De Frenne
etal. 2019; Zellweger et al. 2019). Thus, a holistic approach is needed to
achieve conservation and other management goals. The availability and
persistence of microrefugia must be considered alongside potential
benefits of old-growth forests to biodiversity, including increased
habitat diversity and vegetation structure (Mladenoff et al. 1993). Such
an approach could consider the effects of microclimate on species’
populations more generally, accounting for inter-annual variability,
including among less extreme years. For example, relatively short-term
variation in climate can help or hinder tree regeneration, allowing for
range expansion, maintenance, or contractions (Jackson et al. 2009).
This implies that the temporal variation in microclimate is a key
component for understanding historical and future species range shifts.
By modeling microrefugia over a decade, our analysis represents a step
toward taking a long-term view of microclimate (Lenoir et al. 2017),
which will be necessary to ensure effective biodiversity conservation as
climate change accelerates.

Data availability

All data are publicly available; sources are given in the methods
sections. Code is available at https://github.com/wolfch2/HJA_microc
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