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A B S T R A C T   

The lack of proper understanding of multi-layer soil moisture (SM) profile (signals) remains a persistent chal
lenge in sustainable agricultural water management and food security, especially during drought conditions. We 
develop a machine-learning algorithm using the concept of learning from patterns to estimate the multi-layer SM 
information in ungauged locations firmly based on local knowledge of the climatic and landscape controls. The 
Contiguous United States (CONUS) is clustered into homogeneous regions based on the association between SM 
and climate and landscape controls. Extreme Gradient Boosting (XGBoost) algorithm is applied to homogenous 
regions to capture the complex relationship between appropriate predictor variables and in-situ SM at multiple 
layers over the CONUS. Soil Moisture Active Passive (SMAP) Level 4 (L4) surface (0–5 cm) and rootzone (0–100 
cm) SM along with climate and landscape datasets are used as predictor variables. In-situ multi-layer SM 
recorded by Soil Climate Analysis Network (SCAN), Snow Telemetry (SNOTEL), and U.S. Climate Reference 
Network (USCRN) networks are utilized as predictands. XGBoost models are then trained region-wise and layer- 
wise to estimate multi-layer SM information at 5, 10, 20, 50, and 100 cm depths (five layers) at 1-km spatial 
resolution. Results indicate that the predictor variables have varying levels of influence on SM with changing soil 
depth, and meteorological variables have the least importance. Validation at 79 independent locations indicates 
the multi-layer SM estimates successfully capture temporal dynamics of SM, with most locations achieving 
ubRMSE less than 0.04 m3/m3. The high-resolution SM estimates offer spatial sub-grid heterogeneity compared 
to SMAP L4 SM.   

1. Introduction 

Soil Moisture (SM) quantifies the amount of water present in the pore 
spaces of the soil medium. SM plays an important role in studying land- 
atmosphere interactions (Seneviratne et al., 2010), numerical weather 
prediction models (Dirmeyer and Halder, 2016), land surface models 
(Koster et al., 2009), agriculture (Ma et al., 2013), irrigation assessment 
(Felfelani et al., 2018; Lawston et al., 2017), and monitoring of floods 
(Kim et al., 2019; Massari et al., 2015; Parinussa et al., 2016; Rahman 
et al., 2019) and droughts (Chawla et al., 2020; Mishra et al., 2017; 
Velpuri et al., 2016). Despite its wide-ranging applications, measuring 
SM locally at fine spatial scales over a large domain is challenging. This 
is due to the heterogeneous and higher variability of SM magnitudes 
across different landscapes (Karthikeyan et al., 2020). Besides, financial 
constraints are associated with establishing an in-situ SM network, and it 
is often challenging to capture adequate spatial coverage (Karthikeyan 

and Kumar, 2016). 
Satellite remote sensing of SM is an efficient way of measuring soil 

moisture at large spatial scales. The microwave frequencies (typically 
less than 12 GHz) are sensitive to the dielectric property of soil, which is 
influenced by SM’s variability. Therefore, microwave sensors equipped 
with L-, C-, and X- bands can measure SM. Microwave sensors are 
categorized into active (radar) and passive (radiometer) microwave 
sensors. Due to the difference in the acquisition, these sensors’ resolu
tion characteristics vary significantly (Karthikeyan et al., 2017a; Ulaby 
and Long, 2015). Currently, satellite sensors such as Soil Moisture Active 
Passive (SMAP) (Entekhabi et al., 2010a), Soil Moisture Ocean Salinity 
(SMOS) (Al Bitar et al., 2017; Kerr et al., 2001; Wigneron et al., 2021; 
Zhang et al., 2021b), Advanced Microwave Scanning Radiometer 2 
(AMSR2) (Fujii et al., 2009; Koike et al., 2004; Parinussa et al., 2015), 
and Sentinel missions, among others, can retrieve SM at the global scale. 
These sensors measure the microwave radiations backscattered/emitted 
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from the near-surface. Therefore, SM retrieved by these sensors would 
correspond to the top few centimetres of soil (typically ~5 cm) (Kar
thikeyan et al., 2017b). SM at rootzone at large spatial scales is generally 
estimated using a data assimilation scheme, wherein satellite surface SM 
retrievals are assimilated into a land surface model to update surface and 
rootzone SM states (Lievens et al., 2017; Sabater et al., 2007). The 
operational rootzone SM products are currently produced globally by 
assimilating SMAP SM into Catchment Land Surface Model (CLSM) 
(Reichle et al., 2019). Although low-frequency passive microwave sen
sors are useful to determine soil moisture, the spatial scales are limited 
to tens of kilometers and are often characterized by considerable un
certainty, which is unsuitable for agricultural water management that 
requires finer/local scale information. 

Efforts are made to disaggregate the SM information to improve their 
applications by different stakeholders at localized scales (Brown et al., 
2013). High resolution SM information is currently being utilized for 
drought monitoring (Gavahi et al., 2020; Fang et al., 2021), irrigation 
mapping (Dari et al., 2021) etc. The SMAP mission was launched to 
provide such high-resolution SM products by combining the retrievals 
from active and passive sensors. However, the failure of SMAP’s radar 
instrument in 2015 resulted in the usage of several alternate sensors 
such as Copernicus Sentinel-1C-band radar along with SMAP radiometer 
in merging algorithms to obtain high-resolution SM (Das et al., 2019). 
Significant efforts are made to downscale passive microwave SM re
trievals using radar backscatter measurements (Das et al., 2018; Das 
et al., 2010; Das et al., 2013; Piles et al., 2009; Wu et al., 2016). Optical 
and thermal sensors have the advantage of producing high-resolution 
maps. Given their physical relationship with SM, products such as 
Normalized Difference Index (NDVI) and Land Surface Temperature 
(LST) obtained from satellite sensors such as Landsat and Moderate 
Resolution Imaging Spectroradiometer (MODIS), are widely used for SM 
disaggregation (Fang et al., 2018; Merlin et al., 2010; Peng et al., 2015; 
Piles et al., 2014). Attempts have been made to disaggregate SM using 
data assimilation (Hoeben and Troch, 2000; Lievens et al., 2017; Sahoo 
et al., 2013). Recently, machine learning techniques have gained 
popularity in the areas of gap filling and disaggregation of SM (Abbas
zadeh et al., 2019; Abowarda et al., 2021; Fang and Shen, 2020; 
Kovačević et al., 2020; Liu et al., 2020a; Long et al., 2019; Mao et al., 
2019). For SM downscaling, machine learning techniques typically use 
optical/thermal data and static geomorphological data (available at 
high resolution) as predictors (Abbaszadeh et al., 2019; Kovačević et al., 
2020; Liu et al., 2020a; Long et al., 2019). A comprehensive review of 
downscaling techniques can be obtained from Peng et al. (2017) and 
Sabaghy et al. (2018). 

It is important to note that the current efforts have focused on dis
aggregating surface SM, which corresponds to the top 5 cm of the soil 
layer. Few attempts are made to estimate rootzone SM at high resolution 
(Bablet et al., 2020; Dumedah et al., 2015; Merlin et al., 2006; Montaldo 
and Albertson, 2003). Attempts are made to estimate rootzone SM from 
surface measurements using an exponential filter (Albergel et al., 2008; 
Ford et al., 2014; Stefan et al., 2021; Tobin et al., 2017) and lagged soil 
moisture aggregation (Pal and Maity, 2019). Few studies applied ma
chine learning models such as Artificial Neural Networks (ANNs) and 
Long Short-Term Memory (LSTM) model to estimate multi-layer SM up 
to 50 cm depth (Kornelsen and Coulibaly, 2014; O and Orth, 2020; Pan 
et al., 2017). Liu et al. (2016) estimated SM at multiple layers using a 
combination of Support Vector Machines (SVM) and Ensemble Kalman 
Filter (EnKF). 

The above studies are either limited to laboratory/point scale or 
coarse spatial resolution or consider rootzone as a single layer, thus 
having a single SM value representing the entire layer. The root depth of 
plants varies according to the species and growth stage. Plants do not 
extract water uniformly throughout the root depth. For instance, the 
proportion of water extracted by corn plant’s roots is divided into four 
quarters of 40%, 30%, 20%, and 10% with respect to four quarters of 
rootzone depth (Kranz et al., 2008). Given such an uneven distribution 

of water extraction, there is a need to determine SM’s vertical distri
bution to accurately assess irrigation water requirements (Mishra et al., 
2015). In heterogeneous agriculture landscapes, SM’s vertical distribu
tion is needed at a higher spatial resolution to cater to the spatial vari
ability of SM at different layers under changing crop conditions. Besides, 
the vertical variability of SM is also influenced by the heterogeneity in 
soil texture. 

In summary, the current efforts on SM estimation focus either on a) 
disaggregation of surface SM using data from active microwave/optical/ 
thermal sensors, aided by data assimilation or machine learning tech
niques; or b) high-resolution rootzone SM estimation at multiple levels 
at point/laboratory scale; or c) high-resolution rootzone SM estimation 
at a large scale but coarse vertical resolution. We find that the large-scale 
estimation of high-resolution SM at multiple layers remains a grey area 
of research. Such SM profile estimates are essential for an accurate 
assessment of agricultural droughts and crop water management – a 
vital aspect in heterogeneous, fragmented agriculture systems (Mishra 
et al., 2015). We followed a four-step approach to estimate and validate 
multi-layer SM information over CONUS: (i) identify the homogeneous 
regions that explain the SM profile’s statistical properties, (ii) apply the 
machine learning models to region-wise and layer-wise, (iii) assess the 
relative importance of predictors for SM estimation, and (iv) validate the 
spatio-temporal multi-layer SM estimates. Overall, we aim to address 
the following research questions: 

1) How do the homogeneous regions vary over the CONUS based on 
the climate, landscape, soil, and vegetation characteristics that explain 
SM profile variability? 

2) Can the machine learning models trained at in-situ locations 
within a region help us estimate multi-layer SM at ungauged locations? 

3) Are the machine learning models helpful to infer dominant pre
dictor variables that estimate SM across multiple soil layers? What is the 
impact of scaling on the relative importance of predictor variables? 

4) Can the assimilated rootzone SM products and other predictors 
depict the temporal variations of multi-layer SM while maintaining high 
spatial resolution (sub-grid heterogeneity)? 

The remainder of the manuscript is structured as follows. Section 2 
presents a description of the data and methodology proposed in this 
paper. Section 3 presents the results and discussion. Section 4 presents 
important conclusions drawn from this work and the future scope. 

2. Data and methods 

2.1. Study area and datasets used 

The proposed method is applied to the CONUS using the dense SM 
stations from three networks, SCAN, SNOTEL, and USCRN (Fig. S1 
presents the station locations). Several of these stations collect multi- 
layer SM information. The analysis is carried out at a daily scale 
covering the period 31 March 2015 to 29 February 2019 (1431 days). 
Soil texture, elevation, vegetation, land surface temperature, precipita
tion, and SMAP Level 4 surface and rootzone SM products are used as 
predictors in a machine learning framework to estimate multi-layer 
high-resolution SM information. The additional information for these 
selected data sets is provided in Table 1. These data sets are regridded at 
1 km resolution corresponding to the MODIS grid system to achieve 
uniform spatial resolution. The SM time series obtained from multiple 
in-situ stations present within a 1 km grid cell are averaged to obtained 
representative SM. As a result, 695 grid locations with 1 km resolution 
are generated for the CONUS. A detailed description of the usage of these 
datasets is presented in the methodology section. 

2.2. Methodology 

The SM temporal dynamics and spatial heterogeneity are controlled 
by geomorphological, topographical, meteorological, and vegetation 
characteristics. This study applies a machine-learning algorithm to 
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capture the complex relationship between these controlling variables 
and multi-layer in-situ SM and transfer it to the ungauged high- 
resolution (1 km) grid locations. The proposed model consists of three 
steps: 1) generation of homogenous regions, 2) setting up machine 
learning modeling framework between in-situ SM at multiple layers 
(predictand) and above-described features (predictors) region-wise and 
depth-wise, and 3) applying the calibrated model to generate multi-layer 
SM at ungauged 1 km spatial resolutions over CONUS. The rationale of 
setting up machine learning models in a decentralized manner for SM 
disaggregation is implemented earlier by Abbaszadeh et al. (2019). An 
overview of these steps is discussed in the following paragraphs. 

2.2.1. Identification of homogeneous regions 
It is important to classify CONUS into homogeneous regions to 

capture the association between SM and controlling variables due to 
landscape and climate heterogeneity. Besides, constructing the machine 
learning algorithm for homogenous regions may address the problem of 
extrapolation (Reichstein et al., 2019). Such regional analysis improved 
the model performance in the past efforts of surface SM disaggregation 
(Abbaszadeh et al., 2019). In this work, besides soil texture (Abbaszadeh 
et al., 2019), we considered additional indicator variables that influence 
SM variability to holistically capture the processes that influence the 
multi-layer SM. 

Although it will be possible to implement the downscaling method 
over legacy regions such as climate regions (Karl and Koss, 1984) or 
ecoregions (Omernik and Griffith, 2014), such regions have two limi
tations in the purview of this work. First, they may not account for the 
spatial homogeneity due to soil texture, vegetation, and topography, 
which are important inputs to predicting SM at fine spatial scales. Sec
ond, the number of regions may be too high (as in Level III or Level IV 
ecoregions of the CONUS) to ensure each region to have sufficient in-situ 
soil moisture data to set up the machine learning model. Since we are 
constrained by the location of in-situ stations (which are spread un
evenly across the CONUS), a new set of homogeneous regions should be 
prepared to address the data inadequacy in each region. This step also 
adds more flexibility to implement the proposed method in other regions 
where in-situ soil moisture data is available. 

The list of indicator variables includes (1) Daily precipitation char
acteristics (mean, standard deviation, and the number of rainy days); 2) 

Vegetation health based on NDVI, EVI, and GPP (mean, standard devi
ation, and range); 3) Day and night time LST (mean, standard deviation 
and diurnal LST range); 4) Soil Texture (% Clay, % Sand, % Silt, Bulk 
density); 5) Elevation; and 6) SMAP L4 Rootzone Soil Moisture (mean, 
standard deviation, range). Combining these multiple indicator vari
ables was useful for generating homogeneous clusters at the catchment 
scale (Konapala and Mishra, 2020). Initially, we study the relationship 
between the above indicator variables and in-situ profile SM statistical 
parameters, such as mean, median, standard deviation, coefficient of 
variation, interquartile range (IQR), and range. These statistics are 
useful to capture the in-situ temporal dynamics of the SM profile. The in- 
situ profile SM at a station is estimated using a weighted average of SM 
observed at multiple depths. Similarly, soil texture data available at 
multiple layers is averaged to obtain profile representative soil texture. 
The weighting scheme of Ford and Quiring (2019) is utilized for this 
purpose. In this scheme, a sensor’s top layer of control is assumed to be 
halfway between the current and the sensor above it, and the bottom 
layer of control is assumed to be halfway between the current and the 
sensor below it (Ford and Quiring, 2019). The layer thickness obtained 
through this procedure is considered as the weight of the corresponding 
layer. Pearson cross-correlation is used to assess the relationship be
tween the indicator variables and in-situ SM profile parameters. 

We apply a k-mean clustering algorithm (MacQueen, 1967) to 695 
grid cells (where in-situ SM is available) using the indicator variables 
described above to generate homogenous regions. The in-situ stations 
are well spread out and are representative of different climate, vegeta
tion, geomorphology, and topography conditions of the CONUS. It may 
be noted that location attributes are not considered in the list of indi
cator variables to negate the effect of unevenly located in-situ stations. 
In k-mean algorithm, each in-situ grid location, containing indicator 
variables as attributes, is initially assigned to k clusters randomly. Means 
of each of the indicator variables in a cluster are assigned as centroid of 
that cluster. Distances between each grid location and each of the k 
centroids are computed using Euclidean distance metric. Each grid 
location is assigned to the closest cluster centroid (in terms of Euclidean 
distance). The process of computing cluster centroids and subsequent 
assignment of clusters to each grid location continues iteratively until 
there is no change in clusters. During this process, each indicator vari
able is standardized across the in-situ grid locations (based on maximum 

Table 1 
List of datasets used in this study (Glossary: NSIDC – National Snow and Ice Data Center; USDA STATSGO – United States Department of Agriculture State Soil 
Geographic Database; DEM – Digital Elevation Model; USGS GTOPO30 – United States Geological Survey Global 30 Arc-Second Elevation; MODIS – Moderate Res
olution Imaging Spectroradiometer; NDVI – Normalized Difference Vegetation Index; EVI – Enhanced Vegetation Index; GPP – Gross Primary Productivity; EOSDIS – 
Earth Observing System Data and Information System; LP DAAC – Land Processes Distributed Active Archive Center; SCAN – Soil Climate Analysis Network; SNOTEL – 
Snow Telemetry; USCRN – U.S. Climate Reference Network; ISMN – International Soil Moisture Network; CHIRPS – Climate Hazards Group InfraRed Precipitation with 
Station).  

Dataset Details Source Spatial Resolution Temporal Resolution Reference 

SMAP Level 4 
Soil Moisture 

Version 4: Vv4030; Surface (0–5 
cm) and Rootzone (0–100 cm) 
soil moisture products 

NSIDC 9 km 3 h (rescaled to daily 
scale) 

(Reichle et al., 
2018) 

Soil Texture 
Variables: Sand, Silt, Clay 
fractions; Bulk Density; 
Depths: 5, 10, 20, 60, and 100 cm 

Pennsylvania State University 
(http://www.soilinfo.psu.edu/) – CONUS- 
SOIL (Developed from USDA STATSGO) 

1 km Static 
(Miller and 
White, 1998) 

Elevation DEM 

USGS GTOPO30 
https://www.usgs.gov/centers/eros/ 
science/usgs-eros-archive-digital- 
elevation-global-30-arc-second-elevation- 
gtopo30 

30 arc sec (approximately 1 
km) 

Static – 

Vegetation 
MODIS MOD13A2 v006 – NDVI, 
EVI 
MOD17A2H v006 – GPP 

NASA EOSDIS LPDAAC 
1 km (MOD13A2); 500 m 
(MOD17A2H) (resampled to 
1 km) 

16 days (MOD13A2); 
8 days (MOD17A2H) 

(Didan, 2015;  
Running et al., 
2015) 

LST 
MODIS MOD11A1 v006 – LST 
Day and Night Times NASA EOSDIS LPDAAC 1 km Daily 

(Wan et al., 
2015) 

Precipitation CHIRPS v2.0 data Climate Hazards Center, UC Santa Barbara 0.05◦ Daily 
(Funk et al., 
2015) 

In-situ soil 
moisture 

SCAN, SNOTEL, USCRN 
Depths: 5, 10, 20, 50, and 100 cm 

ISMN Point scale (upscaled to 1 km 
resolution) 

Daily (Dorigo et al., 
2011)  
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and minimum values) to generate a dimensionless time series. The op
timum number of clusters are derived based on Xie-Beni (Xie and Beni, 
1991) and Dunn (Dunn, 1974) indices. The ungauged grid cells are then 
assigned to one of the homogenous regions using the closest distance 
between the ungauged grid cell’s indicator variables and the cluster 
centre as the criteria. 

2.2.2. Setting up the machine learning algorithm 
A machine learning algorithm is constructed for soil layers within 

each homogenous region based on the predictors (Table 1) and in-situ 
multi-layer SM as predictand. We use the state-of-the-art Extreme 
Gradient Boosting (XGBoost) machine learning algorithm for this pur
pose. XGBoost (Chen and Guestrin, 2016) gained popularity in the ma
chine learning community, given its speed, efficiency, and accuracy. 
XGBoost found applications in recent years for classification and 
regression purposes in remote sensing and water resources fields 
(Chemura et al., 2020; Ni et al., 2020; Zhang et al., 2019a). XGBoost is 
also used for downscaling of groundwater (Zhang et al., 2021a), crop 
yield (Folberth et al., 2019), and surface soil moisture (Liu et al., 2020b). 
However, this algorithm has not been explored for multi-layer SM 
estimation. 

XGBoost uses decision tree ensembles consisting of a set of classifi
cation and regression trees (CART). Consider a dataset with n samples 
and m features input xi (i = 1, 2, …, n, xi ∈ ℝm) and output yi. The 
predicted values are obtained using the following equation. 

ŷi =
∑K

k=1
fk(xi), fk ∈ Θ (1)  

where, fk is kth regression tree; Θ is the space of all possible regression 
trees (CARTs); ̂yi is the predicted value corresponding to yi, the observed 
output; K is the number of regression trees. Each regression tree (fk) is an 
independent tree structure with leaf weights (denoted by wt – the weight 
of tth leaf). The following regularized objective function is minimized to 
learn the set of functions used in the model. 

Obj =
∑n

i=1
e
(

yi, ŷi

)

+
∑K

k=1
Ω(fk) (2)  

where, e(⋅) is the differentiable convex loss function computed between 
observed (yi) and predicted values (ŷi); n is the number of values; and 
Ω(f) is the regularization function, which controls the complexity of the 
function by penalizing the complex functions to avoid overfitting. Ω(f) is 
estimated from the following equation. 

Ω(f ) = γT +
1
2

λ
∑T

t=1
w2

t (3)  

where, γ and λ are regularization parameters that control the tree’s 
complexity; T is the number of leaves in a decision tree; wt is the weight 
(score) associated with tth leaf. XGBoost implements additive training, 
an iterative process, to obtain an optimum ensemble model. For this 
purpose, Eq. (2) is altered as follows. 

Obj(p) =
∑n

i=1
e
(

yi, ŷ(p−1)

i + f (p)(xi)

)

+ Ω
(
f (p)

)
(4)  

where, ŷ(p)

i is the prediction at ith instance pth iteration. Inclusion of 
f(p)(xi) in the loss function indicates a greedy addition of f(p)(xi) that 
improves the model from Eq. (2). The loss function in Eq. (4) is 
approximated using a second-order Taylor approximation to increase 
the efficacy of optimization. The resultant objective function is mini
mized to obtain the optimal weights of leaves and subsequently deter
mine tree structure quality. 

For effective implementation of the XGBoost algorithm, it is essential 
to tune the model parameters. Six parameters are selected for this 

purpose. They include, 1) eta – controls the learning rate, 2) max_depth – 
maximum depth of a tree, 3) nrounds – number of iterations, 4) sub
sample – a fraction of observations to be randomly sampled for each 
tree, 5) colsample_bylevel – a fraction of columns to be randomly 
sampled for each new depth level, in each tree, 6) min_child_weight – a 
minimum sum of instance weight required in a leaf node to proceed with 
further partitioning. Further details on the selection of model parame
ters can be obtained from https://xgboost.readthedocs.io/en/latest 
/index.html. 

It may be noted that gradient boosted trees of XGBoost have the 
capability of handling multicollinearity among predictors. The tree node 
splitting in decision trees is based on a reduction in node impurity 
measures. In XGBoost, it is based on a factor called gain, which describes 
the relative contribution of a feature to the model. When correlated 
variables are present in the input feature space, the split in decision trees 
will be based on only one of them (Kotsiantis, 2013). The subsequent 
split will happen based on uncorrelated variables. The correlated vari
ables are naturally left out since there is minimal information gain ob
tained by splitting them. Since boosted trees in XGBoost use an ensemble 
of decision trees, the algorithm inherently avoids overfitting, which can 
be an issue when a single decision tree is used on multicollinear vari
ables. XGBoost has another advantage of inherently handling the 
missing data. It achieves this task using sparsity-aware split finding al
gorithm (Chen and Guestrin, 2016). Through this algorithm, XGBoost 
defines an optimal default direction at tree nodes where missing data in 
a feature are encountered. The optimal direction is obtained by trying 
both the directions in a split and selecting the one which results in a 
maximum gain. The optimal direction is learned by visiting only non- 
missing observations. More details on the algorithm can be obtained 
from Chen and Guestrin (2016). 

The model parameters are specified with candidate values (that lie in 
respective ranges), and parameter tuning is carried out using the grid 
search method. Overall, 80% of the data (predictor-predictand sets) is 
used to train the model, and the remaining 20% of the data unseen by 
the model is used to test the model. The training process is carried out for 
individual clusters and multi-layer SM information. This results in h*5 
number of independent models, where h is the number of clusters 
generated over the CONUS, and 5 is the number of soil layers. 

2.2.3. Application and validation and of the machine learning algorithm 
Soil moisture values generated by the XGBoost model are initially 

evaluated for their accuracy in the model testing phase. After training 
the models, the relative importance of predictors in each cluster and soil 
layer is analyzed by computing the relative contribution of each pre
dictor in each tree of the model. The calibrated XGBoost models at each 
soil layer are then applied at ungauged grid cells (based on the cluster 
the grid cell belongs to) to obtain 1 km resolution multi-layer SM. Fig. 1 
presents the workflow of the proposed method to obtain 1 km resolution 
multi-layer SM. 

For validation, the model-generated SM values are verified for ac
curacy at 79 grid locations containing in-situ data, which are not used 
for building the models. For this purpose, we use data from Little 
Washita, Fort Cobb, Texas soil observation network (TxSON) (Caldwell 
et al., 2019), and SoilSCAPE (Moghaddam et al., 2016) networks. 
TxSON and SoilSCAPE networks. These networks provide SM measure
ments at multiple layers up to 50 cm. Multiple stations located within a 
1 km grid cell are upscaled to match the grid resolution using the 
arithmetic average. Tables S7-S10 present the location information of 
stations in these networks. There is no data available for 100 cm depth 
for validation. Therefore, we present the accuracy of the model for this 
layer in the testing phase. While building the model at 50 cm depth, we 
could not obtain soil texture information at this level since CONUS-SOIL 
data is only available at 60 cm depth. Therefore, we used soil data 
corresponding to 60 cm depth for the analysis. This approximation at 50 
cm depth may cause some uncertainty in the model outcome. The ac
curacy assessment in the testing and validation phases is carried out 
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using unbiased root mean square error (ubRMSE), Pearson correlation, 
and bias metrics (Gruber et al., 2020). 

3. Results and discussion 

3.1. Relationship between indicator variables and SM profile parameters 

Fig. 2 presents the correlation plot between the indicator variables 
and in-situ SM profile parameters. Mean and median SM have a similar 
dependence on the predictors. They are strongly correlated with soil 
texture properties with clay % and silt % content (due to higher moisture 
holding capacity) and negative correlation with sand % (due to lower 
porosity). A similar observation was made by Wang et al. (2017) while 
studying climate and soil effects on SM’s spatial variability. Elevation 

exhibited a negative relationship with mean and median SM. Precipi
tation and vegetation predictors are positively correlated with mean and 
median SM. In their field-scale study, Jacobs et al. (2004) found soil 
properties, topography, and vegetation to influence mean SM 
variability. 

Interestingly, the daytime mean LST is not correlated with mean and 
median SM, whereas nighttime LST is significantly correlated with these 
two variables. The relationship between SM and LST during the night
time or early morning is highlighted by Zhao et al. (2018) in dis
aggregating surface SM. Conversely, the daytime LST standard deviation 
has a significant negative correlation, while the night time LST standard 
deviation is not correlated with mean and median SM. This could be 
attributed to the lower variability of nighttime LST (Rebetez, 2001). LST 
represents a snapshot of temperature conditions, whereas in-situ SM 

Fig. 1. Workflow of the proposed method to obtain 1 km resolution multi-layer SM over the CONUS.  

Fig. 2. Correlation plot between indicator variables (x-axis) and in-situ SM profile parameters (y-axis). Non coloured cells indicate a statistically insignificant 
correlation between two variables (at 95% confidence). 
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representing average SM at a daily scale could have also contributed to 
low correlations. Besides, the diurnal range of LST has a significant 
negative correlation with mean and median SM, i.e., the diurnal range is 
high in the dry regions where low SM is observed and vice versa. Both 
variables are positively correlated with rootzone SM predictors. 

The SM profile parameters (e.g., standard deviation and IQR) have 
no significant correlation with precipitation. The standard deviation of 
SM is reported to vary with mean SM negatively, with the relationship 
governed mainly by soil hydraulic properties (Famiglietti et al., 2008; 
Vereecken et al., 2007). Given such a relationship, the correlation be
tween SM’s mean and standard deviation is expected to be close to zero. 
This could be the reason behind the insignificant correlation between 
the standard deviation of SM and the mean root zone SM. Both standard 
deviation and IQR of SM have a significant negative correlation with the 
day time and night time LST along with a diurnal range of LST. Although 
this indicates high variability of SM under wet conditions and vice versa, 
the inference may not be applicable at all locations since contrasting 
conclusions have been obtained in the past on the relationship between 
SM and LST (Famiglietti et al., 1998; Qiu et al., 2001). Although few 
studies reported correlations between SM and soil parameters (sand % 
and clay %) (Wang et al., 2017; Wu et al., 2020), such results are 
dependent on site characteristics. The elevation is found to be positively 
correlated with SM profile parameters. 

The SM variability determined based on the coefficient of variation 
(CV) is significantly correlated with most of the predictors. It has shown 
a negative correlation with mean rootzone SM, which is in line with 
previous findings (Famiglietti et al., 2008; Jacobs et al., 2004; Korres 
et al., 2015). Most of the vegetation indicators (except NDVI) are 
negatively correlated with the CV of SM; this could be due to wet con
ditions (high SM) prevailing under greener vegetation (high magnitude 
of vegetation indices). A few indicators control the SM range (maximum- 
minimum), including standard deviation and range of NDVI, mean of 
LST (both day time and night time), diurnal range, and elevation. 

3.2. Identification of homogenous regions 

A combination of predictor variables influences the SM characteris
tics (e.g., mean and Variability); however, their association varies in 
space and time. Therefore, we classify CONUS into several homogeneous 
regions defined by a more significant similarity among the predictors 
and predictand relationship. We applied the K-means clustering 

algorithm to 695 in-situ SM locations (where SCAN, SNOTEL, and 
USCRN stations are situated) using the predictors mentioned in Fig. 2. 
We identified 11 homogeneous regions based on the Xie-Beni and Dunn 
indices that are used commonly for determining the optimal number of 
clusters. The spatial locations of in-situ SM locations and their corre
sponding clusters are displayed in Fig. 3, and the number of SCAN, 
SNOTEL, and USCRN stations represents each cluster are also provided. 
Fig. 4 presents the variability of predictors across clusters. 

The homogenous regions are very distinct (Fig. 3), highlighting the 
potential role of climate, vegetation, geomorphologic, and soil charac
teristics. The highest number of stations are located in clusters 10 (114 
stations) and 11 (116 stations). Most of the stations in cluster 11 are 
located in high elevation forest regions (average elevation ~2800 m) of 
Colorado, Utah, and Arizona. Given the high altitude of stations in the 
cluster, the LSTs are relatively lower than other clusters. There is also 
high sand content with soil texture ranging from loam to sandy loam, 
resulting in a low range of the rootzone SM. 

Cluster 10 is mostly spread across western CONUS and a portion of 
northern CONUS. Stations in this cluster are mostly located in loamy soil 
and situated in deciduous forested regions, which results in high vari
ability (due to seasonality) of vegetation indicators. Similar high vari
ability of vegetation indicators is also observed in the case of clusters 1 
and 7. Stations of cluster 1 are mostly situated in the Midwest and 
Northeast CONUS, wherein croplands dominate the former, and the 
latter is covered with deciduous forests. Strong seasonality of vegetation 
in these land cover classes could have attributed to greater vegetation 
indicators variability than any other cluster. This cluster also has the 
highest average silt content of ~45%, with soils predominantly 
belonging to silt loam texture. This leads to soils having high available 
water content (promoting plant water uptake) and generally high 
moisture content. Notably, the average elevation of this cluster’s sta
tions (~ 342 m) is significantly lower than that of clusters 10 and 11. 

Cluster 7 is mostly limited to the Northwest CONUS. Most of the 
stations are situated in evergreen needleleaf forests, with high mean and 
variability of vegetation indicators. Noticeably, this cluster has the 
lowest diurnal range due to the cold climate existing in this region. 
Stations in this cluster are located over silt loam soils with high sand and 
silt content. Therefore, the mean and range of root zone SM are higher 
than the conditions observed in cluster 11 (which also has high sand 
content). This observation is also supported by the higher amount of 
precipitation received by the stations than previously described clusters. 

Fig. 3. Clusters of in-situ SM stations obtained from SCAN, SNOTEL, and USCRN networks overlayed on elevation map. [Note: the table provides a distribution of 
stations for eleven clusters across the three networks]. 
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Clusters 2 and 5 exhibited similar precipitation indicators as that of 
cluster 7. However, each of them is distinct in terms of other indicators. 
Stations representing cluster 2 are located in the Southcentral and 
Northwest coastal CONUS. Given a high number of rainy days coupled 
with high clay content, the average rootzone SM in this cluster is highest 
than that of other clusters. Besides, several stations are situated along 
the Mississippi river banks, which could have also contributed to high 
rootzone SM. A similar observation is made with stations located near 
the water bodies situated in northern Alabama. 

Furthermore, the clustering algorithm could distinguish stations in 
southern Missouri, predominantly covered with mixed forests, cluster 2, 
from stations located in northern Missouri’s croplands (categorized into 
cluster 1). Cluster 5 borders cluster 2 and is situated in Southeast 
CONUS, Texas, and some California stations. Despite the contrast in the 
stations’ longitudinal location in these regions, they are categorized into 
a single cluster given their high sand content. This cluster is found to 
have the highest average mean NDVI compared to that of other clusters. 
Interestingly, stations in coastal plains and portions of Texas’s central 
plains (covered with vegetation) are categorized into cluster 2. In 
contrast, stations in great plains and mountains and basins regions of 
Texas (where arid conditions persist) are categorized into clusters 3 and 
4. 

Cluster 3 is spread over a larger geographical area compared to other 
clusters. Stations of this cluster are located in the shrublands/grasslands 
of West CONUS and great plains. Despite a large spatial extent, this 
cluster has stations that experience low precipitation mean and vari
ability. On the other hand, these stations have the highest LST variability 
compared to other clusters. Cluster 4 is mostly spread across the 
shrublands of Southwest and West CONUS. This cluster has the lowest 
mean and variability of vegetation indicators, the highest average day
time LST, and the lowest mean precipitation and number of rainy days. 

Given such dry conditions alongside moderately high sand content, this 
cluster has the lowest mean and variability of rootzone SM. Noticeably, 
the densely vegetated high altitude SNOTEL stations located in central 
Arizona are categorized mostly into cluster 11. 

Cluster 9 has densely located stations in the high altitudes (average 
elevation ~2435 m) of California’s Sierra Nevada region. This cluster is 
the wettest of all clusters, with mean rainy-day precipitation of ~22 
mm. The mean vegetation indicators and LST indicators of this cluster 
are similar to clusters 9 and 10. This could be due to the similar high- 
altitude topography of the three clusters. The mean rootzone SM of 
stations in this cluster is moderately high despite sandy loam soils (low 
moisture-holding capacity). This could be attributed to the high amount 
of precipitation received by the cluster. Stations of cluster 6 are situated 
in the high-altitude areas of Southwest CONUS. This cluster is noticed to 
have the highest soil bulk density compared to other clusters. Lastly, 
cluster 8 is mostly comprised of SNOTEL stations situated in the densely 
vegetated high-altitude areas of West CONUS. It is unique from other 
high-altitude clusters in terms of low clay content. 

The CONUS is classified into 11 homogenous regions using the 
classification scheme developed based on the in-situ SM locations. The 
ungauged 1 km grid cells are assigned to one of the eleven clusters using 
the lowest distance between indicator variables as the criteria (see 
methodology Section 2.2). Fig. S2 presents the resulting clusters of ho
mogeneous regions for the CONUS. Clusters are found to be mostly 
contiguous despite not providing location attributes as indicator 
variables. 

3.3. Application of machine learning algorithm for multi-layer SM 
estimation 

The XGBoost machine Learning algorithm is set up individually at 

Fig. 4. Variability of predictor variables for eleven clusters. The horizontal axis in each figure indicates cluster number (consistent with that of Fig. 3). [Note: values 
provided in the plots represent the mean values of the selected variables]. 
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each cluster and each soil layer, resulting in 55 models (11 models × 5 
soil layers). Fig. 5 present the in-situ testing performance in terms of 
ubRMSE, correlation, and bias, respectively. Table 2 presents the clus
ter- and layer-wise median values of performance metrics during the 
model testing phase. 

Overall, XGBoost models performed with reasonable accuracy across 
most of the clusters and soil layers. We found XGBoost to outperform 
Multiple Linear Regression (MLR) model during the testing process 
(Table S1). The MLR-based model set up involved replacing XGBoost 
models with MLR models. The stations located in cluster 4 consistently 
produced low ubRMSE for predictions at 5 cm. This could be due to SM’s 
low variability associated with the dry conditions, which results in lower 
magnitude of ubRMSE (Entekhabi et al., 2010b). Besides, SM retrievals’ 
accuracy is generally higher in the arid regions (Zhang et al., 2019b). 
Despite the large spatial extent of clusters 1 and 3, their ubRMSE and 
correlation values are less than 0.04 m3/m3 (within the acceptable limit) 
and greater than 0.85, respectively. This highlights the robustness of the 
model performance in homogenous regions with similar geomorphology 
and climatology. The model performance in cluster 11 appears low due 
to the high ubRMSE, low R, and high bias, especially in Utah and Col
orado. This could be due to mountainous topography, which induces 
bias in the brightness temperature observations (Li et al., 2013). 

However, given the limited geographical extent of this cluster (Figs. 3 
and S2), its performance shall not affect other CONUS regions. Gener
ally, the model performance in the central plains is distinctly lower 
compared to other regions. This could be attributed partly to land sur
face model structure and parameters uncertainties, given that SMAP 
brightness temperatures have not significantly improved the skill of 
CLSM simulations over North America (Dong et al., 2019). Apart from 
high elevation clusters, the performance of cluster 5 is found to be low. 
However, this behavior is limited to a few isolated stations located in 
Texas, Alabama, and Florida within the cluster. Similar performance 
(few stations located in Texas, Alabama, and Florida) is noticed in the 
results of Abbaszadeh et al. (2019) concerning disaggregation of SMAP 
surface SM. 

The number of stations with 10 cm depth retrievals is comparatively 
less than the number of stations included in 5 cm depth retrievals. This is 
noticed especially in Nevada, Utah, Idaho, Wyoming, and Colorado, 
which are dominated by SNOTEL stations that lack probes at 10 cm and 
100 cm depths. Despite training with a different set of models, the error 
patterns depict similar spatial characteristics as the 5 cm case. Recently, 
Akbar et al. (2018) found a high correlation between USCRN SM mea
surements made at 5 cm and 10 cm depths. This explains the similarity 
in spatial patterns. Most of the stations produced SM with ubRMSE less 

Fig. 5. Goodness of fit statistics (ubRMSE, R, and bias) across SCAN, SNOTEL, USCRN locations estimated during the model testing phase. Performance metrics are 
calculated between model prediction and in-situ SM data sets. 

L. Karthikeyan and A.K. Mishra                                                                                                                                                                                                             



Remote Sensing of Environment 266 (2021) 112706

9

than 0.04 m3/m3. Cluster 9 is found to perform with the highest accu
racy. This is due to the presence of only three stations that contained SM 
observations at 10 cm depth in this cluster. Although cluster 4 trained 
with low ubRMSE, its correlation is lower compared to the 5 cm case. A 
similar observation is made with cluster 5, wherein the correlation of 
few stations in Texas, Alabama, and Florida are found to be lower 
(~0.5). 

Soil moisture estimates at 20 cm depth are found to have higher 
accuracy than other depths, especially in terms of correlation metric 
(although 100 cm depth estimates have better ubRMSE, the number of 
stations available for testing is comparatively lesser). Nearly 70% of the 
stations located in cluster 4 have lower ubRMSE (ubRMSE ≤0.04 m3/ 
m3). This is expected due to the background aridity, which results in low 
variability of SM in the deeper layers. The high-altitude clusters (6, 8, 9, 
10, and 11) have performed well in both ubRMSE and correlation. 
However, clusters 3, 8, 10, and 11 depicted a slight wet bias in the SM 
retrievals (Fig. 5). In general, the models’ training accuracy is high in 
clusters 2 and 7, mostly located in the regions of high average precipi
tation and SM. 

Approximately 93% and 43% of 695 stations have SM at 50 cm and 
100 cm depths, respectively. The models performed reasonably well 
based on the ubRMSE metric. However, lower correlation values are 
noticed across clusters in the 50 cm layer compared to predecessor 
layers. Typically, the stations located in high elevation clusters (8–11) 
and few stations in clusters 2, 4, and 5 witnessed a correlation less than 
0.5. As we progress to deeper layers, SM’s sensitivity to surface and 
climate processes reduces compared to the influence of other variables, 
including soil texture and surface SM (Pan et al., 2017). Therefore, the 
involvement of climate variables could have resulted in a decline in SM 
estimation model performance of SM estimation at100 cm depth. To 
gain further insights, the relative importance of predictors towards 
estimating SM in each soil layer is assessed. 

3.4. Relative importance of predictors 

The relative importance of predictors for the five soil layers is pre
sented in Fig. 6 (details in Section 2.2). Bars indicate the variability of 
relative importance across the eleven clusters. Surface SM estimates 
from L4 SMAP have the highest importance while predicting SM at 5 cm 
depth. This is followed by elevation, vegetation attributes, and soil 
texture features. LST attributes, along with precipitation, have the 
lowest importance among the predictors. It is necessary to note that the 
importance of predictors is determined at 1 km spatial resolution. At 
finer spatial scales, it is reported that SM variability is controlled pre
dominantly by the topography and soil textural parameters, and the role 
of meteorological variables is significant only at regional/watershed 
scales (Crow et al., 2012; Gaur and Mohanty, 2016). Interestingly, NDVI, 
GPP, and closely followed by EVI, have high importance. The influence 
of vegetation is significant in some studies, whereas few studies reported 
limited influence on SM variability. For example, vegetation is a key 
controlling variable for the variability of in-situ SM data (Teuling and 
Troch, 2005) and (Baroni et al., 2013); whereas, vegetation has a limited 
role at scales closer to 1 km (Gaur and Mohanty, 2016) and (Joshi and 
Mohanty, 2010). These studies are based on local observations, and the 
inferences can be site-specific. The present results depict a holistic view 
of the geomorphological, topographical, meteorological, and vegetation 
controls of SM profile at 1 km resolution. 

SMAP surface and rootzone SM are used as a predictor to estimate SM 
at 10, 20, 50, and 100 cm depths. At 10 cm depth, SMAP surface SM has 
the highest importance, followed by the rootzone SM. This can be 
attributed to the higher correlation of SM between 5 cm and 10 cm 
depths (Akbar et al., 2018). Besides, the high variability of the impor
tance of surface SM can be attributed to the variability in cluster char
acteristics, which are defined by the indicator variables. Some of these 
variables (related to precipitation, vegetation, and soil texture) are 
found to influence the characteristic length scale of SM (Akbar et al., Ta
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2018). Soil textural properties have greater importance over vegetation 
indicators in this layer, an opposite of which is noticed at 5 cm depth. 

Rootzone SM is the dominant predictor at 20 cm depth. Interestingly, 
elevation has greater importance compared to surface SM. Besides, the 
soil textural parameters have greater importance, and the importance of 
vegetation further diminished at 20 cm depth compared to 10 cm depth. 
In the case of 50 cm and 100 cm depths, the order of predictors’ 
importance remains the same. Noticeably, rootzone SM is the third 
significant predictor, while elevation and clay (%) have greater signifi
cance in these two layers. Few studies found topography and soil 
textural properties to influence rootzone SM’s Variability (Pan et al., 
2017; Shi et al., 2014). The importance of surface SM dropped notice
ably from 20 to 50 cm depth, signifying the surface and deeper SM 
values’ decorrelation. Vegetation has higher importance compared to 
meteorological predictors LST and precipitation. Some studies reported 
NDVI and EVI’s potential to predict rootzone SM at SCAN sites (Schnur 
et al., 2010; Wang et al., 2007). Lastly, LST and precipitation predictors 
have a lower influence as we progress to deeper layers, which indicates a 
reduction of their control on deeper SM dynamics. 

3.5. Evaluation of high-resolution multi-layer SM estimates 

3.5.1. Validation of SM temporal dynamics 
Soil moisture estimates obtained from the multi-layer downscaling 

algorithm are validated using the actual SM data obtained from the 

TxSON, Little Washita, Fort Cobb, and SoilSCAPE networks. Several 
sensors in these networks have in-situ SM at 5, 10, 20, 50, and 100 cm 
depths. These observed in-situ data sets are not included in the model- 
building stage. We considered all the stations with multi-layer SM ob
servations for the validation since SMAP L4 SM (a key input for XGBoost 
model) is found to perform reasonably well even with sparse networks 
(Reichle et al., 2018). Fig. 7 presents the boxplots of performance met
rics of predicted SM at 5 cm computed at in-situ stations across four 
networks. Table S2 presents the performance metrics at these stations. 
The model is validated at 31, 21, 16, and 7 grid locations that fall under 
Little TxSON, Washita, Fort Cobb, and SoilSCAPE networks, respec
tively. Table S3 presents the station-wise number of observations used 
for the computation of performance metrics. Results generally report 
low ubRMSE and high correlations in most of the grid locations. The 
median ubRMSE values are less than 0.04 m3/m3 (the mission accuracy 
target for SMAP mission) for TxSON and Fort Cobb networks. Correla
tion values are in the range 0.64–0.91, 0.50–0.84, 0.55–0.86, and 
0.68–0.95, for TxSON, Little Washita, Fort Cobb, and SoilSCAPE net
works respectively. The median correlation values are on a higher side 
compared to SMAP L4 (version 4) surface SM product’s correlation 
metrics (Fig. 2 in (Reichle et al., 2019)). Although XGBoost models have 
been trained with negligible bias concerning SCAN, SNOTEL and USCRN 
networks (Fig. 5), some bias still persists in the model validation stage. 
This could be partly due to the wet bias in the SMAP L4 surface SM 
product (version 4) (Reichle et al., 2019; Reichle et al., 2018). Wet bias 

Fig. 6. The relative importance of predictors across five soil layers. Error bars associated with each variable represent their spread (i.e., variability) calculated based 
on standard deviation across the eleven clusters. 
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Fig. 7. Boxplots of ubRMSE, R, and Bias computed at in-situ stations of four networks, TxSON, Little Washita, Fort Cobb, and SoilSCAPE at 5 cm depth.  

Fig. 8. Time series of 5 cm depth at different locations. Each plot contains in-situ, predicted, and SMAP L4 SM along with daily precipitation.  
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is noticed, especially during the dry-down periods due to the lower 
dynamic range of the SM estimates. This is noticed particularly in the 
SoilSCAPE sites for downscaled SM, which resulted in a relatively higher 
wet bias than other networks. 

We compared the in-situ data, downscaled SM, and SMAP L4 SM (at 
9 km) along with local precipitation to study the temporal dynamics of 
SM (Fig. 8). There is generally a good agreement between the observed 
and downscaled SM time series. The high SM variability (despite low 
rainfall conditions compared to other sites) associated with the station 
(TxSON site 2–23) is located in loam surface textured soil is adequately 
captured by the proposed method. The downscaled SM is noticed to 
follow the dry-down and wet-up patterns in agreement with the in-situ 
SM and precipitation intensities. During the August 2016 rainfall 
event at TxSON site 2–23, the in-situ data did not capture the increase in 
SM, whereas the proposed method depicted an increase in the moisture 
content. This indicates a possibility that the uncertainties in the pre
dictor information (mainly soil texture and precipitation) can propagate 
into downscaled SM retrievals. We find that much of the dry bias 
existing in SMAP L4 surface SM is resolved by the downscaled SM 
product, except for some residual dry bias in dry-down periods from 
June to October 2016. 

A similar observation is made in Little Washita site 148, wherein 
much of the dry bias of SMAP L4 SM is resolved by the downscaled SM. 
The proposed method could capture an increase in the moisture content 
due to frequent rainfall during the September and October months of 
2018. Besides, faster dry-downs are observed in both SMAP L4 and 
downscaled timeseries, which is not the case with the in-situ data. This 

could be due to the SMAP SM’s characteristic of rapid dry-down after the 
rainfall (Shellito et al., 2016). There is a strong agreement of downscaled 
and SMAP L4 SM timeseries with the in-situ data, in the case of Fort 
Cobb site 102. The downscaled SM could adjust some dry bias of SMAP 
L4 SM during the dry period of September 2017. The downscaled SM 
matched well with the in-situ data at Fort Cobb site 113. Compared to 
SMAP L4 SM, the proposed method improved the ubRMSE (~0.042 m3/ 
m3 for SMAP L4) and bias (~0.10 m3/m3 for SMAP L4) metrics at this 
site. 

In the case of 10 cm depth, validation could be carried out only using 
TxSON network. Fig. 9 presents the boxplots of performance metrics of 
predicted SM at 10 cm depth. Table S4 presents station-wise perfor
mance metrics along with the number of observations used per station 
for validation. There is an improvement in the ubRMSE at 10 cm depth 
compared to that of the surface (5 cm). The time series plots of down
scaled and in-situ SM for four sample locations are presented in Fig. 10. 
There is a general agreement between the temporal variability of the two 
datasets. We noticed the downscaled SM be more reactive to the surface 
processes than in-situ data, for example, an increase in SM during 
rainfall events in August 2016 at 10–5 and 2–23 sites and in December 
2017 at L-4, 2–17 sites. This could be attributed to SMAP surface SM 
variations, which are found to have the highest importance for esti
mating SM at 10 cm depth (Fig. 6). Besides, the correlated nature of SM 
at 5 cm and 10 cm depths, as discussed earlier, can be observed for 
TxSON 2–23 site downscaled SM (Figs. 8 & 10), wherein an agreement 
between several peak events is noticed. The greater agreement can also 
be due to the soil texture homogeneity in these two layers (presence of 

Fig. 9. Boxplots of ubRMSE, R, and bias computed for soil moisture predicted at 10, 20, and 50 cm depths at in-situ stations. Soil moisture at 10 cm depth is validated 
using TxSON network. Soil moisture at 20 and 50 cm depths are validated using TxSON and SoilSCAPE networks. 
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clay soil). SM at 10 cm exhibited a lower dynamic range than that of 5 
cm depth at this location. This could be due to SM’s persistent behavior 
at 10 cm depth, although further investigations are needed on this 
aspect. 

Fig. 9 presents the boxplots of performance metrics of validation of 
SM predicted at 20 cm depth. Table S5 presents these performance 

metrics along with number of observations used for validation at 29 and 
6 stations of TxSON and SoilSCAPE networks, respectively. From 20 cm 
onward, the temporal dynamics of SM departed from surface SM dy
namics. The downscaling algorithm extracts information of SM at 20 cm 
depth using rootzone SM as the most important predictor (Fig. 6). So, it 
would be important for the layer-wise estimates to capture the dynamic 

Fig. 10. Time series of 10 cm depth at different locations. Each plot contains in-situ and predicted SM along with daily precipitation.  

Fig. 11. Same as Fig. 10 but for soil moisture at 20 cm depth at different locations.  
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range of SM. Table 4 indicates that the downscaled SM has a noticeable 
bias with respect to in-situ data. Reichle et al. (2019) noted that the bias 
in rootzone SM does not imply a degradation of the result. If we set aside 
the bias component of the error, we find that the downscaled SM could 
predict the dynamic range of the SM reasonably well at 20 cm depth. To 
describe further, we plotted the downscaled bias-corrected (with respect 
to mean) SM against in-situ SM at six locations of TxSON in Fig. S3. Some 
of the sites indicated low ubRMSE values. However, it is partly 
contributed by the reduced dynamic range of rootzone SM of SMAP 
Level 4 data caused by the reduction of upward recharge in the CLSM 
(Reichle et al., 2019). In the case of SoilSCAPE stations, the performance 
is slightly degraded, particularly in terms of ubRMSE. This is because the 
downscaled SM could not predict the high variability during the peak 
SM periods. However, such a high variability is not noticed in TxSON 
stations. Apart from this issue, the proposed method depicted reasonable 
skill in modeling the dynamic range and temporal variations of the in- 
situ SM. 

The timeseries of in-situ and downscaled SM (along with precipita
tion) at 20 cm depth at four locations are presented in Fig. 11. The 
timeseries plots indicated that the proposed method could estimate SM 
during the dry-down and wet-up periods with reasonable accuracy. The 
downscaled SM exhibited a greater high-frequency variability compared 
to that of in-situ data. This could be due to a) the internal variability of 
the machine learning model and b) model sensitivity to precipitation 
events. The downscaled SM exhibited a slightly lower dynamic range, 
with peaks being underestimated during the wet periods. However, it 
could successfully model the wet-up period during November 2015. The 
proposed method could reasonably well model the temporal dynamics of 
TxSON 2–29 site with accurate dry-downs. In the case of SoilSCAPE site, 
apart from biases in wet (January to May 2016) and dry (June to 
November 2016) periods, a faster dry-down is noticed during May 2016. 
This could be attributed to the sandy loam soil texture input at this 
location, which has a greater hydraulic conductivity, resulting in faster 
dry-down. 

Fig. 9 presents the boxplots of validation performance metrics of SM 
predicted at 50 cm depth. The downscaled SM at 50 cm is validated at 22 

and 7 stations of TxSON and SoilSCAPE networks, respectively. Table S6 
presents station-wise performance metrics along with a number of ob
servations used for validation. The performance of the downscaled 
product is lower compared to the results of 20 cm depth. This is mainly 
because of the differences in the dynamic range of downscaled and in- 
situ SM at this depth. It may be noted that soil texture properties have 
high importance while estimating SM at 50 cm depth (Fig. 6). Since PSU 
USDA STATSGO soil texture data was not available exactly at 50 cm 
depth, we selected a next layer available at 60 cm depth. Therefore, 
uncertainties in soil texture information can influence the estimates of 
SM. In their attempt to estimate SM at 20 cm and 50 cm depths, Pan et al. 
(2017) also found reduced skill of SM estimation at 50 cm compared to 
20 cm. Besides, the low dynamic range of SMAP Level 4 SM could have 
also limited XGBoost’s skill to estimate the complete range of SM at this 
depth. The timeseries plots at four TxSON sites at 50 cm depth are 
presented in Fig. 12. These plots indicate that the downscaled SM at 50 
cm can broadly capture the temporal dynamics of in-situ SM. The 
diminished impact of meteorological inputs is evident through a reduced 
high-frequency variability in SM, which is observed estimates at shal
lower depths. Although the low dynamic range, as mentioned earlier, is 
evident in these plots dry-down and wet-up patterns of downscaled SM 
are consistent with that of the in-situ data. In the next section, we pre
sent the spatial maps of multi-layer downscaled SM. 

3.5.2. Spatial patterns of multi-layer downscaled SM 
For illustration, we present the multi-layer downscaled maps for 9th 

April 2015 (Fig. 13). The downscaled maps depict the general spatial 
characteristics of SM over the CONUS. Despite setting up a machine 
learning model cluster-wise and layer-wise, the spatial contiguity of SM 
patterns is attained, which indicates the efficacy of the proposed model. 
There is consistency with respect to the wetting caused by accumulated 
precipitation (Fig. S4). East CONUS (excluding Florida) and Northwest 
Coast CONUS experienced rainfall during 3–9 April 2015 (one week). 
Therefore, these regions are predominantly wet in the SM maps. 
Southwest and Central CONUS mostly did not receive any rainfall, 
resulting in dry conditions. The extent of drying reduced in these regions 

Fig. 12. Same as Fig. 10 but for soil moisture at 50 cm depth at different locations.  

L. Karthikeyan and A.K. Mishra                                                                                                                                                                                                             



Remote Sensing of Environment 266 (2021) 112706

15

in the deeper layers, which could be due to the persistence behavior of 
rootzone SM. Besides, the spatial patterns of SM in the dry regions 
(mainly in West CONUS) varied significantly with changing depth. This 
could be due to the short hydrological length scales caused by decor
relation between the surface and rootzone SM (Akbar et al., 2018; Hir
schi et al., 2014). The Midwest region experienced an increase in 
moisture content till 20 cm depth, followed by drying. A reverse 
mechanism is noticed in the Northwest coast, wherein the moisture 
content decreased till 20 cm depth, followed by an increase in the deeper 
layers. This could be possibly due to the vertical heterogeneity of soil 
texture and differences in the land cover conditions (croplands in the 
Midwest region and dense forests in the Northwest region), which result 
in variable rooting depths. These two factors affect the soil water 
movement (Fan et al., 2017). 

The proposed method downscales the coarse resolution SMAP L4 SM 
product, primarily using fine resolution soil texture, elevation, and 
vegetation products. To assess the sub-grid heterogeneity and the spatial 
consistency with SMAP L4 product, we produced two high-resolution 
SM maps, one corresponding to the surface (0–5 cm) and another to 
rootzone (0–100 cm). The rootzone map is generated by computing the 
weighted average of high-resolution multi-layer SM maps. Fig. 14 pre
sents these two maps along with SMAP L4 surface, and rootzone SM 
maps for 9th April 2015 plotted over a portion of Kansas state. The figure 
also presents the 2016 Land Use Land Cover (LULC) map obtained from 
USGS National Land Cover Database (NLCD) (Wickham et al., 2021). 
The region is selected considering its land cover heterogeneity. In the 
case of surface SM, the downscaling method could resolve the spatial 
heterogeneity of SM in the region. The predicted SM offers heterogeneity 

in low SM conditions prevailing in the west, and southwest portions of 
the map covered predominantly by grasslands (Fig. 14(a)). There is also 
a difference in the SM values of croplands compared to that of pastures 
and forested pixels. Such differences are not evident in the 9 km SMAP 
Level 4 map (Fig. 14(b)). For instance, the croplands along the Missouri 
River (upstream of Kansas City) and the west of Kansas City have 
distinguishable SM compared to other regions. Although the spatial 
heterogeneity is driven by high-resolution elevation, vegetation, and soil 
texture information, there is a greater influence of variations of surface 
SM, which influenced the spatial heterogeneity of high-resolution SM. 
Rootzone SM is found to have a lower SM dynamic range compared to 
surface SM. Cropland regions have a wetter rootzone SM compared to 
surface SM. The fine resolution features are prominent in high- 
resolution rootzone SM. This could be due to the higher relative 
importance of elevation and soil texture in some layers (Fig. 6). Notably, 
the spatial heterogeneity in rootzone SM broadly matches with LULC 
variations despite LULC not being used in the input feature space of 
machine learning models. Although it would be interesting to study the 
irrigation processes at fine resolution as attempted recently (Abbasza
deh et al., 2021), the irrigation signals may not be prominent since we 
use SMAP Level 4 product. It may be noted that before assimilation, 
SMAP data is bias corrected to match the dynamic range of CLSM SM. 
This process may suppress irrigation signals captured by SMAP SM alone 
(Lawston et al., 2017). We may include Level 3 satellite SM alongside the 
Level 4 assimilated SM product in the input feature space to capture such 
information. This step shall be attempted in future revisions of the 
algorithm. 

Fig. 13. High-resolution (1 km) multi-layer SM maps for five soil layers on 09th April 2015.  
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4. Summary and conclusions 

Multi-layer soil moisture (SM) has several potential applications in 
the fields of water resources and agriculture. Knowledge of SM in the 
deeper layers is currently being estimated using a land surface model 
ingested with satellite surface SM in a data assimilation framework. 
However, such information limits to providing SM profile data (one 
representative value for the entire soil depth). Through this work, we 
attempt to discretize SM profile information at high-resolution (1 km) 
over the CONUS using multi-layer in-situ data and multiple variables 
that regulate SM dynamics using a machine learning modeling frame
work. The machine learning model is setup layer-wise in regions formed 
using various indicators that influence SM profile patterns. 

The cluster analysis resulted in contiguous nature of homogenous 
regions with distinct geomorphological, topographical, meteorological, 
and vegetation characteristics. During the testing phase, the model 
performance is higher in arid regions. The error characteristics behavior 
mostly remains similar for 5 cm and 10 cm depths, which may be due to 
similarity in the temporal dynamics of SM at these two depths. The 
model performance is better at 20 cm depth compared to the deeper 
layers. Elevation, soil texture, and vegetation features are found to have 
greater importance in estimating SM. With the increase in depth, the 
importance of vegetation indicators reduced, and the importance of soil 
texture indicators increased. Meteorological indicators have the lowest 
importance across all soil layers. A reasonable performance was 
observed during the model validation stage for high-resolution multi- 
layer SM estimates. The models performed well for most of the locations 
across all the soil layers with ubRMSE less than 0.04 m3/m3. However, a 
slight decrease in correlation is noticed in the deeper layers compared to 
surface layers (5 cm and 10 cm depths). XGBoost algorithm could cap
ture the temporal dynamics of SM in the deeper layers reasonably well. 
The new SM estimates could produce sub-grid heterogeneity owing to 
the high-resolution soil texture, elevation, and vegetation patterns. It 

could also accurately depict the spatial variability of SM. 

4.1. Future scope 

Achieving high-resolution rootzone SM is identified as a challenging 
task (Peng et al., 2020). This work proposes a method to address this 
challenge using the potential of machine learning tools. In terms of the 
model, improvements are necessary to achieve the dynamic range of SM 
more accurately in the deeper layers. Usage of dimensionality reduction 
techniques such as t-Distributed Stochastic Neighbor Embedding (t-SNE) 
(Van der Maaten and Hinton, 2008) and uniform manifold approxima
tion and projection (UMAP) (McInnes et al., 2018) along with clustering 
algorithm and other widely used deep learning architectures such as 
Convolution Neural Networks (CNN) and LSTM models (Shen, 2018) 
can be explored. 

The relative importance of predictors can be used for revising the 
predictors’ set to improve the SM accuracy (e.g., omit precipitation and 
LST for SM prediction in deeper layers). To enable capturing irrigation 
water use at high resolution, the potentiality of including satellite SM in 
the input feature space shall be explored. This can improve the quality of 
predictions in data-scarce regions where SMAP can provide valuable SM 
information that cannot be accurately modelled by a land surface model 
(Dong et al., 2019). In addition, antecedent SM and precipitation con
ditions can be included in the input feature space to improve the accu
racy of SM profile predictions (Pal and Maity, 2019; Pan et al., 2017). In 
the future, gap filled techniques that play a vital role in filling missing 
data in LST due to cloud cover (Long et al., 2020; Shiff et al., 2021) can 
be used to provide temporally consistent information in the input 
feature space. This step reduces control of XGBoost to handle missing 
data by itself and can improve the SM prediction accuracy. To gain a 
better understanding on the influence of above-described changes, a 
comprehensive uncertainty analysis concerning the choice of (a) input 
datasets, (b) clustering algorithms, (c) input feature space, (d) machine 

Fig. 14. Comparison of 1 km surface and root zone SM maps with SMAP L4 data on 9th April 2015 encompassing latitude range 37◦N–40◦N and longitude range 
97.5◦W–94.5◦W (a portion of Kansas state). (a) 2016 LULC map from USGS NLCD (Wickham et al., 2021), (b) SMAP Level 4 9 km surface SM (0–5 cm), (c) Predicted 
1 km surface SM, (d) SMAP Level 4 9 km rootzone SM (0–100 cm), (c) Predicted 1 km rootzone SM. Note: White portions in (c) and (e) represent either water bodies 
or built-up areas. The predominant white patch on the north east portion of the map is of Kansas City. 
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learning algorithm, would be needed. The machine learning tools can 
capture the complex relationships between different hydrological pro
cesses to predict multi-layer SM estimates, however a large volume of 
data is required to train the models. In the future, we shall explore ways 
to implement this technique to other regions using limited in-situ in
formation of rootzone soil moisture. 

Data 

SMAP Level 4 (Version 4: Vv4030) surface and rootzone soil mois
ture product is obtained from https://nsidc.org/data/spl4smau/versio 
ns/4/; Soil Texture data is obtained from http://www.soilinfo.psu. 
edu/; Elevation data is obtained from USGS GTOPO30 – https://www. 
usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-g 
lobal-30-arc-second-elevation-gtopo30; MODIS NDVI/EVI MOD13A2 
v006 product is obtained from https://lpdaac.usgs.gov/products/mod1 
3a2v006/; MODIS GPP MOD17A2H v006 product is obtained from 
https://lpdaac.usgs.gov/products/mod17a2hv006/; MODIS LST Day 
and Night times MOD11A1 v006 product is obtained from https 
://lpdaac.usgs.gov/products/mod11a1v006/; CHIRPS v2.0 precipita
tion data is obtained from https://www.chc.ucsb.edu/data/chirps; In- 
situ soil moisture data is obtained from https://ismn.geo.tuwien.ac. 
at/en/; TxSON in-situ soil moisture data is obtained from https: 
//dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T 
8/JJ16CF; Little Washita and Fort Cobb in-situ soil moisture data are 
obtained from http://ars.mesonet.org/; SoilSCAPE in-situ soil moisture 
data is obtained from https://daac.ornl.gov/LAND_VAL/guides/Soi 
lSCAPE.html; 
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