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Abstract The goal of the paper is to introduce a formulation of the mean field game
with major and minor players as a fixed point on a space of controls. This approach
emphasizes naturally the role played by McKean–Vlasov dynamics in some of the
players’ optimization problems. We apply this approach to linear quadratic models
for which we recover the existing solutions for open loop equilibria, and we show
that we can also provide solutions for closed loop versions of the game. Finally, we
implement numerically our theoretical results on a simple model of flocking.

1 Introduction

Mean field games with major and minor players were introduced with the specific
intent to extend the realm of applications of the original mean field game paradigm to
realisticmodels for which subgroups of players do not grow in size and as a result, their
influence on the remaining population of players, does not disappear in the asymptotic
regime of large games. While this generalization captures new potential applications,
it raises the technological bar in terms of the sophistication of the tools to be used
in order to come up with solutions, bringing these models up to par with mean field
games with common noise. See for example the monograph [1] or the last chapter of
[3] for details.

As far as we know, the earliest instance of such a generalization appeared in [6]
which proposed a linear-quadratic infinite-horizon model with a major player. Soon
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after, the finite-horizon counterpart of the model was considered in [9] and a first
generalization to nonlinear cases was proposed in [11]. We believe these are the first
models of what is now called ‘mean field games with major and minor players’. Still,
the state of the major player does not enter the dynamics of the minor players, it only
appears in their cost functionals. Later on [10] discussed a new approach to linear
quadratic games in which the major player’s state enters the dynamics of the minor
players. The authors solve the limiting control problem for the major player using a
trick they call “anticipative variational calculation”.

The asymmetry between major and minor players was emphasized in [1] where the
authors insist on the fact that the statistical distribution of the state of a generic minor
player should be derived endogenously. Like in [11], the paper [1] characterizes the
limiting problem by a set of stochastic partial differential equations. While working
with the open loop formulation of the problem, the more recent account [4] also insists
on the endogenous nature of the statistical distribution of the state of a generic minor
player. In fact, it goes one step further by reformulating the mean field game with
major and minor players as the search for a Nash equilibrium in a two player game
over the time evolutions of states, some of which being of a McKean–Vlasov type.
Note that, despite the fact that they offer a formal discussion of the general case, both
papers [1] and [4] can only provide solutions in the linear quadratic case. For the
sake of completeness, we also mention the recent technical report [7] where a major
player is added to a particular case of the extended (in the sense that the interaction
is through the controls) mean field game model of optimal execution introduced in
Chapter 1 and solved in Section 4.7 of Chapter 4 of [2]. Because of the absence of
idiosyncratic noise, the initial conditions of the minor player states are assumed to be
independent identically distributed random variables. The authors formulate a fixed
point equilibriumproblemwhen the rate of trading of themajor player is restricted to be
a linear function of the average rate of trading of the minor players, and they solve this
fixed point problem with deterministic controls in the infinite horizon stationary case.

In this paper, we present an alternative formulation for the mean field games with
major and minor players. In this approach, the search for Nash equilibria is naturally
framed as the search for fixed points for the best response function for both types of
players. As a fringe benefit we are able to formulate and tackle the open and closed
loop versions of the problem in one go. Beyond the fact that [1] seems to be dealing
only with the closed loop formulation of the problem, the main difference is the fact
that instead of looking for a global Nash equilibrium of the whole system, including
major and minor players, the authors choose a Stackelberg game strategy in which
the major player goes first and chooses its own control to minimize its expected cost,
assuming that the response of the minor players to the choice of its control will be to
put themselves in the (hopefully unique) mean field game equilibrium in the random
environment induced by the control of the major player. As a result, the finite-player
game which is actually solved in [1], is merely a N -player game including only the
minor players. In particular, the associated propagation of chaos is just a randomized
version of the usual propagation of chaos associated to the usual mean field games.
Here we follow the same line of attack as in [4], making sure that the approximate
equilibria obtained for finite player games are in fact (N + 1)-player game including
the major player as well as the N minor players.
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The paper is structured as follows. Our formulation of mean field games with major
and minor players is presented in Sect. 2 below. There, we emphasize that it relies on
a fixed point argument in spaces of controls and we explain how this approach can be
used to tackle all sorts of versions of the game, whether the search is for open loop or
closed loop (or even Markovian) equilibria. Next, Sect. 3 implements this approach
in the case of linear quadratic models. We recover the open loop solution of [4] and
provide a solution for closed loop models. Section 4 concludes with the solution of a
generalization including a major player to the mean field game formulation proposed
in [8] of a flocking model originally credited to Cucker and Smale [5]. There, the
dynamics of a large population of agents are governed by forces depicting the mean
reversion of individual velocity to the mean velocity of the population. While early
models of flocking do not involve any form of central coordination, several authors
recently propose generalization of the flocking model by introducing leaders in the
population. Such leaders have a pivotal impact on the rest of the population. In this
spirit, we extend the mean field game formulation of [8] to include a major player
which in equilibrium, should act as a free-will leader. We solve this model in the
linear quadratic case, and we provide numerical simulations of the solution.

2 Alternative Formulations for Mean Field Games with Major
and Minor Players

The goal of this section is to formulate the search for Nash equilibria for mean field
games with major and minor players as a fixed point problem on a space of admissible
controls. Since our discussion remains at the formal level, we do not introduce these
mean field game models as limits of finite player games. We shall do just that only
in the case of the linear quadratic models which we solve explicitly in Sect. 3 below.
For pedagogical reasons, we treat separately the open and closed loop problems. The
rationale for this decision comes from the fact that, while solutions to the open and
closed loop versions of the standard games often coincide in the mean field limit, this
does not seem to be the case for games with major and minor players. Indeed, the
characteristics of the state of the major player do not disappear in the limit when the
number of minor players tends to infinity. We shall illustrate this fact in our discussion
of the linear quadratic models below.

The general set up of a mean field game with major and minor players is as follows.
The dynamics of the state of the system are given by stochastic differential equations
of the form:{

dX0
t = b0(t, X0

t , μt , α
0
t )dt + σ0(t, X0

t , μt , α
0
t )dW

0
t

d Xt = b(t, Xt , μt , X0
t , αt , α

0
t )dt + σ(t, Xt , μt , X0

t , αt , α
0
t )dWt ,

(1)

where W0 = (W 0
t )0≤t≤T and W = (Wt )0≤t≤T are independent Wiener processes in

R
m0 andRm respectively. The quantities X0

t , α
0
t with a superscript 0 represent the state

and the control of themajor player. The quantities Xt ,αt without a superscript represent
the state and the control of a representative player for the field of statistically identical
minor players, which we will refer to as the representative minor player throughout

123



8 Appl Math Optim (2017) 76:5–27

the paper. Later, when examining the best strategy of the minor players, we will also
consider an extra “virtual” minor player who deviates from the strategy of its peers
and optimizes in response to the major player and the rest of the minor players. We
will call it the deviating minor player and denote by X̃t and α̃t its state and control.
In Nash equilibrium, we expect that the optimal response of the deviating minor
player coincides with the strategy of its peers, i.e. the representative minor player. The
controls α0

t and αt take values in closed convex subsets A0 and A of Euclidean spaces
R
k0 andRk . Hereμ = (μt )0≤t≤T is a measure valued process which in equilibrium, is

expected to be given by the conditional distributions of the state of the representative
minor player given the filtrationF0 = (F0

t )0≤t≤T generated by theWiener processW0

driving the dynamics of the state of the major player. Indeed, μt should be understood
as a proxy for the empirical measure μN

t of the states of N minor players in the limit
N → ∞. This limit is expected to be μt = PXt |W 0[0,t]

= L(Xt |W 0[0,t]) the conditional
distribution of the state of the representativeminor player given the initial pathW 0[0,t] of
the noise common to all the minor players, namely the noise term driving the equation
for the state of the major player. For later reference, we shall denote by F = (Ft )0≤t≤T

the filtration generated by both Wiener processes.
The players try to minimize are of the form:

{
J 0(α0,α) = E

[∫ T
0 f0(t, X0

t , μt , α
0
t )dt + g0(X0

T , μT )
]

J (α0,α) = E
[∫ T

0 f (t, Xt , μt , X0
t , αt , α

0
t )dt + g(XT , μT )

]
,

(2)

for some running and terminal cost functions f0, f , g0 and g. The crucial feature of
mean field games with major and minor players is that the dynamics of the state and
the costs of the major player depend upon the statistical distribution of the states of
the minor players while the states and the costs of the minor players depend upon
not only their own states and the statistical distribution of the states of all the minor
players, but also on the state and the control of the major player. This is what makes
the analysis of these games more difficult than the standard mean field game models.

We first treat the case of open loop equilibria for which we take advantage of the
fact that the filtrations are assumed to be generated by the Wiener processes, to write
the controls as functions of the paths of these Wiener processes.

2.1 Open Loop Version of the MFG Problem

Here, we assume that the controls used by the major player and the representative
minor player are of the form:

α0
t = φ0(t,W 0[0,T ]), and αt = φ(t,W 0[0,T ],W[0,T ]), (3)

for deterministic progressively measurable functions φ0 : [0, T ] × C([0, T ];Rd0) →
A0 and φ : [0, T ] × C([0, T ];Rd) × C([0, T ];Rd) → A. Progressive measurability
of the function φ means that for each t ∈ [0, T ], andw0, w ∈ C([0, T ];Rd), the value
of φ(t, w0, w) depends only upon the restrictions w0[0,t] and w[0,t] of w0 and w to
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the interval [0, t]. Similarly for φ0. Our choice for the admissibility of the controls is
consistent with our earlier discussion since we assume that the filtrations F0 and F are
generated by the Wiener processes W0 and (W0,W) respectively.

We understand a Nash equilibrium as a fixed point of the best response map. In
the present context, the latter comprises two specific components: the best response
of the major player to the behavior of all the minor players, and the best response of
the deviating minor player to the behavior of the major player and all the other minor
players. So we need two separate steps to identify the best response map before we
can define a Nash equilibrium as a fixed point of this map.

2.1.1 The Major Player’s Best Response

We assume that the representative minor player uses the open loop control given by
the progressively measurable function φ : (t, w0, w) → φ(t, w0, w), so the problem
of the major player is to minimize its expected cost:

Jφ,0(α0) = E

[∫ T

0
f0(t, X

0
t , μt , α

0
t )dt + g0(X0

T , μT )

]
, (4)

under the dynamical constraints:

⎧⎪⎨
⎪⎩
dX0

t = b0(t, X0
t , μt , α

0
t )dt + σ0(t, X0

t , μt , α
0
t )dW

0
t

d Xt = b(t, Xt , μt , X0
t , φ(t,W 0[0,T ],W[0,T ]), α0

t )dt

+ σ(t, Xt , μt , X0
t , φ(t,W 0[0,T ],W[0,T ]), α0

t )dWt ,

whereμt = L(Xt |W 0[0,t]) denotes the conditional distribution of Xt givenW 0[0,t]. Since
we are considering the open loop version of the problem, we search for minima in the
class of controls α0 of the form α0

t = φ0(t,W 0[0,T ]) for a progressively measurable

function φ0. So we frame the major player problem as the search for:

φ0,∗(φ) = arg inf
α0↔φ0

Jφ,0(α0), (5)

where α0 ↔ φ0 means that the infimum is over the set of controls α0 given by
progressively measurable functions φ0. For the sake of the present discussion, we
assume implicitly that the argument of the minimization is not empty and reduces to
a singleton. The important feature of this formulation is that the optimization of the
major player appears naturally as an optimal control of the McKean–Vlasov type!
In fact, it is an optimal control of the conditional McKean–Vlasov type since the
distribution appearing in the controlled dynamics is the conditional distribution of the
state of the representative minor player.

2.1.2 The Deviating Minor Player’s Best Response

To formulate the optimization problem of the deviating minor player, we first describe
the state of a system comprising a major player and a field of minor players different
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from the deviating minor player we are focusing on. So we assume that the major
player uses a strategy α0 given by a progressively measurable function φ0 as in α0

t =
φ0(t, X0[0,T ], μt ), and that the representative minor players uses a strategy α given by

a progressively measurable function φ in the form αt = φ(t,W 0[0,T ],W[0,T ]). So the
dynamics of the state of the system are given by:

⎧⎪⎨
⎪⎩
dX0

t = b0(t, X0
t , μt , φ

0(t,W 0[0,T ]))dt + σ0(t, X0
t , μt , φ

0(t,W 0[0,T ]))dW 0
t

d Xt = b(t, Xt , μt , X0
t , φ(t,W 0[0,T ],W[0,T ]), φ0(t,W 0[0,T ]))dt

+ σ(t, Xt , μt , X0
t , φ(t,W 0[0,T ],W[0,T ]), φ0(t,W 0[0,T ]))dWt ,

where as before, μt = L(Xt |W 0[0,t]) is the conditional distribution of Xt given W 0[0,t].
Notice that in the present situation, given the feedback functionsφ0 andφ, this stochas-
tic differential equation in R

d0 × R
d giving the dynamics of the state of the system

is of (conditional) McKean–Vlasov type since μt is the (conditional) distribution of
(part of) the state.

As explained earlier, we frame the problem of the deviating minor player as the
search for the best response to the major player and the field of the (other) minor
players. So naturally, we formulate this best response as the result of the optimization
problem of the deviating minor player which chooses a strategy α̃ given by a pro-
gressively measurable function φ̃ in the form α̃t = φ̃(t,W 0[0,T ], W̃[0,T ]) in order to
minimize its expected cost:

Jφ0,φ(α̃) = E

[∫ T

0
f (t, X̃t , X

0
t , μt , α̃t , φ

0(t,W 0[0,T ]))dt + g(X̃T , μT )

]
,

where the dynamics of the deviating minor player’s state X̃t are given by:

d X̃t = b(t, X̃t , μt , X
0
t , φ̃(t,W 0[0,T ], W̃[0,T ]), φ0(t,W 0[0,T ]))dt

+ σ(t, X̃t , μt , X
0
t , φ̃(t,W 0[0,T ], W̃[0,T ]), φ0(t,W 0[0,T ]))dW̃t ,

for a Wiener process W̃ = (W̃t )0≤t≤T independent of the other Wiener processes.
Notice that this optimization problem is not of McKean–Vlasov type. It is merely
a classical optimal control problem, though with random coefficients. As stated
above, we search for minima in the class of feedback controls α̃ of the form
α̃t = φ̃(t,W 0[0,T ], W̃[0,T ]). We denote by:

φ∗(φ0, φ) = arg inf
α̃↔φ̃

Jφ0,φ(α̃), (6)

the result of the optimization. Again, we assume that the optimal control exists, is given
by a progressively measurable function, and is unique for the sake of convenience.

We now formulate the existence of a Nash equilibrium for the mean field game with
major and minor players as a fixed point of the best response maps identified above
by its components (5) and (6). So by definition, a couple (α̂

0
, α̂) of controls given
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by progressively measurable functions (φ̂0, φ̂) as above is a Nash equilibrium for the
mean field game with major and minor players if it satisfies the fixed point equation:

(φ̂0, φ̂) = (
φ0,∗(φ̂), φ∗(φ̂0, φ̂)

)
. (7)

2.2 Closed Loop Version of the MFG Problem

The way we rewrote the open loop version of the problem may have been rather
pompous, but it makes it easy to introduce the closed loop and Markovian versions of
the problem. In this subsection, we assume that the controls used by the major player
and the minor players are of the form:

α0
t = φ0

(
t, X0[0,T ], μt

)
, and αt = φ

(
t, X[0,T ], μt , X

0[0,T ]
)

,

for deterministic progressively measurable functions φ0 : [0, T ] × C([0, T ];Rd0) ×
P2(R

d) → A0 and φ : [0, T ] × C([0, T ];Rd) ×P2(R
d) × C([0, T ];Rd0) → A. The

state X0
t of the major player and the state Xt of the minor player evolve according to

the same dynamic Eq. (1) as before, and the costs are also given by the same formula
(2), withμt = L(Xt |W 0[0,t]). We follow the same strategy as above to define the closed
loop Nash equilibria of the game.

2.2.1 The Major Player’s Best Response

We assume that the representative minor player uses the progressively measurable
feedback function φ : (t, x, μ, x0) → φ(t, x, μ, x0), so the problem of the major
player is to minimize its expected cost (4) under the dynamical constraints:

⎧⎪⎨
⎪⎩
dX0

t = b0(t, X0
t , μt , α

0
t )dt + σ0(t, X0

t , μt , α
0
t )dW

0
t

d Xt = b(t, Xt , μt , X0
t , φ(t, X[0,T ], μt , X0[0,T ]), α0

t )dt

+ σ(t, Xt , μt , X0
t , φ(t, X[0,T ], μt , X0[0,T ]), α0

t )dW
i
t ,

whereas before μt = L(Xt |W 0[0,t]) denotes the conditional distribution of Xt given

W 0[0,t]. As explained earlier, we search for minima in the class of feedback controls

α0 of the form α0
t = φ0(t, X0[0,T ], μt ), so we frame the major player problem as:

φ0,∗(φ) = arg inf
α0↔φ0

Jφ,0(α0), (8)

which is an optimal control of the conditional McKean–Vlasov type!

2.2.2 The Deviating Minor Player’s Best Response

To formulate the optimization problem of the deviating minor player, we first
describe a system to which it needs to respond optimally. So we assume that the
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major player uses a strategy α0 in feedback form given by a feedback function
φ0 so that α0

t = φ0(t, X0[0,T ]μt ), and that the representative minor players uses a
strategy α given by a progressively measurable feedback function φ in the form
αt = φ(t, X[0,T ], μt , X0[0,T ]). So the dynamics of the state of this system are given by:⎧⎪⎨
⎪⎩
dX0

t = b0(t, X0
t , μt , φ

0(t, X0[0,T ], μt ))dt + σ0(t, X0
t , μt , φ

0(t, X0[0,T ], μt ))dW 0
t

d Xt = b(t, Xt , μt , X0
t , φ(t, X[0,T ], μt , X0[0,T ]), φ0(t, X0[0,T ], μt ))dt

+ σ(t, Xt , μt , X0
t , φ(t, X[0,T ], μt , X0[0,T ]), φ0(t, X0[0,T ], μt ))dWt ,

where as before, μt = L(Xt |W 0[0,t]) is the conditional distribution of Xt given W 0[0,t].
Again, given the feedback functions φ0 and φ, this stochastic differential equation in
R
d0 × R

d is of (conditional) McKean–Vlasov type.
As expected, we formulate this best response of the deviating minor player as its

choice of an optimal strategy α̃ given by a feedback function φ̃ in the form α̃t =
φ̃(t, X̃[0,T ], μt , X0[0,T ]) in order to minimize its expected cost:

Jφ0,φ(α̃) = E

[∫ T

0
f (t, X̃t , X

0
t , μt , α̃t , φ

0(t, X0[0,T ], μt ))dt + g(X̃T , μT )

]
,

where the dynamics of the deviating minor player’s state X̃t are given by:

d X̃t = b(t, X̃t , μt , X
0
t , φ̃(t, X̃[0,T ], μt , X

0[0,T ]), φ0(t, X0[0,T ], μt ))dt

+ σ(t, X̃t , μt , X
0
t , φ̃(t, X̃[0,T ], μt , X

0[0,T ]), φ0(t, X0[0,T ], μt ))dW̃t ,

for a Wiener process W̃ = (W̃t )0≤t≤T independent of the other Wiener pro-
cesses. We search for minima in the class of feedback controls α̃ of the form
α̃t = φ̃(t, X̃[0,T ], μt , X0[0,T ]), and we denote the solution by:

φ∗(φ0, φ) = arg inf
α̃↔φ̃

Jφ0,φ(α̃). (9)

Since the best response map is given by its components (8) and (9), we define the
solution of a Nash equilibrium for the closed loop mean field game with major and
minor players as the solution of the same fixed point Eq. (7), except for the fact that
the functions (φ̂0, φ̂) are now progressively measurable feedback functions of the type
considered here.

2.3 Markovian Version of the MFG Problem

Here, we assume that the controls used by the major player and the minor players are
of the form:

α0
t = φ0(t, X0

t , μt ), and αt = φ(t, Xt , μt , X
0
t )

for deterministic feedback functions φ0 : [0, T ] × R
d0 × P2(R

d) → A0 and φ :
[0, T ] ×R

d ×P2(R
d) ×R

d0 → A. The state X0
t of the major player and the state Xt
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of the minor players evolve according to the same dynamic Eq. (1) as before and the
costs are also given by the same formula (2), with μt = L(Xt |W 0[0,t]).

2.3.1 The Major Player’s Best Response

We assume that the representative minor player uses the feedback function φ :
(t, x, μ, x0) → φ(t, x, μ, x0), so the problem of the major player is to minimize
its expected cost (4) under the dynamical constraints:

⎧⎪⎨
⎪⎩
dX0

t = b0(t, X0
t , μt , α

0
t )dt + σ0(t, X0

t , μt , α
0
t )dW

0
t

d Xt = b(t, Xt , μt , X0
t , φ(t, Xt , μt , X0

t ), α
0
t )dt

+ σ(t, Xt , μt , X0
t , φ(t, Xt , μt , X0

t ), α
0
t )dW

i
t ,

where as before μt = L(Xt |W 0[0,t]) denotes the conditional distribution of Xt given

W 0[0,t]. We search for minima in the class of feedback controls α0 of the form α0
t =

φ0(t, X0
t , μt ), so we frame the optimization problem of major player as:

φ0,∗(φ) = arg inf
α0↔φ0

Jφ,0(α0). (10)

As before, the optimization problem of the major player is of the conditional Mckean–
Vlasov type.

2.3.2 The Deviating Minor Player’s Best Response

To formulate the optimization problem of the deviating minor player, we first describe
a system to which it needs to respond optimally. So we assume that the major player
uses a strategy α0 in feedback form given by a feedback function φ0 so that α0

t =
φ0(t, X0

t , μt ), and that the representative minor players uses a strategy α given by a
feedback function φ in the form αt = φ(t, Xt , μt , X0

t ). So the dynamics of the state
of this system are given by:

⎧⎪⎨
⎪⎩
dX0

t = b0(t, X0
t , μt , φ

0(t, X0
t , μt ))dt + σ0(t, X0

t , μt , φ
0(t, X0

t , μt ))dW 0
t

d Xt = b(t, Xt , μt , X0
t , φ(t, Xt , μt , X0

t ), φ
0(t, X0

t , μt ))dt

+ σ(t, Xt , μt , X0
t , φ(t, Xt , μt , X0

t ), φ
0(t, X0

t , μt ))dWt ,

where as before, μt = L(Xt |W 0[0,t]) is the conditional distribution of Xt given W 0[0,t].
Again, given the feedback functions φ0 and φ, this stochastic differential equation in
R
d0 × R

d is of (conditional) McKean–Vlasov type.
As before, we frame the problem of the deviating minor player as the search for

the best response to the behavior of the major player and the field of the (other) minor
players. So we solve the optimization problem of the deviating minor player which
chooses a strategy α̃ given by a feedback function φ̃ in the form α̃t = φ̃(t, X̃t , μt , X0

t )

in order to minimize its expected cost:
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14 Appl Math Optim (2017) 76:5–27

Jφ0,φ(α̃) = E

[∫ T

0
f (t, X̃t , X

0
t , μt , α̃t , φ

0(t, X0
t , μt ))dt + g(X̃T , μT )

]
,

where the dynamics of the virtual state X̃t are given by:

d X̃t = b(t, X̃t , μt , X
0
t , φ̃(t, X̃t , μt , X

0
t ), φ

0(t, X0
t , μt ))dt

+ σ(t, X̃t , μt , X
0
t , φ̃(t, X̃t , μt , X

0
t ), φ

0(t, X0
t , μt ))dW̃t ,

for a Wiener process W̃ = (W̃t )0≤t≤T independent of the other Wiener pro-
cesses. We search for minima in the class of feedback controls α̃ of the form
α̃t = φ̃(t, X̃t , μt , X0

t ), and we denote the solution by:

φ∗(φ0, φ) = arg inf
α̃↔φ̃

Jφ0,φ(α̃). (11)

Finally, we define the solution of a Nash equilibrium for the Markovian mean field
game with major and minor player as the solution of the same fixed point Eq. (7),
except for the fact that the functions (φ̂0, φ̂) are now feedback functions of the type
considered here.

3 Linear Quadratic Models

In this section, we consider the mean field game with major and minor players issued
from the finite player game in which the dynamics of the states of the players are given
by the following linear stochastic differential equations:

{
dXN ,0

t = (L0X
N ,0
t + B0α

N ,0
t + F0 X̄ N

t )dt + D0dW 0
t ,

dXN ,i
t = (LXN ,i

t + Bα
N ,i
t + F X̄ N

t + GX0
t )dt + DdWi

t , 1 ≤ i ≤ N ,
(12)

for t ∈ [0, T ], and we choose A0 = R
k0 and A = R

k . Here, X̄ N
t stands for the

empirical mean (XN ,1
t + · · · + XN ,N

t )/N . The coefficients are deterministic constant
matrices independent of time. The real matrices L0, B0, F0 and D0 are of dimensions
d0 × d0, d0 × k0, d0 × d and d0 × m0 respectively. Similarly, the real matrices L , B,
F , G and D are of dimensions d × d, d × k, d × d, d × d0, and d0 ×m0 respectively.
The cost functionals for the major and minor players are given by:

J N ,0(αN ,0, · · · ,αN ,N )
= E

[ ∫ T

0

[(
XN ,0
t − �0(X̄

N
t )

)†
Q0

(
XN ,0
t − �0(X̄

N
t )

) + (α
N ,0
t )†R0α

N ,0
t

]
dt

]
,

J N ,i (αN ,0, · · · ,αN ,N )
= E

[ ∫ T

0

[(
XN ,i
t − �(XN ,0

t , X̄ N
t )

)†
Q

(
XN ,i
t − �(XN ,0

t , X̄ N
t )) + (α

N ,i
t )†Rα

N ,i
t

]
dt

]
,
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in which Q0, Q, R0 and R are positive definite symmetric matrices of dimensions
d0 × d0, d × d, k0 × k0 and k × k, and where the functions �0 and � are defined by:

�0(X) = H0X + η0, �(X,Y ) = HX + H1Y + η,

for some fixed d0 × d, d × d0 and d × d matrices H0, H and H1, and some fixed
η0 ∈ R

d0 and η ∈ R
d .

We choose to study this specific linear quadratic model to match existing literature
on the subject. Several variants are possible which can be treated using the same
procedure. See for example the application discussed in Sect. 4 below.

3.1 Open-Loop Equilibrium

In the mean field limit, the dynamics (12) of the major player state X0
t and the state

Xt of the representative minor player are given by:

{
dX0

t = (L0X0
t + B0α

0
t + F0 X̄t )dt + D0dW 0

t

d Xt = (LXt + Bαt + F X̄t + GX0
t )dt + DdWt

(13)

where X̄t = E[Xt |F0
t ] is the conditional expectation of Xt with respect to the filtration

generated by the history of the Wiener process W0 up to time t . Accordingly, the cost
functionals for the major and minor players are given by:

J 0(α0,α) = E

[∫ T

0

[
(X0

t − H0 X̄t − η0)
†Q0(X

0
t − H0 X̄t − η0) + α

0†
t R0α

0
t

]
dt

]
,

J (α0, α) = E

[∫ T

0

[
(Xt − HX0

t − H1 X̄t − η)†Q(Xt − HX0
t − H1 X̄t − η) + α

†
t Rαt

]
dt

]
,

in which Q, Q0, R, R0 are symmetric matrices, and R, R0 are assumed to be positive
definite. Taking conditional expectations in the equation for the state of the represen-
tative minor player we get:

d X̄t = [(L + F)X̄t + Bαt + GX0
t ] dt, (14)

with αt = E[αt |F0
t ]. The idea is now to express the optimization problem of the major

player over the dynamics of the couple (Xt , X0
t ). In order to do so, we introduce the

following notations:

Xt =
[
X̄t

X0
t

]
, L0 =

[
L + F G
F0 L0

]
, B0 =

[
0
B0

]
, B =

[
B
0

]
,D0 =

[
0
D0

]

F0 =
[
H†
0 Q0H0 −H†

0 Q0
−Q0H0 Q0

]
, f0 =

[
H†
0 Q0η0

−Q0η0

]
.
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Notice that, the fact that the matrix Q0 is symmetric non-negative definite implies
that F0 is also symmetric non-negative definite. This will play a crucial role when we
face the solution of certain matrix Riccati equations. The optimization problem of the
major player becomes:

inf
α0∈A0

E

[∫ T

0

[
X
†
t F0Xt + 2X†

t f0 + η
†
0Q0η0 + α

0†
t R0α

0
t

]
dt

]
,

where the controlled dynamics are given by:

dXt = (L0Xt + B0α
0
t + Bαt )dt + D0dW

0
t . (15)

The reduced Hamiltonian is given by:

H (r),α(t, x, y, α0) = y†(L0x + B0α
0 + Bαt )

+ x†F0x + 2x† f0 + η
†
0Q0η0 + α0†R0α

0.

Herewe added the superscriptα for theHamiltonian in order to emphasize that the opti-
mizationof themajor player is performedassuming that the representativeminor player
is using strategy α ∈ A. Obviously, H (r),α is a random function, the randomness com-
ing from the realization of the control of the representative minor player. However we
see that almost surely Rd0+d × A0 � (x, α0) → H (r),α(t, x, y, α0) is jointly convex,
andwe can use the sufficient condition of the stochasticmaximumprinciple. Therefore
the minimizer of the reduced Hamiltonian and the optimal control are given by:

α̂0 = −1

2
R−1
0 B

0†y, and α̂0
t = −1

2
R−1
0 B

0†
Yt ,

respectively, where (Xt ,Yt )0≤t≤T solves the forward-backward stochastic differential
equation: {

dXt = (L0Xt − 1
2B0R

−1
0 B

†
0Yt + Bαt )dt + D0dW 0

t

dYt = −(L
†
0Yt + 2F0Xt + 2 f0)dt + Zt dW 0

t , YT = 0.
(16)

We now consider the deviating minor player’s problem. We fix an admissible
strategy α0 ∈ A0 for the major player, and an admissible strategy α ∈ A for the
representative minor player, which represents the other minor players, and its F

0-
optional projection α defined by αt = E[αt |F0

t ]. This prescription leads to the time
evolution of the state of a system given by (13), Eq. (14) after taking conditional
expectations, and finally the dynamic Eq. (15). Given this background state evolution,
the deviating minor player needs to solve:

inf
α̃∈A

E

[∫ T

0

[
(X̃t − [H1, H ]Xt − η)†Q(X̃t − [H1, H ]Xt − η) + α̃

†
t Rα̃t

]
dt

]
,

where the dynamics of the controlled state X̃t are given by:

d X̃t = (L X̃t + Bα̃t + [F,G]Xt )dt + DdWt .
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Note that the process Xt is merely part of the random coefficients of the optimization
problem. We introduce the reduced Hamiltonian:

H (r),α0,α(t, x̃, ỹ, α̃) = ỹ†(Lx̃ + Bα̃ + [F,G]Xt )

+ (x̃ − [H1, H ]Xt − η)†Q(x̃ − [H1, H ]Xt − η) + α̃†Rα̃.

Once again we use the superscript (α0, α) to emphasize the fact that the optimization
is performed under the environment created by the major player using strategy α0 and
the population of the other minor players using α, leading to the use of its F0-optional
projection α. H (r),α0,α depends on the random realization of the environment and is
almost surely jointly convex in (x̃, α̃). Applying the stochastic maximum principle,
the optimal control exists and is given by α̃t = − 1

2 R
−1B†Ỹt , where (X̃, Ỹ) solves the

following FBSDE:

{
d X̃t = (L X̃t − 1

2 BR−1B†Ỹt + [F,G]X̃t )dt + DdWt

dỸt = −(
L†Ỹt + 2Q

(
Xt − [H1, H ]X̃t − η

))
dt + ZtdWt + Z0

t dW
0
t ,

(17)

with terminal condition YT = 0. Recall that in this FBSDE, the process (Xt )0≤t≤T

only acts as a random coefficient. It is determined off line by solving the standard
stochastic differential equation:

dX̃t = (L0X̃t + B0α
0
t + Bαt )dt + D0dW

0
t . (18)

Notice that Eq. (18) is exactly the same equation as (15). Still, we use a different
notation for the solution. Indeed, at this stage of the proof (i.e. before considering the
fixed point step), the coefficient processes (α0

t )0≤t≤T and (αt )0≤t≤T are (likely to be)
different, preventing us from identifying the solutions of (18) and (15).

Now that we are done characterizing the solutions of both optimization problems,
we identify the fixed point constraint in the framework given by the characterizations
of the two optimization problems, The fixed point condition (7) characterizing Nash
equilibria in the current set-up says that:

α0
t = −1

2
R−1
0 B

†
0Yt ,

where (Yt )0≤t≤T is the backward component of the solution of (16) with αt =
E[αt |F0

t ], and:

αt = α̃t = −1

2
R−1B†Ỹt ,

where (Ỹt )0≤t≤T is the backward component of the solution of (17) in which the
random coefficient (X̃t )0≤t≤T solves (18)with the processes (α0

t )0≤t≤T and (αt )0≤t≤T

just defined. So in equilibrium, Eqs. (18) and (15) have the same coefficients and we
can identify their solutions (Xt )0≤t≤T and (X̃t )0≤t≤T .
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The optimal controls for the major player and the deviating minor player are func-
tions of the solution of the following FBSDE which we obtain by putting together
the FBSDEs (16) and (17) characterizing the major player’s and the deviating minor
player’s optimization problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dXt = (L0Xt − 1
2B0R

−1
0 B

†
0Yt − 1

2BR
−1B†

E[Ỹt |F0
t ])dt + D0dW 0

t

d X̃t = (L X̃t − 1
2 BR−1B†Ỹt + [F,G]Xt )dt + DdWt

dYt = −(L
†
0Yt + 2F0Xt + 2 f0)dt + Zt dW 0

t , YT = 0

dỸt = −(L†Ỹt + 2QX̃t − 2Q[H1, H ]Xt − 2Qη)dt + ZtdWt + Z0
t dW

0
t , ỸT = 0.

(19)
We summarize the above discussion in the form of a verification theorem for open-loop
Nash equilibrium.

Theorem 1 If the system (19) admits a solution, then the linear quadratic mean field
game problem with major and minor players admits an open-loop Nash equilibrium.
The equilibrium strategy (α0,α) is given by α̂0

t = −(1/2)R−1
0 B

†
0Yt for the major

player and α̂t = −(1/2)R−1BỸt for the minor player.

The way the system (19) is stated is a natural conclusion of the search for equilib-
rium as formulated by the fixed point step following the two optimization problems.
However, as convenient as can be, simple remarks can help the solution of this system.
First we notice one could solve for (Xt ,Yt )0≤t≤T by solving the FBSDE formed by
the first and the third equations if we knew Y t = E[Ỹt |F0

t ]. By taking conditional
expectations with respect to F0

t in the second equation, and by subtracting the result
from the equation satisfied by the first component of the first equation, we identify
E[X̃t |F0

t ] with Xt because they have the same initial conditions. Next, by taking con-
ditional expectations with respect to F0

t in the fourth equation, we see that (Y t )0≤t≤T

should satisfy:

dY t = −(L†Y t + QXt − Q[H1, H ]Xt − Qη)dt + Z
0
t dW

0
t , Y T = 0.

Consequently, the solution of (19) also satisfies:

⎧⎪⎪⎨
⎪⎪⎩
dXt = (L0Xt − 1

2B0R
−1
0 B

†
0Yt − 1

2BR
−1B†Y t )dt + D0dW 0

t

dYt = −(L
†
0Yt + 2F0Xt + 2 f0)dt + Zt dW 0

t , YT = 0

dY t = −(
L†Y t + 2

([Q, 0] − Q[H1, H ])Xt − 2Qη
)
dt + Z

0
t dW

0
t , Y T = 0.

(20)
Our final remark is that the solution of system (20) is not only necessary, but also
sufficient. Indeed, once it is solved, one can solve for (X̃t , Ỹt )0≤t≤T by solving the
affine FBSDE with random coefficients formed by the second and fourth equations of
(19) and check that E[Ỹt |F0

t ] is indeed the solution of the third equation of (20).

Identifying Yt with [P†
t , P

0†
t ]† we recognize the FBSDE used in [4].
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3.2 A Closed Loop Equilibrium

In this section we implement the closed loop alternative formulation of the equilibrium
problem. Since we expect that the optimal controls will be in feedback form, we search
directly for Markovian controls. In other words, we assume that the controls used by
major player and minor players are respectively of the form:

α0
t = φ0(t, X0

t , X̄t ), and αt = φ(t, Xt , X
0
t , X̄t ),

for some R
k0 and R

k valued deterministic functions φ0 and φ defined on [0, T ] ×
R
d0 × R

d and [0, T ] × R
d × R

d0 × R
d respectively. For the sake of simplicity, we

assume that A0 = R
k0 and A = R

k . So the major player can only observe its own
state and the mean of minor players’ states, while each minor player can observe its
own state, the state of the major player, as well as the mean of the other minor players’
states. This version of the equilibrium problem is more difficult than its open loop
analog. For that reason, we are not trying to construct the best response map for all the
possible choices of control processes α0 and α. Instead, we construct it for a restricted
class of feedback functions φ0 and φ in which we can still find a fixed point, hence a
Nash equilibrium.

To be more specific, we construct the best responses to controls α0 and α of the
form:

α0
t = φ0(t, X0

t , X̄t ) = φ0
0(t) + φ0

1(t)X
0
t + φ0

2(t)X̄t (21)

αt = φ(t, Xt , X
0
t , X̄t ) = φ0(t) + φ1(t)Xt + φ2(t)X

0
t + φ3(t)X̄t , (22)

where the functions [0, T ] � t → φ0
i (t) for i = 0, 1, 2 and [0, T ] � t → φi (t) for i =

0, 1, 2, 3 are matrix-valued deterministic continuous functions with the appropriate
dimensions, in other words,φ0

0(t) ∈ R
k0 ,φ0

1(t) ∈ R
k0×d0 ,φ0

2(t) ∈ R
k0×d ,φ0(t) ∈ R

k ,
φ1(t) ∈ R

k×d , φ2(t) ∈ R
k×d0 , and φ3(t) ∈ R

k×d .
We first consider the major player’s optimization problem. We assume that the

representative minor player uses the strategy αt = φ(t, Xt , X0
t , X̄t ) as specified in

(22). Next we look for the control α0 which could be used by the major player to
minimize its expected cost. The dynamics of the system is then given by:⎧⎪⎪⎨
⎪⎪⎩
dX0

t = (L0X0
t + B0α

0
t + F0 X̄t )dt + D0dW 0

t

d Xt =
[
Bφ0(t) + (L + Bφ1(t))Xt + (Bφ2(t) + G)X0

t + (Bφ3(t) + F)Xt )
]
dt

+ DdWt ,

(23)
where as before Xt = E[Xt |F0

t ] is the conditional expectation of Xt with respect
to the filtration generated by the history of the Wiener process W0 up to time t . In
their current form, the dynamics of the couple (X0

t , Xt ) are of a McKean–Vlasov type
since the mean of Xt appears in the coefficients of the equation giving dX0

t . However,
in order to find a minimalist version of dynamical equations for a state over which
the optimization problem of the major player can be formulated, we take conditional
expectations in the equation for the state of the representative minor player. We get:
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dXt =
[
Bφ0(t) + (L + B[φ1(t) + φ3(t)] + F)Xt + (Bφ2(t) + G)X0

t

]
dt. (24)

As in the case of the open loop version of the equilibrium problem, we express the
optimization problem of the major player over the dynamics of the couple (Xt , X0

t ).
In order to do so, we use the same notationXt , F0, f0,B0,B,D andD0 as in the case of
our analysis of the open loop problem, and we introduce the following new notation:

L
(cl)
0 (t) =

[
L + B[φ1(t) + φ3(t)] + F Bφ2(t) + G

F0 L0

]
, C

(cl)
0 =

[
Bφ0(t)

0

]
,

and the optimization problem of the major player can be formulated exactly as in the
open loop case as the minimization:

inf
α0∈A0

E

[∫ T

0
[X†

t F0Xt + 2X†
t f0 + η

†
0Q0η0 + α

0†
t R0α

0
t ]dt

]
,

where the controlled dynamics are given by:

dXt = [
L

(cl)
0 (t)Xt + B0α

0
t + C

(cl)
0 (t)

]
dt + D0dW

0
t . (25)

The reduced Hamiltonian (minus the term η
†
0Q0η0 which is irrelevant) is given by:

H (r),φ(t, x, y, α0) = y†[L(cl)
0 x + B0α

0 + C
(cl)
0 (t)] + x†F0x + 2x† f0 + α0†R0α

0.

Applying the stochasticmaximumprinciple, we find that the optimal control is given as
before by α̂0

t = −(1/2)R−1
0 B

†
0Yt , where (Xt ,Yt ,Zt )0≤t≤T solves the linear FBSDE:

{
dXt = [L(cl)

0 (t)Xt − 1
2B0R

−1
0 B

†
0Yt + C

(cl)
0 (t)]dt + D0dW 0

t

dYt = −[L(cl)
0 (t)†Yt + 2F0Xt + 2 f0]dt + Zt dW 0

t , YT = 0.
(26)

This FBSDE being affine, we expect the decoupling field to be affine as well, so we
search for a solution of the form Yt = KtXt + kt for two deterministic functions
t → Kt ∈ R

(d+d0)×(d+d0) and t → kt ∈ R
(d+d0). We compute dYt applying Itô’s

formula to this ansatz, and using the expression for dXt given by the forward equation.
Identifying term by term the result with the right hand side of the backward component
of the above FBSDEwe obtain the following system of ordinary differential equations:

{
0 = K̇t − 1

2KtB0R
−1
0 B

†
0Kt + KtL

(cl)
0 (t) + L

(cl)
0 (t)†Kt + 2F0, KT = 0

0 = k̇t + (
L

(cl)
0 (t)† − 1

2KtB0R
−1
0 B

†
0

)
kt + KtC

(cl)
0 (t) + 2 f0, kT = 0.

(27)

For any choice of a continuous strategy t → (φ0(t), φ1(t), φ2(t), φ3(t)), the first
equation is a standard matrix Riccati differential equation. Since the coefficients are
continuous and F0 is positive definite, the equation admits a unique global solution
over [0, T ] for any T > 0. Recall that R0 is symmetric and positive definite. Injecting
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the solution t → Kt into the second equation yields a linear ordinary differential
equation with continuous coefficients for which the global unique solvability also
holds. Therefore the FBSDE (26) is uniquely solvable and the optimal control exists
and is given by:

α0∗
t = −1

2
R−1
0 B

†
0KtXt − 1

2
R−1
0 B

†
0kt , (28)

which is an affine function of X0
t and X̄t .

We now turn to the deviating minor player’s optimization problem. We assume that
the major player uses the feedback strategy α0

t = φ0(t, X0
t , X̄t ) and the representative

minor player representing the other minor players uses the feedback strategy αt =
φ(t, Xt , X0

t , X̄t ) of the forms (21) and (22) respectively. These choices lead to the

dynamics of the state Xt = [X†
t , X

0†
t ]† given by:

dXt = [L(cl)(t)Xt + C
(cl)(t)]dt + D0dW

0
t

with:

L
(cl)(t) =

[
L + F + B(φ1(t) + φ3(t)) G + Bφ2(t)

F0 + B0φ
0
2(t) L0 + B0φ

0
1(t)

]
, C

(cl)(t) =
[

Bφ0(t)

B0φ
0
0(t)

]
.

We wrote L
(cl)(t) and C

(cl)(t) instead of L(cl),φ0,φ(t) and C
(cl),φ0,φ(t) in order to

simplify the notation. In this environment, we search for the best response of the
deviating minor player trying to minimize as earlier,

inf
α̃∈A

E

[∫ T

0
[(X̃t − [H1, H ]Xt − η)†Q(X̃t − [H1, H ]Xt − η) + α̃

†
t Rα̃t ]dt

]
,

where the dynamics of the controlled state X̃t are given as before by:

d X̃t = (L X̃t + Bα̃t + [F,G]Xt )dt + DdWt .

Again the process Xt is merely part of the random coefficients of the optimization
problem. We introduce the reduced Hamiltonian:

H (r),φ0,φ(t, x̃, ỹ, α̃) = ỹ†(Lx̃ + Bα̃ + [F,G]Xt )

+(x̃ − [H1, H ]Xt − η)†Q(x̃ − [H1, H ]Xt − η) + α̃†Rα̃.

and we find that the optimal control is given by α̃∗
t = − 1

2 R
−1B†Yt , where (X̃t ,Xt , Ỹt ,

Z̃t , Z̃0
t )0≤t≤T solves the linear FBSDE:

⎧⎪⎪⎨
⎪⎪⎩
d X̃t = (L X̃t − 1

2 BR−1B†Ỹt + [F,G]Xt )dt + DdWt

dXt = [L(cl)(t)Xt + C
(cl)(t)]dt + D0dW 0

t

dỸt = −(L†Ỹt + 2QX̃t − 2Q[H1, H ]Xt − 2Qη)dt + Z̃t dWt + Z̃0
t dW

0
t , YT = 0.
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Again we search for a solution of the form Ỹt = StXt + St X̃t + st for continuous
deterministic functions t → St ∈ R

d×(d+d0), t → St ∈ R
d×d and t → st ∈ R

d .
Proceeding as before, we see that these functions provide a solution to the above
FBSDE if and only if they solve the system of ordinary differential equations:

⎧⎪⎪⎨
⎪⎪⎩
0 = Ṡt + St L + L†St − 1

2 St BR−1B†St + 2Q, ST = 0

0 = Ṡt + StL
(cl)(t) + L†

St − 1
2 St BR−1B†

St + St [F,G] − 2Q[H1, H ], ST = 0

0 = ṡt + (L† − 1
2 St BR−1B†)st + StC

(cl)(t) − 2Qη, sT = 0.
(29)

The first equation is a standard symmetric matrix Riccati equation. As before, the
fact that Q is symmetric and non-negative definite and R is symmetric and positive
definite imply that this Riccati equation has a unique solution on [0, T ]. Note that its
solution St is symmetric and independent of the inputs - the feedback functions φ0

and φ giving the controls chosen by the major player and the other minor players.
Injecting the solution St into the second and third equations, leads to a linear system
of ordinary differential equations which can be readily solved. Given such a solution
we find that the optimal control can be expressed as:

α̃∗
t = −1

2
R−1B†[StXt + St Xt + st ], (30)

which is indeed an affine function of Xt , X0
t and X̄t .

Now that the two optimization problems are solved, we can tackle the fixed point
step. We just proved that the best response map leaves the set of affine controls of the
forms (21) and (22) invariant. This suggests that we can look for a fixed point in this
set. For such a fixed point, we must have:

α
0,∗
t = φ0(t, X0

t , Xt ) = φ0
0(t) + φ0

1(t)X
0
t + φ0

2(t)Xt ,

and:

α̃t
∗ = φ(t, Xt , X

0
t , X̄t ) = φ0(t) + φ1(t)Xt + φ2(t)X

0
t + φ3(t)Xt ,

which translates into the following equations:

[φ0
2(t), φ

0
1(t)] = −1

2
R−1
0 B

†
0Kt , φ0

0(t) = −1

2
R−1
0 B

†
0kt ,

[φ3(t), φ2(t)] = −1

2
R−1B†

St , φ1(t) = −1

2
R−1B†St , φ0(t) = −1

2
R−1B†st .

To complete the construction of the equilibrium, it thus remains to determine the
quantities Kt , kt , St , St and st from the systems (27) and (29). As we already noticed,
the second equation of (27) can be used to determine kt from Kt . As for (29), St can
be obtained by solving the first equation on its own, and once this is done the third
equation of (29) can be used to determine st from St . In other words, we can solve for
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St by solving the first equation of (29), and then group the remaining four equations
into two systems of ordinary differential equations as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 = K̇t + Kt [L(t) − 1
2BR

−1B†
St ] + [L(t) − 1

2BR
−1B†

St ]†Kt

− 1
2KtB0R

−1
0 B

†
0Kt + 2F0

0 = Ṡ(t) + St [L(t) − 1
2BR

−1B†
St ] + [L† − 1

2 St BR−1B†]St
− 1

2StB0R
−1
0 B

†
0Kt + [St F − 2QH1, StG − 2QH ]

(31)

and{
0 = k̇t + [L(t) − 1

2BR
−1B†

St ]†kt − 1
2KtB0R

−1
0 B

†
0kt − 1

2KtBR−1B†st + 2 f0

0 = ṡt + [L† − 1
2 St BR−1B†]st − 1

2StB0R
−1
0 B

†
0kt − 1

2StBR
−1B†st − 2Qη

(32)
with 0 as terminal condition, where we used the notation:

L(t) := L0 −
[ 1

2 BR−1B†St 0
0 0

]
.

The first system (31) comprises two mildly coupled matrix Riccati equations, while
the system (32), once the solutions of the first system are identified and substituted
for, is a plain linear system whose solution is standard. In other words, the functions
t → kt and t → st can easily be determined once a solution t → (Kt ,St ) of system
(31) is found. In essence, we proved the following verification theorem.

Theorem 2 If the system (31) of matrix Riccati equations is well posed, then there
exists a Nash equilibrium in the family of linear closed loop feedback controls, the
optimal controls for the major and minor players being given by the strategies (28)
and (30).

4 Application

In this final section, we apply the theoretical results derived above to a model of
flocking inspired by the mean field game formulation proposed in [8] to generalize a
basic descriptive model originally proposed by Cucker and Smale in [5]. We borrow
from the terminology used in the dynamical systems literature on large population
behavior, and we call the major player the leader while the minor players are called
followers. However, the reader should not be misled by this terminology: we are not
solving a leader-follower game, we are solving for a Nash equilibrium for the mean
field game with major and minor players.

Rigorous mathematical modeling of flocking, swarming and schooling dates back
to [5], in which the dynamics of a large population of agents are governed by forces
depicting the mean reversion of individual’s velocity to the mean velocity of the
population. Later on, [8] formulates the flocking model into a mean field game, where
the emergent behavior is obtained by the Nash equilibrium of the game. While early
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models of flocking do not involve any form of central coordination, several authors
recently propose generalization of the flocking model by introducing leaders in the
population. Such leader has a pivotal impact on the rest of the population. In this spirit,
we generalize the original formulation of flocking mean field game by introducing a
free-will leader pursuing a prescribed schedule of velocity.

Given a major player (leader) and a population of N minor players (followers), we
denote by V 0,N

t the velocity of the major player at time t and by V i,N
t the velocity

of the i-th minor player. The leader and followers control the drifts of their velocities
whose dynamics are given as Itô processes:{

dV 0,N
t = α0

t dt + �0dW 0
t

dV i,N
t = αi

t dt + �dWi
t

(33)

where the d-dimensional Wiener processes {W i = (Wi
t )0≤t≤T ; i = 0, 1, . . . N }

are independent, and �0 and � are constant d × d matrices. We also assume that we
are given a deterministic function [0, T ] � t → μt ∈ R

d representing the leader’s
free will, namely the velocity the major player would like to have while keeping a
reasonable distance from the pack. If we denote by V̄ N

t := 1
N

∑N
i=1 V

i,N
t the average

velocity of the followers, the objective of the leader is to minimize its expected costs
over the horizon T :

J 0 = E

[∫ T

0
λ0‖V 0,N

t − νt‖2 + λ1‖V 0,N
t − V̄ N

t ‖2 + (1 − λ0 − λ1)‖α0
t ‖2dt

]
,

where λ0 and λ1 are positive real numbers satisfying λ0 + λ1 ≤ 1. Similarly, each
follower faces a tradeoff between keeping up with the leader and staying close to its
peers. So the objective of the i-th follower is to minimize:

J i = E

[∫ T

0
l0‖V i,N

t − V 0,N
t ‖2 + l1‖V i,N

t − V̄ N
t ‖2 + (1 − l0 − l1)‖αi

t ‖2dt
]

,

where l0 and l1 are positive reals satisfying l0 + l1 ≤ 1. While the above model is
clearly linear quadratic, it does not fit in the framework used in this paper. However, it
is plain to remedy this problemby simply doubling the state variable.More specifically,
we define X0

t := [V 0
t , V 0

t ], Xt := [Vt , Vt ] and X̄t := [V̄t , V̄t ] and we pose:

L0 = L = F0 = F = G =
[
0 0
0 0

]
, B0 = B =

[
I
I

]
, D0 =

[
�0
�0

]
, D =

[
�

�

]

H =
[
I 0
0 0

]
, H0 = H1 =

[
0 0
0 I

]
, Q0 =

[
k0 I 0
0 k1 I

]
, Q =

[
l0 I 0
0 l1 I

]

η0(t) =
[

ν(t)
0

]
, η =

[
0
0

]
, R0 = (1 − k0 − k1)I, R = (1 − l0 − l1)I

We implement the solution of this model in the d = 2 dimensional case choosing

ν(t) := [−2π sin(2π t), 2π cos(2π t)],
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Fig. 1 Optimal velocity and trajectory of followers and leader

for the leader’s free-will velocity.We also choose�0 = � = 0.5I2. For a given choice
of penalty coefficients λ0, λ1, l0, l1, we use Euler’s method to solve numerically the
system of matrix Riccati Eq. (31) over the horizon T = 5, and compute closed loop
Nash equilibrium strategies of for the leader and the representative follower in the
mean field game limit.

We simulate the dynamics of the leader and N followers defined in (33), where we
assign the equilibrium strategy of the mean field game to the leader and each follower.

Figure 1 exhibits the trajectory (points in the plane) and the velocity (arrows) of the
flock. The leader’s trajectory is plotted in black and those of the followers in color. We
observe that the prescribed velocity ν is best followedby theflockwhen the leader cares
more about pursuing its objective and the followers are more committed to following
the leader, rather than sticking with the average of the population. Conversely, if
the individuals attribute more importance to staying close with the population, the
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Fig. 2 Conditional correlation of followers’ velocities
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flock follows an erratic trajectory in the beginning and eventually reaches a common
direction of movement.

Our simulation also gives a peak into the effect of propagation of chaos, which
states that in the limit of infinite number of followers, the velocities of the followers
become independent conditioned on the shock process driving the leader’s velocity. To
visualize such effect, for a given number of followers, say N , we fix a realization of a
Wiener processW0 driving the dynamics of the leaders velocity.We simulate S copies
of the optimal paths V 0,N

t and V i,N
t , i = 1, . . . , N where for each sample path we use

the sameWiener processwefixed before for the leader, but independent copy ofWiener
process for each of the follower. Then for a given t , we compute the sample correlation
matrix of V i,N ,(1)

t , i = 1, . . . , 5, which are the first components of the velocity of the
first 5 followers at time t . Finally, we compute the average of the correlation matrix
across time t ≤ T . Figure 2 displays the average correlationmatrices for flocks of sizes
N = 5, 10, 20, 50, 100 obtained by following the procedure described above. It can
be seen that correlation of followers’ velocities dramatically reduces to 0 as the size of
the flock grows. Indeed, the linear structure of the leader and the followers’ strategies
implies that the whole system evolves as a vector-valued OU process and the velocity
of any individual at a given time is Gaussian. Since independence is equivalent to zero
correlation for Gaussian vectors, the convergence of correlation matrices provides
strong evidence of the conditional propagation of chaos.
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