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Abstract. We develop a probabilistic approach to continuous-time finite state mean field
games. Based on an alternative description of continuous-time Markov chains by means of
semimartingales and the weak formulation of stochastic optimal control, our approach not
only allows us to tackle the mean field of states and the mean field of control at the same
time, but also extends the strategy set of players from Markov strategies to closed-loop
strategies. We show the existence and uniqueness of Nash equilibrium for the mean field
game as well as how the equilibrium of a mean field game consists of an approximative
Nash equilibrium for the gamewith a finite number of players under different assumptions
of structure and regularity on the cost functions and transition rate between states.
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1. Introduction
Mean field games in which players’ states belong to a finite space were first studied in Gomes et al. [21]. The
dynamics of each player’s state is modeled as a continuous-time Markov chain whose transition rate matrix
is a function of the player’s control and the probability distribution of all the players’ states. By assuming that
each player adopts a Markovian strategy, the Nash equilibrium can be characterized by the Hamilton–
Jacobi–Bellman equation corresponding to the optimal control of continuous-time Markov chains on the one
hand and, on the other hand, a Kolmogorov equation on how the probability distribution of the players’ states
evolves. Because of the finite nature of the state space, both equations turn out to be ordinary differential
equations, and the existence of the solution to this forward–backward system can be obtained by a fixed point
argument. Basna et al. [1] study finite state mean field games in which the underlying dynamics follow a time-
inhomogeneous nonlinear Feller process. Theoretical aspects of finite state mean field games with major and
minor players are investigated in Carmona and Wang [8] in which the existence of Nash equilibria and results
on approximate Nash equilibrium for a finite player game of small duration are obtained along with the
master equation characterizing the Nash equilibrium. Cecchin and Pelino [11] and Bayraktar and Cohen [2]
study the well-posedness and regularity of the solutions to a master equation of finite state mean field games.
Continuous-time finite state mean field games are used to model socioeconomic phenomena, such as paradigm
shift in a scientific community and consumer choice in Gomes et al. [22]. In Kolokoltsov and Bensoussan [26],
the strategic aspect of cyberattack and defense is analyzed through a finite state mean field game model, in
which the author introduces a major player—the hacker—whose action influences each minor player—the
computer user—in terms of their payoff and dynamics.

In this paper, we develop a probabilistic framework for a continuous-time finite state mean field game.
Our starting point is a semimartingale representation of continuous-time Markov chains introduced in Elliott
et al. [16]: Let (Xt)0≤t≤T be a continuous-time Markov chain with m states that are identified with the m
standard basis vectors in Rm and then we can write

Xt � X0 +
∫

0,t( ]
Q∗ t( ) · Xt−dt +Mt.

Here, Q(t) is the transition rate matrix (also known as the Q-matrix) with Q∗(t) being its transpose, and M is a
martingale. We immediately notice the analogy with diffusion processes and apply the Girsanov theorem to
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construct equivalent probability measures under which the process X admits a different transition rate process.
This opens a pathway to formulating the optimal control problem of a continuous-time Markov chain in a so-
called weak formulation. Indeed, in the context of optimal control of diffusion processes, the weak formulation
links the control of the drift to the control of the probability measure (as opposed to the control of the path)
and identifies the value function of the control problem as the solution to a backward stochastic differential
equation (BSDE). By the comparison principle of the theory of BSDEs, the optimality of the control problem
can be obtained by optimizing the driver of the BSDE, which coincides with the Hamiltonian function (see
Carmona [5, chapter 4, section 1]). It turns out that such a procedure can be transplanted to the case of optimal
control of continuous-time Markov chains, thanks to the theory of BSDEs driven by Markov chains developed
in Cohen and Elliott [12, 13].

Once the optimal control problem can be characterized by a BSDE, the next step is to develop a probabilistic
approach to mean field games. The probabilistic approach to mean field games based on diffusion processes is
first proposed in Carmona and Delarue [6], in which the player optimization problem is treated in the strong
formulation. By applying Pontryagin’s maximum principle, optimality is characterized by a forward–
backward stochastic differential equation (FBSDE). In Carmona and Lacker [7], the authors later consider the
weak formulation of the control of diffusion processes and use the change of measure argument that we briefly
described earlier to obtain the BSDE characterizing the optimality. In both cases, the existence of Nash
equilibria of the mean field game boils down to the well-posedness of a BSDE (or FBSDE) in which the
probability distribution of the solution enters into the driver and the terminal condition of the equation. These
are the so-called McKean–Vlasov (or mean field) BSDEs (or FBSDEs) for which it was shown that existence of
solutions can be obtained by a fixed-point argument à la Schauder.

By developing the weak formulation, our contributions to finite state mean field games are threefold. First,
the flexibility of the probabilistic approach allows us to incorporate not only the mean field of the states, but
also the mean field of the controls into the dynamics and cost functionals of individual players. Mean field
games in which interactions are realized through both states and controls are sometimes referred to as
extended mean field games. Gomes and Voskanyan [20] study the system of partial differential equations
(PDEs) characterizing an extended mean field game in which the dynamics of players are deterministic.
Cardaliaguet and Lehalle [4] model the optimal liquidation within a crowd of investors as an extended mean
field game and provide a closed-form solution when the investors’ preference is characterized by a trade-off
between terminal wealth and quadratic inventory costs. Generally speaking, the analysis of mean field games
of control is known to be notoriously intractable via the PDE method because of the difficulties in deriving the
equation obeyed by the flow of probability measures of the optimal strategies. However, in the probabilistic
framework, the mean field of states and the mean field of controls can be dealt with in similar manners
although the treatment of the mean field of controls is more involved in terms of the topological arguments
needed to handle the appropriate spaces of controls.

Second, using the weak formulation, we are able to nuance the information structures of the agents’
admissible strategies. In the literature of stochastic optimal control and stochastic differential games, ad-
missible controls are traditionally classified into the categories of open- and closed-loop controls. Open-loop
controls are controls adapted to the underlying filtration, which is often generated by the noise processes.
Closed-loop controls, on the other hand, are controls that are adapted to the filtration generated by the history
of the state process. In particular, Markovian controls form a subset of closed-loop controls in which the
players are only allowed to observe their current state. Most of the past work on mean field games considers
open-loop strategies for which the identification the optimal strategies can be tackled by a form of the
Pontryagin maximum principle as in Carmona and Delarue [6] or Markovian strategies via the dynamic
programming principle as in Lasry and Lions [27]. For mean field games with homogeneous populations of
players, the choice of the information structure does not seem to matter. However, when a major player is
introduced into the game, Carmona and Wang [9] show that different information structures lead to different
equilibrium outcomes. Nevertheless, a more flexible information structure is always desirable from a practical
modeling perspective. For finite state mean field games, the existing analytical approach only allows Mar-
kovian strategies. In the weak formulation, which we are about to introduce, the underlying information
structure is generated by the state process itself; therefore, the admissible strategies can accommodate closed-
loop strategies, including the strategies depending on the past history of player’s states.

Finally, the weak formulation we develop for the finite state mean field game serves as a launching pad to
tackle the finite state mean field agent–principal problem. Such a model is a form of Stackelberg game in
which the principal fixes a contract first, and a large population of agents reaches Nash equilibrium according
to the contract proposed by the principal. By fixing a contract, we actually mean that the principal chooses a
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control that enters into each agent’s dynamics and cost functions. One meaningful direction in probing mean
field agent–principal problems is to understand how the principal can choose the optimal contract so that its
own cost function depending on the agent’s distribution is minimized. To the best of our knowledge, this type
of problem is first investigated in Elie et al. [15], in which the agent’s dynamics are a diffusion. The main idea
is to formulate the optimal contract problem as a McKean–Vlasov optimal control problem, in which the state
process to be controlled is the McKean–Vlasov BSDE characterizing the Nash equilibrium in the weak for-
mulation of the mean field game. With the help of the weak formulation we develop in this paper, we believe
that the same technique can be applied to the case of the finite-state mean field agent–principal problem,
which could lead to potential applications in epidemics and cybersecurity.

We would also like to mention a few existing works related to our paper. In Cecchin and Fischer [10], the
authors propose a probabilistic framework for finite-state mean field games in which the dynamics of the
states of the players are given by stochastic differential equations driven by Poisson random measures. By
using Ky Fan’s fixed-point theorem, the authors obtain the existence and uniqueness of the Nash equilibrium
in relaxed open-loop as well as relaxed feedback controls. Then, under additional assumptions that guarantee
the uniqueness of optimal nonrelaxed feedback controls, the authors deduce the existence of Nash equilibria in
nonrelaxed feedback form. In Doncel et al. [14], continuous-time mean field games with finite state space and
finite action space are studied. The authors prove the existence of a Nash equilibrium among relaxed feedback
controls. In Benazzoli et al. [3], the authors investigate mean field games in which each player’s state follows a
jump-diffusion process, and the player controls the sizes of the jumps. The approach is based on the weak
formulation of stochastic control and martingale problems. The existence of Nash equilibrium among relaxed
controls and Markovian controls is established.

The rest of the paper is organized as follows. In Section 2, we introduce the weak formulation of finite-state
mean field games. It is based on a semimartingale representation of continuous-time Markov chains and an
argument of change of measure. We state the assumptions used throughout the paper and give the precise
definition of a Nash equilibrium in the weak formulation. In Section 3, we analyze the optimization problem
of a representative player when it faces a fixed mean field of states and controls. We characterize its value
function and the optimal control using a BSDE driven by a Markov chain. Section 4 is devoted to the existence
of Nash equilibria. The proof is largely inspired by Carmona and Lacker [7], who deal with the diffusion case.
It is split into two steps for the sake of clarity. In the first step, we carefully construct the topological spaces for
the mean fields of states and controls so that we can identify compact sets in these spaces. Extra attention is
required in the case of the mean field of controls, for which we use a randomization technique and a special
topology called the stable topology in order to identify compact subsets. The second step is to define the
function that maps the mean fields to the distribution of individual players’ best responses and to show that
such a mapping is continuous and stable with respect to the topology constructed in the first step. After these
two steps, we apply Schauder’s fixed-point theorem to conclude the proof of existence. Section 5 addresses the
uniqueness of Nash equilibria. Finally, in Section 6, we formulate the model for a game with a finite number of
players and show that a Nash equilibrium of the mean field game provides an approximate Nash equilibrium
of the game with finite many players. Section 7, the appendix, contains a few useful results regarding BSDEs
driven by multiple continuous-time Markov chains, which are used throughout the paper.

2. The Weak Formulation for Finite-State Mean Field Games
2.1. Notations
If M is a square real matrix, we denote by M∗ its transpose and M+ its Moore–Penrose pseudo-inverse. For a
column vector x, we denote by diag(x) the square diagonal matrix whose diagonal elements are given by the
entries of x, and we denote by ‖x‖ the Euclidean norm of x. If γ is a random variable on a probability space
(Ω,F ,P), we denote its law or its distribution, namely the push forward of P by γ, by P#γ :� P ◦ γ−1.
For two square integrable martingales L, M, we denote by [L,M] the quadratic covariation process of L

and M. For two semimartingales L and M, we denote by 〈L,M〉 the predictable quadratic covariation process
of L and M. For a semimartingale L such that L0 � 0, we denote by E(L) the Doléans–Dade exponential of L.
See Protter [29, chapter II.6] for the definitions of these standard concepts.

2.2. Controlled Probability Measure
For the control of continuous-time finite-state Markov chains, we adopt the formalism first introduced in
Elliott et al. [16] and later developed in Cohen and Elliott [12, 13]. If X � (Xt)0≤t≤T is a continuous-time Markov
chain with m states, we identify these states with the basis vectors ei in Rm, and we denote by E the resulting
state space E � {e1, . . . , em}. However, we frequently identify these states with their labels 1, 2, . . . ,m for the
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sake of simplicity. We assume that the sample paths t → Xt are càdlàg, that is, right continuous with left limits
and continuous at T. In other words, we force XT− � XT.

We first construct a canonical probability space for X. Let Ω be the space of càdlàg functions from [0,T] to E,
which are continuous at T, and let X be the canonical process on Ω, that is, Xt(ω) :� ωt. We denote by F :�
(F t)t∈[0,T] with F t :� σ{Xs, s ≤ t} the natural filtration generated by X, and we set F :� FT. Throughout the rest
of the paper, we fix a probability measure p◦ on the set E. It is used as the initial distribution of the process X.
On the filtered space (Ω,F,F ), we consider the probability measure P under which X is a continuous-time
Markov chain with initial distribution p◦ and transition rates between any two different states equal to one.
This means that, for i, j ∈ {1, . . . ,m}, i �� j, and Δt > 0, we have P[Xt+Δt � ej|F t] � P[Xt+Δt � ej|Xt] and P[Xt+Δt �
ej|Xt � ei] � Δt + o(Δt). By Elliott et al. [16, appendix B], the process X has the representation

Xt � X0 +
∫

0,t( ]
Q0 · Xs−ds +Mt, (1)

where Q0 is the square matrix with diagonal elements all equal to −(m − 1) and off-diagonal elements all equal
to one, and M � (Mt)t≥0 is a Rm-valued P-martingale. The multiplication · is understood as matrix multi-
plication. Indeed, Q0 is the transition rate matrix of X under the probability measure P.

Remark 1. The representation originally proposed in Elliott et al. [16] is

Xt � X0 +
∫

0,t( ]
Q0 · Xsds +Mt.

However, because Xt is only discontinuous on a countable set, we can replace Xt by Xt− in the integral. The
reason for this slight change of representation is to make the integrand a predictable process, which is suitable
for the change-of-measure argument in what follows.

We refer to the probability measure P as the reference measure on the sample space. The first step of the weak
formulation of the mean field game consists of depicting how each player’s control as well as the mean field
determine the probability measure of the sample path. We denote by S the m-dimensional simplex

S :� p ∈ Rm;
∑m
i�1

pi � 1, pi ≥ 0

{ }
,

which we identify with the space of probability distributions on E. Let A be a compact subset of Rl from which
the players can choose their controls. Denote by P(A) the space of probability measures on A. We introduce a
function q:

[0,T] × {1, . . . ,m}2 × A × S × P(A) 
 (t, i, j, α, p, ν) �→ q(t, i, j, α, p, ν),
and we denote by Q(t, α, p, ν) the matrix [q(t, i, j, α, p, ν)]1≤i,j≤m. Throughout the rest of the paper, we make the
following assumption on q:

Assumption 1.
i. For all (t, α, p, v) ∈ [0,T] × A × S × P(A), the matrix Q(t, α, p, ν) is a Q-matrix.
ii. There exist constants C1,C2 > 0 such that, for all (t, i, j, α, p, ν) ∈ [0,T] × E2 × A × S × P(A) such that i �� j, we

have 0 < C1 < q(t, i, j, α, p, ν) < C2.
iii. There exists a constant C > 0 such that, for all (t, i, j) ∈ [0,T] × E2, α, α′ ∈ A, p, p′ ∈ S, and ν, ν′ ∈ P(A), we have

|q t, i, j, α, p, ν
( ) − q t, i, j, α′, p′, ν′

( )| ≤ C ‖α − α′‖ + ‖p − p′‖ +W1 ν, ν′( )( )
.

Here, W1 denotes the one-Wasserstein distance between probability measures on A.

Recall that a matrix Q � [Qij] is called a Q-matrix if Qij ≥ 0 for i �� j and∑
j��i

Qij � −Qii, for all i.

Remark 2. Item (ii) in Assumption 1, which assumes that the transition rate between any two states admits a strictly
positive lower bound, is analog to the nondegeneracy condition in the diffusion-based mean field game models.
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It guarantees that the probability measure Q(α,p,ν) defined in (7) is equivalent to the reference measure P. This
nondegeneracy condition is frequently assumed in the existing literature on finite-state mean field games. See, for
example, Bayraktar and Cohen [2, assumption 3.1] and Cecchin and Pelino [11, section 2.1] in which the control is
the transition rate of the controlled Markov chain and is assumed to have a strictly positive lower bound.

In some applications of continuous-time Markov chain models, it happens that jumps from some states to
others are forbidden, in which case the transition rate function q would satisfy q(t, i, j, α, p, ν) ≡ 0 for some
couples (i, j). For example, this is the case in the botnet defense model proposed by Kolokoltsov and Ben-
soussan [26] as well as in the extended version of the model that includes an attacker studied in Carmona and
Wang [8]. When that happens, we need to use a different reference probability measure P: we set the transition
rate to one for all the jumps except for those that are forbidden, for which we set the transition rate to zero.
Fortunately, this is the only modification we need to make in order to accommodate this kind of special case.
The arguments presented in the following can be trivially extended to be compatible with this modified
reference probability.

We state without proof a useful property of the martingale M. The proof of this result can be found in
Cohen and Elliott [12].

Lemma 1. The predictable quadratic variation of the martingale M under P is given by the formula:

〈M,M〉t �
∫ t

0
ψtdt, (2)

where ψt is given by

ψt :� diag Q0 · Xt−
( ) −Q0 · diag Xt−( ) − diag Xt−( ) ·Q0. (3)

If we define for each i the matrix ψi by

ψi :� diag Q0 · ei( ) −Q0 · diag ei( ) − diag ei( ) ·Q0,

then clearly we have ψt � ∑m
i�1 1(Xt− � ei)ψi. Because each ψi is a semidefinite positive matrix, so is ψt. We

define the corresponding (stochastic) seminorm ‖ · ‖Xt− on Rm by

‖Z‖2Xt− :� Z∗ · ψt · Z. (4)
The seminorm ‖ · ‖Xt− can be rewritten in a more explicit way. For i ∈ {1, . . . ,m}, let us define the seminorm ‖ · ‖ei
on Rm by ‖Z‖2ei :� Z∗ · ψi · Z � ∑

j ��i |Zj − Zi|2. Then, it is easy to see that ‖Z‖Xt− � ∑m
i�1 1(Xt− � i)‖Z‖ei .

Because ψt is symmetric, we have (ψ+
t )∗ � ψ+

t . Recall that ψ
+
t is the Moore–Penrose generalized inverse of

the matrix ψt. On the other hand, it is straightforward to verify that, for all t ∈ [0,T] and w ∈ Ω, the range of the
matrix ψt (i.e., the linear space spanned by the columns of ψt) is the space {q ∈ Rm;

∑m
i�1 qi � 0}. Therefore, for

all q ∈ Rm with
∑m

i�1 qi � 0, we have ψt · ψ+
t · q � q. This holds in particular for any row vector from any

Q-matrix or any vector of the form (ej − ei).
In order for the paper to be as self-contained as possible, we also recall the following version of the Girsanov

theorem on changes of probability measure. See Protter [29, theorem III.41] or Sokol and Hansen [30,
lemma 4.3].

Lemma 2. Let T > 0 and M � (Mt)t≥0, L � (Lt)t≥0 be two local martingales defined on [0,T] such that ΔLt :� Lt −
Lt− ≥ −1. Assume that the Doléans–Dade exponential E(L) of L is a uniformly integrable martingale, and let Q be the
probability measure having Radon–Nikodym derivative E(L)T with respect to P. If the quadratic covariation process [M,L]
is integrable under P, thenM − 〈M,L〉 is a local martingale underQ, where the predictable quadratic covariation 〈M,L〉 is
computed under the measure P.

We now describe how the control of a player and the mean field affect the probability law of X. Let us define
the player’s strategy set A to be the collection of F-predictable processes α � (αt)t∈[0,T] such that αt ∈ A for
t ∈ [0,T]. Given a flow of probability measures p � (pt)t∈[0,T] on E and a flow of probability measures ν �
(νt)t∈[0,T] on A, we define the scalar martingale L(α,p,ν) under P by

L α,p,ν( )
t :�

∫ t

0
X∗s− · Q s, αs, ps, νs

( ) −Q0( ) · ψ+
s · dMs. (5)
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Clearly, its jumps are given by

ΔL α,p,ν( )
t � X∗t− · Q t, αt, pt, νt

( ) −Q0( ) · ψ+
t · ΔXt. (6)

One can easily check that ψ+
t · (ej − Xt−) � m−1

m ej −∑
i��j 1m ei when Xt− � ei �� ej. Therefore, when Xt− � ei �� ej � Xt,

we have

ΔL α,p,ν( )
t � X∗t− · Q t, αt, pt, νt

( ) −Q0
( )

· ψ+
t · ej − Xt−

( )
� e∗i · Q t, αt, pt, νt

( ) −Q0
( )

· m − 1
m

ej −
∑
k ��j

1
m
ek

[ ]

� m − 1
m

q t, i, j, αt, pt, νt
( ) − q0i,j

( )
− 1
m

∑
k ��j

q t, i, k, αt, pt, νt
( ) − q0i,k

( )
� q t, i, j, αt, pt, νt

( ) − q0i,j
� q t, i, j, αt, pt, νt

( ) − 1,

where the second-to-last equality is because
∑m

k�1(q(t, i, k, αt, pt, νt) − q0i,k) � 0. Therefore, we have ΔL(α,p,ν)t ≥ −1.
By Protter [29, theorem III.45] and the remark that follows, in order to show that E(L(α,p,ν)) is uniformly
integrable, it suffices to show E[exp(〈L(α,p,ν),L(α,p,ν)〉T)] < ∞. This is straightforward because we have

〈L α,p,ν( ),L α,p,ν( )〉T
�
∫ T

0
X∗s− · Q s, αs, ps, νs

( ) −Q0
( )

· ψ+
s · d〈M,M〉s

ds
· X∗s− · Q s, αs, ps, νs

( ) −Q0
( )

· ψ+
s

( )∗
ds

�
∫ T

0
X∗s− · Q s, αs, ps, νs

( ) −Q0
( )

· ψ+
s · Q∗ s, αs, ps, νs

( ) −Q0
( )

· Xs−ds.

The integrand is bounded by some constant by Assumption 1.
We now apply Girsanov’s theorem. It is straightforward to obtain that

〈M,L α,p,ν( )〉t �
∫ t

0
d〈M,M〉s · ψ+

s

( )∗ · Q∗ s, αs, ps, νs
( ) −Q0

( )
· Xs−

�
∫ t

0
ψs · ψ+

s · Q∗ s, αs, ps, νs
( ) −Q0

( )
· Xs−ds

�
∫ t

0
Q∗ s, αs, ps, νs

( ) −Q0
( )

· Xs−ds.

In the last equality, we use the fact that (Q∗(s, αs, ps, νs) −Q0) · Xs is the difference between two row vectors
coming from Q-matrices, and therefore, it is left invariant by ψs · ψ+

s . We define the probability measure
Q(α,p,ν) by

dQ α,p,ν( )

dP
:� E L α,p,ν( )( )

T. (7)

By Lemma 2, we know that the process M(α,p,ν), defined as

M
α,p,ν( )
t :� Mt −

∫ t

0
Q∗ s, αs, ps, νs

( ) −Q0( ) · Xs−ds, (8)

is a Q(α,p,ν)-martingale. Therefore, the canonical decomposition (1) of X under P can be rewritten as

Xt � X0 +
∫ t

0
Q∗ s, αs, ps, νs

( ) · Xs−ds +M
α,p,ν( )
t . (9)

This means that, under the measure Q(α,p,ν), the stochastic intensity rate of X is given by Q(t, αt, pt, νt). In
addition, because Q(α,p,ν) and P coincides on F 0, the law of X0 under Q(α,p,ν) is the same as under the reference
measure P, which is p◦. In particular, when α is a Markov control, that is, of the form αt � φ(t,Xt−) for some
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measurable function φ, X becomes a continuous-time Markov chain with intensity rate q(t, i, j,φ(t, i), pt, νt)
under the measure Q(α,p,ν).

Remark 3. In the optimal control literature, admissible controls are often classified into the categories of open- and
closed-loop controls. Open-loop controls are usually referred to as controls adapted to the underlying filtration,
which is often generated by the noise process. Closed-loop controls, on the other hand, are controls that are adapted
to the filtration generated by the history of the state process. In our setup, however, we see that the underlying
filtration is indeed the one generated by the past path of the state process. Therefore, this difference vanishes.

2.3. Weak Formulation of Mean Field Games
Let f : [0,T] × E × A × S × P(A) → R and g : E × S → R be, respectively, the running and terminal cost
functions. In the rest of the paper, we make the following assumptions on the regularity of the cost functions.

Assumption 2. There exists a constant C > 0 such that, for all (t, i, j) ∈ [0,T] × E2, α, α′ ∈ A, p, p′ ∈ S, and ν, ν′ ∈ P(A),
we have

| f t, ei, α, p, ν
( ) − f t, ei, α′, p′, ν′

( )| ≤ C ‖α − α′‖ + ‖p − p′‖ +W1 ν, ν′( )( )
, (10)

|g ei, p
( ) − g ei, p′

( )| ≤ C‖p − p′‖. (11)
When a player chooses a strategy α ∈ A and the mean field is (p,ν), the player’s expected cost is

J α,p,ν( ) :� EQ α,p,ν( )
∫ T

0
f t,Xt, αt, pt, νt
( )

dt + g XT, pT
( )[ ]

. (12)
Each player aims at minimizing expected cost, that is, the player solves the optimization problem

V p,ν( ) :� inf
α∈AE

Q α,p,ν( )
∫ T

0
f t,Xt, αt, pt, νt
( )

dt + g XT, pT
( )[ ]

. (13)

The key idea of the theory of mean field games lies in the limit scenario of infinitely many players in the game,
in which a single player’s strategy α does not alter the mean field (p,ν). Therefore, when a player searches for
the best response to the other players, the player solves the player’s own optimization problem considering
(p,ν) as given. A Nash equilibrium is then achieved when the law of Xt under the player-controlled
probability law, along with the distribution of its control under the same probability law, coincide with
(p,ν). Intuitively, the Nash equilibrium should be for a game played by a typical individual against the fields
of states and controls created by the other players. This justifies the following definition of a Nash equilibrium
for the weak formulation of finite-state mean field games.

Definition 1. Let p∗ : [0,T] → S and ν∗ : [0,T] → P(A) be two measurable functions, and α∗ ∈ A. We say that the
tuple (α∗,p∗,ν∗) is a Nash equilibrium for the weak formulation of the mean field game if
i. α∗ minimizes the cost when the mean field is given by (p∗, ν∗):

α∗ ∈ arg inf
α∈AE

Q α,p∗ ,ν∗( )
∫ T

0
f t,Xt, αt, p∗t , ν∗t
( )

dt + g XT, p∗T
( )[ ]

. (14)

ii. (α∗,p∗, ν∗) satisfies the consistency conditions whereby, for each time t ∈ [0,T], it holds:
p∗t � Q α∗,p∗,ν∗( ) Xt � ei[ ]{ }

i�1,...,m, (15)
ν∗t � Q

α∗,p∗,ν∗( )
#α∗

t
. (16)

3. Individual Players Optimization Problem
Before introducing and solving the individual player optimization problem, we provide the necessary
background on stochastic equations based on continuous-time Markov chains.

3.1. BSDE Driven by a Continuous-Time Markov Chain
We first recall some of the results on BSDEs driven by continuous-time Markov chains obtained in Cohen and
Elliott [12, 13]. Recall that M is the P-martingale in the canonical decomposition of the Markov chain X in (1).
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We consider the following BSDE with unknown (Y,Z), where Y is an adapted and càdlàg process in R and Z is
an adapted and left-continuous process in Rm:

Yt � ξ +
∫ T

t
F w, s,Ys,Zs( )ds −

∫ T

t
Z∗s · dMs. (17)

Here, ξ is a FT-measurable P-square integrable random variable, and F is the driver function, assumed to be
such that the process t → F(w, t, y, z) is predictable for all y, z.

Recalling the definition (4) of the stochastic seminorm ‖ · ‖Xt− , we have the following existence and
uniqueness result. See Cohen and Elliott [13, theorem 1.1].

Lemma 3. Assume that there exists C > 0 such that dt ⊗ dP—a.s., for all y, y′ ∈ R and z, z′ ∈ Rm, we have

|F w, t, y, z
( ) − F w, t, y′, z′

( )| ≤ C |y − y′| + ‖z − z′‖Xt−
( )

.

Then, the BSDE (17) admits a solution (Y,Z) satisfying

E

∫ T

0
|Yt|2dt

[ ]
< +∞, and E

∫ T

0
‖Zt‖2Xt−dt

[ ]
< +∞.

In addition, the solution is unique in the sense that, if (Y1,Z1) and (Y2,Z2) are two solutions, then Y1 and Y2 are
indistinguishable, and we have E[∫ T

0 ‖Z1
t − Z2

t ‖2Xt−dt] � 0.

We also have the following stability property, which can be proven by mimicking the argument used in the
proof of Hu and Peng [23, theorem 2.1].

Lemma 4. For n ≥ 0, let (Yn,Zn) be the solution to the BSDE (17)with driver Fn and terminal condition ξn. Assume that, for
each n, Fn satisfies the Lipschitz continuity assumption in Lemma 3 with the same constant. In addition, assume that the
following conditions hold:

i. limn→∞ E[|ξn − ξ0|2] � 0.
ii. For each t ≤ T, limn→∞ E[(∫ T

t |Fn(w, s,Y0
s ,Z

0
s ) − F0(w, s,Y0

s ,Z
0
s )|ds)2] � 0.

iii. There exists C > 0 such that E[(∫ T
t (Fn(w, s,Y0

s ,Z
0
s ) − F0(w, s,Y0

s ,Z
0
s ))ds)2] ≤ C for all t ≤ T and n ≥ 0.

Then, we have

lim
n→+∞E

∫ T

t
‖Zn

s − Z0
s ‖2Xs−ds

[ ]
+ E |Yn

t − Y0
t |2

[ ] � 0.

Finally, we state a crucial comparison result for linear BSDEs. See Cohen and Elliott [13, theorem 3.16].

Lemma 5. Let γ be a bounded predictable process in Rm, β a bounded predictable process in R, f a nonnegative predictable
process in R such that E[∫ T

0 |φt|2dt] < +∞, and ξ a nonnegative square-integrableFT-measurable random variable in R, and
let us assume that (Y,Z) solves the linear BSDE:

Yt � ξ +
∫ T

t
φu + βuYu + γ∗u · Zu
( )

du −
∫ T

t
Z∗u · dMu. (18)

If, for all t ∈ (0,T] and j such that e∗j ·Q0 · Xt− > 0, we have 1 + γ∗t · ψ+
t · (ej − Xt−) ≥ 0, where ψ+

t is the Moore–Penrose
inverse of the matrix ψt defined in Equation (3), then Y is nonnegative.

Later, in the treatment of games with finitely many players, we need to consider BSDEs driven by multiple
independent continuous-time Markov chains. It turns out that all the preceding results regarding BSDEs
driven by one single continuous-time Markov chain can be easily extended to this more general setting. For
the sake of completeness, we state and prove these results in the appendix.

3.2. Hamiltonian
We define the Hamiltonian for the optimization problem of the individual player as the function H from
[0,T] × E × Rm × A × S × P(A) into R by

H t, x, z, α, p, ν
( )

:� f t, x, α, p, ν
( ) + x∗ · Q t, α, p, ν

( ) −Q0( ) · z. (19)
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Because the process X takes values in the set {e1, . . . , em}, it is more convenient to consider m Hamiltonian
functions Hi defined for i � 1, · · · ,m by Hi(t, z, α, p, ν) :� H(t, ei, z, α, p, ν). Clearly, we have

Hi t, z, α, p, ν
( ) � f t, ei, α, p, ν

( ) +∑
j��i

zj − zi
( )

q t, i, j, α, p, ν
( ) − 1

( )
. (20)

We denote by Ĥi the corresponding minimized Hamiltonian:

Ĥi t, z, p, ν
( )

:� inf
α∈AHi t, z, α, p, ν

( )
,

and to show the existence of Nash equilibria, we make the following assumption on the minimizer of the
Hamiltonian.

Assumption 3.
i. For any t ∈ [0,T], i ∈ {1, . . . ,m}, z ∈ Rm, p ∈ S, and ν ∈ P(A), the mapping α → Hi(t, z, α, p, ν) admits a unique

minimizer that does not depend on the mean field of control ν. We denote the minimizer by âi(t, z, p).
ii. âi is measurable on [0,T] × Rm × S, and there exist constants C1 > 0 and C2 ≥ 0 such that, for all i ∈ {1, . . . ,m},

z, z′ ∈ Rm, p, p′ ∈ S:

‖âi t, z, p( ) − âi t, z′, p′
( )‖ ≤ C1‖z − z′‖ei + C1 + C2‖z‖ei

( )‖p − p′‖. (21)

Remark 4. For the sake of convenience, we choose to make the assumption directly on the uniqueness and the
regularity of the minimizer of the Hamiltonian. One possible way to make sure Assumption 3 holds is to assume
strong convexity of the running cost function f and let the control be the transition rate. This is the set up in Gomes
et al. [21], in which the Hamiltonian Hi can be regarded as the generalized Legendre transform of the running cost
function, and one can show that âi is Lipschitz with a uniform Lipschitz constant (see Gomes et al. [21, propo-
sition 1]). More generally, Assumption 3 holds with a transition rate function that is linear on the control. We state a
set of assumptions with a strongly convex cost function and linear transition rate function upholding Assumption 3:

Assumption 4.
i. A is a convex and compact subset of Rl.
ii. The transition rate function q takes the form q(t, i, j, α, p, ν) � q0(t, i, j, p, ν) + q1(t, i, j, p) · α, where q0 : [0,T] ×

{1, · · · ,m}2 × S × P(A) → R and q1 : [0,T] × {1, · · · ,m}2 × S → Rl are two continuous mappings.
iii. The running cost function f is of the form f (t, x, α, p, ν) � f0(t, x, α, p) + f1(t, x, p, ν), where, for each i ∈ {1, . . . ,m},

the mapping f0(·, ei, ·, ·) (respectively, f1(·, ei, ·, ·)) is continuous on [0,T] × A × P ([0,T] × S × P(A)).
iv. For all (t, ei, p) ∈ [0,T] × E × S, the mapping α → f0(t, ei, α, p) is once continuously differentiable, and there

exists a constant C > 0 such that

‖∇α f0 t, ei, α, p
( ) − ∇α f0 t, ei, α, p′

( )‖ ≤ C‖p − p′‖. (22)
v. f0 is γ-uniformly convex in α; that is, for all (t, ei, p) ∈ [0,T] × E × S and α, α′ ∈ A, we have

f0 t, ei, α, p
( ) − f0 t, ei, α′, p

( ) − α − α′( ) · ∇αf0 t, ei, α, p
( ) ≥ γ‖α′ − α‖2. (23)

We define the functions Ĥ and â by

Ĥ t, x, z, p, ν
( )

:� ∑m
i�1

1 x � ei( )Ĥi t, z, p, ν
( )

, (24)

â t, x, z, p
( )

:� ∑m
i�1

1 x � ei( )âi t, z, p( )
. (25)

From item (i) of Assumption 3 and the definition of the reduced Hamiltonian Hi, it is clear that â(t, x, z, p) is the
unique minimizer of the mapping α → H(t, x, z, α, p, ν), and the minimum equals Ĥ(t, x, z, p, ν). In addition,
from Assumptions 1–3 and the definition of the stochastic seminorm ‖ · ‖Xt− , it is easy to deduce the regularity
of the mappings Ĥ and â.

In the rest of Section 3, we let Assumptions 1–3 hold.
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Lemma 6. There exists a constant C > 0 such that, for all (ω, t) ∈ Ω × (0,T], p, p′ ∈ S, ν, ν′ ∈ P(A), and z, z′ ∈ Rm, we have

|Ĥ t,Xt−, z, p, ν
( ) − Ĥ t,Xt−, z′, p′, ν′

( )| ≤ C‖z − z′‖Xt− + C 1 + ‖z‖Xt−
( ) ‖p − p′‖ +W1 ν, ν′( )( )

, (26)
|â t,Xt−, z, p
( ) − â t,Xt−, z′, p′

( )| ≤ C‖z − z′‖Xt− + C 1 + ‖z‖Xt−
( )‖p − p′‖. (27)

Proof. Inequality (27) is an easy consequence of Assumption 3 and the definition of the stochastic seminorm ‖ · ‖Xt− .
We now deal with the regularity of Ĥ. By Berge’s maximum theorem, the continuity ofHi and the compactness ofA
imply the continuity of Ĥi. Let z, z′ ∈ Rm, p, p′ ∈ S, and ν, ν′ ∈ P(A). For any α ∈ A, we have

Ĥi t, z, p, ν
( ) −Hi t, z′, α, p′, ν′

( )
≤ Hi t, z, α, p, ν

( ) −Hi t, z′, α, p′, ν′
( )

� f t, ei, α, p, ν
( ) − f t, ei, α, p′, ν′

( ) +∑
j��i

zj − zi
( ) − z′j − z′i

( )[ ]
q t, i, j, α, p′, ν′
( )

+∑
j��i

zj − zi
( )

q0 t, i, j, p, ν
( ) − q0 t, i, j, p′, ν′

( )[ ] + zj − zi
( )

q1 t, i, j, p
( ) − q1 t, i, j, p′

( )[ ] · α
≤ C‖z − z′‖ei + C 1 + ‖z‖ei

( ) ‖p − p′‖ +W1 ν, ν′( )( )
,

where we used the Lipschitz property of f and q and the boundedness of A and q. Because the preceding is true
for all α ∈ A, taking the supremum of the left-hand side, we obtain

Ĥi t, z, p, ν
( ) − Ĥi t, z′, p′, ν′

( ) ≤ C‖z − z′‖ei + C 1 + ‖z‖ei
( ) ‖p − p′‖ +W1 ν, ν′( )( )

.

Exchanging the roles of z and z′, we obtain

|Ĥi t, z, p, ν
( ) − Ĥi t, z′, p′, ν′

( )| ≤ C‖z − z′‖ei + C 1 + ‖z‖ei
( ) ‖p − p′‖ +W1 ν, ν′( )( )

,

and (26) follows immediately from the definition of the seminorm ‖ · ‖Xt− . □

3.3. Player’s Optimization Problem
In this section, we show that the optimization problem of the player facing a given mean field of states and
controls can be characterized by a BSDE driven by the continuous-time Markov chain X. Let us fix measurable
flows p : [0,T] → S and ν : [0,T] → P(A), an admissible strategy α ∈ A, and let us consider the BSDE:

Yt � g XT, pT
( ) + ∫ T

t
H s,Xs−,Zs, αs, ps, νs
( )

ds −
∫ T

t
Z∗s · dMs. (28)

Lemma 7. The BSDE (28) admits a unique solution (Y,Z) and J(α, p, ν) � EP[Y0].
Proof. From the boundedness of the transition rate function q guaranteed by Assumption 1, it is easy to check that
the driver functionH of the BSDE (28) is Lipschitz in zwith respect to the seminorm ‖ · ‖Xt− . Therefore, by Lemma 3,
it admits a unique solution (Y,Z). Moreover, we have

Y0 � g XT, pT
( ) + ∫ T

0
H t,Xt−,Zt, αt, pt, νs
( )

dt −
∫ T

0
Z∗t · dMt

� g XT, pT
( ) + ∫ T

0
f t,Xt−, αt, pt, νt
( )

dt −
∫ T

0
Z∗t · dMt − Q∗ t, αt, pt, νt

( ) −Q0( ) · Xt−dt
( )

� g XT, pT
( ) + ∫ T

0
f t,Xt−, αt, pt, νt
( )

dt −
∫ T

0
Z∗t · dM α,p,ν( )

t .

Because M(α,p,ν) is a martingale under the measure Q(α,p,ν), we take expectation under Q(α,p,ν) and obtain
J(α,p,ν) � EQ(α,p,ν) [Y0]. Now, because Y0 is F 0-measurable, and Q(α,p,ν) coincides with P on F 0, we obtain
J(α, p, ν) � EP[Y0]. □

Now, we consider the following BSDE:

Yt � g XT, pT
( ) + ∫ T

t
Ĥ s,Xs−,Zs, ps, νs
( )

ds −
∫ T

t
Z∗s · dMs, (29)

and we show that it characterizes the optimality of the control problem (13).
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Proposition 1. For any measurable function p from [0,T] to S and any measurable function ν from [0,T] to P(A), the
BSDE (29) admits a unique solution (Y,Z). The value function of the optimal control problem (13) is given by V(p, ν) �
EP[Y0] and the process α̂(p,ν) defined by

α̂ p,ν( )
t :� â t,Xt−,Zt, pt

( ) (30)
is an optimal control. In addition, if α′ ∈ A is an optimal control, we have α′

t � α̂(p,ν)
t , dt ⊗ dP a.e.

Proof. The existence and uniqueness of the solution to (29) is easily verified by using the Lipschitz property of Ĥ
provided by Lemma 6. Let (Y,Z) be this unique solution and define the process α̂ by α̂t :� â(t,Xt−,Zt, pt). Recall the
definition of â in Equation (25). We have

â t,Xt−,Zt, pt
( ) � ∑m

i�1
1 Xt− � ei( )âi t,Zt, pt

( ) � X∗t− · ∑m
i�1

âi t,Zt, pt
( )

ei

( )
.

Because âi is measurable for each i ∈ E, we see that â is a measurable mapping from [0,T] × Rm × Rm × S to A.
Because both the processes t → Xt− and Z are predictable, we conclude that α̂ is a predictable process and,
therefore, an admissible control.

Now, let us fix an arbitrary admissible control α ∈ A and denote by (Yα,Zα) the solution of the corresponding
BSDE (28) and by (Y,Z) the unique solution of

Yt �
∫ T

t
H s,Xs−,Zs, α̂s, ps, νs
( )

ds −
∫ T

t
Z∗s · dMs. (31)

Setting ΔY :� Yα − Y and ΔZ :� Zα − Z and computing the difference of the two BSDEs, we notice that ΔY and
ΔZ solve the following BSDE:

ΔYt �
∫ T

t
H s,Xs−,Zα

s , αs, ps, νs
( ) −H s,Xs−,Zs, α̂s, ps, νs

( )[ ]
ds −

∫ T

t
ΔZ∗s · dMs.

We can further decompose the driver of the preceding BSDE as

H s,Xs−,Zα
s , αs, ps, νs

( ) −H s,Xs−,Zs, α̂s, ps, νs
( )

� H s,Xs−,Zα
s , αs, ps, νs

( ) −H s,Xs−,Zs, αs, ps, νs
( ) +H s,Xs−,Zs, αs, ps, νs

( ) −H s,Xs−,Zs, α̂s, ps, νs
( )

� H s,Xs−,Zs, αs, ps, νs
( ) −H s,Xs−,Zs, α̂s, ps, νs

( )[ ] + X∗s− · Q s, αs, ps, νs
( ) −Q0( ) · ΔZ.

Define the processes ψ and γ by ψt :� H(t,Xt−,Zt, αt, pt, νt) −H(t,Xt−,Zt, α̂t, pt, νt) and γt :� (Q∗(t, αt, pt, νt)
−Q0) · Xt−. Therefore, (ΔY,ΔZ) appears as the solution to a linear BSDE of the form (18) with ψ and γ defined
previously and β � 0. Clearly, ψ and γ are both predictable. Because α̂t minimizes the Hamiltonian, ψ is
nonnegative. The boundedness of γ follows from the boundedness of the transition rate function q. It remains
to check that 1 + γ∗t · ψ+

t · (ej − Xt−) ≥ 0.
When Xt− � ej, the preceding inequality holds clearly. So we assume that Xt− � ei �� ej. We have ψ+

t · (ej − Xt−) �
((m − 1)/m)ej −∑

i ��j(1/m)ei. Therefore, when Xt− � ei �� ej, we have

γ∗t · ψ+
t · ej − Xt−

( ) � X∗t− · Q t, αt, pt, νt
( ) −Q0( ) · ψ+

t · ej − Xt−
( )

� e∗i · Q t, αt, pt, νt
( ) −Q0( ) · m − 1

m
ej −

∑
k ��j

1
m
ek

( )

� m − 1
m

q t, i, j, αt, pt, νt
( ) − q0i,j

( )
− 1
m

∑
k ��j

q t, i, k, αt, pt, νt
( ) − q0i,k

( )
� q t, i, j, αt, pt, νt

( ) − q0i,j,

where the last equality is because
∑

k(q(t, i, k, αt, pt, νt) − q0i,k) � 0. Therefore, we have

1 + γ∗t · ψ+
t · ej − Xt−

( ) � 1 + q t, i, j, αt, pt, νt
( ) − q0i,j � q t, i, j, αt, pt, νt

( ) ≥ 0.
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By Lemma 5, we conclude that ΔY is nonnegative, and in particular, Yα
0 ≥ Y0. Because α is an arbitrary

admissible control, in light of Lemma 7, this means that EP[Y0] ≤ infα∈A J(α,p, ν) � V(p,ν). Finally, we notice
that Y0 is the expected total cost when the control is α̂. We conclude that α̂ is an optimal control
and EP[Y0] � V(p, ν).

Now, we show that α̂ is the unique optimal control. Let α′ be another optimal control. We consider the solution
(Y′,Z′) to the following BSDE:

Y′
t �

∫ T

t
H s,Xs−,Z′

s, α
′
s, ps, νs

( )
ds −

∫ T

t
Z′
s

( )∗·dMs. (32)

Because α′ is optimal, we have EP[Y′
0] � J(α′,p,ν) � V(p,ν) � EP[Y0]. Now, taking the difference of the BSDE

(31) and (32), we obtain

Y0 − Y′
0 �

∫ T

0
H t,Xt−,Zt, α̂t, pt, νt
( ) −H t,Xt−,Z′

t , α
′
t , pt, νt

( )[ ]
dt −

∫ T

0
Zt − Z′

t

( )∗·dMt

�
∫ T

0
X∗t− · Q t, α̂t, pt, νt

( ) −Q0( ) · Zt − X∗t− · Q t, α′
t , pt, νt

( ) −Q0( ) · Z′
t

[ ]
dt

+
∫ T

0
f t,Xt−, α̂t, pt, νt
( ) − f t,Xt−, α̂t, pt, νt

( )[ ]
dt −

∫ T

0
Zt − Z′

t

( )∗·dMt

�
∫ T

0
f t,Xt−, α̂t, pt, νt
( ) − f t,Xt−, α′

t , pt, νt
( ) + X∗t− · Q t, α̂t, pt, νt

( ) −Q t, α′
t , pt, νt

( )( ) · Zt
[ ]

dt

−
∫ T

0
Zt − Z′

t

( )∗· dMt − Q∗ t, α′
t , pt, νt

( ) −Q0( ) · Xt−dt
[ ]

�
∫ T

0
H t,Xt−,Zt, α̂t, pt, νt
( ) −H t,Xt−,Zt, α

′
t , pt, νt

( )[ ]
dt −

∫ T

0
Zt − Z′

t

( )∗·dM α′,p,ν( )
t .

Taking Q(α′,p,ν) expectations and using the fact that Q(α′,p,ν) coincides with P in F 0, we get

0 � EP Y0 − Y′
0

[ ] � EQ α′ ,p,ν( )
Y0 − Y′

0

[ ]
� EQ α′ ,p,ν( )

∫ T

0
H t,Xt−,Zt, α̂t, pt, νt
( ) −H t,Xt−,Zt, α

′
t , pt, νt

( )[ ]
dt

[ ]
≤ 0,

where the last inequality is because α̂t minimizes the Hamiltonian. In fact, we have α̂t � α′
t , dt ⊗ dQ(α′,p,ν) a.e. If

we assume otherwise, the last inequality would be strict because the minimizer of the Hamiltonian is unique
by Assumption 3. Because P is equivalent to Q(α′,p,ν), we have α̂t � α′

t , dt ⊗ dP a.e. □

4. Existence of Nash Equilibria
We state the main result of this section:

Theorem 1. Under Assumptions 1–3, there exists a Nash equilibrium (α∗,p∗, ν∗) for the weak formulation of the
finite-state mean field game in the sense of Definition 1.

The rest of this section is devoted to the proof of Theorem 1. As in the case of diffusion-based mean field
games, we rely on a fixed-point argument to show existence of Nash equilibria. We start from a measurable
function p : [0,T] → S and a measurable function ν : [0,T] → P(A), where we recall that S is the m-di-
mensional simplex, which we identify with the space of probability measures on E, and P(A) is the space of
probability measures on A. We then solve the BSDE (29) and obtain the solution (Y(p,ν),Z(p,ν)) as well as the
optimal control α̂(p,ν) given by (30). Finally, we compute the probability measure Q̂(p,ν) :� Q(α̂(p,ν),p,ν) as defined
in (7) and consider the push-forward measures of Q̂(p,ν) by (Xt, α̂

(p,ν)
t ). Clearly, we identify a Nash equilibrium

if we find a fixed point for the mapping (p,ν) → Q̂
(p,ν)
#(Xt ,α̂

(p,ν)
t ).

In practice, however, the implementation of the aforementioned fixed-point argument is prone to several
difficulties. The foremost challenge lies in the lack of results allowing us to identify compact subsets of the
spaces of measurable functions from [0,T] to S or P(A). This makes it difficult to apply Schauder’s theorem or
similar versions of fixed-point theorems. For this reason, we resort to different descriptions of the mean field
for the state and the control. For the mean field of the state, because we have assumed from the very beginning
that X is a càdlàg process, we directly deal with its probability law on the space D of all càdlàg functions from

Carmona and Wang: Probabilistic Approach to Finite State MFGs
Mathematics of Operations Research, 2021, vol. 46, no. 2, pp. 471–502, © 2021 INFORMS482



[0,T] to E � {e1, . . . , em} endowed with the Skorokhod topology. The space of probability measures on D and its
topological properties have been studied thoroughly (see Jacod and Shiryaev [25] for a detailed account),
and a simple criterion for compactness is available.

Unfortunately, resolving the corresponding issue for the control is more involved. Here, we adopt the
technique based on the stable topology used in Carmona and Lacker [7]. Indeed, a measurable mapping from
[0,T] to P(A) can be viewed as a random variable defined on the space ([0,T],B([0,T]),L) taking values in
P(A). Here, B([0,T]) is the Borel σ-field of [0,T], L is the uniform probability measure on [0,T] and P(A) is
endowed with the Wasserstein-one distance. To obtain compactness, the idea is to use randomization. We
consider the space of probability measures on [0,T] × P(A), denoted by P([0,T] ×P(A)). Then, for each
measurable mapping ν from [0,T] to P(A), we consider the measure η on [0,T] × P(A) given by
η(dt, dm) :� L(dt) × δνt(dm), where δ is the Dirac measure. We may endow the space P([0,T] ×P(A)) with the
so-called stable topology introduced in Jacod and Mémin [24], for which convenient results on compactness
are readily available.

In the following, we detail the steps that lead to the existence of Nash equilibria. We start by specifying the
topology we use for the space of mean fields on the state as well as the control. We then properly define the
mapping compatible with the definition of Nash equilibrium, we show its continuity, and construct a stable
compact. Once these ingredients are in place, we apply Schauder’s fixed-point theorem to conclude.

In the rest of Section 4, we let Assumptions 1–3 hold.

4.1. Topology for the Space of Mean Fields
We first consider the mean field for the state by endowing the state space E :� {e1, . . . , em} with the discrete
metric dE(x, y) :� 1(x �� y). Clearly, (E, dE) is a Polish space. Then, the Skorokhod space

D :� x : 0,T[ ] → E, x is c �adl �ag and left continuous on T
{ } (33)

is endowed with the J1 metric:

dD x, y
( )

:� inf
λ∈Λmax sup

t≤T
|λ t( ) − t|, sup

t≤T
|y λ t( )( ) − x t( )|

{ }
, (34)

where Λ is the set of all strictly increasing, continuous bijections from [0,T] to itself. It can be proved that dD
is a metric on D and the metric space (D, dD) is a Polish space. Let us denote by P the collection of probability
measures on (D, dD) endowed with the weak topology. Recall that the reference measure P is an element of P.
Let P0 be the subset of P defined by

P0 :� Q :
dQ
dP

� L, with EP L2
[ ] ≤ C0

{ }
. (35)

Here, C0 is a constant that we specify later (see the proof of Proposition 4). We have the following result:

Proposition 2. The set P0 is convex and relatively compact in P.

Proof. The convexity of P0 is trivial. Let us show that P0 is relatively compact. We proceed in three steps.

Step 1. For K ∈ N and δ > 0, we define Dδ,K as the collection of paths in D that meet the following criteria: (a) the
path has no more than K discontinuities; (b) the first jump time, if any, happens on or after δ; (c) the last jump
happens on or before T − δ; and (d) the amounts of time between two consecutive jumps are greater or equal than δ.
We now show that Dδ,K is compact in D. Because D is a Polish space, it is enough to show the sequential
compactness. Let us fix a sequence xn in Dδ,K. For each xn, we use the following notation: kn is the number of its
jumps, and δ ≤ t1n < t2n < · · · < tknn ≤ T − δ are the times of its jumps. Δt1n :� t1n and Δtin :� tin − ti−1n for i � 2, . . . , kn are
the time elapsed between consecutive jumps, and x0n, x

1
n, . . . , t

kn
n are the values taken by xn in each interval defined by

the jumps. Then, we can represent xn using the vector yn of dimension 2(K + 1):
yn � kn,Δt1n,Δt

2
n, . . . ,Δt

kn
n , 0, . . . , 0, x

0
n, x

1
n, . . . , x

kn
n , 0, . . . , 0

[ ]
.

In this representation, the first coordinate of yn is the number of jumps. Coordinate two to K + 1 are the times
elapsed between jumps defined previously, and if there are fewer than K jumps, we complete the vector by
zero. Coordinates K + 2 to 2(K + 1) are the values taken by the path xn and completed with zero. Clearly, there is
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a bijection from xn to yn by this representation. By the definition of the set Dδ,K, we have Δtin ∈ [δ,T] for i ≤ kn
and

∑kn
i�1 Δtin ≤ T − δ, whereas the rest of the coordinates of yn belong to a finite set. This implies that yn lives

in a compact, and therefore, we can extract a converging subsequence, which we still denote by yn. Again,
because kn and the last K + 1 components can only take finitely many values by their definition, therefore, there
exists N0 such that, for n ≥ N0, we have kn � k and xin � xi for all i ≤ k. In addition, we have that Δtin converges
to Δti for all i ≤ k, where Δti ≥ δ for all i ≤ k and

∑k
i�1 Δti ≤ T − δ. We consider the path represented by the

vector y:

y � k,Δt1,Δt2, . . . ,Δtk, 0, . . . , 0, x0, x1, . . . , xk, 0, . . . , 0
[ ]

.

Clearly, x belongs to the set Dδ.K, and it is straightforward to verify that x is the limit of the sequence (xn)n≥0 in
the J1 metric, where xn is the path represented by the vector yn. This implies that Dδ.K is compact.

Step 2. Now, we show that, for any ε > 0, there exists δ > 0 and K ∈ N such that P(Dδ.K) ≥ 1 − ε. Recall that P is the
reference measure, and under P, the canonical process X is a continuous-time Markov chain with transition rate
matrixQ0. Therefore, the time of the first jump as well as the time between consecutive jumps thereafter, which we
denote by Δt1,Δt2, . . ., are independent and identically distributed exponential random variables of parameter
(m − 1) under the measure P. We have

P Dδ,K( ) � P Δt1 > T[ ] +∑K
k�1

P Δt1 ≥ δ{ } ∩ · · · ∩ Δtk ≥ δ{ } ∩ ∑k+1
i�1

Δti > T

{ }
∩ ∑k

i�1
Δti ≤ T − δ

{ }[ ]
.

For each k � 1, . . . ,K, we have

P Δt1 ≥ δ{ } ∩ · · · ∩ Δtk ≥ δ{ } ∩ ∑k+1
i�1

Δti > T

{ }
∩ ∑k

i�1
Δti ≤ T − δ

{ }[ ]

≥ P Δt1 ≥ δ{ } ∩ · · · ∩ Δtk ≥ δ{ }[ ] + P
∑k+1
i�1

Δti > T

{ }
∩ ∑k

i�1
Δti ≤ T − δ

{ }[ ]
− 1

� P Δt1 ≥ δ[ ]( )k+P ∑k+1
i�1

Δti > T

{ }
∩ ∑k

i�1
Δti ≤ T − δ

{ }[ ]
− 1

� exp −k m − 1( )δ( ) − 1
( ) + exp − m − 1( )T( ) m − 1( )k T − δ( )k

k!
.

It follows that

P Dδ,K( ) ≥ ∑K
k�1

exp −k m − 1( )δ( ) − 1
( ) + exp − m − 1( )T( )∑K

k�0

m − 1( )k T − δ( )k
k!

≥ ∑K
k�1

exp −k m − 1( )δ( ) − 1
( ) + exp − m − 1( )T( )∑K

k�0

m − 1( )kTk

k!
− 1 − exp − m − 1( )δ( )( )

.

We can first pick K large enough for (exp(−(m − 1)T)∑K
k�0(m − 1)kTk/k!) to be greater than (1 − ε/2). Then, we

pick δ small enough so that the rest of the terms are greater than −ε/2, which eventually makes P(Dδ,K) greater
than (1 − ε).
Step 3. Finally, we show that P0 is tight. For any ε > 0, by Step 2, we can pick δ > 0 and K ∈ N such that
P(D \Dδ,K) ≤ ε2/C0. For all Q ∈ P0, we have dQ/dP � L and EP[L2] ≤ C0, and by the Cauchy–Schwartz inequality,
we obtain

Q D \Dδ,K( ) � EP L · 1x∈D\Dδ,K

[ ] ≤ EP L2
[ ]( )1/2

P D \Dδ,K( )1/2≤ ε.

This implies the tightness of P0. Finally, by Prokhorov’s theorem, we conclude that P0 is relatively com-
pact. □
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We now need to link the convergence of measures on a path space to the convergence in S, that is, measures
on state space. We define the function π by

π : 0,T[ ] × P 
 t, μ
( ) → μ#Xt e1{ }( ), μ#Xt e2{ }( ), . . . , μ#Xt em{ }( )[ ] ∈ S

and prove the following result:

Lemma 8. If μn �→ μ in P, there exists a subset D(μ) of [0,T) at most countable such that, for all t /∈ D(μ),
lim

n→+∞π t, μn( ) � π t, μ
( )

. (36)

Proof. Define D(μ) :� {0 ≤ t ≤ T; μ(Xt − Xt− �� 0) > 0}. By Jacod and Shiryaev [25, lemma 3.12], the set D(μ) is, at
most, countable with probability one. In addition, we have T /∈ D(μ) because all the paths in D are left-continuous
on T. In light of Jacod and Shiryaev [25, proposition 3.14], we have that μn

#Xt
converges to μ#Xt weakly for

all t /∈ D(μ). To conclude, we use the fact that μn
#Xt

for all t ∈ [0,T] and n are counting measures on the discrete
set E. □

We now turn to the mean field of controls. Let (P(A),W1) be the space of probability measures on the
compact set A ⊂ Rl endowed with the weak topology and metricized by the Wasserstein-one distance (see
Villani [31, theorem 6.9]). (P(A),W1) is a Polish space. Because A is compact, it is easy to show that P(A) is
tight, and therefore, by Prokhorov’s theorem, (P(A),W1) is, in fact, compact. We endow P(A) with its Borel
σ−algebra denoted by B(P(A)). We endow [0,T] with its Borel σ−algebra B([0,T]) and the (normalized)
Lebesgue measure L(dt) :� 1

T dt. Finally, we construct the product space [0,T] × P(A) endowed with the
σ-algebra B([0,T]) ⊗ B(P(A)). The space of probability measures on [0,T] ×P(A) can be viewed as a ran-
domized version of the space of the mean field of control. We introduce the stable topology on this space:

Definition 2. Let us denote by R the space of probability measures on ([0,T] ×P(A),B([0,T]) ⊗ B(P(A))). We call
the stable topology ofR the coarsest topology such that the mappings η → ∫

g(t,m)η(dt, dm) are continuous for all
bounded and measurable mappings g defined on [0,T] × P(A) such that m → g(t,m) is continuous for each
fixed t ∈ [0,T].

We collect a few useful results on the space R endowed with the stable topology.

Proposition 3. The topology space R is compact, metrizable, and Polish.

Proof. Notice that both [0,T] and P(A) are Polish for their respective topologies. This implies that the σ-algebra
B([0,T]) ⊗ B(P(A))) is separable. It follows from Jacod and Mémin [24, proposition 2.10] that R is metrizable.

We now show that R is compact. Notice that, for an element η in R, its first marginal is a probability
measure on [0,T], and its second marginal is a probability measure on P(A). It is trivial to see that both the
spaces of probability measures on [0,T] and on P(A) are tight and, therefore, relatively compact by Pro-
khorov’s theorem. We then apply Jacod and Mémin [24, theorem 2.8] and obtain the compactness of R.

Having shown that R is compact and metrizable, we see that R is separable. Compactness also leads to
completeness. Therefore, R is a Polish space. Finally, we notice that R is also sequential compact because R is
metrizable. Halmos

The following result provides a more convenient way to characterize the convergence in the stable topology.

Lemma 9. Denote by H the collection of mappings f of the form f (t, ν) � 1B(t) · g(ν), where B is a Borel subset of [0,T] and
g : P(A) → R is a bounded Lipschitz function (with respect to the Wasserstein-one distance on P(A)). Then, the stable
topology introduced in Definition 2 is the coarsest topology that makes the mappings η → ∫

[0,T]×P(A) f (t, ν)η(dt, dν) con-
tinuous for all f ∈ H.

Proof. LetH0 be the collection of mappings f of the form f (t, ν) � 1B(t) · g(ν), where B is a Borel subset of [0,T] and
g : P(A) → R is a bounded and uniformly continuous function. Then, clearly, we have H ⊂ H0. By Jacod and
Mémin [24, proposition 2.4], the stable topology is the coarsest topology under which the mappings η →∫
[0,T]×P(A) f (t, ν)η(dt, dν) are continuous for all f ∈ H0. Therefore, we only need to show that, if ηn is a sequence of
elements in R such that

∫
f (t, ν)ηn(dt, dν) → ∫

f (t, ν)η0(dt, dν) for all f ∈ H, then we have
∫
f (t, ν)ηn(dt, dν) →∫

f (t, ν)η0(dt, dν) for all f ∈ H0 as well.
Now, let us fix f ∈ H0 with f (t, ν) � 1B(t) · g(ν). Note that P(A) is a compact metric space and g is a bounded,

uniformly continuous, and real-valued function. A famous result fromGeorganopoulos [19] (see also Miculescu [28])
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shows that g can be approximated uniformly by a bounded Lipschitz continuous function. That is, for all ε > 0,
we can find gε ∈ H such that supν∈P(A) |gε(ν) − g(ν)| ≤ ε/3. By our assumption, we have

∫
1B(t)gε(ν)ηn(dt, dν) →∫

1B(t)gε(ν)η0(dt, dν). Therefore, there existsN0 such that | ∫ 1B(t)gε(ν)ηn(dt, dν) −
∫
1B(t)gε(ν)η0(dt, dν)| ≤ ε/3 for all

n ≥ N0. Combining these facts we have, for n ≥ N0,∫
1B t( )g ν( )ηn dt, dν( ) −

∫
1B t( )g ν( )η0 dt, dν( )

⃒⃒⃒⃒ ⃒⃒⃒⃒
≤

∫
1B t( )gε ν( )ηn dt, dν( ) −

∫
1B t( )gε ν( )η0 dt, dν( )

⃒⃒⃒⃒ ⃒⃒⃒⃒
+
∫

1B t( ) gε ν( ) − g ν( )⃒⃒ ⃒⃒
ηn dt, dν( ) +

∫
1B t( ) gε ν( ) − g ν( )⃒⃒ ⃒⃒

η0 dt, dν( )
≤ ε/3 + ε/3 + ε/3 � ε,

which shows that
∫
f (t, ν)ηn(dt, dν) → ∫

f (t, ν)η0(dt, dν). □

Now, we consider the following subset of R:

R0 :� η ∈ R; the marginal distribution of η on 0,T[ ] is L
{ }

.

We have the following result:

Lemma 10. R0 is a convex and compact subset of R.

Proof. We apply Jacod and Mémin [25, theorem 2.8]. In particular, we verify without difficulty that {η[0,T]; η ∈
R0} � {L} is compact, and {ηP(A); η ∈ R0} is a subset of P(P(A)), which is relatively compact as well. □

For any η ∈ R0, because its first marginal is L, by disintegration, we can write η(dt, dm) � L(dt) × ηt(dm),
where the mapping [0,T] 
 t → ηt(·) ∈ P(P(A)) is a measurable mapping, and the decomposition is unique up
to almost everywhere equality. On the other hand, for any measurable function ν : [0,T] → P(A), we may
construct an element Ψ(ν) in R0 by

Ψ ν( ) dt, dm( ) :� L dt( ) × δνt dm( ). (37)
Because we changed the way we represent the mean field of controls, we need to modify accordingly the
definition of the transition rate matrix as well as the cost functionals in order to make them compatible with
the randomization procedure. For any function F : P(A) → R possibly containing other arguments, we denote
F : P(P(A)) → R by F(m) :� ∫

ν∈P(A) F(ν)m(dν), which we call the randomized version of F. Obviously, we have
F(δν) � F(ν). In this way, we define without any ambiguity the randomized version q of the rate function q as
well as its matrix representation Q. We also define f as the randomized version of cost functional f . Because
the terminal cost g does not depend on the mean field of controls, we do not need to consider its ran-
domized version.

Recall from Assumption 3 that the minimizer âi of the reduced Hamiltonian is only a function of t, z, and p.
Consequently, for H, Hi, Ĥ, and Ĥi, which are the randomized versions of H, Hi, Ĥ, and Ĥi, respectively, we
still have

Ĥ t, x, z, p,m
( ) � inf

α∈AH t, x, z, α, p,m
( )

,

â t, x, z, p
( ) � arg inf

α∈AH t, x, z, α, p,m
( )

.

In addition, we have the following result on the Lipschitz property of Ĥ and â:

Lemma 11. There exists a constant C > 0 such that, for all (ω, t) ∈ Ω × (0,T], p, p′ ∈ S, α, α′ ∈ A, z, z′ ∈ Rm, and
m,m′ ∈ P(P(A)), we have

|q t, i, j, α, p,m
( ) − q t, i, j, α′, p′,m′( )| ≤ C ‖α − α′‖ + ‖p − p′‖ + W̄1 m,m′( )( )

, (38)
and

|Ĥ t,Xt−, z, p,m
( ) − Ĥ t,Xt−, z′, p′,m′( )| ≤ C‖z − z′‖Xt− + C 1 + ‖z‖Xt−

( ) ‖p − p′‖ + W̄1 m,m′( )( )
. (39)

Here, W̄1(m,m′) is the Wasserstein-one distance on the space of probability measure on P(A) defined by

W̄1 m,m′( ) :� inf
π∈P P A( )×P A( )( )

∫
P A( )×P A( )

W1 ν, ν′( )π dν, dν′( ). (40)
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Proof. We have

|Ĥ t,Xt−, z, p,m
( ) − Ĥ t,Xt−, z′, p′,m′( )|

≤ |Ĥ t,Xt−, z, p,m
( ) − Ĥ t,Xt−, z, p,m′( )| + |Ĥ t,Xt−, z, p,m′( ) − Ĥ t,Xt−, z′, p′,m′( )|

≤
∫
ν∈P A( )

Ĥ t,Xt−, z, p, ν
( )

m dν( ) −m′ dν( )( )
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ +

∫
ν∈P A( )

|Ĥ t,Xt−, z, p, ν
( ) − Ĥ t,Xt−, z′, p′, ν

( )|m′ dν( )

≤
∫
ν∈P A( )

Ĥ t,Xt−, z, p, ν
( )

m dν( ) −m′ dν( )( )
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ + C 1 + ‖z‖Xt−

( )‖p − p′‖ + C‖z − z′‖Xt− .

Because the space P(A) is compact and the mapping ν → Ĥ(t,Xt−, z, p, ν) is Lipschitz with a Lipschitz constant
equal to C(1 + ‖z‖Xt−), Kantorovich–Rubinstein duality theory implies∫

ν∈P A( )
Ĥ t,Xt−, z, p, ν
( )

m dν( ) −m′ dν( )( )
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ C 1 + ‖z‖Xt−

( )
W̄1 m,m′( ),

and combined with the preceding estimation, we obtain the desired inequality for Ĥ. The Lipschitz property
for q can be proved in the same way. □

4.2. Mapping Fixed Points
We now define the mapping whose fixed points characterize the Nash equilibria of the mean field game in its
weak formulation. For any (μ, η) ∈ P ×R0, where η has the disintegration η(dt, dm) � L(dt) × ηt(dm), we
consider the solution (Y(μ,η),Z(μ,η)) to the BSDE:

Yt � g XT, pT
( ) + ∫ T

t
Ĥ s,Xs−,Zs, π s, μ

( )
, ηs

( )
ds −

∫ T

t
Z∗s · dMs. (41)

Denote by α̂(μ,η) the predictable process t → â(t,Xt−,Z
(μ,η)
t , π(t, μ)), which is the optimal control of the player

facing the mean field (μ, η) ∈ P(E) ×R0. Next, we consider the scalar martingale L(μ,η) defined by

L
μ,η( )
t :�

∫ t

0
X∗s− · Q s, α̂

μ,η( )
s , π s, μ

( )
, ηs

( )
−Q0

( )
· ψ+

s · dMs. (42)

Define the probability measure Q̂(μ,η) by

dQ̂ μ,η( )
dP

:� E L μ,η( )( )
T
, (43)

where E(L(μ,η)) is the Doléans–Dade exponential of the martingale L(μ,η). Finally, we define the mappings Φμ,
Φη, and Φ, respectively, by

Φμ : P ×R0 
 μ, η
( ) → Q̂ μ,η( ) ∈ P, (44)

Φη : P ×R0 
 μ, η
( ) → L dt( ) × δ

Q̂
μ,η( )
#α̂

μ,η( )
t

dν( ) ∈ R0, (45)

Φ : P ×R0 
 μ, η
( ) → Φμ μ, η

( )
,Φη μ, η

( )( ) ∈ P ×R0. (46)

Remark 5. Before delving into its properties, we first need to show that the mapping Φ is well defined. More
specifically, we need to show that, given (μ, η) ∈ P ×R0, the outputs Q̂(μ,η) and L(dt) × δ

Q̂
(μ,η)
#α̂

(μ,η)
t

(dν)) do not depend

on which solution to the BSDE (41) we use to construct α̂(μ,η), L(μ,η), and E(L(μ,η)). To this end, let us consider (Y,Z)
and (Y′,Z′) to be two solutions to BSDE (41), α̂ and α̂′ the corresponding optimal controls, L and L′ the corre-
sponding martingales defined in (42), and Q and Q′ the resulting probability measures defined in (43). By the
uniqueness of the solution to (41), we have E[∫ T

0 ‖Z′
t − Zt‖2Xt−dt] � 0. Using the Lipschitz continuity of â and q, it is

straightforward to show E[∫ T
0 ‖α′

t − αt‖2dt] � 0 and eventually Q � Q′.
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Proposition 4. Let us denote by P̄0 the closure of the set P0 defined in (35). Then, the set P̄0 ×R0 is stable under the
mapping Φ.

Proof. It suffices to show that, for all (μ, η) ∈ P ×R0, we have Φμ(μ, η) ∈ P0. By the definition of P0 in (35), this
boils down to showing that there exists a constant C0 > 0 such that, for all (μ, η), we have

EP E L μ,η( )( )
T

( )2[ ]
≤ C0.

Let us denote Wt :� E(L(μ,η))t. By Itô’s lemma, we have

d W2
t

( ) � 2Wt−dWt + d W,W[ ]t
because dL(μ,η)t � X∗t− · (Q(t, α̂(μ,η)

t , π(t, μ), ηt) −Q0) · ψ+
t · dMt and dWt � Wt−dL

(μ,η)
t ; denoting It :� ψ+

t · (Q∗(t, α̂(μ,η)
t ,

π(t, μ), ηt) −Q0) · Xt−, we have

d W2
t

( ) � 2W2
t−dL

μ,η( )
t +W2

t−I
∗
t · d M,M[ ]t·It.

We know that the optional quadratic variation of M can be decomposed as

M,M[ ]t� Gt + 〈M,M〉t � Gt +
∫ t

0
ψsds,

where G is a martingale. Therefore, we have

d W2
t

( ) � 2W2
t−dL

μ,η( )
t +W2

t−I
∗
t · dGt · It +W2

t−I
∗
t · ψt · Itdt.

Let Tn be a sequence of stopping time converging to +∞, which localizes both the local martingales∫ t
0 W

2
s−dL

(μ,η)
s and

∫ t
0 W

2
s−I∗s · dGs · Is. Then, integrating the preceding SDE between zero and T ∧ Tn and taking

the expectation under P, we obtain

EP W2
T∧Tn

[ ]
� 1 + EP

∫ T∧Tn

0
W2

t−I
∗
t · ψt · Itdt

[ ]
� 1 + EP

∫ T∧Tn

0
W2

t−I
∗
t · ψt · Itdt

[ ]
≤ 1 +

∫ T

0
EP W2

t∧Tn
I∗t∧Tn

· ψt∧Tn · It∧Tn

[ ]
dt ≤ 1 + C0

∫ T

0
EP W2

t∧Tn

[ ]
.

Here, we have used Tonelli’s theorem as well as the fact that I∗s · ψs · Is is bounded by a constant C0 inde-
pendent of μ, η and n, which is a consequence of the boundedness of the transition rate function q. Now,
applying Gronwall’s lemma, we obtain

EP W2
T∧Tn

[ ]
≤ C0.

Here, the constant C0 does not depend on n, μ, or η. Notice that W2
T∧Tn

converges to W2
t almost surely. We

apply Fatou’s lemma and obtain EP[W2
T] ≤ C0. □

4.3. Existence of Nash Equilibria
The last missing piece in applying Schauder’s fixed-point theorem is to show the continuity of the mapping Φ
on P ×R0 for the product topology. To this end, we show the continuity of the mappings Φμ and Φη. Notice
that both P and R0 are metrizable, so we only need to show sequential continuity.

Let us fix a sequence (μ(n), η(n))n≥1 converging to (μ(0), η(0)) in P ×R0 with the decomposition η(n)(dt, dν) �
L(dt) × η(n)t (dν). To simplify the notation, we denote Y(μ(n),η(n)), Z(μ(n),η(n)), α̂(μ(n),η(n)), L(μ(n),η(n)), and Q̂(μ(n),η(n)), re-
spectively, by Y(n), Z(n), α̂(n), L(n), and Q(n) for n ≥ 0. We also denote by E(n) the expectation under Q(n) and
p(n)t � π(t, μ(n)), whereas E still denotes the expectation under the reference measure P.

We start by proving the continuity of Φμ or, equivalently, the convergence of Q(n) toward Q(0). We divide the
proof into several intermediary results.
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Lemma 12. Without any loss of generality, we may assume that there exists a constant C such that ‖Z(0)
t ‖Xt− ≤ C for

all (ω, t) ∈ Ω × [0,T].
Proof. We consider the following ordinary differential equation (ODE) of unknown Vt � [V1(t), . . . ,Vm(t)] ∈ Rm:

0 � dVi t( )
dt

+ Ĥi t,V t( ), p 0( )
t , η 0( )

t

( )
+∑

j��i
Vj t( ) − Vi t( )[ ]

,

Vi T( ) � g ei, p
0( )
T

( )
, i � 1, . . . ,m. (47)

Set ζ : [0,T]×Rm 
 (t,v)→ [ζ1(t,v), . . . ,ζm(t,v)] ∈Rm, where ζi(t, v) :� Ĥi(t, v, p(0)t , η(0)t ) +∑
j��i[vj − vi]. By Lemma 11,

we see that t → ζ(t, v) is measurable for all v ∈ Rm, and v → ζ(t, v) is Lipschitz in v uniformly in t. By
Filippov [17, theorems 1 and 2], the ODE (47) admits a unique solution on the interval [0,T], which is ab-
solutely continuous. Now, we define Yt � ∑m

i�1 1(Xt � ei)Vi(t) and Zt � Vt. By continuity of V, we have
ΔYt :� Yt − Yt− � V∗

t (Xt − Xt−) � Z∗t · ΔXt. Applying Ito’s formula to Y, we obtain

Yt � YT −
∫ T

t

∑m
i�1

1 Xt � ei( )V̇i s( )ds −
∑
t<s≤T

ΔYs � g XT, p
0( )
T

( )
+
∫ T

t

∑m
i�1

1 Xt � ei( )Ĥi t,V t( ), p 0( )
t , η 0( )

t

( )
+
∫ T

t

∑m
i�1

1 Xt � ei( )∑
j ��i

Vj t( ) − Vi t( )[ ] − ∫ T

t
Z∗s · dXs � g XT, p

0( )
T

( )
+
∫ T

t
Ĥi s,Xs,Zs, p 0( )

s , η 0( )
s

( )
ds −

∫ T

t
Z∗s · dMs,

where, in the last equality, we use the fact that dXs � Q0 · Xs−ds + dMs and Vt � Zt. Therefore, (Y,Z) and
(Y(0),Z(0)) solve the same BSDE. As we discuss in Remark 5, we may assume that Z(0) � Z. Therefore,
Z(0)
t � V(t). It follows from the continuity of t → V(t) that ‖Z(0)

t ‖Xt− is bounded for all ω ∈ Ω and t ∈ [0,T] by a
uniform constant. □

Now, we show that Z(n) converges toward Z(0).

Proposition 5. We have

lim
n→∞E

∫ T

0
‖Z n( )

t − Z 0( )
t ‖2Xt−dt

[ ]
� 0. (48)

Proof. By Lemma 4, it suffices to check that

In t( ) :� E

∫ T

t
Ĥ s,Xs−,Z 0( )

s , p n( )
s , η n( )

s

( ) − Ĥ s,Xs−,Z 0( )
s , p 0( )

s , η 0( )
s

( )
ds

( )2[ ]

converges to zero for all t ≤ T and that In(t) is bounded by C uniformly in t and n. We also need to check that
Jn :� E[|g(XT, p

(n)
T ) − g(XT, p

(0)
T )|2] converges to zero. By the Lipschitz property of the cost functional g and

Lemma 8, we have

Jn ≤ C‖p n( )
T − p 0( )

T ‖2 � C‖π μ n( ),T
( ) − π μ 0( ),T

( )‖2 → 0,

as n → +∞. To check the uniform boundedness of In(t), we recall from Lemma 6 that

Ĥ t,Xt−,Z 0( )
t , p n( )

t , η n( )
t

( )
− Ĥ t,Xt−,Z 0( )

t , p 0( )
t , η 0( )

t

( )⃒⃒⃒ ⃒⃒⃒
≤ C 1 + Z 0( )

t

⃦⃦⃦ ⃦⃦⃦
Xt−

( )
p n( )
t − p 0( )

t

⃦⃦⃦ ⃦⃦⃦
+ W̄1 η n( )

t , η 0( )
t

( )( )
,

where W̄1 is the Wasserstein distance on the space P(P(A)). Clearly, ‖p(n)t − p(0)t ‖ can be bounded by a constant
because p(n)t is in the simplex S. On the other hand, we have

W̄1 η n( )
t , η 0( )

t

( )
≤
∫

ν1,ν2( )∈P A( )2
W1 ν1, ν2( )η n( )

t dν1( )η 0( )
t dν2( ).

Because A is compact, W1(ν1, ν2) for (ν1, ν2) ∈ P(A)2 is bounded, which implies that W̄1(η(n)t , η(0)t ) is also
bounded by a constant uniformly in n and t. This implies

In t( ) ≤ CE
∫ T

t
1 + ‖Z 0( )

s ‖Xs−
( )

ds
[ ]

≤ C 1 + E

∫ T

0
‖Z 0( )

s ‖2Xs−ds
[ ]( )1/2( )

< +∞,
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which means that In(t) is uniformly bounded in n and t. To show that In(t) converges to zero, we write

In t( ) ≤ 2E
∫ T

t
Ĥ s,Xs−,Z 0( )

s , p n( )
s , η n( )

s

( ) − Ĥ s,Xs−,Z 0( )
s , p 0( )

s , η n( )
s

( )( )
dt

( )2[ ]

+ 2E
∫ T

t
Ĥ s,Xs−,Z 0( )

s , p 0( )
s , η n( )

s

( ) − Ĥ s,Xs−,Z 0( )
s , p 0( )

s , η 0( )
s

( )( )
dt

( )2[ ]

≤ 2CE
∫ T

t
1 + ‖Z 0( )

s ‖Xs−
( )2‖p n( )

s − p 0( )
s ‖2ds

[ ]
+ 2E

∫ T

t
Ĥ s,Xs−,Z 0( )

s , p 0( )
s , η n( )

s

( ) − Ĥ s,Xs−,Z 0( )
s , p 0( )

s , η 0( )
s

( )( )
dt

( )2[ ]
.

By Lemma 8, we have (1 + ‖Z(0)
s ‖Xs−)2‖p(n)s − p(0)s ‖2 → 0, dt ⊗ dP a.e. On the other hand, we have

1 + ‖Z 0( )
s ‖Xs−

( )2‖p n( )
s − p 0( )

s ‖2 ≤ C 1 + ‖Z 0( )
s ‖Xs−

( )2
,

where the right-hand side is ds ⊗ dP-integrable. Therefore, by the dominated convergence theorem, we obtain

E

∫ T

t
1 + ‖Z 0( )

s ‖Xs−
( )2‖p n( )

s − p 0( )
s ‖2ds

[ ]
→ 0,

as n → +∞. It remains to show that

Kn :� E

∫ T

t
Ĥ s,Xs−,Z 0( )

s , p 0( )
s , η n( )

s

( ) − Ĥ s,Xs−,Z 0( )
s , p 0( )

s , η 0( )
s

( )( )
ds

( )2[ ]

converges to zero. For a fix w ∈ Ω and t ≤ T, we have∫ T

t
Ĥ s,Xs−,Z 0( )

s , p 0( )
s , η n( )

s

( ) − Ĥ s,Xs−,Z 0( )
s , p 0( )

s , η 0( )
s

( )( )
ds

�
∫ T

t

∫
ν∈P A( )

Ĥ s,Xs−,Z 0( )
s , p 0( )

s , ν
( )

η n( )
s − η 0( )

s

( )
dν( )ds

�
∫

0,T[ ]×P A( )
κ s, ν( )η n( ) ds, dν( ) −

∫
0,T[ ]×P A( )

κ s, ν( )η 0( ) ds, dν( ),

where we define κ(s, ν) :� 1t≤s≤TH(s,Xs−,Z(0)
s , p(0)s , ν). Clearly, κ is continuous in ν for all s. On the other hand, by

inequality (26) in Lemma 6, for all t ≤ s ≤ T and ν ∈ P(A), we have

H s,Xs−,Z 0( )
s , p 0( )

s , ν
( )⃒⃒ ⃒⃒ ≤ H s,Xs−, 0, 0, 0( )| | + C Z 0( )

s

⃦⃦ ⃦⃦
Xs−+C 1 + Z 0( )

s

⃦⃦ ⃦⃦
Xs−

( )
p 0( )
s

⃦⃦ ⃦⃦ +W1 ν, 0( )( )
.

Therefore, by Lemma 12 and the boundedness of P(A), we conclude that the mapping (s, ν) → κ(s, ν) is
bounded. It follows from the definition of the stable topology and η(n) → η(0) that

lim
n→+∞

∫ T

t
Ĥ s,Xs−,Z 0( )

s , p 0( )
s , η n( )

s

( ) − Ĥ s,Xs−,Z 0( )
s , p 0( )

s , η 0( )
s

( )( )
ds � 0,

for all w ∈ Ω. In addition, we have∫ T

t
Ĥ s,Xs−,Z 0( )

s , p 0( )
s , η n( )

s

( ) − Ĥ s,Xs−,Z 0( )
s , p 0( )

s , η 0( )
s

( )( )
ds

( )2
≤ T − t( )

∫ T

t
Ĥ s,Xs−,Z 0( )

s , p 0( )
s , η n( )

s

( ) − Ĥ s,Xs−,Z 0( )
s , p 0( )

s , η 0( )
s

( )⃒⃒ ⃒⃒2ds
≤ C

∫ T

t
1 + Z 0( )

s

⃦⃦ ⃦⃦
Xs−

( )2
W̄1 η n( )

s , η 0( )
s

( )( )2ds ≤ C
∫ T

t
1 + Z 0( )

s

⃦⃦ ⃦⃦
Xs−

( )2
ds ,
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and
∫ T
t (1 + ‖Z(0)

s ‖Xs−)2ds is integrable. Applying once more the dominated convergence theorem, we conclude
that Kn converges to zero. This completes the proof. □

We also need a result on a more convenient representation of the Doléans–Dade exponential of L(n).

Lemma 13. Denote by W(n) the Doléans–Dade exponential of L(n). Then, the Itô differential of log(W(n)) satisfies

d log W n( )
t

( )[ ]
� X∗t− · Q t, α̂ n( )

t , p n( )
t , η n( )

t

( )
−Q0 +O t, α̂ n( )

t , p n( )
t , η n( )

t

( )
·Q0

( )
· Xt−dt

+ X∗t− ·O t, α̂ n( )
t , p n( )

t , η n( )
t

( )
· dMt,

where O(t, α̂(n)
t , p(n)t , η(n)t ) is the matrix with log(q(t, i, j, α̂(n)

t , p(n)t , η(n)t )) as off-diagonal elements and zeros on the diagonal.

Proof. Because W(n) is the Doléans–Dade exponential of L(n), W(n) satisfies the SDE dW(n)
t � W(n)

t− dL(n)t . Applying
Ito’s formula and noticing that the continuous martingale part of Ln is zero, we have

d log W n( )
t

( )
� dL n( )

t − ΔL n( )
t + log 1 + ΔL n( )

t

( )
.

Then, using dL(n)t � X∗t− · (Q(t, α̂(n)
t , p(n)t , η(n)t ) −Q0) · ψ+

t · dMt and noticing that the jumps of Ln are driven by the
jumps of M and, hence, X, we obtain

d log W n( )
t

( )
� −X∗t− · Q t, α̂ n( )

t , p n( )
t , η n( )

t

( )
−Q0

( )
· ψ+ ·Q0 · Xt−dt + log 1 + ΔL n( )

t

( )
� X∗t− · Q t, α̂ n( )

t , p n( )
t , η n( )

t

( )
−Q0

( )
· Xt−dt + log 1 + ΔL n( )

t

( )
,

where we have used the fact that, for all q-matrices A, we have X∗t− · A · ψ+ ·Q0 · Xt− � −X∗t− · A · Xt−. Piggy-
backing on the derivation following Equation (6), for Xt− � ei and Xt � ej, we have

log 1 + ΔL n( )
t

( )
� log q t, i, j, α̂ n( )

t , p n( )
t , η n( )

t

( )( )
.

Using matrix notation and recalling the definition of O in the statement of Lemma 13, we may write

log 1 + ΔL n( )
t

( )
� X∗t− ·O t, α̂ n( )

t , p n( )
t , η n( )

t

( )
· ΔXt.

Using, again, the equality ΔXt � dXt � Q0 · Xt−dt + dMt, we arrive at the desired representation of the dif-
ferential of log(Wt). □

We now show that the first component of the mapping Φ is sequentially continuous.

Proposition 6. Q(n) converges to Q(0) in P.

Proof. For two probability measures Q and Q′ in P, the total variation distance dTV between Q and Q′ is

dTV Q,Q′( ) :� sup |Q A( ) −Q′ A( )|,A ∈ B D( ){ }. (49)

It is well known that convergence in total variation implies weak convergence and, hence, convergence in the
topological space P. Therefore, our aim is to show that dTV(Q(n),Q(0)) → 0 as n → +∞. By Pinsker’s inequality,
we have

d2TV Q 0( ),Q n( )( ) ≤ 1
2
E 0( ) log

dQ 0( )

dQ n( )

( )[ ]
.

Because dQ(n)
dP � E(L(n))T, we have

d2TV Q 0( ),Q n( )( ) ≤ E 0( ) log E L 0( )( )
T

( ) − log E L n( )( )
T

( )[ ]
.
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Using Lemma 13, we have

E 0( ) log E L 0( )( )
T

( ) − log E L n( )( )
T

( )[ ]
� E 0( )

∫ T

0
X∗t− · Q t, α̂ 0( )

t , p 0( )
t , η 0( )

t

( )
−Q t, α̂ n( )

t , p n( )
t , η n( )

t

( )( )
· Xt−dt

[ ]
+ E 0( )

∫ T

0
X∗t− · O t, α̂ 0( )

t , p 0( )
t , η 0( )

t

( )
−O t, α̂ n( )

t , p n( )
t , η n( )

t

( )( )
·Q0 · Xt−dt

[ ]
+ E 0( )

∫ T

0
X∗t− · O t, α̂ 0( )

t , p 0( )
t , η 0( )

t

( )
−O t, α̂ n( )

t , p n( )
t , η n( )

t

( )( )
· dMt

[ ]
.

By Assumption 1, the process t → ∫ t
0 X

∗
s− · (O(s, α̂(0)

s , p(0)s , ν(n)s ) −O(s, α̂(n)
s , p(n)s , ν(n)s )) · dMs is a true martingale.

Therefore, it has zero expectation. We now deal with the convergence of the term E0[∫ T
0 X∗t− · (Q(t, α̂(n)

t , p(n)t , η(n)t )−
Q(t, α̂(0)

t , p(0)t , η(0)t )) · Xt−dt], whereas the term E0[∫ T
0 X∗t− · (O(t, α̂(n)

t , p(n)t , η(n)t ) − O(t, α̂(0)
t , p(0)t , η(0)t )) ·Q0 · Xt−dt] can

be dealt with in the exact same way. Using the Lipschitz property of â and Q in Lemmas 6 and 11, we obtain

E 0( )
∫ T

0
X∗t− · Q t, α̂ 0( )

t , p 0( )
t , η 0( )

t

( )
−Q t, α̂ n( )

t , p n( )
t , η n( )

t

( )( )
· Xt−dt

[ ]
≤ E 0( )

∫ T

0
X∗t− · Q t, α̂ 0( )

t , p 0( )
t , η n( )

t

( )
−Q t, α̂ n( )

t , p n( )
t , η n( )

t

( )( )
· Xt−dt

[ ]
+ E 0( )

∫ T

0
X∗t− · Q t, α̂ 0( )

t , p 0( )
t , η 0( )

t

( )
−Q t, α̂ 0( )

t , p 0( )
t , η n( )

t

( )( )
· Xt−dt

[ ]
≤ E 0( )

∫ T

0
C ‖α̂ n( )

t − α̂ 0( )
t ‖ + ‖p n( )

t − p 0( )
t ‖

( )
dt

[ ]
+ E 0( )

∫ T

0
X∗t− · Q t, α̂ 0( )

t , p 0( )
t , η n( )

t

( )
−Q t, α̂ 0( )

t , p 0( )
t , η 0( )

t

( )( )
· Xt−dt

[ ]
≤ E 0( )

∫ T

0
C‖Z n( )

t − Z 0( )
t ‖Xt−dt

[ ]
+ E 0( )

∫ T

0
C 1 + ‖Z 0( )

t ‖Xt−

( )
‖p n( )

t − p 0( )
t ‖dt

[ ]
+ E 0( )

∫ T

0
X∗t− · Q t, α̂ 0( )

t , p 0( )
t , η n( )

t

( )
−Q t, α̂ 0( )

t , p 0( )
t , η 0( )

t

( )( )
· Xt−dt

[ ]
.

We deal with these terms separately. For the first expectation, by the Cauchy–Schwartz inequality, we have

E 0( )
∫ T

0
C‖Z n( )

t − Z 0( )
t ‖Xt−dt

[ ]( )2
� E W 0( )

T

∫ T

0
C‖Z n( )

t − Z 0( )
t ‖Xt−dt

[ ]( )2
≤ E W 0( )

T

( )2[ ]
E

∫ T

0
C‖Z n( )

t − Z 0( )
t ‖Xt−dt

( )2[ ]

≤ CE W 0( )
T

( )2[ ]
E

∫ T

0
‖Z n( )

t − Z 0( )
t ‖2Xt−dt

[ ]
.

This converges to zero by Proposition 5. For the second expectation, we notice from Lemma 12 that ‖Z(0)
t ‖Xt− is

bounded by a constant for all (ω, t) ∈ Ω × [0,T]. Therefore, we have

E 0( )
∫ T

0
C 1 + ‖Z 0( )

t ‖Xt−

( )
‖p n( )

t − p 0( )
t ‖dt

[ ]
≤ C

∫ T

0
C‖p n( )

t − p 0( )
t ‖dt,

where the right-hand side converges to zero by the dominated convergence theorem. Finally, for the third
expectation, we rewrite the integrand as∫ T

0
X∗t− · Q t, α̂ 0( )

t , p 0( )
t , η n( )

t

( )
−Q t, α̂ 0( )

t , p 0( )
t , η 0( )

t

( )( )
· Xt−dt

�
∫

0,T[ ]×P A( )
X∗t− ·Q t, α̂ 0( )

t , p 0( )
t , ν

( )
· Xt− η n( ) dt, dν( ) − η 0( ) dt, dν( )( )

.
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This converges to zero because η(n) converges to η(0) in the stable topology and the mapping ν →
Q(t, α̂(0)

t , p(0)t , ν) is continuous for all t. Notice also that the integrand is bounded by a constant because q is
bounded according to Assumption 1. Then, by the dominated convergence theorem, the third expectation
converges to zero as well. This completes the proof. □

To show the continuity of Φη, we need the following lemma.

Lemma 14. Let (ν(n)t )t≤T be a sequence of measurable functions from [0,T] to P(A) such that
∫ T
0 W1(ν(n)t , ν(0)t ) → 0. Then,

L(dt) × δ
ν(n)t

(dν) converges to L(dt) × δ
ν(0)t

(dν) in R0 in the sense of the stable topology.

Proof. Set λ(n)(dt, dν) :� L(dt) × δ
ν(n)t

(dν) for n ≥ 0, and let f : [0,T] ×P(A) → R be a mapping of the form
f (t, ν) � 1t∈B · g(ν), where B is measurable subset of [0,T] and g is a bounded Lipschitz function on P(A). We
then have∫

0,T[ ]×P A( )
f t, ν( )λ n( ) dt, dν( ) −

∫
0,T[ ]×P A( )

f t, ν( )λ 0( ) dt, dν( )
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤

∫
t∈B

|g ν n( )
t

( )
− g ν 0( )

t

( )
|dt ≤ C

∫ T

0
W1 ν n( )

t , ν 0( )
t

( )
dt.

By Lemma 9, we conclude that λ(n) converges to λ(0) for the stable topology. □

Proposition 7. L(·) × δ
Q

(n)
#α̂

(n)
t

(·) converges to L(·) × δ
Q

(0)
#α̂

(0)
t

(·) in R0 in the sense of the stable topology.

Proof. By Lemma 14, we only need to show that
∫ T
0 W1(Q(n)

#α̂(n)
t

,Q(0)
#α̂(0)

t

)dt converges to zero. Notice that∫ T

0
W1 Q

n( )
#α̂ n( )

t

,Q 0( )
#α̂ 0( )

t

( )
dt ≤

∫ T

0
W1 Q

n( )
#α̂ n( )

t

,Q 0( )
#α̂ n( )

t

( )
dt +

∫ T

0
W1 Q

0( )
#α̂ n( )

t

,Q 0( )
#α̂ 0( )

t

( )
dt.

By the very definition of the total variation distance (recall Equation (49)), we have, clearly,

dTV Q
n( )
#α̂ n( )

t

,Q 0( )
#α̂ n( )

t

( )
≤ dTV Q n( ),Q 0( )( )

,

which converges to zero according to the proof of Proposition 6. By Villani [33, theorem 6.16], because A is
bounded and Q

(n)
#α̂(n)

t

∈ P(A), there exists a constant C such that

W1 Q
n( )
#α̂ n( )

t

,Q 0( )
#α̂ n( )

t

( )
≤ C · dTV Q

n( )
#α̂ n( )

t

,Q 0( )
#α̂ n( )

t

( )
.

This shows that W1(Q(n)
#α̂(n)

t

,Q(0)
#α̂(n)

t

) converges to zero. In addition, it is also bounded because A is bounded. The
dominated convergence theorem then implies that∫ T

0
W1 Q

n( )
#α̂ n( )

t

,Q 0( )
#α̂ n( )

t

( )
dt → 0,n → +∞.

Now, for the other term, we have∫ T

0
W1 Q

0( )
#α̂ n( )

t

,Q 0( )
#α̂ 0( )

t

( )
dt ≤

∫ T

0
E 0( ) ‖α̂ n( )

t − α̂ 0( )
t ‖

[ ]
dt � E W 0( )

T

∫ T

0
‖α̂ n( )

t − α̂ 0( )
t ‖dt

[ ]
≤ E W 0( )

T

( )2[ ]( )1/2
E T

∫ T

0
‖α̂ n( )

t − α̂ 0( )
t ‖2dt

[ ]( )1/2
.

The Lipschitz property of â (see Lemma 6) and Proposition 5 imply that E[T ∫ T
0 ‖α̂(n)

t − α̂(0)
t ‖2dt] → 0. □

We are now ready to show the existence of Nash equilibria.

Proof of Theorem 1. Consider the product space Γ :� P ×R endowed with the product topology of the weak
topology on P and the stable topology onR. By Proposition 3, Γ is a Polish space. By Proposition 2 and Lemma 10,
Γ0 :� P̄0 ×R0 is a compact and convex subset of Γ, and it is stable for themappingΦ defined in (46). In addition, we
see from Propositions 6 and 7 that Φ is continuous. Therefore, applying Schauder’s fixed-point theorem, we
conclude that Φ admits a fixed point (μ∗, η∗) ∈ P̄0 ×R0.
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Now, let us define p∗t :� π(t, μ∗) ∈ S and α∗t :� â(t,Xt−,Z∗t , π(t, μ∗)), where (Y∗,Z∗) is the solution to the BSDE (41)
with μ � μ∗ and η � η∗. We then define P∗ :� Pμ∗,η∗ and ν∗t :� P∗#α∗

t
. Because (μ∗, η∗) is the fixed point of the mapping

Φ, we have η∗t � δν∗t and μ∗ � P∗. It follows that p∗t � π(t,P∗) � [P∗(Xt � ei)]1≤i≤m. By Proposition 1, we see that α∗ is
the solution to the optimal control problem (13) when themean field of state is p∗ and themean field of control is ν∗.
This implies that (α∗,p∗,ν∗) is a Nash equilibrium. □

5. Approximate Nash Equilibrium for Games with Finitely Many Players
In this section, we show that the solution of a mean field game can be used to construct approximate Nash
equilibria for games with finitely many players. We first set the stage for the weak formulation of the game
with N players in finite state spaces. Recall that Ω is the space of càdlág mappings from [0,T] to
E � {e1, . . . , em}, which are continuous on T; t → Xt is the canonical process; and F :� (F t)t≤T is the natural
filtration generated by X. Let us fix p◦ ∈ S a probability distribution on the state space E. Let P be the
probability on (Ω,F T) under which X is a continuous-time Markov chain with transition rate matrix Q0 and
initial distribution p◦. Let ΩN be the product space of N copies of Ω and PN be the product probability measure
of N identical copies of P. For n � 1, . . . ,N, define the process Xn

t (w) :� wn
t of which the natural filtration is

denoted by Fn,N :� (F n,N
t )t∈[0,T]. We also denote by FN :� (FN

t )t∈[0,T] the natural filtration generated by the
process (X1,X2, . . . ,XN). Denote Mn

t :� Xn
t − X0

t −
∫ t
0 Q

0 · Xn
s−ds. It is clear that, under PN , X1, . . . ,XN are N

independent continuous-time Markov chains with initial distribution p◦ and Q0 as the transition rate matrix,
and M1, . . . ,MN are independent FN-martingales. For later use, for i � 1, . . . ,N, we define the matrix ψn

t
by ψn

t :� diag(Q0 · Xn
t−) −Q0 · diag(Xn

t−) − diag(Xn
t−) ·Q0.

Throughout this section, we let Assumptions 1–3 hold. In addition, we adopt the following assumption:

Assumption 5. The transition rate function q depends neither on the mean field of states nor on the mean field of controls.

We assume that each player can observe the entire past history of every player’s state. We denote by AN the
collection of FN-predictable processes taking values in A. Each player n chooses a strategy αn ∈ AN . We define
the martingale L(α1,...,αN ) by

L
α1,...,αN( )
t :�

∫ t

0

∑N
n�1

Xn
s−

( )∗· Q s, αn
s

( ) −Q0( ) · ψn
s

( )+·dMn
s , (50)

and the probability measure Q(α1,...,αN) by

dQ α1,...,αN( )
dPN � E

α1,...,αN( )
T , (51)

where we denote by E(α1,...,αN) the Doléans–Dade exponential of L(α1,...,αN). Finally, we introduce the empirical
distribution of the states:

pNt :� 1
N

∑N
n�1

1 Xn
t � e1

( )
,
∑N
n�1

1 Xn
t � e2

( )
, . . . ,

∑N
n�1

1 Xn
t � em

( )[ ]
∈ S, (52)

as well as the empirical distribution of the controls:

ν α1
t , . . . , α

N
t

( )
:� 1

N

∑N
n�1

δαn
t
∈ P A( ), (53)

where δa(·) is the Dirac measure on a. The total expected cost of player n in the game with N players, denoted
by Jn,N(α1, . . . , αN), is defined as

Jn,N α1, . . . ,αN( )
:� EQ

α1 ,...,αN( ) ∫ T

0
f t,Xn

t , α
n
t , p

N
t , ν α1

t , . . . , α
N
t

( )( )
dt + g Xn

T, p
N
T

( )[ ]
. (54)

We now consider a Nash equilibrium (α∗,p∗,ν∗) of the mean field game in the sense of Definition 1. Recall that
α∗ is a predictable process with respect to the natural filtration generated by the canonical process X. For each
n � 1, . . . ,N, we may define the control α̂n of player n by

α̂n w1, . . . ,wN( )
:� α∗ wn( ). (55)
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Clearly, α̂n is F n,N-predictable. In other words, it only depends on the observation of player n’s own path.
Therefore, the strategy profile α̂(N) defined by

α̂ N( ) :� α̂1, . . . , α̂N( ) (56)
is a distributed strategy profile, which means that every player’s strategy is only based on the observation of
the player’s own path.

Definition 3 (Approximative Nash Equilibrium). Given a family of strategy profiles (α(N))N≥1 indexed by the number of
players N, where, for each N, α(N) :� (α1,N , . . . ,αN,N), we say that the family (α(N))N≥1 is an approximative Nash
equilibrium for games with finitely many players if there exists a positive sequence (εN)N≥1 such that
limN→+∞ εN � 0, and for any N ≥ 1, any individual player n ≤ N, and any admissible strategy β ∈ AN chosen by
player n, we have

Jn,N α1,N , . . . ,αN,N( ) ≤ Jn,N α̂1,N , . . . , α̂n−1,N ,β, α̂n+1,N , . . . , α̂N,N( ) + εN . (57)
In the rest of Section 5, we show that the sequence of strategy profiles (α̂(N))N≥0 derived from the equilibrium
strategy of mean field games defined in (55) and (56) is an approximative Nash equilibrium for games with
finitely many players. To this end, we first give a result on the propagation of chaos, which compares player
n’s total expected cost in the mean field game versus its total expected cost in the finite player game. To
simplify the notations, we use the abbreviation (β, α̂−n,N) for (α̂1, . . . , α̂n−1,β, α̂n+1, . . . , α̂N), Q̂(N) for Qα̂(N)

, Ê(N)for
EQ̂(N)

, and finally, Ê(N) for Eα̂(N)
. We start from the following lemmas:

Lemma 15. There exists a sequence (δN)N≥0 such that δN → 0 as N → +∞ and such that, for all N ≥ 1, n ≤ N, and t ≤ T,
we have

max Ê N( ) W2
1 ν βt, α̂

−1,N
t

( )
, ν∗t

( )[ ]
, ÊN ‖pNt − p∗t ‖2

[ ]{ } ≤ δN . (58)

Proof. From Q̂(N) � Qα̂(N)
and the fact that (α∗,p∗,ν∗) is an equilibrium of the mean field game, we deduce that,

under the measure Q̂(N), the states X1
t , . . . ,X

N
t are independent and have the same distribution characterized by p∗t

and that the controls α1
t , . . . , α

N
t are independent and have the same distribution ν∗t . Therefore, for i ∈ {1, . . . ,m},

we have

Ê N( ) 1
N

∑N
n�1

1 Xn
t � ei

( ) − Q̂N X1
t � ei

[ ]( )2[ ]
� 1
N

Q̂ N( ) X1
t � ei

[ ] − Q̂ N( ) X1
t � ei

[ ]( )2( )
≤ 1
4N

,

which leads to

Ê N( ) ‖pNt − p∗t ‖2
[ ] � ∑m

i�1
Ê N( ) 1

N

∑N
n�1

1 Xn
t � ei

( ) − Q̂N X1
t � ei

[ ]( )2[ ]
≤ m
4N

.

On the other hand, ν(βt, α̂−1,N
t ) and ν∗t are in P(A) with A being a compact subset of Rl. We have

Ê N( ) W2
1 ν βt, α̂

−1,N
t

( )
, ν∗t

( )[ ] ≤ CÊ N( ) W1 ν βt, α̂
−1,N
t

( )
, ν∗t

( )[ ]
≤ CÊ N( ) W1 ν βt, α̂

−1,N
t

( )
, ν α̂ N( )

t

( )( )
+W1 ν α̂ N( )

t

( )
, ν∗t

( )[ ]
≤ C Ê N( ) 1

N
‖βt − α̂1,N

t ‖
[ ]

+ Ê N( ) W1 ν α̂ N( )
t

( )
, ν∗t

( )[ ]( )
≤ C

1
N

+ Ê N( ) W1 ν α̂ N( )
t

( )
, ν∗t

( )[ ]( )
,

where C is a constant only depending on supa∈A ‖a‖, which changes its value from line to line. Now applying
Fournier and Guillin [18, theorem 1], we have

Ê N( ) W1 ν α̂ N( )
t

( )
, ν∗t

( )[ ]
≤ sup

a∈A
‖a‖ · 1 d ≤ 2( ) N−1/2 log 1 +N( ) +N−2/3( ) + 1 d > 2( ) N−1/d +N−1/2( )[ ]

.

Combining this with the estimates previously shown, we obtain the desired result. □

Carmona and Wang: Probabilistic Approach to Finite State MFGs
Mathematics of Operations Research, 2021, vol. 46, no. 2, pp. 471–502, © 2021 INFORMS 495



Lemma 16. There exists a constant C that only depends on the bound of the transition rate q such that, for all N > 0 and
β ∈ A, we have

Ê N( ) E
β,α̂−1,N( )
T

Ê N( )
T

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≤ C. (59)

Proof. Let us denote Wt :� E
(β,α̂−1,N)
t /Ê(N)

t . By Ito’s formula, we have

dWt � dE
β,α̂−1,N( )
t − ΔE

β,α̂−1,N( )
t

Ê N( )
t−

−
E

β,α̂−1,N( )
t− dÊ N( )

t − ΔÊ N( )
t

( )
Ê N( )
t−

( )2 + ΔWt

� Wt−
dE

β,α̂−1,N( )
t − ΔE

β,α̂−1,N( )
t

E
β,α̂−1,N( )
t−

− dÊ N( )
t − ΔÊ N( )

t

Ê N( )
t−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + ΔWt.

Recall that

dÊ N( )
t

Ê N( )
t−

� ∑N
n�1

Xn
t−

( )∗· Q t, α̂n
t

( ) −Q0( ) · ψn
t

( )+·dMn
t ,

dE
β,α̂−1,N( )
t

E
β,α̂−1,N( )
t−

� X1
t−

( )∗· Q t, βt
( ) −Q0( ) · ψ1

t

( )+·dM1
t +

∑N
n�2

Xn
t−

( )∗· Q t, α̂n
t

( ) −Q0( ) · ψn
t

( )+·dMn
t ,

and dMn
t � ΔMn

t −Q0Xn
t−dt. Noticing that, for n �� 1, the jumps of Mn

t do not result in the jumps of Wt,
we obtain

ΔWt � Δ
E

β,α̂−1,N( )
t

Eα̂
t

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ � E

β,α̂−1,N( )
t−
Eα̂
t−

· 1 + X1
t−

( )∗· Q t, βt
( ) −Q0

( ) · ψ1
t

( )+·ΔM1
t

1 + X1
t−

( )∗· Q t, α̂1
t

( ) −Q0
( ) · ψ1

t

( )+·ΔM1
t
− 1

( )

� Wt−
X1

t−
( )∗· Q t, βt

( ) −Q t, α̂1
t

( )( ) · ψ1
t

( )+·ΔM1
t

1 + X1
t−

( )∗· Q t, α̂1
t

( ) −Q0
( ) · ψ1

t

( )+·ΔM1
t
.

Piggybacking on the computation in Equation (6), we see that, when X1
t− � ei �� ej � Xt, we have ΔM1

t � ΔX1
t �

ej − ei and

ΔWt � Wt−
q t, i, j, βt
( ) − q t, i, j, α̂1

t

( )
q t, i, j, α̂1

t

( ) .

Let Ξβ
t be the m by m matrix with zero diagonal elements and the entry on the ith row and the jth column

q(t,i,j,βt)−q(t,i,j,α̂1
t )

q(t,i,j,α̂1
t ) . Then, it is clear that ΔWt � e∗i · Ξβ

t · (ej − ei). It follows that

ΔWt � Wt− · X1
t−

( )∗·Ξβ
t · ΔM1

t .

Injecting the preceding equation into the Itô decomposition of Wt, we obtain

dWt � Wt− Q t, α̂1
t

( ) −Q t, βt
( )( ) · ψ1

t

( )+·Q0 · X1
t−dt + X1

t−
( )∗·Ξβ

t · ΔM1
t

[ ]
� Wt− Q t, α̂1

t

( ) −Q t, βt
( )( ) · ψ1

t

( )+·Q0 · X1
t−dt + X1

t−
( )∗·Ξβ

t · dM̂1
t +Q∗ t, α̂1

t

( ) · X1
t−dt

( )[ ]
.

In the second equality, we use the fact that, under the measure Q̂(N), the state process X1
t has the canonical

decomposition dX1
t � dM̂1

t +Q∗(t, α̂1
t ) · X1

t dt, where M̂1 is a Q̂(N)-martingale. We also use the equality
ΔM1

t � ΔX1
t � dX1

t . In addition, by replacing X1
t with ei for i � 1, . . . ,m, it is plain to check the follow-

ing equality:

Q t, α̂1
t

( ) −Q t, βt
( )( ) · ψ1

t

( )+·Q0 · X1
t + X1

t

( )∗·Ξβ
t ·Q∗ t, α̂1

t

( ) · X1
t � 0.
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This leads to the following representation of Wt:

dWt � Wt− X1
t

( )∗·Ξβ
t · dM̂1

t ,

which is a local martingale under the measure Q̂(N). At this stage, the rest of the proof is exactly the same as the
proof of Proposition 4. In particular, we make use of Assumption 1 that the transition rate q is bounded
uniformly with regard to the controls. □

We are now ready to prove the form of the propagation of chaos result, which we need.

Proposition 8. There exists a sequence (εN)N≥0 such that εN → 0 as N → +∞ and such that, for all N ≥ 0, n ≤ N,
and β ∈ A,

Jn,N β, α̂−n,N( ) − EQ
β,α̂−n,N( ) ∫ T

0
f t,Xn

t , βt, p
∗
t , ν

∗
t

( )
dt + g Xn

T, p
∗
T

( )[ ]⃒⃒⃒⃒ ⃒⃒⃒⃒
≤ εN . (60)

Proof. Because of symmetry, we only need to show the claim for n � 1. Let N > 0 and β ∈ A. Using, successively,
the Cauchy–Schwartz inequality, Assumption 2, and Lemmas 15 and 16, we have

Jn,N β, α̂−1,N( ) − EQ
β,α̂−1,N( ) ∫ T

0
f t,X1

t , βt, p
∗
t , ν

∗
t

( )
dt + g X1

T, p
∗
T

( )[ ]⃒⃒⃒⃒ ⃒⃒⃒⃒
≤ EQ

β,α̂−1,N( ) ∫ T

0
f t,X1

t , βt, p
∗
t , ν

∗
t

( ) − f t,X1
t , βt, p

N
t , ν βt, α̂

−1,N
t

( )( )|dt + |g X1
T, p

∗
T

( ) − g X1
T, p

N
T

( )⃒⃒⃒ ⃒⃒⃒[ ]

� Ê N( ) E
β,α̂−1,N( )
T

Ê N( )
T

∫ T

0
f t,X1

t , βt, p
∗
t , ν

∗
t

( ) − f t,X1
t , βt, p

N
t , ν βt, α̂

−1,N
t

( )( )|dt + |g X1
T, p

∗
T

( ) − g X1
T, p

N
T

( )⃒⃒⃒ ⃒⃒⃒⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ Ê N( ) E
β,α̂−1,N( )
T

Ê N( )
T

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1/2

Ê N( )
∫ T

0
f t,X1

t , βt, p
∗
t , ν

∗
t

( ) − f t,X1
t , βt, p

N
t , ν βt, α̂

−1,N
t

( )( )⃒⃒⃒ ⃒⃒⃒
dt

([
+ g X1

T, p
∗
T

( ) − g X1
T, p

N
T

( )⃒⃒ ⃒⃒)2]1/2
≤ CÊ N( ) E

β,α̂−1,N( )
T

Ê N( )
T

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1/2 ∫ T

0
Ê N( ) ‖pNt − p∗t ‖2

[ ] + Ê N( ) W2
1 ν βt, α̂

−1,N
t

( )
, ν∗t

( )[ ]( )
dt

[
+Ê N( ) ‖pNT − p∗T‖2

[ ]]1/2
≤ C

̅̅̅̅
δN

√
,

where δN is as in Lemma 15, and C is a constant only depending on T, the Lipschitz constant of f and g, and
the constant appearing in Lemma 16. This gives us the desired inequality. □

As a direct consequence of this result on the propagation of chaos, we show that the Nash equilibrium of the
mean field game provides an approximate Nash equilibrium for the game with finitely many players.

Theorem 2. There exists a sequence εN converging to zero such that, for all N > 0, β ∈ A, and n ≤ N, we have

Jn,N α̂ N( )( ) ≤ Jn,N β, α̂−n,N( ) + εN .

Proof. Recall that the strategy profile α̂(N) � (α̂1, . . . , α̂N) is defined as

α̂n w1,w2, . . . ,wN( )
:� α∗ wn( ),

where α∗ is the strategy of the mean field game equilibrium together with p∗ as the mean field of states and ν∗
as the mean field of control. For a strategy profile (α1, . . . ,αN), we use the notation

Kn,N α1, . . . ,αN( )
:� EQ

α1 ,...,αN( ) ∫ T

0
f t,Xn

t , α
n
t , p

∗
t , ν

∗
t

( )
dt + g Xn

T, p
∗
T

( )[ ]
.
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Now, taking n � 1, we observe that K1,N(α̂(N)) � EPN [Y(α̂(N))
0 ], where Y(α̂N)

0 is the solution (at time t � 0) of the
following BSDE:

Yt � g X1
T, p

∗
T

( ) + ∫ T

t
H s,X1

s−,Z
1
s , α̂

1
s , p

∗
s , ν

∗
s

( )
ds −

∫ T

t
Z1
s

( )∗·dM1
s . (61)

By the optimality of the equilibrium, we know that, for all t ∈ [0,T], α̂1
t minimizes the mapping α →

H(t,X1
t−,Z1

t , α, p
∗
t , ν

∗
t ). Clearly, the solution of BSDE (61) is also the unique solution to the following BSDE:

Yt � g X1
T, p

∗
T

( ) + ∫ T

t
H s,X1

s−,Z
1
s , α̂

1
s , p

∗
s , ν

∗
s

( ) +∑N
n�2

Xn
t

( )∗· Q s, α̂n
s

( ) −Q0( ) · Zn
s

[ ]
ds

−
∫ T

t

∑N
n�1

∫ T

t
Zn
s

( )∗·dMn
s , (62)

with Zn
t � 0 for n � 2, . . . ,N. Indeed, the existence and uniqueness of BSDE (62) can be checked easily by

applying Proposition 9. On the other hand, by following exactly the same argument as in the proof of Lemma 7,
we can show that K1,N(β, α̂−1,N) � EPN [Y(β,α̂−1,N)

0 ], where Y(β,α̂−1,N )
0 is the solution (at time t � 0) of

Yt � g X1
T, p

∗
T

( ) + ∫ T

t
H s,X1

s−,Z
1
s , βs, p

∗
s , ν

∗
s

( ) +∑N
n�2

Xn
t

( )∗· Q s, α̂n
s

( ) −Q0( ) · Zn
s

[ ]
ds

−
∫ T

t

∑N
n�1

∫ T

t
Zn
s

( )∗·dMn
s . (63)

Notice that H(s,X1
s−,Z1

s , α, p
∗
s , ν

∗
s ) � f (s,X1

s−, α, p∗s , ν∗s ) + (X1
s−)∗ · (Q(s, α) −Q0) · Z1

s , and H(s,X1
s−,Z1

s , α̂
1
s , p

∗
s , ν

∗
s ) ≤

H(s,X1
s−,Z1

s , βs, p
∗
s , ν

∗
s ). Applying the comparison principle as stated in Proposition 10 to the BSDEs (62)

and (63), we conclude that K1,N(α̂(N)) ≤ K1,N(β, α̂−1,N) for all β ∈ A. Now, thanks to symmetry, we have
Kn,N(α̂(N)) ≤ Kn,N(β, α̂−n,N) for all β ∈ A and n � 1, . . . ,N. The desired results immediately follow by applying
Proposition 8. □

Appendix. SDEs Driven by Multiple Independent Continuous-Time Markov Chains
Let us consider a probability space (Ω,F ,P) supporting N independent continuous-time Markov chains X1, . . . ,XN . For
each n � 1, . . . ,N, we assume that Xn takes only mn states, which are represented by the basis vectors of the space Rmn . We
assume that, under P, the transition rate matrix of Xn is Q0,n, which is an mn ×mn matrix in which all the diagonal elements
equal −(mn − 1) and all the off-diagonal elements equal one. We denote by F � (F t)t∈[0,T] the natural filtration generated by
(X1, . . . ,XN). It is clear that, for each n, we can decompose the Markov chain Xn as Xn

t � Xn
0 +

∫ t
0 Q

0,n · Xn
s−ds + dMn

t , where
Mn is an F-martingale. In addition, because of the independence of the Markov chains, for all n1 �� n2 and t ≤ T, P-almost
surely we have ΔXn1

t � 0 or ΔXn2
t � 0. In other words, any two Markov chains cannot jump simultaneously.

Let us consider the process X̃ defined by X̃t :� X1
t ⊗ X2

t ⊗ · · · ⊗ XN
t , where ⊗ stands for the Kronecker product. Indeed, X̃

is a Markov chain encoding the joint states of the N independent Markov chains, and X̃ only takes values among the unit
vectors of the space Rm1×···×mN . We have the following result on the decomposition of X̃.

Lemma A.1. X̃ is a continuous-time Markov chain with transition rate matrix Q̃0 given by

Q̃0 :� ∑N
n�1

Im1 ⊗ · · · ⊗ Imn−1 ⊗Q0,n ⊗ Imn+1 ⊗ · · · ⊗ ImN . (A.1)

In addition, it has the canonical decomposition:

dX̃t � Q̃0 · X̃t−dt + dM̃t, (A.2)
where M̃ is an F-martingale that satisfies

dM̃t �
∑N
n�1

X1
t− ⊗ · · · ⊗ Xn−1

t− ⊗ Imn ⊗ Xn+1
t− ⊗ · · · ⊗ XN

t−
( ) · dMn

t . (A.3)
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Proof. In order to keep the notation to a reasonable level of complexity, we only argue the proof for N � 2. Applying Itô’s
formula to X1

t ⊗ X2
t and noticing that X1

t and X2
t have no simultaneous jumps, we obtain

d X1
t ⊗ X2

t

( ) � dX1
t ⊗ X2

t− + X1
t− ⊗ dX2

t

� Q0,1 · X1
t−

( ) ⊗ X2
t−dt + dM1

t ⊗ X2
t− + X1

t− ⊗ Q0,2 · X2
t−

( )
dt + X1

t− ⊗ dM2
t .

Using the properties of the Kronecker product, we have

Q0,1 · X1
t−

( ) ⊗ X2
t− � Q0,1 · X1

t−
( ) ⊗ Im2 · X2

t−
( ) � Q0,1 ⊗ Im2

( ) · X1
t− ⊗ X2

t−
( )

dM1
t ⊗ X2

t− � Im1 · dM1
t

( ) ⊗ X2
t− · 1( )

� Im1 ⊗ X2
t−

( ) · dM1
t ⊗ 1

( ) � Im1 ⊗ X2
t−

( ) · dM1
t

X1
t− ⊗ Q0,2 · X2

t−
( ) � Im1 · X1

t−
( ) ⊗ Q0,2 · X2

t−
( ) � Im1 ⊗Q0,2( ) · X1

t− ⊗ X2
t−

( )
X1

t− ⊗ dM2
t � X1

t− · 1( ) ⊗ Im2 · dM2
t

( )
� X1

t− ⊗ Im2

( ) · 1 ⊗ dM2
t

( ) � X1
t− ⊗ Im2

( ) · dM2
t .

Plugging these equalities into the Itô decomposition yields the desired result for N � 2. The case N > 2 can be treated by
applying a simple argument of induction, which we do not detail here. □

As in the case of a single Markov chain, we define the stochastic matrix ψn
t :� diag(Q0,n · Xn

t−) −Q0,n · diag(Xn
t−) −

diag(Xn
t−) ·Q0,n for n � 1, . . . ,N as well as ψ̃t :� diag(Q̃0 · X̃t−) − Q̃0 · diag(X̃t−) − diag(X̃t−) · Q̃0. For n � 1, . . . ,N, we define the

stochastic seminorm ‖ · ‖Xn
t− by ‖Z‖2Xn

t−
:� Z∗ · ψn

t · Z, where Z ∈ Rmn . We then define the stochastic seminorm ‖ · ‖X̃t− by
‖Z̃‖2X̃t−

:� Z̃∗ · ψ̃t · Z̃, where Z̃ ∈ Rm1×...×mN . Our objective is to show the existence and uniqueness of the following BSDE:

Yt � ξ +
∫ T

t
F w, s,Ys,Z1

s , . . . ,Z
n
s

( )
ds −∑N

n�1

∫ T

t
Zn
s

( )∗·dMn
s . (A.4)

Here, ξ is an FT-measurable P-square integrable random variable, and the driver F : Ω × [0,T] × R × Rm1 × · · · × RmN → R

is a function such that the process t → F(w, t, y, z1, . . . , zN) is predictable for all y, z1, . . . , zN ∈ R × Rm1 × · · · × RmN . The
unknowns of the equation are a càdlàg process Y taking values in R and predictable processes Z1, . . . ,ZN taking values in
Rm1 , . . . ,RmN , respectively.

Proposition A.1. Assume that there exists a constant C > 0 such that dt × P-a.s.; we have

|F w, t, y, z1, . . . , zN
( ) − F w, t, ỹ, z̃1, . . . , z̃N

( )| ≤ C |y − ỹ| +∑N
n�1

‖zn − z̃n‖Xn
t−

( )
. (A.5)

Then, the BSDE (A.4) admits a solution (Y,Z1, . . . ,ZN) satisfying

E

∫ T

0
|Yt|2dt

[ ]
< +∞, E

∑N
n�1

∫ T

0
‖Zn

t ‖2Xn
t−
dt

[ ]
< +∞.

Moreover, the solution is unique in the sense that, if (Y(1),Z(1),1, . . . ,Z(1),N) and (Y(2),Z(2),1, . . . ,Z(2),N) are two solutions, then Y(1) and Y(2)
are indistinguishable, and we have E[∫ T

0 ‖Z̃(1)
t − Z̃(2)

t ‖2X̃t−
dt] � 0.

Proof. For simplicity of the presentation, we give the proof for N � 2. It can be easily generalized to anyN > 2. Our first step is
to show that the following equality holds for all Z̃ ∈ Rm1×m2 :

‖Z̃‖2X̃t−
� ‖ Im1 ⊗ X2

t−
( )∗( )

· Z̃‖2X1
t−
+ ‖ X1

t−
( )∗ ⊗ Im2

( )
· Z̃‖2X2

t−
. (A.6)

By the definition of the seminorm ‖ · ‖X1
t−
, we have

‖ Im1 ⊗ X2
t−

( )∗( )
· Z‖2X1

t−
� Z∗ · Im1 ⊗ X2

t−
( ) · ψ1

t · Im1 ⊗ X2
t−

( )∗( )
· Z

� Z∗ · Im1 ⊗ X2
t−

( ) · ψ1
t ⊗ 1

( ) · Im1 ⊗ X2
t−

( )∗( )
· Z � Z∗ · ψ1

t ⊗ X2
t−

( ) · Im1 ⊗ X2
t−

( )∗( )
· Z

� Z∗ · ψ1
t ⊗ X2

t− · X2
t−

( )∗( )[ ]
· Z � Z∗ · ψ1

t ⊗ diag X2
t−

( )( ) · Z.
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Similarly, we have ‖((X1
t−)∗ ⊗ Im2 ) · Z‖2X2

t−
� Z∗ · (diag(X1

t−) ⊗ ψ2
t ) · Z. Now, by the definition of ψ̃t, we have

ψ̃t � diag Q̃0 · X̃t−
( ) − Q̃0 · diag X̃t−

( ) − diag X̃t−
( ) · Q̃0

� diag Im1 ⊗Q0,2 +Q0,1 ⊗ Im2

( ) · X1
t− ⊗ X2

t−
( )( ) − Im1 ⊗Q0,2 +Q0,1 ⊗ Im2

( ) · diag X1
t− ⊗ X2

t−
( )

− diag X1
t− ⊗ X2

t−
( ) · Im1 ⊗Q0,2 +Q0,1 ⊗ Im2

( )
� diag X1

t− ⊗ Q0,2 · X2
t−

( )( ) + diag Q0,1 · X1
t−

( ) ⊗ X2
t−

( )
− diag X1

t−
( ) ⊗ Q0,2 · diag X2

t−
( )( ) − Q0,1 · diag X1

t−
( )( ) ⊗ diag X2

t−
( )

− diag X1
t−

( ) ⊗ diag X2
t−

( ) ·Q0,2( ) − diag X1
t−

( ) ·Q0,1( ) ⊗ diag X2
t−

( )
� ψ1

t ⊗ diag X2
t−

( ) + diag X1
t−

( ) ⊗ ψ2
t ,

where we have used the fact that, for any two vectors X1,X2, we have diag(X1 ⊗ X2) � diag(X1) ⊗ diag(X2). This immediately
leads to the equality (A.6). Now,we consider the BSDE driven by the continuous-timeMarkov chain X̃with terminal condition ξ
and the driver function F̃ defined by

F̃ w, t,Y, Z̃
( )

:� F w, t,Y, Im1 ⊗ X2
t−

( )∗( )
· Z̃, X1

t−
( )∗⊗Im2

( )
· Z̃

( )
.

By equality (A.6) and the assumption on the regularity of F, we have

|F̃ w, t,Y1, Z̃1
( ) − F̃ w, t,Y2, Z̃2

( )|
≤ C |Y1 − Y2| + ‖ Im1 ⊗ X2

t−
( )∗( )

· Z̃1 − Z̃2
( )‖X1

t−
+ ‖ X1

t−
( )∗⊗Im2

( )
· Z̃1 − Z̃2
( )‖X2

t−

( )
≤ C |Y1 − Y2| +

̅̅
2

√ ‖Z̃1 − Z̃2‖X̃t−

( )
.

Applying Lemma 3, we obtain the existence of the solution to the BSDE:

Yt � ξ +
∫ T

t
F̃ s,Ys, Z̃s
( )

ds +
∫ T

t
Z̃∗s · dM̃s.

Now, we set Z1
t :� (Im1 ⊗ (X2

s−)∗) · Z̃s and Z2
t :� ((X1

s−)∗ ⊗ Im2 ) · Z̃s. From the definition of the driver F̃ and M̃ in equation (A.3), we
see that

Yt � ξ +
∫ T

t
F w, s,Ys, Im1 ⊗ X2

s−
( )∗( )

· Z̃s, X1
s−

( )∗ ⊗ Im2

( )
· Z̃s

( )
ds

+
∫ T

t
Z̃∗s · Im1 ⊗ X2

s−
( ) · dM1

s + X1
s− ⊗ Im2

( ) · dM2
s

[ ]
� ξ +

∫ T

t
F w, s,Ys,Z1

s ,Z
2
s

( )
ds +

∫ T

t
Z1
s

( )∗ · dM1
s +

∫ T

t
Z2
s

( )∗ · dM2
s

.

This shows that (Y,Z1,Z2) is a solution to BSDE (A.4). □

We also state a comparison principle for linear BSDEs driven by multiple independent Markov chains.

Proposition A.2. For each n ∈ {1, . . . ,N}, let γn be a bounded predictable process inRmn such that
∑mn

i�1[γn
t ]i � 0 for all t ∈ [0,T] and β a

bounded predictable process in R. Let φ be a nonnegative predictable process in R such that E[∫ T
0 ‖φt‖2dt] < +∞ and ξ a nonnegative

square-integrable F T measurable random variable in R. Let (Y,Z) be the solution of the linear BSDE:

Yt � ξ +
∫ T

t
φs + βsYs +

∑N
n�1

γn
s

( )∗·Zn
s

( )
ds −∑N

n�1

∫ T

t
Zn
s

( )∗·dMn
s . (A.7)

Assume that, for all n � 1, . . . ,N, t ∈ (0,T], and j such that (enj )∗ ·Q0,n · Xn
t− > 0, we have 1 + (γn

t )∗ · (ψn
t )+ · (enj − Xn

t−) ≥ 0, where (ψn
t )+ is

the Moore–Penrose inverse of the matrix ψn
t . Then, Y is nonnegative.

Proof. As before, we treat the case forN � 2, for which the argument can be trivially generalized to anyN > 2. Because γn and β
are bounded processes and

∑mn
i�1[γn

t ]i � 0 for all t ≤ T and n ≤ N, we easily verify that the Lipschitz condition (A.5) stated in
Proposition A.1 is satisfied, and therefore, BSDE (A.7) admits a unique solution. Now, consider the following BSDE driven
by M:

Yt � ξ +
∫ T

t
φs + βsYs + γ∗s · Zs
( )

ds −∑2
n�1

∫ T

t
Z∗s · dMs, (A.8)
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where γt :� (γ1
t ⊗ X2

t−) + (X1
t− ⊗ γ2

t ). It is easy to verify the BSDE (A.8) admits a unique solution (Y,Z), and following the same
argument as in the proof of Proposition A.1, we verify that (Yt,Z1

t ,Z
2
t ) :� (Yt, (Im1 ⊗ (X2

s−)∗) · Zs, ((X1
s−)∗ ⊗ Im2 ) · Zs) solves the

BSDE (18), which is also its unique solution. Therefore, we only need to show that the solution Y to BSDE (18) is nonnegative. To
this end, we need to apply the comparison principal for the case of a single Markov chain as is stated in Lemma 5. Note that X1

and X2 do not jump simultaneously, and Xt � X1
t ⊗ X2

t . For the jump of X resulting from the jump of X1, we need to show that,
for k � 1, . . . ,m1,

1 + γ∗t ·ψ+
t · e1k ⊗ X2

t− − X1
t− ⊗ X2

t−
( ) ≥ 0. (A.9)

Let us assume that X1
t− � e1i , X

2
t− � e2j . If k � i, the preceding equality is trivial. In the following, we consider the case k �� i. Then,

by the assumption of the theorem, we have

1 + γ1
t

( )∗· ψ1
t

( )+· e1k − e1i
( ) ≥ 0. (A.10)

It can be easily verified that

diag e1i
( ) ⊗ ψ2

t + ψ1
t ⊗ diag e2j

( )( )
· m1 +m2 − 2( )e1k ⊗ e2j −

∑
k0 ��k

e1k0 ⊗ e2j −
∑
j0 ��j

e1i ⊗ e2j0

[ ]
� e1k ⊗ e2j − e1i ⊗ e2j ,

so that we have

ψ+
t · e1k ⊗ X2

t− − X1
t− ⊗ X2

t−
( )

� 1
m1 +m2 − 1

m1 +m2 − 2( )e1k ⊗ e2j −
∑
k0 ��k

e1k0 ⊗ e2j −
∑
j0 ��j

e1i ⊗ e2j0

[ ]
.

It follows that

γ∗t · ψ+
t · e1k ⊗ X2

t− − X1
t− ⊗ X2

t−
( )

� 1
m1 +m2 − 1

γ1
t ⊗ e2j + e1i ⊗ γ2

t

( )∗ · m1 +m2 − 2( )e1k ⊗ e2j −
∑
k0 ��k

e1k0 ⊗ e2j −
∑
j0 ��j

e1i ⊗ e2j0

[ ]

� 1
m1 +m2 − 1

m1 +m2 − 2( ) e1k
( )∗ ·γ1

t −
∑
k0 ��k

e1k0
( )∗ ·γ1

t − e2j
( )∗ ·γ2

t −
∑
j0 ��j

e2j0
( )∗ ·γ2

t

[ ]

� 1
m1 +m2 − 1

m1 +m2 − 1( ) e1k
( )∗ ·γ1

t −
∑
k0

e1k0
( )∗ ·γ1

t − e2j
( )∗ ·γ2

t −
∑
j0

e2j0
( )∗ ·γ2

t

[ ]
� e1k
( )∗ ·γ1

t ,

where, in the last equality, we use the assumption that
∑mn

i�1[γn
t ]i � 0 for n � 1, 2. Now, noticing that (e1k)∗ · γ1

t �
(γ1

t )∗ · (ψ1
t )+ · (e1k − e1i ), we obtain

1 + γ∗t ·ψ+
t · e1k ⊗ X2

t− − X1
t− ⊗ X2

t−
( ) � 1 + γ1

t

( )∗· ψ1
t

( )+· e1k − e1i
( )

.

Combining this with the inequality (A.10), we obtain the inequality (A.9). Proceeding in a similar way, we can also show that,
for k � 1, . . . ,m2,

1 + γ∗t ·ψ+
t · X1

t− ⊗ e2k − X1
t− ⊗ X2

t−
( ) ≥ 0.

Applying Lemma 5 to the BSDE (A.8), we obtain the desired result. □
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