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Abstract. In this paper, zero-sum mean-field type games (ZSMFTG) with

linear dynamics and quadratic cost are studied under infinite-horizon dis-

counted utility function. ZSMFTG are a class of games in which two decision
makers whose utilities sum to zero, compete to influence a large population of

indistinguishable agents. In particular, the case in which the transition and

utility functions depend on the state, the action of the controllers, and the
mean of the state and the actions, is investigated. The optimality conditions

of the game are analysed for both open-loop and closed-loop controls, and ex-

plicit expressions for the Nash equilibrium strategies are derived. Moreover,
two policy optimization methods that rely on policy gradient are proposed for

both model-based and sample-based frameworks. In the model-based case, the

gradients are computed exactly using the model, whereas they are estimated
using Monte-Carlo simulations in the sample-based case. Numerical experi-

ments are conducted to show the convergence of the utility function as well as
the two players’ controls.

1. Introduction. Decision making in multi-agent systems has recently received an
increasing interest from both theoretical and empirical viewpoints. For instance,
multi-agent reinforcement learning (MARL) has been applied successfully to prob-
lems ranging from self-driving cars and robotics to games, while game-theoretic
models have been exploited to study several prominent decision-making problems
in engineering, economics and finance.

In multi-agent systems, a large number of interacting agents either cooperate or
compete to optimize a certain individual or common goal. MARL and stochastic
games were shown to model well systems with a small number of agents. However, as
the number of agents becomes large, analysing such systems becomes intractable due
to the exponential growth of agent interactions and the prohibitive computational
cost. To tackle this issue, mean-field approximations, borrowed from statistical
physics, were considered to study the limit behaviour of systems in which the agents
are indistinguishable and their decisions are influenced by the empirical distribution
of the other agents.
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Mean-field games (MFGs) [42, 46] and their variants mean-field type control
(MFC) [14] and mean-field type games (MFTG) [10] consist of studying the global
behaviour of systems composed of infinitely many agents which interact in a sym-
metric manner. In particular, the mean-field approximation captures all agent-
to-agent interactions that, individually, have a negligible influence on the overall
system’s evolution.

An MFG corresponds to the asymptotic limit of the situation in which all the
agents compete to minimize their individual utility. In this case, the solution con-
cept is a Nash equilibrium, in which a typical agent is worse-off if she deviates
unilaterally. From the point of view of the global system, a better solution can be
found by a central planner who tries to minimize the social utility by prescribing
the control that each agent should use. This leads to the notion of MFC, which
can be viewed as the optimal control of a McKean-Vlasov (MKV) dynamics, in
which the evolution of the state process is influenced by its own distribution. Last,
mean-field type games are a framework that models control problems involving
several decision makers and mean-field interactions. Typical motivations are prob-
lems in which large coalitions compete or in which several agents try to influence a
large population [16,34]. These three types of models have found numerous applica-
tions [12], e.g. in finance [21], energy production [8,13], crowd motion [3,6], wireless
communications [44,50,53], distributed robotics [47] and systemic risk [24,36].

In the past decade, many contributions have contributed to develop the theory
of such mean-field problems. In order to study their solutions, a key point is the
derivation of optimality conditions, which are typically phrased either in terms of
partial differential equations (PDEs) or in terms of forward-backward stochastic
differential equations (FBSDEs). For a detailed account, see e.g. [15,20,23] and the
references therein. As a cornerstone for applications, the development of numer-
ical methods for these mean-field problems has also attracted a growing interest.
Assuming full knowledge of the model, methods for which convergence guarantees
have been established include finite difference schemes for partial differential equa-
tions [1, 2], semi-Lagrangian schemes [22], augmented Lagrangian or primal-dual
methods [5,17,18], value iteration algorithm [9], or neural network based stochastic
methods [26, 27]; see e.g. [4] for a recent overview. However, in many practical
situations, the model is not fully known and these methods can not be employed.
Hence model-free or sample-based methods, in which the optimization is performed
while having only access to a simulator instead of knowing the model, have recently
been investigated. For mean-field games, fixed-point [41], fictitious play scheme [37]
or actor-critic method [39] have been combined with model-free methods to com-
pute the best response, whereas for mean-field control problems, the solution has
been approximated using policy gradient [28] or Q-learning [29, 40]. Despite re-
cent progress, these methods remain restricted to mean-field problems with simple
structures which have a common point: the decision makers are either infinitesimal
and identical players or a single central planner. More complex models are often
needed to tackle applications, such as settings in which a mean-field dynamics is
influenced by several distinguishable decision makers. Such situations can typically
be modeled by a MFTG.

An archetypal MFTG is the case of mean-field zero-sum games. Two-player zero-
sum games in their standard stochastic form, with no mean-field interactions, have
been extensively studied in the literature [55]. In this class of games, two decision
makers compete to respectively maximize and minimize the same utility function.
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The large literature on this topic is motivated by many applications and by con-
nections with robust control [11]. Recently, generalizations to the case where the
state dynamics is of MKV type have been introduced in continuous time over a finite
time horizon. Optimality conditions have been derived using the theory of backward
stochastic differential equations (BSDEs) in [56], using the dynamic programming
principle and partial differential equations (PDEs) in [31] or using a weak formu-
lation in [33]. All these works assume that the controls take values in a compact
space, and hence are not applicable to a general linear-quadratic setting. Along
a different line, zero-sum games with mean-field interactions have also attracted
interest for their connections with generative adversarial nets (GANs) [19,35].

Although general stochastic problems with mean-field interactions can be studied
from a theoretical perspective, explicit computation of the solution and numerical
illustration of the Nash equilibrium are challenging. In standard optimal control,
linear-quadratic (LQ) models, where the dynamics are linear and the cost is qua-
dratic, usually have analytical or easily tractable solutions, which makes them very
popular. These problems have also been considered in the optimization and machine
learning communities, since algorithms with proof of convergence can be developed,
see e.g. [38] where the authors prove convergence of model-based and sample-based
policy gradient methods for a LQ optimal control problem. Sample-based methods
have also been used to solve (standard) LQ zero-sum games. In [7], a discrete-
time linear quadratic zero-sum game with infinite time horizon is studied and a
Q-learning algorithm is proposed, which is proved to converge to the Nash equilib-
rium. In [57], the authors study LQ zero-sum games and propose three projected
nested-gradient methods that are shown to converge to the Nash equilibrium of
the game. However, none of these contributions tackle mean-field interactions in a
zero-sum setting.

In the present work, under a discrete time, infinite-horizon and discounted util-
ity function, we investigate zero-sum mean-field type games (ZSMFTG) of linear-
quadratic type, which, to the best of our knowledge, had not been the focus of any
work before. In particular, we address the case in which the transition and utility
functions do not only depend on the state and the action of the controllers, but
also the mean of the state and the actions. Moreover, the state is subject to a
common noise. The structure of the problem and the infinite horizon regime allow
us to identify the form of the equilibrium controls as linear combinations of the
state and its mean conditioned on the common noise, both in the open-loop and
the closed-loop settings. To learn the equilibrium, we extend the policy-gradient
techniques developed in [28] for MFC, to the ZSMFTG framework. We design pol-
icy optimization methods in which the gradients are either computed exactly using
the LQ model or estimated using Monte-Carlo samples when the model is not fully
known.

The rest of the paper is organized as follows. In Section 2, the zero-sum mean-
field type game is formulated, preceded by a N -agent control problem which mo-
tivates this setting. In Section 3, we present the rigorous probabilistic setup for
the zero-sum mean-field type game under consideration. Open-loop controls are
investigated in Section 4. After defining the set of admissible controls, we prove a
Pontryagin maximum principle giving necessary and sufficient conditions of opti-
mality, see Propositions 12 and 14. Section 5 considers closed-loop controls which
are linear in the state and the mean. Focusing on the coefficients of the linear
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combination, we define a notion of admissible controls and prove sufficient condi-
tions of optimality, see Proposition 32 and Corollary 34. The connection between
equilibria in the open-loop and the closed-loop information structures are studied in
Section 6, see Lemma 36 and Remark 37. Focusing on closed-loop controls, expres-
sions for the gradient of the utility function and a necessary condition of optimality
are derived in Section 7, and both model-based and model-free policy optimization
methods are proposed. In Subsection 7.4, we report numerical experiments to show
the convergence of the controls and the utility function. Section 8 concludes the
paper.

2. Model and problem formulation. In this section, we first present a zero-
sum game in which two controllers compete to influence a population of agents.
The agents interact in a symmetric way, through the empirical distribution of their
states and actions. We then present a mean-field version of the game (corresponding
to the situation where N → +∞), in which the two controllers influence a state
whose dynamics is of MKV type.

2.1. N-agent problem. Consider a system composed of a population {1, . . . , N}
with N indistinguishable agents. We investigate the case in which these agents
have symmetric interactions and are influenced by two decision makers, also called
controllers or players, competing to optimize a criterion. In particular, we are
interested in the linear-quadratic zero-sum case. Here, the state evolution of an
agent i ∈ {1, . . . , N} is given by

xit+1 = Axit + Āx̄t + B1u
i
1,t + B̄1ū1,t + B2u

i
2,t + B̄2ū2,t + εit+1 + ε0t+1, (1)

with initial condition xi0 = εi0 + ε00, where xi0 is the initial state of agent i to which
we introduce randomness with εi0 and ε00. At each time t, xit ∈ Rd corresponds to
the state of the i-th agent in the population, and ui1,t ∈ R` and ui2,t ∈ R` are the
controls prescribed to this agent respectively by the first and the second decision
maker. The noise terms ε0t+1 and εit+1 are independent of each other and of ε00 and

εi0, and we assume they have a finite second moment. Moreover, the noise terms
ε0t+1 for t ≥ 0 are assumed to be identically distributed with mean 0, and similarly

for εit+1 for t ≥ 0. The interpretation of the noise terms is that ε0t is a common

noise affecting the position of all the agents, whereas εit is an idiosyncratic noise
affecting only the position of the i-th agent. A, Ā,Bi, B̄i are fixed matrices with

suitable dimensions. Here, x̄t = 1
N

∑N
i=1 x

i
t, is the sample average of the individual

states, and similarly for u1 and u2: ūj,t = 1
N

∑N
i=1 u

i
j,t. The instantaneous utility

is defined by

c(x, x̄, u1, ū1, u2, ū2) = (x− x̄)>Q(x− x̄) + x̄>(Q+ Q̄)x̄

+ (u1 − ū1)>R1(u1 − ū1) + ū>1 + (R1 + R̄1)ū1

− (u2 − ū2)>R2(u2 − ū2)− ū>2 (R2 + R̄2)ū2,

(2)

where Q, Q̄,Ri, R̄i are deterministic symmetric matrices of suitable sizes such that
Ri, Ri + R̄i for i = 1, 2 are positive definite.

The objective of each controller in this zero-sum problem is to minimize (resp.
maximize) the N -agent utility functional

JN (u1,u2) = E

[
+∞∑
t=0

γtc̄N (xt, u1,t, u2,t)

]
,
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where xt = (x1
t , . . . , x

N
t ), and ui = (ui,t)t with ui,t = (u1

i,t, . . . , u
N
i,t) (we use a

boldface to denote a function of time and an underline to denote a vector of size
N), and c̄N is the average utility, defined by

c̄N (xt, u1,t, u2,t) =
1

N

N∑
i=1

c(xit, x̄t, u
i
1,t, ū1,t, u

i
2,t, ū2,t).

Remark 1. An interesting special case is the situation in which each decision maker
controls a different population. This corresponds to a zero-sum game between two
large coalitions. This setting can be covered in the following way. Assume that
d = 2d′ for some integer d′. Consider, for the dynamics, block matrices of the form:

A =

(
A1 0
0 A2

)
, B1 =

(
B1

1

0

)
, B2 =

(
0
B2

2

)
,

and

Ā =

(
Ā11 Ā12

Ā21 Ā22

)
, B̄1 =

(
B̄1

1

B̄2
1

)
, B̄2 =

(
B̄1

2

B̄2
2

)
.

Then the dynamics (1) rewrites, with the notation x = (x1, x2) where xi ∈ Rd′ and
similarly for ε0, εi,

dxi1,t =
[
A1x

i
1,t + Ā11x̄1,t + Ā12x̄2,t +B1

1u
i
1,t + B̄1

1 ū1,t + B̄2
1 ū2,t

]
+ εi1,t + ε01,t,

dxi2,t =
[
A2x

i
2,t + Ā21x̄1,t + Ā22x̄2,t +B2

2u
i
2,t + B̄2

1 ū1,t + B̄2
2 ū2,t

]
+ εi2,t + ε02,t.

Note that the evolution of the two halves of vector x are coupled only through their
expectations and the expectation of the control used for the other half. We can
thus interpret each half as the state of a player in a different population where each
population has N indistinguishable agents.

2.2. Mean-field problem. Here, we consider the limit of the N -agent case. The
dynamics is given by

xt+1 = Axt + Āx̄t + B1u1,t + B̄1ū1,t + B2u2,t + B̄2ū2,t + ε0t+1 + ε1t+1, (3)

with initial condition

x0 = ε00 + ε10.

Here and thereafter, when considering the mean-field problem, we use the nota-
tion x̄t = E[xt|(ε0s)0≤s≤t] for the expectation of the state conditional on the realiza-
tion of the common noise, and likewise for u1 and u2. Note that (3) is a dynamics
of MKV type since it is influenced by its own distribution and by the distribution
of the actions. The utility function takes the form

J(u1,u2) = E
[+∞∑
t=0

γtct

]
, (4)

where γ ∈ [0, 1] is a discount factor, and the instantaneous utility at time t is defined
as

ct = c(xt, x̄t, u1,t, ū1,t, u2,t, ū2,t), (5)

where the function c is as in the N -agent problem.
The goal is to find an equilibrium in the sense of Nash, namely a situation in

which none of the controllers can benefit from a unilateral deviation. Such problems
are usually framed as min max (or max min) games. Due to subtle questions of
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control admissibility, we will view an equilibrium as a saddle point (see Definitions 7
and 21 below for the open-loop and closed-loop settings respectively).

Our framework is a generalization of the mean-field control setup, in which there
is a single decision maker. It can also be viewed as a variant of a Nash mean-
field control setup studied in [16] or a mean-field type game [34] in which several
mean-field decision makers compete in a general-sum game.

Next, we study the existence of the Nash equilibrium and derive its closed-form
expression for the formulated ZSMFTG.

3. Probabilistic setup. In this section we rigorously define the model of MKV
dynamics with common noise. It is analogous to the one considered in [28], except
for the fact that there are two decision makers instead of one. A convenient way to
think about this model is to view the state xt of the system at time t as a random
variable defined on the probability space (Ω,F ,P) where Ω = Ω0×Ω1, F = F0×F1

and P = P0×P1. In this set-up, if ω = (ω0, ω1), ε0t (ω) = ε̃0t (ω
0) and ε1t (ω) = ε̃1t (ω

1)
where (ε̃0t )t=1,2,... and (ε̃1t )t=1,2,... are i.i.d. sequences of mean-zero random variables
on (Ω0,F0,P0) and (Ω1,F1,P1) respectively, while the initial sources of randomness
ε̃00 and ε̃10 are random variables on (Ω0,F0,P0) and (Ω1,F1,P1) with distributions
µ0

0 and µ1
0 respectively, which are independent of each other and independent of

(ε̃0t )t=1,2,... and (ε̃1t )t=1,2,.... We denote by Ft the filtration generated by the noise
up until time t, that is Ft = σ(ε00, ε

1
0, ε

0
1, ε

1
1, . . . , ε

0
t , ε

1
t ). We assume that the variance

of random variables ε0t and ε1t are constant along time, and these variances are
denoted by Σ0 = E[(ε0t )

>ε0t ] and Σ1 = E[(ε1t )
>ε1t ] for every t ≥ 1.

At each time t ≥ 0, xt and ui,t with i = 1, 2 are random elements defined on
(Ω,F ,P) representing the state of the system and the controls exerted by a pair of
generic agents. Using the fact that the idiosyncratic noise and the common noise
are independent, the quantities x̄t and ūi,t with i = 1, 2 appearing in (3) are random
variables on (Ω,F ,P) defined by: for ω = (ω0, ω1),

x̄t(ω
0, ω1) =

∫
Ω1

xt(ω
0, ω̃1)P1(dω̃1), ūi,t(ω

0, ω1) =

∫
Ω1

ui,t(ω
0, ω̃1)P1(dω̃1), i = 1, 2.

Notice that x̄t, ū1,t and ū2,t depend only upon ω0. In fact, the best way to think
of x̄t and ūi,t with i = 1, 2 is to keep in mind the following fact:

x̄t = E[xt|F0], and ūi,t = E[ui,t|F0].

These are the mean field terms appearing in the (stochastic) dynamics of the
state (3):

xt+1 = Axt + Āx̄t +B1u1,t + B̄1ū1,t +B2u2,t + B̄2ū2,t + ε0t+1 + ε1t+1.

4. Open-loop information structure. In this section, we consider open-loop
controls, that is, controls available if the controllers can directly see the noise terms.
We start with this class of controls because it is somehow “larger” than the class
of closed-loop controls that will be considered in the next section (any closed-loop
control gives rise to an open-loop control, but the converse is not always true). The
main point of this section is to show that, under suitable conditions, the saddle
point controls in the open-loop setting can in fact be written as linear combinations
of the state and the conditional mean.
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4.1. Admissible controls. We will use the following notation: for n ∈ N+, for
any process x : Ω 7→ Rn,

‖x‖2,γ = E

[ ∞∑
t=0

γt‖xt‖2
]
,

We introduce the following sets: for T ≥ 0, letting N≤T = {0, . . . , T},

UT :=
{

u : N≤T × Ω 7→ R` | ut is Ft −measurable, E
[

sup
t=0,...,T

γt‖ut‖2
]
<∞

}
,

Uloc :=
⋃
T≥0

UT , U :=
{
u : N× Ω 7→ R` | u ∈ Uloc, ‖u‖2,γ <∞

}
,

where we use the notation ut(·) = u(t, ·) for every t ∈ N and we identify u to an
F -adapted process (ut)t≥0. A process u is called L2−discounted globally integrable,
or L2−integrable for short, if u ∈ U . Also, for T ≥ 0,

XT :=
{

x : N≤T × Ω 7→ Rd | xt is Ft −measurable, E
[

sup
t=0,...,T

γt‖xt‖2
]
<∞

}
,

Xloc :=
⋃
T≥0

XT , X :=
{
x : N× Ω 7→ Rd | x ∈ Xloc, ‖x‖2,γ <∞

}
.

Similarly, we identify x ∈ Xloc or x ∈ X to an F−adapted process (xt)t≥0 in Rd.
We also say that a state process is L2−discounted globally integrable, or simply
L2−integrable, if x ∈ X . Let Sd stand for the set of symmetric matrices in Rd×d.

In the open-loop information structure, we consider the following subset of U×U :

Uopenad := {(u1,u2) ∈ U × U | (xu1,u2

t )t≥0 ∈ X}

where the state process (xu1,u2

t )x≥0 follows the dynamics (3). We call every element
(u1,u2) ∈ Uopenad an admissible (open-loop) control pair for the two players.

The following proposition is about the L2-integrability of the state processes.

Proposition 2. Let us assume that the process X = (Xt)t≥0 satisfies

Xt+1 = AXt + qt, X0 ∼ µ0 (6)

where A ∈ Rd×d is a fixed matrix, µ0 ∈ P2(Rd) so that E[‖X0‖2] < ∞, and the
process q = (qt)t≥0 satisfies: ‖q‖2,γ < +∞ If the matrix A satisfies γ‖A‖2 < 1,
then the process X = (Xt)t≥0 satisfies ‖X‖2,γ < +∞.

Proof. Given the assumption γ‖A‖2 < 1, we can choose γ1 ∈ (γ, 1) such that
ξ := γ1‖A‖2 < 1. Let η = γ/γ1 < 1. From the dynamics of state process X, we
have for every t ≥ 1,

Xt = AtX0 +
t−1∑
j=0

At−1−jqj .

Hence, letting CA,ξ,γ = γ1/2A
ξ1/2

,

E
[
γt‖Xt‖2

]
≤ E

[(∥∥CtA,ξ,γξt/2X0

∥∥+
t−1∑
j=0

∥∥Ct−1−j
A,ξ,γ ξ(t−1−j)/2γ(j+1)/2qj

∥∥)2]

≤ 2ηtξtE[‖X0‖2] + 2E
[( t−1∑

j=0

η(t−1−j)/2ξ(t−1−j)/2γ(j+1)/2‖qj‖
)2]
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≤ 2ηtξtE[‖X0‖2] +
2

1− η
(t−1∑
j=0

ξt−1−jγj+1E[‖qj‖2]
)
.

Finally, summing over t and interchanging the two summations we get:

∞∑
t=0

E
[
γt‖Xt‖2

]
≤ 2

1− ξη
E[‖X0‖2] +

2γ

(1− η)(1− ξ)

∞∑
j=0

E
[
γj‖qj‖2

]
<∞.

Note the following link with L2−asymptotical stability: If x ∈ X , then we have
limt→∞ E[γt‖xt‖2] = 0.

We have the following two lemmas related to the L2−discounted globally inte-
grability for processes (xt − x̄t)t≥0 and (x̄t)t≥0.

Lemma 3. A process x ∈ X if and only if both processes (xt − x̄t)t≥0 ∈ X and
(x̄t)t≥0 ∈ X . Similarly, a control process u ∈ U if and only if both processes
(ut − ūt)t≥0 ∈ U and (ūt)t≥0 ∈ U .

Using Proposition 2 and Lemma 3, we deduce the following result.

Lemma 4. For any given (u1,u2) ∈ U × U , let (q
(y)
t )t≥0 and (q

(z)
t )t≥0 be two

processes in U given by: for every t ≥ 0,{
q

(y)
t = B1(u1,t − ū1,t) +B2(u2,t − ū2,t),

q
(z)
t = (B1 + B̄1)ū1,t + (B2 + B̄2)ū2,t.

(7)

We have:

• If γ‖A‖2 < 1, then the state process y = (yt)t≥0 following the dynamics

yt+1 = Ayt + q
(y)
t + ε1t+1, y0 ∼ µ1

0 (8)

is L2−discounted globally integrable;
• If γ‖A+ Ā‖2 < 1, the state process z = (zt)t≥0 following the dynamics

zt+1 = (A+ Ā)zt + q
(z)
t + ε0t+1, z0 ∼ µ0

0 (9)

is L2−discounted globally integrable.

Now, we are ready to provide the L2−discounted global integrability for the state
process xu1,u2 = (xu1,u2

t )t≥0 following dynamics (3) controlled by two processes
u1,u2 ∈ U .

Assumption 1. γ‖A‖2 < 1 and γ‖A+ Ā‖2 < 1.

Proposition 5. Under Assumption 1, we have Uopenad = U × U . In particular, the
set of admissible controls Uopenad is convex.

Proof. By definition, Uopenad ⊆ U × U . For the other inclusion, let us consider a
pair of control processes (u1,u2) ∈ U × U . We know that the corresponding state
process xu1,u2 ∈ Xloc. Taking the conditional expectation with respect to F0 and
denoting x̄u1,u2

t = E[xu1,u2

t |F0], we notice that, for every t ≥ 0,{
xu1,u2

t − x̄u1,u2

t = A(xu1,u2

t − x̄u1,u2

t ) + q
(y)
t + ε1t+1

x̄u1,u2

t = (A+ Ā)x̄u1,u2

t + q
(z)
t + ε0t+1
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where q
(y)
t and q

(z)
t are given by (7). Let us denote yt = xu1,u2

t − x̄u1,u2

t and
zt = x̄u1,u2

t for every t ≥ 0. Under Assumption 1, by Lemma 4, we obtain that
the processes (yt)t≥0 ∈ X and (zt)t≥0 ∈ X . which implies xu1,u2 ∈ X . Thus,
U ×U ⊆ Uopenad . The convexity of Uopenad is a consequence of the convexity of U .

Remark 6. In the closed-loop information structure (c.f. Section 5), we will see
that the set of closed-loop admissible policy is not convex.

Definition 7. A pair of admissible control processes (u∗1,u
∗
2) ∈ Uopenad is an open-

loop saddle point (OLSP for short) for the zero-sum game if for any process u′1 ∈ U
and u′2 ∈ U , we have

J(u∗1,u
′
2) ≤ J(u∗1,u

∗
2) ≤ J(u′1,u

∗
2), (10)

where (u1,u2) 7→ J(u1,u2) is the utility function defined in equation (4).

4.2. Equilibrium condition. For the sake of convenience, we use the notation
Ǎ = A− Id where Id denotes the d×d identity matrix, and ζ = (x, x̄, u1, ū1, u2, ū2),
so that, if we define the function b by:

b(ζ) = b(x, x̄, u1, ū1, u2, ū2) = Ǎx+ Āx̄+B1u1 + B̄1ū1 +B2u2 + B̄2ū2. (11)

The state equation (3) can be rewritten as:

xt+1 − xt = b(xt, x̄t, u1,t, ū1,t, u2,t, ū2,t) + ε0t+1 + ε1t+1 = b(ζt) + ε0t+1 + ε1t+1. (12)

We define the Hamiltonian function h by:

h(ζ, p)

= h(x, x̄, u1, ū1, u2, ū2, η)

= [Ǎx+ Āx̄+B1u1 + B̄1ū1 +B2u2 + B̄2ū2] · p+ c(x, x̄, u1, ū1, u2, ū2)− δx · p
= b(ζ) · p+ c(ζ)− δx · p

(13)

for p ∈ Rd, where δ = (1 − γ)/γ is a positive constant representing the discount
rate, γ ∈ [0, 1] being the discount factor. Throughout, we use the notation · for
the scalar product in Euclidean space. We will use the following property of the
Hamiltonian, under the following assumption, where � 0 (resp. �) means that the
matrix is non-negative semi definite (resp. positive definite).

Lemma 8. If R1 � 0, R1 + R̄1 � 0 (resp. R2 � 0, and R2 + R̄2 � 0), the function
h is convex w.r.t. (u1, ū1) (resp. concave w.r.t. (u2, ū2)). It is strictly convex (resp.
strictly concave) if R1 � 0 and (R1 + R̄1) � 0 (resp. R2 � 0 and (R2 + R̄2) � 0).

Proof. For the purpose of computing gradients, Hessians and partial derivatives,
we treat ζ as a (2d + 4`) × 1 column vector by specifying its definition as ζ =
[x>, x̄>, u>1 , ū

>
1 , u

>
2 , ū

>
2 ]>. Now, for every fixed p ∈ Rd, we have:

∇ζh(ζ, p) =


∂xh(ζ, p)
∂x̄h(ζ, p)
∂u1

h(ζ, p)
∂ū1

h(ζ, p)
∂u2h(ζ, p)
∂ū2h(ζ, p)

 =


p>(Ǎ− δId) + 2(x− x̄)>Q

p>Ā+ 2(x̄− x)>Q+ 2x̄>(Q+ Q̄)
p>B1 + 2(u1 − ū1)>R1

p>B̄1 + 2(ū1 − u1)>R1 + 2ū>1 (R1 + R̄1)
p>B2 − 2(u2 − ū2)>R2

p>B̄2 − 2(ū2 − u2)>R2 − 2ū>2 (R2 + R̄2)

 . (14)
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It can be seen that

∇2
(u1,ū1),(u1,ū1)h(ζ, p) =

(
2R1 −2R1

−2R1 2(2R1 + R̄1)

)
,

is non-negative definite if the inequalities R1 � 0 and R1 + R̄1 � 0 are satisfied,
and positive definite if R1 � 0 and (R1 + R̄1) � 0. Likewise for the second order
derivatives w.r.t. (u2, ū2).

In order to use the stochastic version of the Pontryagin maximum principle, we
introduce the notion of adjoint process associated to a given admissible pair of
control processes.

Definition 9. If ui = (ui,t)t=0,1,..., i = 1, 2 is a pair of admissible control processes
and x = (xt)t=0,1,... is the corresponding state process controlled by u = (u1,u2),
we say that an Rd-valued (Ft)t≥0-adapted process p = (pt)t=0,1,... is an adjoint
process corresponding to x if it satisfies:

pt = E
[
pt+1 +γ

[
(Ǎ>−δId)pt+1 +2Qxt+1 +Ā>p̄t+1 +2Q̄x̄t+1

]
|Ft
]
, t ≥ 0, (15)

and the transversality condition:

‖p‖2,γ <∞. (16)

It will be useful to note that the above expression (15) can equivalently be written
as:

pt = γE[A>pt+1 + 2Qxt+1 + Ā>p̄t+1 + 2Q̄x̄t+1 | Ft]. (17)

The following result shows that combined with the admissibility of a couple of
controls, our Assumption 1 automatically implies the transversality condition.

Proposition 10. Assume that Assumption 1 holds. For every admissible pair of
control processes, there exists a unique adjoint process.

Proof. Let u = (u1,u2) be an admissible pair of control processes and let x =
(xt)t=0,1,... be the corresponding state process.

Uniqueness. Let (pt)t≥0 and (p′t)t≥0 be two adjoint processes corresponding to
(u1,u2). We first look at the corresponding conditional processes, namely, p̄t =
E[pt|F0], p̄′t = E[p′t|F0], t ≥ 0. Taking the conditional expectation on both sides of
equation (17) for pt and p′t and then the difference between equations for p̄t and p̄′t,
by condition γ1/2‖A + Ā‖ < 1 we obtain E[‖p̄t − p̄′t‖] ≤ γ1/2E

[
‖p̄t+1 − p̄′t+1‖

]
. By

induction, we obtain for every 0 ≤ t < s, γt/2E[‖p̄t− p̄′t‖] ≤ γs/2E[‖p̄s− p̄′s‖]. By the
transversality condition (16) for (ps)s≥0 and (p′s)s≥0 and the Jensen’s inequality for
conditional expectation, we get

lim
s→∞

γs/2E
[
‖p̄s − p̄′s‖

]
≤ lim
s→∞

[
(E[γs‖ps‖2])1/2 + (E[γs‖p′s‖2])1/2

]
= 0.

Hence p̄t = p̄′t, P-a.s., for all t ≥ 0. Similarly, from (17), we deduce that (pt − p̄t) =
(p′t − p̄′t), P-a.s., for all t ≥ 0. Therefore pt = p′t, P-a.s., for all t ≥ 0.

Existence. We proceed by constructing an approximation over a finite time horizon
and then passing to the limit. For every T > 0, define the process (pTt )t≥0 by: for
t ≥ T , pTt = 0, and for t = T − 1, T − 2, 1, . . . , 0,

pTt = E
[
pTt+1 + γ

[
(Ǎ> − δId)pTt+1 + 2Qxt+1 + Ā>p̄Tt+1 + 2Q̄x̄t+1

]
|Ft
]
,
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where p̄Tt = E[pTt |F0]. By equation (17), we have: for all t = 0, . . . , T − 1,

p̄Tt = γE[(A+ Ā)>p̄Tt+1 + 2(Q+ Q̄)x̄t+1|Ft], (18)

pTt − p̄Tt = γE[A>(pTt+1 − p̄Tt+1) + 2Q(xt+1 − x̄t+1)|Ft]. (19)

We split the proof of existence into four steps. We first study the processes
(p̄Tt )t≥0, T > 0.

Claim 1. For every s ≥ 0, (p̄Ts )T≥s is a Cauchy sequence for convergence in L1

under the norm ‖ · ‖.
This is a direct consequence of Assumption 1 and the following property, that

we prove below: For every s, T1, T2, T3, such that 0 ≤ s ≤ T1 < min{T2, T3},

E
[
‖p̄T2
s − p̄T3

s ‖
]
≤ 2γ̃1−sη̃T1−sM, (20)

where γ̃ = γ
1
2 , η̃ = γ

1
2 ‖A+ Ā‖ and M = 2

1−η̃2 ‖Q+ Q̄‖‖x‖1/22,γ .

First, by (18) and since p̄TT = 0, for every t < T ,

E[‖p̄Tt ‖] ≤γ̃η̃E[‖p̄Tt+1‖] + 2γ̃2‖Q+ Q̄‖E
[
‖x̄t+1‖

]
≤2γ̃2‖Q+ Q̄‖

T∑
i=t+1

γ̃i−t−1η̃i−t−1E
[
‖x̄i‖

]
≤γ̃1−tM, (21)

where we used the fact that η̃2 < 1 by Assumption 1. Moreover, by equation (18),
for every 0 ≤ s < T1 < min{T2, T3}, we have

E
[
‖p̄T2
s − p̄T3

s ‖
]
≤γ‖A+ Ā‖E

[
‖p̄T2
s+1 − p̄

T3
s+1‖

]
≤γ̃T1−sη̃T1−sE

[
‖p̄T2

T1
− p̄T3

T1
‖
]

≤2γ̃1−sη̃T1−sM.

This concludes the proof of (20).

Claim 2. There exist a sequence of times (Tk)k≥0 and a process of random vectors

(p̄∗s)s≥0 satisfying: for every s ≥ 0, lim
k→∞

p̄Tks = p̄∗s, P-almost surely. Moreover

‖p̄∗‖2,γ <∞. (22)

We proceed by induction for s = 0, 1, 2, 3, . . . with a diagonal argument. For time
s = 0, by the Cauchy property of Claim 1, (p̄T0 )T≥0 converges in L1 for each of its

coordinates, so for some sequence (T
(0)
j )j≥0, (p̄

T
(0)
j

0 )j≥0 converges almost surely to

a random vector, say p̄∗0. Then, consider s ≥ 0 and assume we have (T
(s)
j )j≥0 and

(p̄∗t )t≤s such that p̄
T

(s)
j

t → p̄∗t as j → +∞, for all t ≤ s. Since (p̄
T

(s)
j

s+1 )j≥0 is also a

Cauchy sequence for convergence in L1, there exists a sub-sequence (T
(s+1)
j )j≥0 of

(T
(s)
j )j≥0 such that (p̄

T
(s+1)
j

s+1 )j≥0 converges almost surely to a random vector, say

p̄∗s+1. We then let Tk = T
(k)
k , k ≥ 0 to obtain the limiting process.

To prove (22), we proceed as in the proof of Proposition 2. Consider 0 ≤ t < T .
We have, P−almost surely,

p̄Tt =
T−t−1∑
i=0

2γi+1(A+ Ā)i(Q+ Q̄)E
[
x̄t+i+1|Ft

]
.
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As in Proposition 2, we choose γ2 such that 0 < γ < γ2 < 1 and ξ2 = γ2‖A+ Ā‖2 <
1. Let η2 := γ/γ2 < 1. Then, we have:

E
[
‖p̄Tt ‖2

]
≤ E

[(T−t−1∑
i=0

2γi+1‖A+ Ā‖i‖Q+ Q̄‖E
[
‖x̄t+i+1‖ |Ft

])2]
= 4‖Q+ Q̄‖2γ2E

[(T−t−1∑
i=0

η
i/2
2 ξ

i/2
2 γi/2E[‖x̄t+i+1‖ |Ft]

)2]
≤ 4‖Q+ Q̄‖2γ2E

[(T−t−1∑
i=0

ηi2

) T−t−1∑
i=0

ξi2γ
iE
[
‖x̄t+i+1‖2 | Ft

]]
≤ 4‖Q+ Q̄‖2γ1−t

1− η2

( T∑
j=t+1

ξj−t−1
2 E[γj‖x̄j‖2]

)
.

Hence, summing over t and interchanging the two summations, we get,

‖p̄T ‖2,γ ≤
4‖Q+ Q̄‖2γ

(1− η2)(1− ξ2)
‖x̄‖2,γ . (23)

For T = Tk with k ≥ 0, we apply the monotone convergence theorem and the
Fatou’s lemma to control the limit as k →∞. We get:

‖p̄∗‖2,γ ≤ lim
N→∞

lim inf
k→∞

E
[ N∑
t=0

γt‖p̄Tkt ‖2
]
≤ 4‖Q+ Q̄‖2γ

(1− η2)(1− ξ2)
‖x̄‖2,γ .

Proceeding analogously, we can show:

Claim 3. There exist a subsequence (T̂k)k≥0 of (Tk)k≥0 and a process (q∗t )t≥0

satisfying: for every t ≥ 0, lim
k→∞

pT̂kt − E[pT̂kt |F0] = q∗t , P−almost surely. Moreover,

‖q∗‖2,γ <∞. (24)

Finally, we obtain an adjoint process of x as follows.

Claim 4. The process (p∗∗t )t≥0 defined by p∗∗t := q∗t + p̄∗t , t ≥ 0, is an adjoint
process corresponding to x controlled by u = (u1,u2).

First, by (22) and (24), we obtain that (p∗∗t )t≥0 satisfies the transversality con-
dition (16). Second, form Claim 1, we know that for every t ≥ 0, the process of
random vectors (p̄Tt )T≥t converges in L1 with the norm ‖·‖, so by Jensen’s inequality,

the process of conditional expectations
(
E[(A+ Ā)>p̄Tkt+1 + 2(Q+ Q̄)>x̄t+1

∣∣Ft])k≥0

converges in L1 when k →∞. Thus, by equation (18) and uniqueness of the limit,
we obtain:

p̄∗t = γE[(A+ Ā)>p̄∗t+1 + 2(Q+ Q̄)x̄t+1|Ft], P− a.s. . (25)

Similarly, for every t ≥ 0, we also obtain:

q∗t = γE
[
A>q∗t+1 + 2Q(xt+1 − x̄t+1)|Ft

]
, P− a.s. , (26)

and P−almost surely, E[p̄∗t | F0] = p̄∗t and E[q∗t | F0] = 0. Adding equations (25)
and (26) and using the fact that E[p∗∗t | F0] = p̄∗t , we conclude that the process
(p∗∗t )t≥0 is an adjoint process of x.

Using the adjoint process, we express the derivative of J as follows.
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Lemma 11. The Gateaux derivative of J at (u1,u2) in the direction (β1,β2) ∈
U × U exists and is given by

DJ(u1,u2)(β1,β2) = E

[ ∞∑
t=0

γt
(
p>t B1 + 2u>1,tR1 + p̄>t B̄1 + 2ū>1,tR̄1

)
β1,t

]

+ E

[ ∞∑
t=0

γt
(
p>t B2 − 2u>2,tR2 + p̄>t B̄2 − 2ū>2,tR̄2

)
β2,t

]
.

(27)

where p = (pt)t≥0 is the adjoint process corresponding to the state process x con-
trolled by u = (u1,u2) ∈ Uopenad .

Proof. We start by computing the difference between the values of J evaluated on
two pairs of controls. Let ui = (ui,t)t=0,1,... and u′i = (u′i,t)t=0,1,..., i = 1, 2 be two
pairs of admissible control processes and let us denote by xt and x′t the corresponding
states of the system at time t, as given by the state equation (3) with the same initial
point and the same realizations of the noise sequences (ε0t )t=0,1,... and (ε1t )t=0,1,....
Note that as a consequence, xt+1 − x′t+1 can be expressed as:

xt − x′t + Ǎ(xt − x′t) + Ā(x̄t − x̄′t) +
∑
i=1,2

[
Bi(ui,t − u′i,t) + B̄i(ūi,t − ū′i,t)

]
,

which shows that xt+1−x′t+1 is in fact Ft-measurable. As before, we use the conve-
nient notations ζt = (xt, x̄t, u1,t, ū1,t, u2,t, ū2,t) and ζ ′t = (x′t, x̄

′
t, u
′
1,t, ū

′
1,t, u

′
2,t, ū

′
2,t).

In order to estimate J(u′1,u
′
2)− J(u1,u2) we first notice that, if p = (pt)t=0,1,... is

the adjoint process of (xt)t≥0, we get:

∑
t≥0

E[γt(x′t − xt) · pt] ≤ lim inf
N→∞

E
[ N∑

t=0

γt‖x′t − xt‖2
]1/2

E
[ N∑

t=0

γt‖pt‖2
]1/2

≤
(

2E
[ ∞∑

t=0

γt‖x′t‖2
]

+ 2E
[ ∞∑

t=0

γt‖xt‖2
])1/2

E
[ ∞∑

t=0

γt‖pt‖2
]1/2

,

which is finite by the admissibility of u and the transversality condition (16) of p.
Recalling the definition of b(ζt) in (11), by the admissible conditions of the state

process x and the pair of control processes(u1,u2), we get∑
t≥0

E
[
γt
(
b(ζ ′t)− b(ζt)) · pt

)]
<∞.

As a consequence, we have:

E
[ ∞∑
t=0

γt[c(ζ ′t)− c(ζt)]
]

=
∞∑
t=0

E
[
γt
(
h(ζ ′t, pt)− h(ζt, pt)

)]
−
∞∑
t=0

E
[
γt[(x′t+1 − xt+1)− (x′t − xt)] · pt

+ δ
∞∑
t=0

γt(x′t − xt) · pt
]

=
∞∑
t=0

E
[
γt
(
h(ζ ′t, pt)− h(ζt, pt)

)]
+
∞∑
t=0

E
[
γt(x′t+1 − xt+1) · (pt+1 − pt)

]
,

(28)
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where we used the bounded convergence theorem for the first equality, and we used
the facts that δ = (1− γ)/γ and p0 = 0 for the last equality.

We now turn to computing the Gateaux derivative of J . Let ui,βi, i = 1, 2, as
in the statement. To alleviate the notation, we denote

Vt = lim
ε→0

1

ε

(
xu1+εβ1,u2+εβ2

t − xu1,u2

t

)
,

where xu1+εβ1,u2+εβ2 is the state process controlled by (u1 +εβ1,u2 +εβ2) ∈ Uopenad ,
and xu1,u2 is the state process controlled by (u1,u2) ∈ Uopenad . By linearity of the

state dynamics, we have Vt =
(
xu1+εβ1,u2+εβ2

t −xu1,u2

t

)
/ε for every ε > 0 and every

t ≥ 0. Let (u′1,u
′
2) = (u1 + εβ1,u2 + εβ2).

We then compute, using the expressions of the partial derivatives of h already
computed in the proof of Lemma 8:

DJ(u1,u2)(β1,β2) = lim
ε→0

1

ε
[J(u1 + εβ1,u2 + εβ2)− J(u1,u2)]

=
∞∑
t=0

E
[
γtVt+1 · (pt+1 − pt)

]
+
∞∑
t=0

γtE
[
∂xh(ζt, pt)Vt + ∂x̄h(ζt, pt)V̄t

+ ∂u1
h(ζt, pt)β1,t + ∂ū1

h(ζt, pt)β̄1,t + ∂u2
h(ζt, pt)β2,t + ∂ū2

h(ζt, pt)β̄2,t

]
=
∞∑
t=0

γtE
[
Vt+1 · (pt+1 − pt)︸ ︷︷ ︸

(0)

+
(
p>t (Ǎ− δId) + 2(xt − x̄t)>Q

)
Vt︸ ︷︷ ︸

(i)

+
(
p>t Ā+ 2(x̄t − xt)>Q+ 2x̄>t (Q+ Q̄)

)
V̄t︸ ︷︷ ︸

(ii)

+
(
p>t B1 + 2(u1,t − ū1,t)

>R1

)
β1,t︸ ︷︷ ︸

(iii)1

+
(
p>t B2 − 2(u2,t − ū2,t)

>R2

)
β2,t︸ ︷︷ ︸

(iii)2

+
(
p>t B̄1 + 2(ū1,t − u1,t)

>R1 + 2ū>1,t(R1 + R̄1)
)
β̄1,t︸ ︷︷ ︸

(iv)1

+
(
p>t B̄2 − 2(ū2,t − u2,t)

>R2 − 2ū>2,t(R2 + R̄2)
)
β̄2,t︸ ︷︷ ︸

(iv)2

]
.

(29)

We now use Fubini’s theorem to compute two of the six terms above. Recall that
V̄t = E[Vt|F0], which we choose to express in the form

V̄t = Ẽ[Ṽt|F0] =

∫
Ω̃1

Ṽt(ω
0, ω̃1)P̃1(dω̃1),

where (Ω̃1, F̃1, P̃1) is an identical copy of (Ω1,F1,P1) and the probability space

(Ω̃, F̃ , P̃) is defined as Ω̃ = Ω0× Ω̃1, F̃ = F0×F̃1,and P̃ = P0× P̃1. For the sake of
ease of notation, we introduce yet another notation for the conditional expectations:
we shall denote by EF0 and ẼF0 the conditional expectations usually denoted by
E[ · |F0] and Ẽ[ · |F0] respectively. With this new notation x̄t = EF0 [xt] = ẼF0 [x̃t] =
x̃t and similarly for the other random variables. Consequently:
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E
∞∑
t=0

γt(ii) = EEF0

∞∑
t=0

γt
(
p>t Ā+ 2(x̄t − xt)>Q+ 2x̄>t (Q+ Q̄)

)
V̄t

= EEF0 ẼF0

∞∑
t=0

γt
(
p>t Ā+ 2(x̄t − xt)>Q+ 2x̄>t (Q+ Q̄)

)
Ṽt

= E
∞∑
t=0

γt
(
p̄>t Ā+ 2x̄>t (Q+ Q̄)

)
Vt,

where we used Fubini’s theorem for the last equality. So:

E
∞∑
t=0

γt[(i) + (ii)] = E
∞∑
t=0

γt
(
p>t (Ǎ− δId) + 2x>t Q+ p̄>t Ā+ 2x̄>t Q̄

)
Vt. (30)

As a consequence,
∑∞
t=0 γ

tE
[
(0) + (i) + (ii)

]
= 0, because of (30) and the definition

(15) of the adjoint process.
Furthermore, using Fubini’s theorem on an identical copy of u1 and β1 we get:

E
∞∑
t=0

γt[(iii)1 + (iv)1] = E
∞∑
t=0

γt
(
p>t B1 + 2u>1,tR1 + p̄>t B̄1 + 2ū>1,tR̄1

)
β1,t, (31)

and likewise for u2,β2.

We are now in a position to prove the following condition for optimality:

Proposition 12 (Pontryagin’s maximum principle, necessary condition). Assum-
ing that Assumption 1 holds, if ui = (ui,t)t=0,1,..., i = 1, 2 is a pair of admissible
control processes such that it is an open-loop saddle point for the zero-sum game
and p = (pt)t=0,1,... is the corresponding adjoint process, then it holds{

B>1 pt + 2R1u1,t + B̄>1 p̄t + 2R̄1ū1,t = 0

B>2 pt − 2R2u2,t + B̄>2 p̄t − 2R̄2ū2,t = 0
(32)

for all t ≥ 0, P-almost surely.

Proof. By Lemma 11, for any pair of processes (β1,β2) ∈ U × U we have the

DJ(u1,u2)(β1,β2) = E

[ ∞∑
t=0

γt
(
p>t B1 + 2u>1,tR1 + p̄>t B̄1 + 2ū>1,tR̄1

)
β1,t

]

+ E

[ ∞∑
t=0

γt
(
p>t B2 − 2u>2,tR2 + p̄>t B̄2 − 2ū>2,tR̄2

)
β2,t

]
.

Since (u1,u2) ∈ Uopenad is an open-loop saddle point for the zero-sum game, then for
every u′1 ∈ U and u′2 ∈ U , we have

J(u1,u
′
2) ≤ J(u1,u2) ≤ J(u′1,u2).

Denote the state processes in the above inequalities by Xu1,u
′
2 ,Xu1,u2 ,Xu′1,u2 ,

which are all L2−discounted globally integrable according to Proposition 2.
If we choose β2 = 0, then for every β1 ∈ U ,

DJ(u1,u2)(β1, 0) = lim
ε→0

1

ε
[J(u1 + εβ1,u2)− J(u1,u2)] ≥ 0
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which implies,

E

[ ∞∑
t=0

γt
(
p>t B1 + 2u>1,tR1 + p̄>t B̄1 + 2ū>1,tR̄1

)
β1,t

]
≥ 0.

Thus, the corresponding adjoint process p satisfies: P−almost surely,

B>1 pt + 2R1u1,t + B̄>1 p̄t + 2R̄1ū1,t = 0, t ≥ 0.

Similarly, B>2 pt − 2R2u2,t + B̄>2 p̄t − 2R̄2ū2,t = 0 for all t ≥ 0, P-almost surely.

4.3. Identification of the equilibrium. Let us introduce the notations{
Γi = (−1)i 1

2R
−1
i B>i , Ξi = (−1)i 1

2R
−1
i

[
B̄>i − R̄i(Ri + R̄i)

−1(Bi + B̄i)
>],

Λi = Γi + Ξi = (−1)i 1
2 (Ri + R̄i)

−1(Bi + B̄i)
>, i = 1, 2.

(33)
We then consider the following Riccati equations:

γ[A>P + 2Q]
(
A+

(
B1Γ1 +B2Γ2

)
P
)

= P, (34)

and

γ
[
(A> + Ā>)P̄ + 2(Q+ Q̄)

] (A+ Ā) +
∑
i=1,2

(Bi + B̄i)ΛiP̄

 = P̄ . (35)

We shall assume that there exist solutions P and P̄ in Sd to these equations. This
can be proved under suitable conditions, for example, by contraction arguments
when some coefficients are small enough. We also discuss in section 6 a way to
construct P and P̄ with the help of other Algebraic Riccati equations (ARE for
short).

We now rewrite the equilibrium condition (32) in Proposition 12. The process
u = (u1,u2) is an OLSP and the process p is the corresponding adjoint process.
Taking conditional expectations EF0 in the first equation, we get:

(B1 + B̄1)>p̄t + 2(R1 + R̄1)ū1,t = 0

from which we derive:

ū1,t = −1

2
(R1 + R̄1)−1(B1 + B̄1)>p̄t. (36)

Plugging this expression back into the first equation of (32) we deduce:

u1,t = Γ1pt + Ξ1p̄t, and ū1,t = Λ1p̄t (37)

for Γ1,Ξ1,Λ1 introduced in (33). Similarly, we find

u2,t = Γ2pt + Ξ2p̄t, and ū2,t = Λ2p̄t. (38)

Proposition 13. Assume there exist solutions P and P̄ of (34)–(35), and that:

γ
∥∥∥A+

∑
i=1,2

BiΓiP
∥∥∥2

< 1, γ
∥∥∥(A+ Ā) +

∑
i=1,2

(Bi + B̄i)ΛiP̄
∥∥∥2

< 1. (39)

Let x be the process defined by: x0 = ε00 + ε10 and for t ≥ 0,

xt+1 = Axt+Āx̄t+
∑
i=1,2

[
Bi(ΓiP (xt − x̄t) + ΛiP̄ x̄t) + B̄iΛiP̄ x̄t

]
+ε0t+1+ε1t+1. (40)

Let p be the process defined by:

pt = P (xt − x̄t) + P̄ x̄t, t ≥ 0. (41)
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Let u = (u1,u2) be the process defined by:

ui,t = ΓiP (xt − x̄t) + ΛiP̄ x̄t, i = 1, 2, t ≥ 0. (42)

Then u is an admissible pair of controls and p is the associated adjoint process.

Condition (39) can be satisfied for instance by assuming that the coefficients of
the problem are small enough.

Proof. We first check the admissibility. We note that the dynamics (40) amounts
to (3) with control pair u defined by (42). Moreover, x̄ satisfies:

x̄t+1 = Λ̃x̄t + ε0t+1 = Λ̃t+1x̄0 +
t+1∑
j=1

Λ̃t+1−jε0j ,

where Λ̃ =
[
(A+ Ā) +

∑
i=1,2(Bi + B̄i)ΛiP̄

]
. Hence

‖x̄‖2,γ ≤ E
[∑
t≥0

γt
(
‖Λ̃‖2t‖x̄0‖2 + ‖

t∑
j=1

Λ̃t−jε0j‖2
)]
,

which is finite by (39) and ε0t , t ≥ 0, have a finite second moment.

Similarly, with Γ̃ = A+
∑
i=1,2BiΓiP ,

‖x− x̄‖2,γ ≤ E
[∑
t≥0

γt
(
‖Γ̃‖2t‖x0 − x̄0‖2 + ‖

t∑
j=1

Γ̃t−jε1j‖2
)]
,

which is finite. Hence the control pair u is admissible and transversality condi-
tion (16) is satisfied.

Furthermore, we have:

pt+1−pt = −γ
[
(Ǎ>−δId)pt+1 +2Qxt+1 +Ā>p̄t+1 +2Q̄x̄t+1

]
+Z0

t+1ε
0
t+1 +Z1

t+1ε
1
t+1,
(43)

where the processes Z0 and Z1 are deterministic and independent of time, and
defined by:

Z0
t = γ[(A> + Ā>)P̄ + 2(Q+ Q̄)], and Z1

t = γ[A>P + 2Q].

Hence p is indeed the adjoint process associated to u.

4.4. A convexity-concavity sufficient condition. Consider two deterministic
processes V1 = (V1,t)t≥0 and V2 = (V2,t)t≥0 following the dynamics{

V1,t+1 = AV1,t + ĀV̄1,t +B1β1,t + B̄1β̄1,t, V1,t=0 = 0,

V2,t+1 = AV2,t + ĀV̄2,t +B2β2,t + B̄2β̄2,t, V2,t=0 = 0,

(44a)

(44b)

where (β1,β2) ∈ U × U are two L2−integrable control processes. Under Assump-
tion 1, by Lemma 3, we have V1 ∈ X and V2 ∈ X .

Proposition 14 (Pontryagin’s maximum principle, sufficient condition). We as-
sume the following conditions:



420 R. CARMONA, K. HAMIDOUCHE, M. LAURIÈRE AND Z. TAN

1. There exists a state process x = (xt)t≥0 and p = (pt)t≥0 such that x,p
are (Ft)t≥0-adapted, L2−discounted globally integrable, and they satisfy the
forward-backward system of equations: for every t ≥ 0,
xt+1 = Axt + Āx̄t + (B1Γ1 +B2Γ2)pt

+
(

(B1 + B̄1)Λ1 + (B2 + B̄2)Λ2 −B1Γ1 −B2Γ2

)
p̄t + ε0t+1 + ε1t+1,

pt = γ
(
A>pt+1 + 2Qxt+1 + Ā>p̄t+1 + 2Q̄x̄t+1

)
+ Z0

t+1ε
0
t+1 + Z1

t+1ε
1
t+1

(45)
with initial values x0 = ε00 + ε10 and for some (Ft)t≥0-predictable processes
(Z0

t , Z
1
t )t≥1 satisfying Z0

0 = Z1
0 = 0.

2. For any control processes (β1,β2) ∈ U × U , we have the following convexity-
concavity condition for the zero-sum game:

E

[ ∞∑
t=0

γt
(
V >1,tQV1,t + V̄ >1,tQ̄V̄1,t + β>1,tR1β1,t + β̄>1,tR̄1β̄1,t

)]
≥ 0 (46)

E

[ ∞∑
t=0

γt
(
V >2,tQV2,t + V̄ >2,tQ̄V̄2,t − β>2,tR2β2,t − β̄>2,tR̄2β̄2,t

)]
≤ 0 (47)

where the processes (V1,V2) ∈ X × X follows the dynamics (44a)–(44b).

Then, the pair of control processes (u1,u2) ∈ Uopenad given by:

ui,t = Γipt + (Λi − Γi)p̄t, i = 1, 2 (48)

is an OLSP for the zero-sum game. Moreover, (u1,u2) satisfies the equilibrium
condition (32) of the Pontryagin maximum principle.

Proof. The backward equation for process p implies that it satisfies the conditional
expectation condition (15). We show with equations (37)–(38) that the pair of
control processes (u1,u2) defined by equation (48) satisfies the equilibrium condition
(32). By substituting the right hand side of (48) with (u1,t, u2,t) in the forward
equation for (xt)t≥0 in (45), we get that the process x follows dynamics (3) which
is controlled exactly by (u1,u2) ∈ Uopenad .

Based on the proof of Lemma 11 for the Gateaux derivative of J , we write a
second-order expansion for the value function J at a point (u1,u2) ∈ Uopenad in the
direction (β1,β2) ∈ U × U . To alleviate the notation, we introduce a deterministic
process V = (Vt)t≥0 following a dynamics

Vt+1 = AVt + ĀV̄t +B1β1 + B̄1β̄1 +B2β2 + B̄2β2

with initial value V0 = 0. The linearity of the dynamics (3) shows that Vt =

(xu1+εβ1,u2+εβ2

t − xu1,u2

t )/ε for every ε > 0 and t ≥ 0. According to equation (28),
the difference between the values of J at point (u1 + εβ1,u2 + εβ2) and at point
(u1,u2) can be expressed by

J(u1 + εβ1,u2 + εβ2)− J(u1,u2)

=ε

( ∞∑
t=0

E
[
γtVt+1 · (pt+1 − pt)

]
+
∞∑
t=0

γtE
[
∇ζh(ζt, pt) · ζ̌t

])

+
1

2
ε2
∞∑
t=0

γtE
[
∇2
ζζh(ηt, pt)ζ̌t · ζ̌t

]
=ε(i) + ε2(ii),

(49)
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where ζ̌t = (ζ ′t − ζt)/ε =
[
V >t , V̄

>
t , β

>
1,t, β̄

>
1,t, β

>
2,t, β̄

>
2,t

]> ∈ R2d×4` and ηt = (1 −
λt)ζ

′
t + λtζt ∈ R2d+4` for some λt ∈ [0, 1]. Since the pair of admissible control

processes (u1,u2) satisfies the system of equations (32) at every time t ≥ 0, then
by applying Lemma 11, we have (i) = 0. We also notice that the Hessian of h(·)
with respect to ζ is a constant matrix depending only on model parameters. Thus,
we obtain

(ii) =

∞∑
t=0

γtE
[
V >t QVt + V̄ >t Q̄V̄t + β>1,tR1β1,t + β̄>1,tR̄1β̄1,t − β>2,tR2β2,t − β̄>2,tR̄2β̄2,t

]
.

(50)
Consider a fixed control process u2 for player 2. For every control process u′1 ∈ U ,

we choose β1 = (u′1−u1)/ε ∈ U and β2 = 0. The convexity condition (46), together
with (49) and (50), yield that for every u′1 ∈ U , J(u′1,u2) ≥ J(u1,u2). Similarly,
the concavity condition (47) implies that for every u′2 ∈ U , J(u1,u

′
2) ≤ J(u1,u2).

Therefore, we conclude that under the convexity-concavity condition for the two
processes (V1,V2), a pair of control processes (u1,u2) satisfying the system of
equations (32) with adjoint process p is an OLSP for the zero-sum game.

Remark 15. We can see from equations (49) and (50) that the convexity-concavity
condition is also a necessary condition if (u1,u2) ∈ Uopenad is an OLSP for the zero-
sum game.

Taking a closer look at the convexity condition (46) (resp. the concavity condition
(47)), it is indeed a quadratic function of the process V1 (resp. V2) and the
control β1 ∈ U (resp. β2 ∈ U). So, we can apply results from the deterministic
Linear-Quadratic control problems to derive a sufficient condition for the convexity-
concavity condition. Let us define some new value functions CVi(βi − β̄i) and
C̄Vi(β̄i) for i = 1, 2:

CVi(βi − β̄i) = E
[ ∞∑
t=0

γt
(

(Vi,t − V̄i,t)>
(

(−1)i−1Q
)

(Vi,t − V̄i,t)

+ (βi,t − β̄i,t)>Ri(βi,t − β̄i,t)
)]
,

C̄Vi(β̄i) = E

[ ∞∑
t=0

γt
(
V̄ >i,t

(
(−1)i−1(Q+ Q̄)

)
V̄i,t + β̄>i,t(Ri + R̄i)β̄i,t

)]
.

Then the convexity-concavity condition (46)–(47) is equivalent to

min
β1∈U

CV1
(β1 − β̄1) + C̄V1

(β̄1) ≥ 0, and min
β2∈U

CV2
(β2 − β̄2) + C̄V2

(β̄2) ≥ 0.

Here, we multiply Q and Q + Q̄ by −1 for player i = 2 so that the concavity
condition is connected to a minimization problem. Let us assume that the following
discrete Algebraic Riccati equation (DARE-i):

0 = (−1)i−1Q− Pi + γA>PiA− γ2A>PiBi

(
γB>i PiBi +Ri

)−1

B>i PiA, (51)

admits a symmetric matrix Pi ∈ Sd as solution satisfying γB>i PiBi + Ri � 0 and
γ‖A−BiKi‖2 < 1 where Ki = γ(γB>i PiBi +Ri)

−1B>i PiA. Then, by applying the
Dynamically Programming principle and the expression of optimal value function
[45] starting at time t = 1 with an initial Vi,1 = Bi(βi,0−β̄i,0), the value CVi(βi−β̄i)
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can be expressed as:

min
βi

CVi(βi − β̄i) = min
βi,0=β̌i

E

[
min

βi:βi,0=β̌i

CVi(βi − β̄i)

]
= min

β̌i

E
[
(β̌i − ¯̌βi)

>
(
Ri + γB>i PiBi

)
(β̌i − ¯̌βi)

]
≥ 0.

Existence of such a solution Pi can be guaranteed under suitable conditions, see [52,
Theorem 3.1]. Moreover, for every given random variable β̌i, the value given by
minβi:βi,0=β̌i

CVi(βi − β̄i) is attained at βi,t − β̄i,t = −Ki(Vi,t − V̄i,t) for t ≥ 1.

Similarly, if the discrete Algebraic Riccati equation for i = 1, 2 (DARE-MF-i):

0 = (−1)i−1(Q+ Q̄)− P̄i + γ(A+ Ā)>P̄i(A+ Ā) (52)

− γ2(A+ Ā)>P̄i(Bi + B̄i)
(
γ(Bi + B̄i)

>P̄i(Bi + B̄i)

+ (Ri + R̄i)
)−1

(Bi + B̄i)
>P̄i(A+ Ā),

has a solution P̄i such that γ(Bi + B̄i)
>P̄i(Bi + B̄i) + (Ri + R̄i) � 0 and γ‖A +

Ā− (Bi + B̄i)Li‖2 < 1 where Li = γ
(
γ(Bi + B̄i)

>P̄i(Bi + B̄i) + (Ri + R̄i)
)−1

(Bi +

B̄i)
>P̄i(A+ Ā), then the value function C̄Vi(β̄i) can be expressed as

min
β̄i

C̄Vi(β̄i) = min
ˇ̄βi

E
[
( ˇ̄βi)

>
(

(Ri + R̄i) + γ(Bi + B̄i)
>P̄i(Bi + B̄i)

)
ˇ̄βi

]
≥ 0.

Furthermore, for every given random variable ˇ̄βi, the value min
β̄i:β̄i,0=ˇ̄βi

C̄Vi(β̄i) is

attained at β̄i,t = −LiV̄i,t for t ≥ 1.
We have directly the following sufficient condition for the convexity-concavity

condition.

Lemma 16. If the four discrete Algebraic Riccati equations (DARE-i) and (DARE-
MF-i) for i = 1, 2, i.e., (51) and (52), have solutions (Pi, P̄i) such that

γB>i PiBi +Ri � 0, γ(Bi + B̄i)
>P̄i(Bi + B̄i) + (Ri + R̄i) � 0, (53)

then the convexity-concavity condition (46)–(47) for the process V1 and V2 holds.

Together with the sufficient condition of the Pontryagin maximum principle
(Proposition 14), we have

Corollary 17. Let (P1, P2, P̄1, P̄2) be solutions to the four discrete Algebraic Riccati
equations in Lemma 16, and they satisfy conditions (53), then the pair of control
processes (u1,u2) ∈ Uopenad defined in Proposition 14 by (48) is an OLSP for the
zero-sum game.

To conclude this section, we propose a sufficient condition for the existence of
(P1, P2, P̄1, P̄2) in Corollary 17. We say that (A,Bi) is γ−stabilizable if there exists
a matrix K ∈ R`×d such that all eigenvalues of γ1/2(A−BiK) in the complex plan
lie inside the unit circle, i.e. γ‖A−BiK‖2 < 1.

Similarly, for the existence of P̄i to (DARE-MF-i) satisfying condition (53), we
can define R̄i(η) as the right hand side of (52) and consider the set

D̄i :=
{
η̄ ∈ Sd | γ(Bi + B̄i)

>η̄(Bi + B̄i) + (Ri + R̄i) � 0, R̄i(η̄) � 0
}
.

We notice that if γ‖A‖2 < 1, (A,Bi) is γ−stabilizable, for i = 1, 2. So, under

Assumption 1, (A,B1), (A,B2), (Ã, B̃1) and (Ã, B̃2) are all γ−stabilizable.
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Corollary 18. Assume Assumption 1, and assume that Q, Q̄ ∈ Sd, Ri, Ri+R̄i � 0
for i = 1, 2. If D1,D2, D̄1, D̄2 6= ∅, and if the forward-backward system of equations
(45) holds for x and p, then there exists an OLSP for the zero-sum game.

5. Closed-loop information structure. In this section, we turn our attention
to closed-loop controls, that is, controls which are functions of the state and the
conditional mean. We will in fact focus on a specific class of such functions.

5.1. Admissible set of controls. We start by defining the class of functions we
will consider in the rest of this section.

Definition 19. For i = 1, 2, a closed-loop feedback strategy (or policy) for player i
is a function vθi : Rd×Rd → R`, (x, x̄) 7→ (−1)iKi(x− x̄)+(−1)iLix̄ parameterized
by a tuple θi = (Ki, Li) where Ki and Li are (deterministic) matrices in R`×d. A
pair of policies given by parameters (θ1, θ2) ∈ (R`×d)2× (R`×d)2 for the two players
is called a closed-loop feedback policy profile.

For simplicity, in the sequel, we will use interchangeably the terms strategy,
policy and parameters. In other words, for any θ, we identify the parameters θ with
the induced closed-loop policy vθ.

We consider the following set of admissible policies in the closed-loop setting:

Θclose
ad =

{
(θ1, θ2) ∈ (R`×d)2 × (R`×d)2 | xθ1,θ2 ∈ X

}
, (54)

where the state process xθ1,θ2 = (xθ1,θ2t )t≥0 is controlled by the pair of closed-loop
feedback control processes (u1,u2) ∈ Uloc × Uloc defined by

ui,t = (−1)iKi(x
θ1,θ2
t − x̄θ1,θ2t ) + (−1)iLix̄

θ1,θ2
t . (55)

When we plug in the above closed-loop feedback controls (55) into the state
process dynamics (3), we obtain that, for every t ≥ 0,

xθ1,θ2t+1 = (A−B1K1 +B2K2)
(
xθ1,θ2t − x̄θ1,θ2t

)
+
(
Ã− B̃1L1 + B̃2L2

)
x̄θ1,θ2t + ε0t+1 + ε1t+1,

where Ã = A+ Ā, B̃1 = B1 + B̄1, and B̃2 = B2 + B̄2. By Proposition 2, the process
xθ1,θ2 is L2−discounted globally integrable under the assumption:

γ‖A−B1K1 +B2K2‖2 < 1, and γ‖Ã− B̃1L1 + B̃2L2‖2 < 1. (56)

Thus, it is reasonable to consider the following subset of Θclose
ad :

Θ =
{

(θ1, θ2) ∈ (R`×d)2 × (R`×d)2 | (56) holds
}
. (57)

One can check that the set Θ is not convex (see e.g. the Appendix of [38]).
Moreover, the set Θclose

ad does not have a simple expression in terms of the model
parameters. Without any additional assumptions, the two players need to decide
together the set of admissible policy profiles Θclose

ad before playing against each other
in a zero-sum game. However, in some situations, we can consider a subset of Θclose

ad

of the form Θ1 ×Θ2 where Θ1,Θ2 are two independent closed subsets in Uclosead , so
that a player is able to choose freely and independently her admissible strategy
without being affected by the L2-integrability issue of the state process caused by
the choice of strategy of her opponent.
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Under Assumption 1, namely γ‖A‖2 < 1 and γ‖Ã‖2 < 1, there exists two pairs
of real numbers (η1, η2) ∈ R2 and (η̃1, η̃2) ∈ R2 such that

κ := γ‖A‖2+γ
(
η2

1‖B1‖2 + η2
2‖B2‖2

)
< 1, κ̃ := γ‖Ã‖2+γ

(
η̃2

1‖B̃1‖2 + η̃2
2‖B̃2‖2

)
< 1.

For i = 1, 2, let us denote r
(i)
K = ηi

√
1
2

(
1
κ − 1

)
, and r

(i)
L = η̃i

√
1
2

(
1
κ̃ − 1

)
.

The following result provides an example in which the two players are able to
choose their admissible strategies independently of each other.

Lemma 20. Assuming the closed-loop feedback policies θ1 = (K1, L1) ∈ R`×d ×
R`×d and θ2 = (K2, L2) ∈ R`×d × R`×d satisfy ‖Ki‖ ≤ r

(i)
K and ‖Li‖ ≤ r

(i)
L for

i = 1, 2, then (θ1, θ2) ∈ Θ.

The proof relies on Cauchy-Schwarz inequality. If the context is clear, we omit

in the sequel the superscript (θ1, θ2) in state processes (xθ1,θ2t )t≥0.

5.2. Auxiliary processes. We will use the following re-parametrization:

yt = xt − x̄t, zt = x̄t, t ≥ 0.

We denote y = (yt)t≥0 and z = (zt)t≥0 the two auxiliary state processes derived
from x. For the sake of clarity, we introduce some new notations on the control
processes using the sample re-parametrization method:

u
(y)
1,t := u1,t − ū1,t = −K1yt, u

(y)
2,t := u2,t − ū2,t = K2yt,

u
(z)
1,t := ū1,t = −L1zt, u

(z)
2,t := ū2,t = L2zt.

The processes (yt)t≥0 and (zt)t≥0 defined in this way follow the dynamics

yt+1 = Ayt +B1u
(y)
1,t +B2u

(y)
2,t + ε1t+1, y0 ∼ ε10, (58)

zt+1 = Ãzt + B̃1u
(z)
1,t + B̃2u

(z)
2,t + ε0t+1, z0 ∼ ε00, (59)

where ε00, ε
1
0 are random variables with distributions µ0

0 and µ1
0 respectively. We

then observe that for every t, t′ ≥ 0, the random variables yt and zt are respectively
F1−measurable and F0−measurable, and they are independent.

The running cost at time t defined by (2) can also expressed as:

c(xt, x̄t,u1,t, ū1,t, u2,t, ū2,t)

=y>t Qyt + (u
(y)
1,t )
>R1u

(y)
1,t − (u

(y)
2,t )
>R2u

(y)
2,t + z>t Q̃zt

+ (u
(z)
1,t )
>R̃1u

(z)
1,t − (u

(z)
2,t )
>R̃2u

(z)
2,t

=cy(yt, u
(y)
1,t , u

(y)
2,t ) + cz(zt, u

(z)
1,t , u

(z)
2,t ),

where Q̃ = Q + Q̄, R̃1 = R1 + R̄1, R̃2 = R2 + R̄2, and cy : Rd × R` × R` → R
and cz : Rd×R`×R` → R are the running cost functions associated to (yt)t≥0 and
(zt)t≥0 defined by

cy(yt, u
(y)
1,t , u

(y)
2,t ) := y>t Qyt + (u

(y)
1,t )
>R1u

(y)
1,t − (u

(y)
2,t )
>R2u

(y)
2,t

cz(zt, u
(z)
1,t , u

(z)
2,t ) := z>t Q̃zt + (u

(z)
1,t )
>R̃1u

(z)
1,t − (u

(z)
2,t )
>R̃2u

(z)
2,t .

We denote by C(θ1, θ2) = J(u1,u2) the utility function associated to a closed-
loop feedback policy profile (θ1, θ2) ∈ Θ. As what has been presented in the proof
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of Proposition 39, we introduce two auxiliary utility functions Cy(K1,K2, ỹ) and
Cz(L1, L2, z̃) defined as

Cy(K1,K2, ỹ) = E

[ ∞∑
t=0

γtcy(yt, u
(y)
1,t , u

(y)
2,t )

∣∣∣y0 = ỹ

]
, (60)

Cz(L1, L2, z̃) = E

[ ∞∑
t=0

γtcz(zt, u
(z)
1,t , u

(z)
2,t )

∣∣∣z0 = z̃

]
, (61)

in which the control processes are (u
(y)
1,t , u

(z)
1,t ) = (−K1yt,−L1zt) and (u

(y)
2,t , u

(z)
2,t ) =

(K2yt, L2zt). Lemma 3 shows that xθ1,θ2t is L2−integrable if and only if y and z
are L2−integrable. With the new notations, we let

C(θ1, θ2) = Eỹ[Cy(K1,K2, ỹ)] + Ez̃[Cz(L1, L2, z̃)]. (62)

Now we can define the closed-loop saddle point for the zero-sum game.

Definition 21. A closed-loop feedback policy profile (θ∗1 , θ
∗
2) ∈ Θclose

ad with θ∗1 =
(K∗1 , L

∗
1) and θ∗2 = (K∗2 , L

∗
2) is said to be a closed-loop saddle point for the zero-sum

game (CLSP for short) if and only if

• For every θ1 = (K1, L1) ∈ R`×d × R`×d such that (θ1, θ
∗
2) ∈ Θclose

ad ,

C(θ1, θ
∗
2) ≥ C(θ∗1 , θ

∗
2),

• And for every θ2 = (K2, L2) ∈ R`×d × R`×d such that (θ∗1 , θ2) ∈ Θclose
ad ,

C(θ∗1 , θ2) ≤ C(θ∗1 , θ
∗
2).

Remark 22. Note that the state processes associated with C(θ1, θ
∗
2), C(θ∗1 , θ

∗
2),

and C(θ∗1 , θ2) are all different.

Remark 23. We can see that the process (yt)t≥0 is completely controlled by

(K1,K2) or by (u
(y)
1 ,u

(y)
2 ), and likewise for the process (zt)t≥0 by (L1, L2) or by

(u
(z)
1 ,u

(z)
2 ). Moreover, the noise processes associated with (yt)t≥0 and (zt)t≥0 are

independent. So when the two players are at CLSP (θ∗1 , θ
∗
2), and one of them,

say controller 1, perturbs her policy with a θ1 = (K1, L1) different from θ∗1 =
(K∗1 , L

∗
1), we can look separately at Eỹ[Cy(K1,K

∗
2 , ỹ)] − Eỹ[Cy(K∗1 ,K

∗
2 , ỹ)], and

Ez̃[Cz(L1, L
∗
2, z̃)]− Ez̃[Cz(L∗1, L∗2, z̃)].

We introduce here two sets related to the admissible policies with respect to the
processes (yt)t≥0 and (zt)t≥0. Let us denote by

Θy =
{

(K1,K2) ∈ R`×d × R`×d | y ∈ X
}
, (63)

Θz =
{

(L1, L2) ∈ R`×d × R`×d | z ∈ X
}
, (64)

where y and z are two processes following the dynamics (58) and (59). The processes
y and z can be constructed without any prior knowledge from x, and they are
completely determined by the choice of matrix pairs (K1,K2) and (L1, L2). From
Lemma 3, the set Θy (and similarly Θz) can be understood as the collection of pair
of matrices consisting of the first (or second) elements in policies θ1 and θ2.

Definition 24. A pair of matrices (K∗1 ,K
∗
2 ) ∈ R`×d × R`×d is said to be a closed-

loop feedback saddle point in Θy (CLSP −y for short) if for every ỹ ∈ Rd, for every
K1,K2 ∈ R`×d such that (K1,K

∗
2 ) ∈ Θy and (K∗1 ,K2) ∈ Θy, we have

Cy(K∗1 ,K2, ỹ) ≤ Cy(K∗1 ,K
∗
2 , ỹ) ≤ Cy(K1,K

∗
2 , ỹ). (65)
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A pair of matrices (L∗1, L
∗
2) ∈ R`×d×R`×d is said to be a closed-loop feedback saddle

point in Θz (CLSP − z for short) if for every z̃ ∈ Rd, for every L1, L2 ∈ R`×d such
that (L1, L

∗
2) ∈ Θz and (L∗1, L2) ∈ Θz, we have

Cz(L
∗
1, L2, z̃) ≤ Cz(L∗1, L∗2, z̃) ≤ Cz(L1, L

∗
2, z̃). (66)

5.3. Notations and useful lemmas. We will use the following notations:
M(P ) = γA>PA− P +Q

L1(P ) = γA>PB1, L2(P ) = γA>PB2, L12 = γB>1 PB2

N1(P ) = γB>1 PB1 +R1, N2(P ) = γB>2 PB2 −R2.

(67)

5.4. Algebraic Riccati equations. We present here a few lemmas and some
notations that will be useful to understand the closed-loop saddle point in Θy

(CLSP − y). Since the processes y and z follow similar linear dynamics but with
different coefficients, we omit the proof for lemmas corresponding to CLSP −z. We
use the notation 〈u, v〉 to represent the product u>v for two vectors in Rd. Using
the dynamics (58) for (yt)t≥0, we obtain the following result.

Lemma 25. For every symmetric matrix P ∈ Sd, we have

γt+1E [〈Pyt+1, yt+1〉]

=γtE [〈Pyt, yt〉] + γt+1E
[
(ε1t+1)>Pε1t+1

]
+ γtE


 yt

u
(y)
1,t

u
(y)
2,t


>  M(P )−Q L1(P ) L2(P )

L1(P )> N1(P )−R1 L12(P )
L2(P )> L12(P )> N2(P ) +R2


 yt

u
(y)
1,t

u
(y)
2,t




where we recall the notation (67).

Let us denote

C∗y (P ; ỹ) := ỹ>P ỹ +
γ

1− γ
E
[
(ε11)>Pε11

]
.

Corollary 26. For every P ∈ Sd and every (K1,K2) ∈ Θy, we have

Cy(K1,K2, ỹ)− C∗y (P ; ỹ) (68)

= E

 ∞∑
t=0

γt

 yt

u
(y)
1,t

u
(y)
2,t


>  M(P ) L1(P ) L2(P )

L1(P )> N1(P ) L12(P )
L1(P )> L12(P )> N2(P )


 yt

u
(y)
1,t

u
(y)
2,t


∣∣∣∣∣∣∣∣ y0 = ỹ

 .
Remark 27. Notice that the difference between Cy(K1,K2, ỹ) and C∗y (P ; ỹ) de-

pends on the cross product 〈L12(P )>u
(y)
1,t , u

(y)
2,t 〉. When we perturb only one policy

parameter, say K1 for example, the change involved in the cost Cy(K1,K2, ỹ) is not
only caused by the state process (yt)t≥0 but also by the interactions between the
two feedback control processes, even if no term in definition (60) of Cy(K1,K2, ỹ)
is directly related to this cross interaction between strategies. The cross product
L12(P ) in equation (68) makes Proposition 32 for the CLSP harder to prove than
in a continuous-time result as discussed e.g. in [54].

Proof. The process y = (yt)t≥0 with dynamics (58) where (K1,K2) ∈ Θy satisfies

yt+1 = (A−B1K1 +B2K2)yt + ε1t+1, y0 = ỹ.
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By definition of Θy, see (63), y is L2−discounted globally integrable. By the defi-
nition of L2−asymptotical stability, limt→0 E[γt‖yt‖2] = 0. Thus,

lim
t→∞

∣∣E [γt〈Pyt, yt〉|y0 = ỹ
]∣∣ ≤ lim

t→∞
‖P‖E

[
γt‖yt‖2|y0 = ỹ

]
= 0.

By applying recursively Lemma 25 from t = T down to 0, and then letting T tends
to infinity, we obtain equation (68).

We introduce here another discrete ARE in Sd for the discrete-time process (yt)t
and the cost Cy:

0 =M(P )− L(P )N (P )−1L(P )> (69)

with (using the notations introduced in (67))

L(P ) = [L1(P ),L2(P )] ∈ Rd×(`+`) (70)

and the 2× 2 block matrix

N (P ) =

[
N1(P ) L12(P )
L12(P )> N2(P )

]
∈ R(`+`)×(`+`). (71)

To distinguish with other AREs introduced earlier, we may refer (69) as (ARE-y).
In the spirit of Nash equilibria, we discuss in the following a few results related

to the situations when only one controller intends to change her strategy.
Let us denote by y2∗ = (y2∗

t )t≥0 the state process associated to a pair of strategies
(K1,K

∗
2 ) ∈ Θy where K∗2 is a given matrix in R`×d. Then y2∗ follows the dynamics

y2∗
t+1 = (A+B2K

∗
2 )y2∗

t +B1u
(y)
1,t+ε1t+1 = (A+B2K

∗
2−B1K1)y2∗

t +ε1t+1, y
2∗
0 = ỹ, (72)

where (u
(y)
1,t )t≥0 is the control process adopted by player 1 (with parameter K1).

Corollary 28. There holds

Cy(K1,K
∗
2 , ỹ)− C∗y (P ; ỹ)

= E

[ ∞∑
t=0

γt
[
y2∗
t

u
(y)
1,t

]> [
M2∗(P ) L2∗

1 (P )
L2∗

1 (P )> N 2∗
1 (P )

] [
y2∗
t

u
(y)
1,t

] ∣∣∣∣∣ y0 = ỹ

]
where 

M2∗(P ) =M(P ) + L2(P )K∗2 + (L2(P )K∗2 )> + (K∗2 )>N2(P )K∗2

L2∗
1 (P ) = γ(A+B2K

∗
2 )>PB1 = L1(P ) + (L12(P )K∗2 )>

N 2∗
1 (P ) = γB>1 PB1 +R1 = N1(P ).

The ARE associated to y2∗ and the value function Cy(·,K∗2 , ỹ) is given by

0 =M2∗(P )− L2∗
1 (P )(N 2∗

1 (P ))−1(L2∗
1 (P ))>. (73)

With a proper choice of K∗2 , we can connect equation (73) to the (ARE-y).

Lemma 29. For any symmetric matrix P ∈ Sd such that N1(P ) and S2 =
N2(P )− L12(P )>N1(P )−1L12(P ) are invertible, let us consider that player 2 fixes
her strategy with parameter

K∗2 =
(
L12(P )>N2(P )−1L12(P )−N2(P )

)−1(
L2(P )>−L12(P )>N1(P )−1L1(P )>

)
.

(74)
Then P is a solution to (73) if and only if it is a solution to the (ARE-y) (69).



428 R. CARMONA, K. HAMIDOUCHE, M. LAURIÈRE AND Z. TAN

Proof. To alleviate the notations, we omit the matrix P in this proof. First, we
notice that

K∗2 = −S−1
2

(
L>2 − L>12N−1

1 L>1
)
.

Then, the right hand side of ARE (73) becomes:

M2∗ − L2∗
1 (N 2∗

1 )−1(L2∗
1 )> =M−L1N−1

1 L>1 +
(
L2 − L1N−1

1 L12

)
K∗2

+ (K∗2 )>
(
L>2 − L>12N−1

1 L>1
)

+ (K∗2 )>
(
N2 − L>12N−1

1 L12

)
K∗2 .

Since K∗2 = −S−1
2

(
L>2 − L>12N−1

1 L>1
)

and S2 = N2 − L>12N−1
1 L12, we have

M2∗ − L2∗
1 (N 2∗

1 )−1(L2∗
1 )>

=M−L1N−1
1 L>1 −

(
L2 − L1N−1

1 L12

)
S−1

2

(
L2 − L1N−1

1 L12

)>
.

Using the invertibility of N1 and S2, we apply [48, Corollary 4.1] to N and obtain

M−LN−1L>

=M− [L1,L2]

[
N−1

1 +N−1
1 L12S

−1
2 L>12N−1

1 −N−1
1 L12S

−1
2

−S−1
2 L>12N−1

1 S−1
2

] [
L>1
L>2

]
=M−L1N−1

1 L>1 −
(
L2 − L1N−1

1 L12

)
S−1

2

(
L2 − L1N−1

1 L12

)>
.

Hence, M2∗ − L2∗
1 (N 2∗

1 )−1(L2∗
1 )> =M−LN−1L>.

We state here briefly the counterparts of Corollary 28 and Lemma 29 for the
situation when player 1 fixed her strategy to some predetermined matrix K∗1 ∈ R`×d.

Corollary 30.

Cy(K∗1 ,K2, ỹ)− C∗y (P ; ỹ)

= E

[ ∞∑
t=0

γt
[
y1∗
t

u
(y)
2,t

]> [
M1∗(P ) L1∗

2 (P )
L1∗

2 (P )> N 1∗
2 (P )

] [
y1∗
t

u
(y)
2,t

] ∣∣∣∣∣ y0 = ỹ

]
,

where 
M1∗(P ) =M(P )− L1(P )K∗1 − (L1(P )K∗1 )> + (K∗1 )>N1(P )K∗1

L1∗
2 (P ) = γ(A−B1K

∗
1 )>PB2 = L2(P )− (L12(P )>K∗1 )>

N 1∗
2 (P ) = γB>2 PB2 −R2 = N2(P ),

and the state process (y1∗
t )t≥0 follows the dynamics

y1∗
t+1 = (A−B1K

∗
1 )y1∗

t +B2u
(y)
2,t + ε1t+1, y1∗

0 = ỹ. (75)

Lemma 31. If player 1 chooses her strategy with parameter

K∗1 = −
(
L12(P )N2(P )−1L12(P )> −N1(P )

)−1(
L1(P )> − L12(P )N2(P )−1L2(P )>

)
,

where P ∈ Sd and the matrices N2(P ) and S1 = N1(P )−L12(P )N2(P )−1L12(P )>

are invertible, then we have

M1∗(P )− L1∗
2 (P )(N 1∗

2 (P ))−1(L1∗
2 (P ))> =M(P )− L(P )N (P )−1L(P )>.
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5.5. Sufficient condition. We now phrase a sufficient condition of optimality.
The necessary part will be discussed in Section 7, since it will serve as a basis for
our numerical algorithms. For a symmetric matrix P ∈ Sd, let us denote

K∗i = −
(
L12(P )Nj(P )−1L12(P )> −Ni(P )

)−1(
Li(P )> − L12(P )Nj(P )−1Lj(P )>

)
(76)

for i 6= j, i, j ∈ {1, 2}, provided the inverse of matrices involved above exist.

Proposition 32. Assume that we have the following two conditions:

1. The (ARE-y) (69) admits a symmetric solution P ∈ Sd satisfying

γB>1 PB1 +R1 � 0, γB>2 PB2 −R2 ≺ 0. (77)

2. The pair of matrices (K∗1 ,K
∗
2 ) ∈ Θy.

Then (K∗1 ,K
∗
2 ) is a CLSP − y in Θy. Moreover, we have

Cy(K∗1 ,K
∗
2 , ỹ) = C∗y (P ; y) = ỹ>P ỹ +

γ

1− γ
E
[
(ε11)>Pε11

]
.

The control processes (u
(y),∗
1,t )t≥0 and (u

(y),∗
1,t )t≥0 corresponding to the CLSP − y

(K∗1 ,K
∗
2 ) are given by, for every t ≥ 0,

u
(y),∗
1,t = −K∗1y∗t , u

(y),∗
2,t = K∗2y

∗
t (78)

where the process (y∗t )t≥0 follows the dynamics

y∗t+1 = (A−B1K
∗
1 +B2K

∗
2 )y∗t + ε1t+1, y∗0 = ỹ.

These two control processes satisfy the optimality condition: for every t ≥ 0,

N (P )u
(y),∗
t + L(P )>y∗t = 0 (79)

where u
(y),∗
t = [(u

(y),∗
1,t )>, (u

(y),∗
2,t )>]> ∈ R2`, or equivalently

N1(P )u
(y),∗
1,t + L12(P )u

(y),∗
2,t = −L1(P )>y∗t , (80)

L>12(P )u
(y),∗
1,t +N2(P )u

(y),∗
2,t = −L2(P )>y∗t . (81)

Proof. From condition (77), N1(P ) � 0 and L12(P )>N1(P )−1L12(P )−N2(P ) � 0,
so the matrix K∗2 is well defined in R`×d. Similarly, we have N2(P ) ≺ 0 and
L12(P )N2(P )−1L12(P )>−N1(P ) ≺ 0, so that K∗1 is well-defined too. Moreover, [48,
Corollary 4.1] implies that the 2×2 block matrix N (P ) defined by (71) is invertible.
Applying Schur’s lemma to the block matrix in (68), we get: for t ≥ 0, yt

u
(y)
1,t

u
(y)
2,t


>  M(P ) L1(P ) L2(P )

L1(P )> N1(P ) L12(P )
L1(P )> L12(P )> N2(P )


 yt

u
(y)
1,t

u
(y)
2,t


=y>t

(
M(P )− L(P )N (P )−1L(P )>

)
yt

+
(
u

(y)
t +N (P )−1L(P )>yt

)>
N (P )

(
u

(y)
t +N (P )−1L(P )>yt

)
=(i)t + (ii)t,

where u
(y)
t = [(u

(y)
1,t )
>, (u

(y)
2,t )
>]> ∈ R2`. Since P satisfies (ARE-y) (69), (i)t = 0 for

every t ≥ 0. Thus, by Corollary 26, for every (K1,K2) ∈ Θy and ỹ ∈ Rd,
Cy(K1,K2, ỹ)− C∗(P ; ỹ)
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= E

[ ∞∑
t=0

γt
(
u

(y)
t +N (P )−1L(P )>yt

)>
N (P )

(
u

(y)
t +N (P )−1L(P )>yt

)∣∣∣∣∣ y0 = ỹ

]
.

If we choose (K∗1 ,K
∗
2 ) ∈ R`×d × R`×d satisfying equation (79), then we obtain

(ii)t = 0 for every t ≥ 0. In this case, we have

Cy(K∗1 ,K
∗
2 , ỹ) = C∗y (P ; ỹ) = ỹ>P ỹ +

γ

1− γ
E
[
(ε11)>Pε11

]
<∞.

Let us move on to obtain expressions for (K∗1 ,K
∗
2 ). Since the matrix N (P )

is invertible, there exists a unique solution u
(y),∗
t to (79) for every t ≥ 0. We

plug-in the definition of L(P ), N (P ), and u
(y),∗
t = [(u

(y),∗
1,t )>, (u

(y),∗
2,t )>]>, equation

(79) is equivalent to the system of equations (80) and (81). So, by multiplying
L12(P )N2(P )−1 on both sides of (81), and subtract it to (80), we obtain(
L12(P )N2(P )−1L12(P )>−N1(P )

)
u

(y),∗
1,t =

(
L1(P )>−L12(P )N2(P )−1L2(P )>

)
y∗t .

From the assumptions, L12(P )N2(P )−1L12(P )> −N1(P ) ≺ 0 is invertible. Hence,
we obtain the optimal feedback control for player 1 by

u
(y),∗
1,t = −K∗1y∗t

where K∗1 is given by (76). Similarly, we can derive that u
(y),∗
2,t = K∗2y

∗
t with K∗2

given by (76). Moreover, replacing u
(y),∗
1,t=0 and u

(y),∗
2,t=0 with their expressions in (78)

back into (79), and by noticing that it holds true for every ỹ ∈ Rd, we have{
−N1(P )K∗1 + L12(P )K∗2 = −L1(P )>

−L12(P )>K∗1 +N2(P )K∗2 = −L2(P )>.
(82)

In the following, we will show that the pair (K∗1 ,K
∗
2 ) is a CLSP−y, which means

that it satisfies condition (65). First, under the assumption in the statement, we
know that (K∗1 ,K

∗
2 ) ∈ Θy. Then, we look at the case when player 2 fixes her strategy

to K∗2 , but player 1 adopts an alternative strategy K1 satisfying (K1,K
∗
2 ) ∈ Θy.

The corresponding control at time t is then given by u
(y)
1,t = −K1y

2∗
t , where (y2∗

t )t≥0

has dynamics (72). By Corollary 28 and Schur’s lemma, we have

Cy(K1,K
∗
2 , ỹ)− C∗y (P ; ỹ)

=E

[ ∞∑
t=0

γt(y2∗
t )>

(
M2∗(P )− L2∗

1 (P )(N 2∗
1 (P ))−1L2∗

1 (P )>
)
y2∗
t

∣∣∣∣∣ y2∗
0 = ỹ

]

+ E

[ ∞∑
t=0

γt
(
u

(y)
1,t + (N 2∗

1 (P ))−1L2∗
1 (P )>y2∗

t

)>
N 2∗

1 (P )(
u

(y)
1,t + (N 2∗

1 (P ))−1L2∗
1 (P )>y2∗

t

)∣∣∣ y2∗
0 = ỹ

]
.

From Lemma 29, we know that a solution P to (ARE-y) (69) is also a solution to
(73). Moreover, we have −N1(P )K∗1 + L12(P )K∗2 = −L1(P )> which implies, by
definition of N 2∗

1 (P ) and L2∗
1 (P ), that

−K∗1 = −(N1(P ))−1
(
L1(P )> + L12(P )K∗2

)
= −(N 2∗

1 (P ))−1L2∗
1 (P )>.

Thus, together with u
(y)
1,t = −K1y

2∗
t for every t ≥ 0, we have

Cy(K1,K
∗
2 , ỹ)− C∗(P ; ỹ)
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= E

[ ∞∑
t=0

γt(y2∗
t )>(K∗1 −K1)>N1(P )(K∗1 −K1)y2∗

t

∣∣∣∣∣ y2∗
0 = ỹ

]
.

Consequently, the condition N1(P ) = γB>1 PB1 +R1 � 0 implies

Cy(K1,K
∗
2 , ỹ)− Cy(K∗1 ,K

∗
2 , ỹ) ≥ 0.

We can proceed similarly to prove that Cy(K∗1 ,K2, ỹ)−Cy(K∗1 ,K
∗
2 , ỹ) ≤ 0 using the

fact that K∗2 = −(N 1∗
2 (P ))−1L1∗

2 (P )> and (y1∗
t )t≥0 satisfies the dynamics (75).

We present here similar results corresponding to the CLSP − z. Let the matri-
ces (Ñ1, Ñ2, L̃1, L̃2, L̃12, M̃ , Ñ , L̃)(P̄ ) be defined by using the same expressions in

equations (67)(a), (b), (c), but by replacing (A,B1, B2, Q) to (Ã, B̃1, B̃2, Q̃).
For a symmetric matrix P̄ ∈ Sd, let us denote

L∗i = −
(
L̃12(P̄ )Ñj(P̄ )−1L̃12(P̄ )> − Ñi(P̄ )

)−1(
L̃i(P̄ )> − L̃12(P̄ )Ñj(P̄ )−1L̃j(P̄ )>

)
(83)

for i 6= j, i, j ∈ {1, 2}, provided the inverse of matrices appearing above exist.

Lemma 33. Assume the following Algebraic Riccati equation (ARE-z):

0 = M̃(P̄ )− L̃(P̄ )Ñ (P̄ )L̃(P̄ )> (84)

admits a solution P̄ ∈ Sd which is such that

γB̃>1 P̄ B̃1 + R̃1 � 0 and γB̃>2 P̄ B̃2 − R̃2 ≺ 0. (85)

Assume in addition that the pair of matrices (L∗1, L
∗
2) given by (83) is in Θz. Then,

(L∗1, L
∗
2) is a CLSP − z in Θz.

Corollary 34. If the two pairs (K∗1 ,K
∗
2 ) ∈ Θy and (L∗1, L

∗
2) ∈ Θz defined in Lem-

mas 32 and 33 are CLSP − y and CLSP − z respectively, then (θ∗1 , θ
∗
2) ∈ Θclose

ad

defined by θ∗1 = (K∗1 , L
∗
1), and θ∗2 = (K∗1 , L

∗
2), is a closed-loop saddle point for the

zero-sum game. The optimal value of the utility function is given by

C(θ∗1 , θ
∗
2) = E

[
ỹ>P ỹ

]
+ E

[
z̃>P̄ z̃

]
+

γ

1− γ
E
[
(ε11)>Pε11 + (ε01)>P̄ ε01

]
,

where P and P̄ are solutions to the (ARE-y) (69) and (ARE-z) (84) satisfying
conditions (77) and (85) respectively.

6. Connection between closed-loop and open-loop saddle points. In this
section, we show that the open-loop and closed-loop equilibria are tightly related.
To this end, we impose the following assumption on the model parameters.

Assumption 2. We assume that ` = d, and the matrices B1, B2, R1, R2 and
B̃1, B̃2, R̃1, R̃2 are all invertible.

For an invertible matrix S ∈ Rd×d, we denote S−> = (S>)−1 = (S−1)>.
If a solution P c ∈ Sd to (ARE-y) is invertible, we have an alternative expression

for (ARE-y).

Lemma 35. Suppose Assumption 2 holds. Let P c ∈ Sd be a solution to the ARE
(69). If P c and (P c)−1 + γB1R

−1
1 B>1 − γB2R

−1
2 B>2 are invertible, then

M(P c)− L(P c)N (P c)−1L(P c)>
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= Q− P c +A>
(

1

γ
(P c)−1 +B1R

−1
1 B>1 −B2R

−1
2 B>2

)−1

A. (86)

Proof. First, under Assumption 2, we observe that

S3 := L12(P c)> −N2(P c)L12(P c)−1N1(P c)

= γB>2 P
cB1 − (γB>2 P

cB2 −R2)

(
1

γ
B−1

2 (P c)−1B−>1

)
(γB>1 P

cB1 +R1)

= R>2 B
−1
2

(
−B2R

−1
2 B>2 +

1

γ
(P c)−1 +B1R

−1
1 B>1

)
B−>1 R1 (87)

and also 
N2(P c)L12(P c)−1 = B>2 B

−>
1 − 1

γ
R2B

−1
2 (P c)−1B−>1

L12(P c)−1N1(P c) =
1

γ
B−1

2 (P c)−1B−T1 R1 +B−1
2 B1.

(88)

Since L12(P c) and S3 are invertible, by [48, Corollary 4.1] we obtain

1

γ2
L(P c)N (P c)−1L(P c)>

= −A>P cB1S
−1
3 N2L−1

12 B
>
1 P

cA+A>P cB1S
−1
3 B>2 P

cA

+A>P cB2

(
L−1

12 + L−1
12 N1S

−1
3 N2L−1

12

)
B>1 P

cA−A>P cB2L−1
12 N1S

−1
3 B>2 P

cA

= (i) + (ii) + (iii) + (iv). (89)

We then use equation (88) to simplify (i) and (iv):

(i) = −(ii) +
1

γ
A>P cB1S

−1
3 R2B

−1
2 A, (iv) = −(ii)− 1

γ
A>B−T1 R1S

−1
3 B>2 P

cA.

Moreover we have

(iii) =
1

γ
A>P cA+ (ii)− 1

γ2
A>B−>1 R1S

−1
3 R2B

−1
2 A+

1

γ
A>B−T1 R1S

−1
3 B>2 P

cA

− 1

γ
A>P cB1S

−1
3 R2B

−1
2 A.

Then, equation (89) becomes

L(P c)N (P c)−1L(P c)> = γA>P cA−A>B−>1 R1S
−1
3 R2B

−1
2 A.

Together with equation (87), we conclude that

0 =M(P c)− L(P c)N (P c)−1L(P c)>

= Q− P c +A>
(

1

γ
(P c)−1 +B1R

−1
1 B>1 −B2R

−1
2 B>2

)−1

A.

Lemma 36. Assume that Assumption 2 holds. Let P o ∈ Rd×d be a solution to the
ARE (34) derived from the open-loop information structure, namely:

P o = γ
(
A>P o + 2Q

)
(A+ (B1Γ1 +B2Γ2)P o) (90)

where Γ1 = − 1
2R
−1
1 B>1 and Γ2 = 1

2R
−1
2 B>2 . We consider the matrix given by

P c =
1

2
A>P o +Q. (91)
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If A>P o = (P o)>A, and P c and (P c)−1+γ
(
B1R

−1
1 B>1 −B2R

−1
2 B>2

)
are invertible,

then P c is a solution to (ARE-y) (69).

Proof. This is a direct consequence of Lemma 35. By plugging the expressions of Γ1

and Γ2 into equation (90) and replacing 1
2A
>P o +Q by P c, under the invertibility

condition on P c and (P c)−1 + γ
(
B1R

−1
1 B>1 −B2R

−1
2 B>2

)
, we get

1

2
P o =

(
1

γ
(P c)−1 +B1R

−1
1 B>1 −B>2 R−1

2 B>2

)−1

A.

Multiplying both sides by A> and rearranging the terms, we obtain (86).

Remark 37. In addition to Assumption 2, if A is invertible, then from a positive
definite solution P c to (ARE-y) (69), we can define P o = 2A−>(P c − Q) ∈ Rd×d.
By inverting the steps used in Lemma 36, we can show that P o solves (34).

The following corollary shows that both the pair of control processes associated
to a closed-loop saddle point and the pair of processes for an OLSP will lead to the
same state process, hence the same value function for the zero-sum game.

Corollary 38. We assume that Assumption 2 holds and A, Ã are invertible. Sup-
pose that there exists unique invertible solutions P o (resp. P̄ o) and P c (resp. P̄ c)
to the corresponding ARE in the open-loop information structure (34) (resp.(35))
and in the closed-loop information structure (69) (resp. (84)). Then, we have :

(i) The following holds, where ((K∗1 , L
∗
1), (K∗2 , L

∗
2)) are given in (76) and (83):{

−B1K
∗
1 +B2K

∗
2 = B1Γ1P

o +B2Γ2P
o

−B̃1L
∗
1 + B̃2L

∗
2 = B̃1Λ1P̄

o + B̃2Λ2P̄
o.

(92)

(ii) For every time t ≥ 0, the state variable x
θ∗1 ,θ

∗
2

t corresponding to a pair of closed-
loop feedback control (uc,∗1 ,uc,∗2 ) with policies (θ∗1 , θ

∗
2) = ((K∗1 , L

∗
1), (K∗2 , L

∗
2))

(55) has the same distribution as the state variable x
uo,∗1 ,uo,∗2
t controlled by an

OLSP (uo,∗1 ,uo,∗2 ) with parameters (P o, P̄ o) (42).

Proof. According to Lemma 36, the unique solutions P o (resp. P̄ o) and P c (resp.
P̄ c) to the corresponding Algebraic Riccai equation satisfy:

P c =
1

2
A>P o +Q, and P̄ c =

1

2
(A+ Ā)>P̄ o + (Q+ Q̄).

(i) It is enough to show the connection between (K∗1 ,K
∗
2 ) to the pair of

matrices (−Γ1P
o,−Γ2P

o), and the situation for (L∗1, L
∗
2) can be proved with similar

arguments. Let us denote by B̌ = [B1, B2] ∈ Rd×2` and Ř =

[
R1 0
0 −R2

]
. Then,

by equation (82) and Lemma 35, since A is invertible, we have:

−B1K
∗
1 +B2K

∗
2 = −B̌(γB̌>P cB̌ + Ř)−1

(
γB̌>P cA

)
= −

(
B̌Ř−1B̌>

) (
A−>(P c −Q)

)
.

Together with P o = 2A−>(P c −Q) and the definition of Γ1,Γ2, we obtain

−B1K
∗
1 +B2K

∗
2 = −1

2
B̌Ř−1B̌>P o = B1Γ1P

o +B2Γ2P
o.

(ii) By comparing the state dynamics of
(
x
uo,∗1 ,uo,∗2
t − x̄u

o,∗
1 ,uo,∗2
t

)
t≥0

in the open-

loop case and that of (y
θ∗1 ,θ

∗
2

t )t≥0 (58) in the closed-loop case, we have y
θ∗1 ,θ

∗
2

t
d
=
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x
uo,∗1 ,uo,∗2
t − x̄u

o,∗
1 ,uo,∗2
t in the sense of distribution. Similar arguments show z

θ∗1 ,θ
∗
2

t
d
=

x̄
θ∗1 ,θ

∗
2

t . Thus, the conclusion holds.

7. Algorithms. In this section, we propose policy-gradient based algorithms to
find the Nash equilibrium of the zero-sum mean-field type game. We start with
a convenient expression for the gradient of the utility function, which leads to a
necessary condition of optimality (counterpart to the sufficient condition studied in
§ 5.5). Then, after introducing model-based methods, we explain how to extend
them to sample-based algorithms in which the gradient is estimated using a simu-
lator providing stochastic realizations of the utility. The results of this section have
initially been presented in [25].

7.1. Gradient expression. We henceforth focus on the following problem based
on closed-loop controls, introduced in Section 5. Each player i = 1, 2 chooses
parameter θ∗i = (K∗i , L

∗
i ) such that θ = (θ∗1 , θ

∗
2) is a CLSP (see Defintion 21 and (57)

for the definition of the set Θ).

For simplicity, we introduce the following notation xu
θ1
1 ,u

θ2
2 = xθ1,θ2 , and since

we focus on linear controls, using the notation C introduced in (62), we have

C(θ1, θ2) = J(uθ11 ,u
θ2
2 ).

Moreover, let yK1,K2

t = xθ1,θ2t − x̄θ1,θ2t and zL1,L2

t = x̄θ1,θ2t , which is justified by
the fact that the dynamics of y and z depend respectively only on (K1,K2) and
(L1, L2).

Let P yK1,K2
and P zL1,L2

be a solutions to the linear equations

P yK1,K2
= Q+K>1 R1K1 −K>2 R2K2 (93)

+ γ(A−B1K1 +B2K2)>P yK1,K2
(A−B1K1 +B2K2),

P zL1,L2
= Q̃+ L>1 R̃1L1 − L>2 R̃2L2 (94)

+ γ(Ã− B̃1L1 + B̃2L2)>P zL1,L2
(Ã− B̃1L1 + B̃2L2).

We now provide an explicit expression for the gradient of the utility function
with respect to the control parameters in terms of the solution to the equations (93)
and (94). Let us denote[

Ey,1K1,K2

Ey,2K1,K2

]
= −γ

[
B>1 P

y
K1,K2

A

−B>2 P
y
K1,K2

A

]
+ R

[
K1

K2

]
,[

Ez,1L1,L2

Ez,2L1,L2

]
= −γ

[
B̃>1 P

z
L1,L2

Ã

−B̃>2 P zL1,L2
Ã

]
+ R̃

[
L1

L2

]
with

R =

[
R1 + γB>1 P

y
K1,K2

B1 −γB>1 P
y
K1,K2

B2

−γB>2 P
y
K1,K2

B1 −R2 + γB>2 P
y
K1,K2

B2

]
,

R̃ =

[
R̃1 + γB̃>1 P

z
L1,L2

B̃1 −γB̃>1 P zL1,L2
B̃2

−γB̃>2 P zL1,L2
B̃1 −R̃2 + γB̃>2 P

z
L1,L2

B̃2

]
where

ΣyK1,K2
= E

[∑
t≥0

γtyK1,K2

t (yK1,K2

t )>
]
, ΣzL1,L2

= E
[∑
t≥0

γtzL1,L2

t (zL1,L2

t )>
]
.

The following result has been proved in [25, Proposition 1].
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Proposition 39 (Policy gradient expression). For any θ = (θ1, θ2) ∈ Θ,

∇KjC(θ1, θ2) = 2Ey,jK1,K2
ΣyK1,K2

, ∇LjC(θ1, θ2) = 2Ez,jL1,L2
ΣzL1,L2

, j = 1, 2.

(95)

7.2. Model-based policy optimization. Let us assume that the model is known
and both players can see the actions of one another at the end of each time step.
To explain the intuition behind the iterative methods, we first express the optimal
control of a player when the other player has a fixed control. For some given θ2 =
(K2, L2), the inner minimization problem for player 1 becomes an LQR problem
with instantaneous utility at time t:

(xt − x̄t)>QK2
(xt − x̄t) + x̄>Q̃K2

x̄

+ (u1,t − ū1,t)
>R1(u1,t − ū1,t) + ū>1,t(R1 + R̄1)ū1,t,

when player 1 uses control u1, where QK2
= Q−K2R2K2 and Q̃L2

= Q̃−L2R̃2L2,
and state dynamics given by:

xt+1 = AK2xt + ĀK2,L2 x̄t +B1u1,t + B̄1ū1,t + ε0t+1 + ε1t+1,

where AK2 = A+ B2K2 and ĀK2,L2 = Ā+ B̄2L2 + B2(L2 −K2). Inspired by the
results in [38], we propose to find the stationary point θ∗1(θ2) = (K∗1 (K2), L∗1(L2)) of
the inner problem. By setting ∇θ1C(θ1, θ2) = 0 and by Proposition 39, this yields

K∗1 (K2) = γ(R1 + γB>1 P
y
K2
B1)−1B>1 P

y
K2

[A+B2K2] , (96)

where P yK2
= P yK∗1 (K2),K2

solves

P yK2
= Q̃K2

+ γÃ>K2
P yK2

ÃK2
− γ2Ã>K2

P yK2
B1(R1 + γB>1 P

y
K2
B1)−1B>1 P

y
K2
ÃK2

,

where Q̃K2
= Q −K>2 R2K2 and ÃK2

= A + B2K2. This equation is obtained by
considering the equation (93) for P yK1,K2

and replacing K1 by the above expres-

sion (96) for K∗1 (K2). One can similarly introduce K∗2 (K1), which is the optimal
K2 for a given K1, and likewise for L∗1(L2), L∗2(L1).

Based on this idea and inspired by the works of Fazel et al. [38] and Zhang et
al. [57], we propose two iterative algorithms relying on policy-gradient methods,
namely alternating-gradient and gradient-descent-ascent, to find the optimal values
of θ1 and θ2. Starting from an initial guess of the control parameters, the players
update either alternatively or simultaneously their parameters by following the gra-
dients of the utility function. In the alternating-gradient (AG) method, the players
take turn in updating their parameters. Between two updates of θ2, θ1 is updated
Nmax

1 times. In the gradient-descent-ascent (GDA) method, all the control param-
eters are updated synchronously at each iteration. For description of the algorithms
and more details, see e.g. [51] and [30,32,43,49] respectively (see also [57]).

At each step of these methods, the gradients can be computed directly using
the formulas provided in Proposition 39. In order to have a benchmark, one
can compute the equilibrium (θ∗1 , θ

∗
2) by solving the Riccati equations (69)–(84).

Alternatively, the Nash equilibrium can be computed by finding K2 such that
∇K2

Cy(K∗1 (k2),K2)∣∣k2=K2
= 0. The left-hand side has an explicit expression ob-

tained by combining (95) and (96).
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7.3. Sample-based policy optimization. The aforementioned methods use ex-
plicit expressions for the gradients, which rely on the knowledge of the model (the
coefficients of the dynamics and the utility function). However, in many situations
these coefficients are not known. Instead, let us assume that we have access to
the following (stochastic) simulator, called MKV simulator and denoted by STMKV :
given a control parameter θ = (θ1, θ2) = (K1, L1,K2, L2), STMKV (θ) returns a sam-
ple of the mean-field utility (i.e., the quantity inside the expectation in equation (4))
for the MKV dynamics (3) using the control θ and truncated at time horizon T ,
which is similar to the one introduced in [28]. In other words, it returns a realiza-

tion of the social utility
∑T −1
t=0 γtct, where ct is the instantaneous mean-field utility

at time t, see (5). We can estimate the gradient of the utility with respect to the
control parameters of each player. The estimation algorithm uses the simulator to
obtain realizations of the (truncated) utility when using perturbed versions of the
controls with O(M) perturbations. See [28,38] for more details

7.4. Numerical results. We now provide numerical results both for model-based
and sample-based versions of the two methods presented in the previous section.

Setting. The specification of the model used in the simulations is given in Table 1.
This setting has been chosen to illustrate the convergence when the equilibrium
controls are not symmetric, i.e. θ1 6= θ2. To be able to visualize the convergence of
the controls, we focus on a one-dimensional example, that is, d = ` = 1.

Results with exact gradients. The parameters used are given in Table 1, inspired
by the values used for a single controller in [28] and numerical experiments.

Fig. 1 shows the trajectory of (K1,K2) 7→ Cy(K1,K2) and (L1, L2) 7→ Cz(L1, L2)
generated by the iterations of AG and DGA methods. Iterations are counted in the

following way: in AG at iteration k, (θk1 , θ
k
2 ) = (θ

kmodNmax1 ,dk/Nmax1 e
1 , θ

dk/Nmax1 e−1
2 ),

while in DGA one step of for-loop corresponds to one iteration. The utility at the
starting point and at the Nash equilibrium are respectively given by a black star and
a red dot. In the AG, since θ1 is updated Nmax

1 times between two updates of θ2,
the trajectory moves faster in the θ1-direction until it reaches an approximate best
response against θ2, after which the trajectory moves towards the Nash equilibrium.
This is also confirmed by the parameters convergence in Fig. 2(a). The relative error
on the utility is shown in Fig. 2(b). We observe that the convergence is slower with
AG because player 2 updates her control only every Nmax

1 iterations.

Sample-based results. The parameters used are given in Table 1 and were cho-
sen based on the values in [28] as well as numerical experiments. The figures are
obtained by averaging the results over 5 experiments, each based on a different real-
ization of the randomness in the initial points, in the dynamics and in the gradient
estimation.

Fig. 3 shows the trajectory of (K1,K2) 7→ Cy(K1,K2) and (L1, L2) 7→ Cz(L1, L2)
generated by the iterations of AG and DGA methods. The convergence of the
parameters θ = (K1, L1,K2, L2) is shown in Fig. 4(a). The evolution of the relative
error on the utility is shown in Fig. 4(b).

8. Conclusion. In this paper, we have studied zero-sum mean-field type games
with linear quadratic model under infinite-horizon discounted utility function. We
have identified the closed-form expression of the Nash equilibrium controls as linear
combinations of the state and its mean. Moreover, we have proposed two policy
optimization methods to learn the equilibrium. Numerical results have shown the
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(a)

(b)

Figure 1. Model-based policy optimization: Convergence of each
part of the utility. (a) Cy as a function of (K1,K2). (b) Cz as a
function of (L1, L2).

Table 1. Simulation parameters

Model parameters

A A B1 = B1 B2 = B2 Q Q R1 = R1 R2 = R2 γ

0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.9

Initial distribution and noise processes

ε00 ε10 ε0t ε1t
U([−1, 1]) U([−1, 1]) N (0, 0.01) N (0, 0.01)

AG and DGA methods parameters

Nmax
1 Nmax

2 T η1 η2 K0
1 L0

1 K0
2 L0

2

10 200 2000 0.1 0.1 0.0 0.0 0.0 0.0

Gradient estimation algorithm parameters

T M τ

50 10000 0.1
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Figure 2. Model-based policy optimization: Convergence of the
control parameters in (a) and of the relative error on the utility
in (b).

convergence of the two methods in both model-based and sample-based settings.
The question of convergence of the algorithms proposed here as well as model-free
methods for non-LQ or general-sum MFTG will be studied in future works.
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(a)

(b)

Figure 3. Sample-based policy optimization: Convergence of each
part of the utility. (a) Cy as a function of (K1,K2). (b) Cz as a
function of (L1, L2).
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(a)

(b)

Figure 4. Sample-based policy optimization: Convergence of the
control parameters in (a) and of the relative error on the utility
in (b).
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[25] R. Carmona, K. Hamidouche, M. Laurière and Z. Tan, Policy optimization for linear-quadratic
zero-sum mean-field type games, Proceedings of the IEEE Conference on Decision and Con-

trol , Jeju, Korea, 2020.

[26] R. Carmona and M. Laurière, Convergence analysis of machine learning algorithms for the
numerical solution of mean field control and games I: The ergodic case, SIAM J. Numer.

Anal., 59 (2021), 1455–1485.
[27] R. Carmona and M. Laurière, Convergence analysis of machine learning algorithms for the

numerical solution of mean field control and games II: The finite horizon case, preprint,

arXiv:1908.01613.
[28] R. Carmona, M. Laurière and Z. Tan, Linear-quadratic mean-field reinforcement learning:

Convergence of policy gradient methods, preprint, arXiv:1910.04295.

[29] R. Carmona, M. Laurière and Z. Tan, Model-free mean-field reinforcement learning: Mean-
field MDP and mean-field Q-learning, preprint, arXiv:1910.12802.

[30] A. Cherukuri, B. Gharesifard and J. Cortés, Saddle-point dynamics: Conditions for asymp-

totic stability of saddle points, SIAM J. Control Optim., 55 (2017), 486–511.
[31] A. Cosso and H. Pham, Zero-sum stochastic differential games of generalized McKean–Vlasov

type, J. Math. Pures Appl. (9), 129 (2019), 180–212.

[32] C. Daskalakis and I. Panageas, The limit points of (optimistic) gradient descent in min-
max optimization, NIPS’18: Proceedings of the 32nd International Conference on Neural

Information Processing Systems, 2018, 9256–9266. Available from: https://dl.acm.org/doi/
pdf/10.5555/3327546.3327597.

[33] B. Djehiche and S. Hamadène, Optimal control and zero-sum stochastic differential game

problems of mean-field type, Appl. Math. Optim., 81 (2020), 933–960.
[34] B. Djehiche, A. Tcheukam and H. Tembine, Mean-field-type games in engineering, AIMS

Electronics and Electrical Engineering , 1 (2017), 18–73.

[35] C. Domingo-Enrich, S. Jelassi, A. Mensch, G. M. Rotskoff and J. Bruna, A mean-field analysis
of two-player zero-sum games, preprint, arXiv:2002.06277.

[36] R. Elie, T. Ichiba and M. Laurière, Large banking systems with default and recovery: A mean

field game model, preprint, arXiv:2001.10206.
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