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ABSTRACT. In this paper, zero-sum mean-field type games (ZSMFTG) with
linear dynamics and quadratic cost are studied under infinite-horizon dis-
counted utility function. ZSMFTG are a class of games in which two decision
makers whose utilities sum to zero, compete to influence a large population of
indistinguishable agents. In particular, the case in which the transition and
utility functions depend on the state, the action of the controllers, and the
mean of the state and the actions, is investigated. The optimality conditions
of the game are analysed for both open-loop and closed-loop controls, and ex-
plicit expressions for the Nash equilibrium strategies are derived. Moreover,
two policy optimization methods that rely on policy gradient are proposed for
both model-based and sample-based frameworks. In the model-based case, the
gradients are computed exactly using the model, whereas they are estimated
using Monte-Carlo simulations in the sample-based case. Numerical experi-
ments are conducted to show the convergence of the utility function as well as
the two players’ controls.

1. Imtroduction. Decision making in multi-agent systems has recently received an
increasing interest from both theoretical and empirical viewpoints. For instance,
multi-agent reinforcement learning (MARL) has been applied successfully to prob-
lems ranging from self-driving cars and robotics to games, while game-theoretic
models have been exploited to study several prominent decision-making problems
in engineering, economics and finance.

In multi-agent systems, a large number of interacting agents either cooperate or
compete to optimize a certain individual or common goal. MARL and stochastic
games were shown to model well systems with a small number of agents. However, as
the number of agents becomes large, analysing such systems becomes intractable due
to the exponential growth of agent interactions and the prohibitive computational
cost. To tackle this issue, mean-field approximations, borrowed from statistical
physics, were considered to study the limit behaviour of systems in which the agents
are indistinguishable and their decisions are influenced by the empirical distribution
of the other agents.
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Mean-field games (MFGs) [42,46] and their variants mean-field type control
(MFC) [14] and mean-field type games (MFTG) [10] consist of studying the global
behaviour of systems composed of infinitely many agents which interact in a sym-
metric manner. In particular, the mean-field approximation captures all agent-
to-agent interactions that, individually, have a negligible influence on the overall
system’s evolution.

An MFG corresponds to the asymptotic limit of the situation in which all the
agents compete to minimize their individual utility. In this case, the solution con-
cept is a Nash equilibrium, in which a typical agent is worse-off if she deviates
unilaterally. From the point of view of the global system, a better solution can be
found by a central planner who tries to minimize the social utility by prescribing
the control that each agent should use. This leads to the notion of MFC, which
can be viewed as the optimal control of a McKean-Vlasov (MKV) dynamics, in
which the evolution of the state process is influenced by its own distribution. Last,
mean-field type games are a framework that models control problems involving
several decision makers and mean-field interactions. Typical motivations are prob-
lems in which large coalitions compete or in which several agents try to influence a
large population [16,34]. These three types of models have found numerous applica-
tions [12], e.g. in finance [21], energy production [8,13], crowd motion [3,6], wireless
communications [44, 50, 53], distributed robotics [47] and systemic risk [24,36].

In the past decade, many contributions have contributed to develop the theory
of such mean-field problems. In order to study their solutions, a key point is the
derivation of optimality conditions, which are typically phrased either in terms of
partial differential equations (PDEs) or in terms of forward-backward stochastic
differential equations (FBSDEs). For a detailed account, see e.g. [15,20,23] and the
references therein. As a cornerstone for applications, the development of numer-
ical methods for these mean-field problems has also attracted a growing interest.
Assuming full knowledge of the model, methods for which convergence guarantees
have been established include finite difference schemes for partial differential equa-
tions [1, 2], semi-Lagrangian schemes [22], augmented Lagrangian or primal-dual
methods [5,17,18], value iteration algorithm [9], or neural network based stochastic
methods [26, 27]; see e.g. [4] for a recent overview. However, in many practical
situations, the model is not fully known and these methods can not be employed.
Hence model-free or sample-based methods, in which the optimization is performed
while having only access to a simulator instead of knowing the model, have recently
been investigated. For mean-field games, fixed-point [41], fictitious play scheme [37]
or actor-critic method [39] have been combined with model-free methods to com-
pute the best response, whereas for mean-field control problems, the solution has
been approximated using policy gradient [28] or Q-learning [29,40]. Despite re-
cent progress, these methods remain restricted to mean-field problems with simple
structures which have a common point: the decision makers are either infinitesimal
and identical players or a single central planner. More complex models are often
needed to tackle applications, such as settings in which a mean-field dynamics is
influenced by several distinguishable decision makers. Such situations can typically
be modeled by a MFTG.

An archetypal MFTG is the case of mean-field zero-sum games. Two-player zero-
sum games in their standard stochastic form, with no mean-field interactions, have
been extensively studied in the literature [55]. In this class of games, two decision
makers compete to respectively maximize and minimize the same utility function.
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The large literature on this topic is motivated by many applications and by con-
nections with robust control [11]. Recently, generalizations to the case where the
state dynamics is of MKV type have been introduced in continuous time over a finite
time horizon. Optimality conditions have been derived using the theory of backward
stochastic differential equations (BSDEs) in [56], using the dynamic programming
principle and partial differential equations (PDEs) in [31] or using a weak formu-
lation in [33]. All these works assume that the controls take values in a compact
space, and hence are not applicable to a general linear-quadratic setting. Along
a different line, zero-sum games with mean-field interactions have also attracted
interest for their connections with generative adversarial nets (GANs) [19,35].

Although general stochastic problems with mean-field interactions can be studied
from a theoretical perspective, explicit computation of the solution and numerical
illustration of the Nash equilibrium are challenging. In standard optimal control,
linear-quadratic (LQ) models, where the dynamics are linear and the cost is qua-
dratic, usually have analytical or easily tractable solutions, which makes them very
popular. These problems have also been considered in the optimization and machine
learning communities, since algorithms with proof of convergence can be developed,
see e.g. [38] where the authors prove convergence of model-based and sample-based
policy gradient methods for a LQ optimal control problem. Sample-based methods
have also been used to solve (standard) LQ zero-sum games. In [7], a discrete-
time linear quadratic zero-sum game with infinite time horizon is studied and a
Q-learning algorithm is proposed, which is proved to converge to the Nash equilib-
rium. In [57], the authors study LQ zero-sum games and propose three projected
nested-gradient methods that are shown to converge to the Nash equilibrium of
the game. However, none of these contributions tackle mean-field interactions in a
zero-sum setting.

In the present work, under a discrete time, infinite-horizon and discounted util-
ity function, we investigate zero-sum mean-field type games (ZSMFTG) of linear-
quadratic type, which, to the best of our knowledge, had not been the focus of any
work before. In particular, we address the case in which the transition and utility
functions do not only depend on the state and the action of the controllers, but
also the mean of the state and the actions. Moreover, the state is subject to a
common noise. The structure of the problem and the infinite horizon regime allow
us to identify the form of the equilibrium controls as linear combinations of the
state and its mean conditioned on the common noise, both in the open-loop and
the closed-loop settings. To learn the equilibrium, we extend the policy-gradient
techniques developed in [28] for MFC, to the ZSMFTG framework. We design pol-
icy optimization methods in which the gradients are either computed exactly using
the LQ model or estimated using Monte-Carlo samples when the model is not fully
known.

The rest of the paper is organized as follows. In Section 2, the zero-sum mean-
field type game is formulated, preceded by a N-agent control problem which mo-
tivates this setting. In Section 3, we present the rigorous probabilistic setup for
the zero-sum mean-field type game under consideration. Open-loop controls are
investigated in Section 4. After defining the set of admissible controls, we prove a
Pontryagin maximum principle giving necessary and sufficient conditions of opti-
mality, see Propositions 12 and 14. Section 5 considers closed-loop controls which
are linear in the state and the mean. Focusing on the coefficients of the linear
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combination, we define a notion of admissible controls and prove sufficient condi-
tions of optimality, see Proposition 32 and Corollary 34. The connection between
equilibria in the open-loop and the closed-loop information structures are studied in
Section 6, see Lemma 36 and Remark 37. Focusing on closed-loop controls, expres-
sions for the gradient of the utility function and a necessary condition of optimality
are derived in Section 7, and both model-based and model-free policy optimization
methods are proposed. In Subsection 7.4, we report numerical experiments to show
the convergence of the controls and the utility function. Section 8 concludes the

paper.

2. Model and problem formulation. In this section, we first present a zero-
sum game in which two controllers compete to influence a population of agents.
The agents interact in a symmetric way, through the empirical distribution of their
states and actions. We then present a mean-field version of the game (corresponding
to the situation where N — +00), in which the two controllers influence a state
whose dynamics is of MKV type.

2.1. N-agent problem. Consider a system composed of a population {1,..., N}
with N indistinguishable agents. We investigate the case in which these agents
have symmetric interactions and are influenced by two decision makers, also called
controllers or players, competing to optimize a criterion. In particular, we are
interested in the linear-quadratic zero-sum case. Here, the state evolution of an
agent ¢ € {1,..., N} is given by

(Ezt.+1 = Al’; + A.’ft + Blu’iyt + Blﬂl,t + BQué,t + BQﬂZt + 67t;+1 + 6?+1, (]-)

with initial condition x}) = €} + €3, where z{ is the initial state of agent i to which
we introduce randomness with €} and €J. At each time ¢, i € R? corresponds to
the state of the i-th agent in the population, and uj , € R® and u}, € R are the
controls prescribed to this agent respectively by the first and the second decision
maker. The noise terms €}, ; and €, are independent of each other and of €] and
€h, and we assume they have a finite second moment. Moreover, the noise terms
€? 1 for t > 0 are assumed to be identically distributed with mean 0, and similarly
for €;,, for ¢ > 0. The interpretation of the noise terms is that €Y is a common
noise affecting the position of all the agents, whereas ¢! is an idiosyncratic noise
affecting only the position of the i-th agent. A, A, B;, B; are fixed matrices with
suitable dimensions. Here, z; = % ZZI\LI zi, is the sample average of the individual
states, and similarly for u; and us: @;; = ﬁ Zivzl u;t The instantaneous utility
is defined by

c(x, T, 0y, 1y, up,0) = (2 —2) Qz —Z) + T (Q+ Q)T
+ (u1 — ﬁl)TRl(ul - fll) —+ ﬁ;r + (R1 + Rl)ﬁl (2)
— (UQ — ﬁg)TRQ(UQ — flg) — ﬁ;(Rz + Rg)ﬁg,

where Q, Q, R;, R; are deterministic symmetric matrices of suitable sizes such that
R;, R; + R; for i = 1,2 are positive definite.

The objective of each controller in this zero-sum problem is to minimize (resp.
maximize) the N-agent utility functional

—+oo
TN, u,) =E >y e (@, w400,
t=0
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_ (il N _ : (1 N
where z, = (z,...,7; ), and w; = (u; )¢ with w,, = (u;;,...,u;}) (we use a
boldface to denote a function of time and an underline to denote a vector of size

N), and &V is the average utility, defined by

1 N

EN(Q,%WQM) = N Zlc(xi,ft, Ui,t,ﬂl,t7ug7t,ﬂz,t).
1=
Remark 1. An interesting special case is the situation in which each decision maker
controls a different population. This corresponds to a zero-sum game between two
large coalitions. This setting can be covered in the following way. Assume that
d = 2d’ for some integer d’. Consider, for the dynamics, block matrices of the form:

. A 0 . B% (0
A(O A2)3B1<0 aBQ* B%a
(A A s (B s (B
T \Aa An) TPA\BE) TP\ BE)

Then the dynamics (1) rewrites, with the notation z = (21, z2) where 2; € R? and
similarly for €%, €,

and

oy, = [Arxy, + AuZie + ATy + Biui, + Bl + Bito] + i, + e 4,
dwy, = [Aswyy + AnT1y + Aoy + Biuy , + Bl + Bt ] + €, + €3
Note that the evolution of the two halves of vector = are coupled only through their
expectations and the expectation of the control used for the other half. We can

thus interpret each half as the state of a player in a different population where each
population has N indistinguishable agents.

2.2. Mean-field problem. Here, we consider the limit of the N-agent case. The
dynamics is given by

T41 = AI‘t —+ AS_Ct —+ Bl’ll,l’t -+ Bll_l,l,t -+ BQU27t + BQ’UJZt -+ 6?+1 -+ €%+1, (3)

with initial condition
To = 68 + 6(1).

Here and thereafter, when considering the mean-field problem, we use the nota-
tion Z¢ = E[x¢|(€2)o<s<¢] for the expectation of the state conditional on the realiza-
tion of the common noise, and likewise for u; and uz. Note that (3) is a dynamics
of MKV type since it is influenced by its own distribution and by the distribution
of the actions. The utility function takes the form

J(ug, ug) :E{fvtct} (4)
t=0

where v € [0, 1] is a discount factor, and the instantaneous utility at time ¢ is defined
as

ct = C(Ty, Ty, U g, Us g, U g, Ua,t)s (5)

where the function c is as in the N-agent problem.

The goal is to find an equilibrium in the sense of Nash, namely a situation in
which none of the controllers can benefit from a unilateral deviation. Such problems
are usually framed as min max (or max min) games. Due to subtle questions of
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control admissibility, we will view an equilibrium as a saddle point (see Definitions 7
and 21 below for the open-loop and closed-loop settings respectively).

Our framework is a generalization of the mean-field control setup, in which there
is a single decision maker. It can also be viewed as a variant of a Nash mean-
field control setup studied in [16] or a mean-field type game [34] in which several
mean-field decision makers compete in a general-sum game.

Next, we study the existence of the Nash equilibrium and derive its closed-form
expression for the formulated ZSMFTG.

3. Probabilistic setup. In this section we rigorously define the model of MKV
dynamics with common noise. It is analogous to the one considered in [28], except
for the fact that there are two decision makers instead of one. A convenient way to
think about this model is to view the state x; of the system at time ¢ as a random
variable defined on the probability space (2, F,P) where Q = Q% x Ql, F = FOx F!
and P = PY x PL. In this set-up, if w = (W%, w!), (W) = &(w°) and €} (w) = &} (w!)
where (€?)t:1727_,, and (%)t:lﬂ,.,, are i.i.d. sequences of mean-zero random variables
on (Q°, FO PY) and (2!, F1,P!) respectively, while the initial sources of randomness
€) and &} are random variables on (Q°, F°,P%) and (Q!, F!,P!) with distributions
pd and pf respectively, which are independent of each other and independent of
(94212, and (€});=12, .. We denote by F; the filtration generated by the noise
up until time ¢, that is F; = o(€), €}, €}, el, ..., €0, el). We assume that the variance
of random variables € and € are constant along time, and these variances are
denoted by 3° = E[(¢?) T€?] and Xt = E[(¢}) " €] for every t > 1.

At each time ¢t > 0, z; and u,;; with ¢ = 1,2 are random elements defined on
(Q, F,P) representing the state of the system and the controls exerted by a pair of
generic agents. Using the fact that the idiosyncratic noise and the common noise
are independent, the quantities Z; and @; ; with ¢ = 1,2 appearing in (3) are random
variables on (2, F,P) defined by: for w = (w° wt),

it(w07w1):/ 22(w0, @V YPL (A, ui,t(wO,wl)Z/ i (@, VP (@), i = 1,2,
0L o}

Notice that Z¢, 41+ and 4z, depend only upon wO. In fact, the best way to think
of z; and 4, with ¢ = 1,2 is to keep in mind the following fact:

Ty = E[xt|}'0], and Ujp = E[Ui,t|~7:0}-

These are the mean field terms appearing in the (stochastic) dynamics of the
state (3):

Tip1 = Azy + ATy + Biui g + Bty + Bousy + Botio g + €541 + €141

4. Open-loop information structure. In this section, we consider open-loop
controls, that is, controls available if the controllers can directly see the noise terms.
We start with this class of controls because it is somehow “larger” than the class
of closed-loop controls that will be considered in the next section (any closed-loop
control gives rise to an open-loop control, but the converse is not always true). The
main point of this section is to show that, under suitable conditions, the saddle
point controls in the open-loop setting can in fact be written as linear combinations
of the state and the conditional mean.
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4.1. Admissible controls. We will use the following notation: for n € Ny, for
any process x :  — R",

%

|2,’v =E

)

oo
DORAL
t=0

We introduce the following sets: for T' > 0, letting N<p = {0,...,T},

Ur = {u :Ner x Q= R |, is F; — measurable, E [ sup 7t||ut|2} < oo},

EEREE)

Ujpe 1= U?/{T, U= {u:NXQ»—HRL] | u € Upe, ||u||2,7<oo},
>0

where we use the notation us(-) = u(t,-) for every t € N and we identify u to an
F-adapted process (ut);>0. A process u is called L?—discounted globally integrable,
or L?—integrable for short, if u € U. Also, for T > 0,

Xr = {x ‘Ner x Q R | 2, is F; — measurable, IE[ sup ’yt||a:t||2} < oo}7

geuey

Xioe == UXT, X = {x:NxQn—ﬂRd | X € Xoe, [|x[|2y <00}
T>0

Similarly, we identify x € X}, or x € X to an F—adapted process (z;);>0 in R%.

We also say that a state process is L?—discounted globally integrable, or simply

L?—integrable, if x € X. Let S? stand for the set of symmetric matrices in R4,
In the open-loop information structure, we consider the following subset of U x U:

UL = {(u,u) eU XU | (™ )i>0 € X}

where the state process (z}'"""?),>0 follows the dynamics (3). We call every element
(ur,ug) € YN an admissible (open-loop) control pair for the two players.
The following proposition is about the L2-integrability of the state processes.

Proposition 2. Let us assume that the process X = (X;);>o satisfies
X1 =AXe + g, Xo ~ po (6)

where A € R s a fived matriz, py € P?(RY) so that E[|| Xo|?] < oo, and the
process ¢ = (qt)1>0 satisfies: ||qll2,y, < +oo If the matriz A satisfies v||A||* < 1,
then the process X = (X)i>0 satisfies || X||2,, < +00.

Proof. Given the assumption v||A||> < 1, we can choose 71 € (v,1) such that
€ :=n||A|*> < 1. Let n = v/ < 1. From the dynamics of state process X, we
have for every t > 1,

t—1
X, AKX+ Y A,
=0
. 1/2 4
Hence, letting Ca ¢ = i

t—1 ] ) ) 2
E [ 1X007] < E[(||Chent?Xoll + YolICh 6010720072 | )]
=0

t—1

. . . 2
< 20/ €E]|| Xol|?] + 2B (D2 n(t-1-0/2 102504072 )]
=0
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9 =1 .
< 2Bl Xol*) + 7= O &7 v Elllg; ).

j=0
Finally, summing over ¢ and interchanging the two summations we get:

> 2 27 > .
]E t t 2 E 2 e E J 12 0.
; [ IXelP] < & [1Xoll"] + (1_77)(1_5); [ llg;1I°] <

O

Note the following link with L?—asymptotical stability: If x € X, then we have
limy- o0 B[y l2¢|2] = 0.

We have the following two lemmas related to the L?—discounted globally inte-
grability for processes (x; — Zt)¢>0 and (Z¢)¢>0-

Lemma 3. A process x € X if and only if both processes (v¢ — Tt)i>0 € X and
(ZTe)e>0 € X. Similarly, a control process u € U if and only if both processes
(ut — at)tZO eU and (ﬂt)tzo eu.

Using Proposition 2 and Lemma 3, we deduce the following result.

Lemma 4. For any given (uj,uz) € U x U, let (q,gy))tzo and (qt(z))tzo be two
processes in U given by: for every t > 0,

{qu) = Bl(ul,t — ﬂl’t) + B2(“’2,t - ﬂ27t)7

() 5 \r 5\ (™)
g = (B1+ B1)t1s + (Ba + Ba)tay.

We have:

o Ifv||A||? < 1, then the state process'y = (yi)i>0 following the dynamics

)

v = Ay + 0 e, Yo~ (8)

i LQfdisgounted globally integrable;
o Ifv|A+ A||? < 1, the state process z = (2;)i>0 following the dynamics

1= A+ Dz + ¢+, 20~ 9)
is L?—discounted globally integrable.

Now, we are ready to provide the L?—discounted global integrability for the state
process x"1"2 = (z3'""?),5( following dynamics (3) controlled by two processes

up,up €U.

Assumption 1. v||A||?2 <1 and v||A+ A|* < 1.

Proposition 5. Under Assumption 1, we have U™ = U x U. In particular, the

set of admissible controls U™ is convex.

Proof. By definition, U;7“" C U x U. For the other inclusion, let us consider a
pair of control processes (u1,us) € U x U. We know that the corresponding state
process X% € X;,.. Taking the conditional expectation with respect to F° and
denoting 7" = E[z}""?|FP], we notice that, for every ¢t > 0,

ujuz  —ujup uj,ur  —up,up (y) 1
{xt =z, 0" = Ay =) g e

T = (A+ DT 4 g7 ey



LINEAR-QUADRATIC ZERO-SUM MFTG 411

where q,gy) and ¢'*) are given by (7). Let us denote y, = a2 — z"2 and

2y = T, "2 for every ¢ > 0. Under Assumption 1, by Lemma 4, we obtain that
the processes (yi)i>0 € X and (z;);>0 € X. which implies x""2 € X. Thus,

U xU CUP™. The convexity of U™ is a consequence of the convexity of . [

Remark 6. In the closed-loop information structure (c.f. Section 5), we will see
that the set of closed-loop admissible policy is not convex.

Definition 7. A pair of admissible control processes (uj,u3) € U;5" is an open-
loop saddle point (OLSP for short) for the zero-sum game if for any process u) € Y
and uf € U, we have

J(uj, u5) < J(uf,u3) < J(uj,u3), (10)
where (uy,uz) — J(ug, ug) is the utility function defined in equation (4).

4.2. Equilibrium condition. For the sake of convenience, we use the notation

A = A— I where I; denotes the d x d identity matrix, and ¢ = (z, &, u1, U1, ug, Uz2),
so that, if we define the function b by:

b(¢) = b(x, T, uy, Uy, Uz, Un) = Ax + AZ + Biug + Byt + Boug + Botip.  (11)
The state equation (3) can be rewritten as:

Tip1 — Ty = by, Ty, ua g, Une, Ung, Uoyg) + €94y + €y = b(G) + €041 + 641 (12)
We define the Hamiltonian function h by:
h(¢,p)

= h(x,Z,u1, U1, ug, U2, 1)

= [Az + AZ + Byuy + Bity + Bous + Botip] - p + c(, T, uy, Uy, ug, ) — 02 - p
=0(C) - p+c(Q) —dz-p

(13)

for p € RY, where § = (1 — )/~ is a positive constant representing the discount
rate, v € [0,1] being the discount factor. Throughout, we use the notation - for
the scalar product in Euclidean space. We will use the following property of the
Hamiltonian, under the following assumption, where = 0 (resp. >) means that the
matrix is non-negative semi definite (resp. positive definite).

Lemma 8. If Ry = 0, Ry + Ry = 0 (resp. Ry =0, and Ry + Ry = 0), the function
h is conver w.r.t. (u1,1) (resp. concave w.r.t. (ug,Uz)). It is strictly convex (resp.
strictly concave) if Ry > 0 and (R1 + Ry) = 0 (resp. Ry = 0 and (Ry + Rg) = 0).

Proof. For the purpose of computing gradients, Hessians and partial derivatives,
we treat ¢ as a (2d 4+ 4¢) x 1 column vector by specifying its definition as { =

7,27, u{, 4] ,uj iy |". Now, for every fixed p € RY, we have:
9. (¢, p) pI(A=6Ly) +2(z-2)"Q
9zh(C, p) pTA+2T—2)'Q+22"(Q+Q)
Ou, (¢, p p"B1+2(u1 — )" Ry

)
B (
Vch(<7p) I pT_Bl + 2(’&1 — ul)TR1 + 2'17/]—(R1 + Rl) (14)
d (
)

)
h(¢,p)
uzh(gap) B pTBQ — 2(ug — ﬁg)TRQ -
h(¢,p) p' By —2(@2 — uz) " Ry — 2u] (R + Ry)
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It can be seen that

2 o 2R1 _2R1
V(uhﬂl),(uhﬁl)h@,p) - (—2R1 202R1+ Ry) )’

is non-negative definite if the inequalities Ry = 0 and R; + Ry = 0 are satisfied,
and positive definite if Ry > 0 and (R; + Ry) > 0. Likewise for the second order
derivatives w.r.t. (ug,@2). O

In order to use the stochastic version of the Pontryagin maximum principle, we
introduce the notion of adjoint process associated to a given admissible pair of
control processes.

Definition 9. If u; = (u;¢)i=0,1,...,% = 1,2 is a pair of admissible control processes
and x = (2;)1=0,1,... is the corresponding state process controlled by u = (uy,uz),
we say that an R%valued (Ft)t>0-adapted process p = (pt)i=o0,1,... is an adjoint
process corresponding to x if it satisfies:

Pt = E[pt—i-l +[(AT = 61a)pes1 +2Quis1+ AT Pryr +2QT 141 |ft} ; t>0, (15)

and the transversality condition:

[pll2 < oo (16)

It will be useful to note that the above expression (15) can equivalently be written
as:
pe =VE[ATprs1 +2Quer + AT Py +2QT 4 | T (17)
The following result shows that combined with the admissibility of a couple of
controls, our Assumption 1 automatically implies the transversality condition.

Proposition 10. Assume that Assumption 1 holds. For every admissible pair of
control processes, there exists a unique adjoint process.

Proof. Let u = (uj,uz) be an admissible pair of control processes and let x =
(x¢)i=0.1,... be the corresponding state process.

Uniqueness. Let (p)i>0 and (p})i>0 be two adjoint processes corresponding to
(ur,uz). We first look at the corresponding conditional processes, namely, p; =
Elp:|F°], p, = E[p,|F°], t > 0. Taking the conditional expectation on both sides of
equation (17) for p; and p} and then the difference between equations for p; and pj,
by condition /2| A + A|| < 1 we obtain E[||p; — p;[] < +"/*E[[|pe+1 — preal]]- By
induction, we obtain for every 0 < t < s, v*/?E[||p; — 7, ||] < v*/?E[||ps —p.]|]. By the
transversality condition (16) for (ps)s>0 and (p})s>0 and the Jensen’s inequality for
conditional expectation, we get

lim +*/2E |5, — p4[]] < lim [(Bly® lpsl| Y2 + (Bl I 2)2] = 0.
S oo S$—00

Hence p; = p, P-a.s., for all ¢ > 0. Similarly, from (17), we deduce that (p; — p;) =
(p; — P}), P-a.s., for all t > 0. Therefore p; = p}, P-a.s., for all ¢ > 0.

Existence. We proceed by constructing an approximation over a finite time horizon
and then passing to the limit. For every T' > 0, define the process (p!);>o by: for
t>T,pl =0,and for t =T — 1,7 —2,1,...,0,

pf =E oy +9[(AT = 6L)pfs +2Quess + AT 5y, +20w]1 7],
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where p] = E[p!'|F°]. By equation (17), we have: for all t =0,...,T — 1,
pi = 7E(A+A) 51 +2(Q + Q)T |Fel, (18)
pi — i = EIAT(pf1 — pi1) +2Q(w — 2| F- (19)

We split the proof of existence into four steps. We first study the processes
(ﬁtT)tzo, T>0.

Claim 1. For every s > 0, (p1)r>s is a Cauchy sequence for convergence in L*
under the norm || - ||

This is a direct consequence of Assumption 1 and the following property, that
we prove below: For every s, Ty, Ty, T5, such that 0 < s < T < min{T5, T3},

E[p2 —pl|] < 25" 3" M, (20)

~ 1 . 1 < A 1/2
where § = v, ij = 73| A+ 4] and M = 12 Q + Q|| [xI|~.

First, by (18) and since pJ. = 0, for every t < T,
E(llp¢ 1] <AFE[pi11 1] + 27211Q + QIE[||Ze411[]

T
<PQ+ QI D AT T TE||# ]

1=t+1
<3''M, (21)

where we used the fact that 72 < 1 by Assumption 1. Moreover, by equation (18),
for every 0 < s < Ty < min{Ts, T3}, we have

E [Ilps2 — 1] <7l A+ AIE[Ip:31 — paia ]

<3 E(lIpr - ozl
SZ’?l—SﬁTl—SM-

This concludes the proof of (20).

Claim 2. There exist a sequence of times (Tx)r>0 and a process of random vectors
(P%)s>0 satisfying: for every s >0, klim pik = p*, P-almost surely. Moreover
- —00

[Pl < o0 (22)

We proceed by induction for s = 0,1,2,3, ... with a diagonal argument. For time
s = 0, by the Cauchy property of Claim 1, (ﬁg)Tzo converges in L! for each of its

©
i g S , (0 =T S .
coordinates, so for some sequence (7} );>0, (Py’ )j>0 converges almost surely to

a random vector, say pj. Then, consider s > 0 and assume we have (Tj(s)) j>0 and
7 7
(Pf)i<s such that p,” — pf as j — +oo, for all t < s. Since (p,,);>0 is also a

Cauchy sequence for convergence in L', there exists a sub-sequence (Tj(sﬂ))jzo of
(s+1)
(Tj(s))jzo such that (p,}; );>o0 converges almost surely to a random vector, say
Dsy1- We then let T, = Tlgk), k > 0 to obtain the limiting process.
To prove (22), we proceed as in the proof of Proposition 2. Consider 0 < ¢ < T.
We have, P—almost surely,
T—t—1
pr= Y 2 A+ A (Q+ QE[zisin -

=0
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As in Proposition 2, we choose 72 such that 0 < v < 72 < 1 and & = yo||A+ 4% <
1. Let 1y := y/~2 < 1. Then, we have:

T—t—1

. o _ 2
E[I7 17 <E[( Y 2v 1A+ AIIQ + QUE[|ze4i4 ]l 17] ) ]
=0
T—t—1

= 4@+ QPVE[( X w26 ElEerinl 7)) |
=0

T—t—1 T—-t—1

<4Q+ QP E[( Y m) S GvElzsial? F]

i=0

(=)

=
= T
41Q + Q>+ g
< HOECI (5 w2,
1—mno ,
Jj=t+1
Hence, summing over ¢ and interchanging the two summations, we get,

41Q + Ql*y
(1 —m2)(1—&)
For T = T} with k£ > 0, we apply the monotone convergence theorem and the
Fatou’s lemma to control the limit as k — co. We get:

N —
] N ] 11Q +QII*y
* t Tk 112
15°l2, < ngnoolgggﬂ&[;v o+ 2] <

1p" |2y < %25 (23)

S 7 X2
(1 =n2)(1—&) !
Proceeding analogously, we can show:

Claim 3. There exist a subsequence (Tk)kzo of (Ti)k>0 and a process (g;)i>o
satisfying: for every t > 0, klim p?’c — E[ptT’“LFO] = q;, P—almost surely. Moreover,
— 00

™2, < o0 (24)

Finally, we obtain an adjoint process of x as follows.

Claim 4. The process (p;*)i>0 defined by pf* = qf +p;, t > 0, is an adjoint
process corresponding to x controlled by u = (uy, ug).

First, by (22) and (24), we obtain that (p;*);>o satisfies the transversality con-
dition (16). Second, form Claim 1, we know that for every ¢ > 0, the process of
random vectors (p7 )7>¢ converges in L' with the norm |-, so by Jensen’s inequality,
the process of conditional expectations (E[(A+ A)Tﬁtle +2(Q+Q) Ty | ]:t])k>0
converges in L' when k — oco. Thus, by equation (18) and uniqueness of the limit,
we obtain:

pr =7E[(A+ A)Tpjy +2(Q + Q)T |F], P—aus.. (25)
Similarly, for every ¢ > 0, we also obtain:
g = E[ATql ) +2Q(zig1 — T)| ], P—as., (26)

and P—almost surely, E[p; | F°] = p; and E[g; | F°] = 0. Adding equations (25)
and (26) and using the fact that E[p;* | F°] = p;, we conclude that the process
(pf*)¢>0 is an adjoint process of x. O

Using the adjoint process, we express the derivative of J as follows.
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Lemma 11. The Gateauz derivative of J at (u1,us) in the direction (31,82) €
U X U exists and is given by

DJ(uy,u2)(B1, B2) = Z pi B+ 2ui Ry + p, By + 2u] ,Ry) By, t‘|
=0
+E Zlyt (p;rB? 2uy, 12 +p By — 2@;tR2)ﬂ2,t1 .
=0

(27)

where p = (pi)i>0 s the adjoint process corresponding to the state process x con-
trolled by u = (uy,u) € U,

Proof. We start by computing the difference between the values of J evaluated on
two pairs of controls. Let u; = (u;4)¢=0,1,.. and u} = (ugvt)t:o,l,.,,, 1 =1,2 be two
pairs of admissible control processes and let us denote by x; and z} the corresponding
states of the system at time ¢, as given by the state equation (3) with the same initial
point and the same realizations of the noise sequences (6g)t:0,1,, and (€} )= 01,..
Note that as a consequence, x4 — xé 41 can be expressed as:

xy — ) + Az — o)) + AT — 7)) + Z [Bi(ui,t —uj,) + Bi(t; 4 — ﬁ;t)} ,
i=1,2

which shows that z,,1 — 2} is in fact Fy-measurable. As before, we use the conve-
nient notations ¢, = (¢, Ty, U1, U1 ¢, U2,t, Ua,) and ¢ = (xt7mt,u1 b5 Uy gy U 4, Uy, t)
In order to estimate J(u},u}) — J(uy, uz) we first notice that, if p = (pt)t 0,1,.. 1is
the adjoint process of (x¢)¢>0, we get:

N
ZE t— ) - i) <hm1anE[Z'y |y — x| } [Z’ytﬂptﬂﬂlﬂ
t=0

t>0 t=0
s s 1/2 s 1/2
< (2E[ D' 1e4?] + 2B 34 lwel]) R[S A leel?]
t=0 t=0 t=0

which is finite by the admissibility of u and the transversality condition (16) of p.
Recalling the definition of b({;) in (11), by the admissible conditions of the state
process x and the pair of control processes(ul, ug)7 we get

S R (b(¢) = b(¢) - pi)] < oo

>0

As a consequence, we have:

{Z’Y (¢) _CCt)]}

= ]E{’Yt(h(gvpt) h(Ct,pt) } Z]E{ (T — wig1) — (xp — 20)] -y
t=0 t=0 (28)
+6 7 (@)~ 21) i
t=0

M

]E{’Yt (h(CLPt) h(Ct, pt) } + ZE[ $t+1 = Te1) - (Pe1 — pt)}

t=0

~
Il
o
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where we used the bounded convergence theorem for the first equality, and we used
the facts that § = (1 — )/ and py = 0 for the last equality.

We now turn to computing the Gateaux derivative of J. Let u;,8;, i = 1,2, as
in the statement. To alleviate the notation, we denote

V, = lim 1 <$u1+6ﬁ1,112+6ﬁ2 _ xu17u2)
e—0 € t t ’

where g1+ePruzteBz ig the state process controlled by (u1+€B1, us +¢B2) € UL,
and 2"1""2 is the state process controlled by (ui,us) € U 4", By linearity of the
state dynamics, we have V; = (zjt TP uetefz _puue)
t> 0. Let (111, 112) (U1 + 661, us + €ﬁ2)

We then compute, using the expressions of the partial derivatives of h already

computed in the proof of Lemma 8:

/e for every € > 0 and every

DJ(wy,2) (81, B2) = lim % (s + B, uz + ¢B2) — J(ur, up)]

ZE Y Vit - (pes1 — pr) +Z’ytIE[8 h(Cepe) Vi + Ozh(Ceype) Vi
t=0 t=0

+ O, h(Ce, pe)P1t + Oay h(Ctapt)Bl,t + Ouy h(Ce, i) Byt + Oy h(Ctypt)BZt}

M

’YtE[VtH (P41 — pr)
(0)
+ (p (A= 61) +2(2 — 20) Q) Vi+ (p) A+2(z, — )" Q + 22 (Q+Q)) Vi
(%) (i7)

+ (P:Bl +2(u1 — ﬂl,t)TRl) Bie+ (P:BQ — 2(ug — aQ,t)TRQ) Ba.t

(iii)1 (iii)a
+ (p{ By +2(@1,e —ur4) "Ry + 20 ,(Ry + Ry)) Buye

(iv)1

+ (P:Bz — 2(tig,y — ugy) ' Ro — thlt(Rz + Ry)) Bay ]
(iv)2

-
Il
=]

(29)

We now use Fubini’s theorem to compute two of the six terms above. Recall that
V; = E[V;|F°], which we choose to express in the form

Vi = E[V;|F°] :/ V(¥ @Y P (doh),
Ql

where (Ql,fl,lﬁ’l) is an identical copy of (!, F!,P') and the probability space
(Q, F,P) is defined as Q = Q0 x Q', F = FO x F' and P = P° x P!. For the sake of
ease of notation, we introduce yet another notation for the conditional expectations:
we shall denote by Exo and Exo the conditional expectations usually denoted by
E[-|F°] and E[- | F°] respectively. With this new notation z; = Ezo[x;] = Ezo[f] =
Z; and similarly for the other random variables. Consequently:



LINEAR-QUADRATIC ZERO-SUM MFTG 417

E (i) ]EEFOZV { A+ 23— )" Q+ 22 (Q+ Q)i

B o (o] A+ 23— ) Q2] (@ + Q)T
t=0

=EY '(pl A+22[(Q+Q)Vi,
where we used Fubini’s theorem for the last equality. So:
oo o0
EY A () + (@) =E> +'(p! (A—61a) + 22/ Q+pl A+22[ Q)Vi.  (30)

t=0

As a consequence, .~ Y'E[(0) + (i) + (ii)] = 0, because of (30) and the definition
(15) of the adjoint process.
Furthermore, using Fubini’s theorem on an identical copy of u; and 3; we get:

EZW 1)1 + (iv) EZ'}/ ) B1 + QUItRl + 5, By + ZﬁItRl)ﬂl7t, (31)
t=0

and likewise for us, 35. O

We are now in a position to prove the following condition for optimality:

Proposition 12 (Pontryagin’s maximum principle, necessary condition). Assum-
ing that Assumption 1 holds, if u; = (ui1)i=0,1,..., ¢ = 1,2 is a pair of admissible
control processes such that it is an open-loop saddle point for the zero-sum game
and p = (pt)i=o0,1,... is the corresponding adjoint process, then it holds

(32)

B py + 2Ryu1, + B pr + 2R114 = 0
Bj pt — 2Rous s + By pr — 2Rotin g = 0

for allt > 0, P-almost surely.

Proof. By Lemma 11, for any pair of processes (31, 32) € U x U we have the

DJ(uy,uz)(B1,8:2) =

Z’Y by { B1+ 2u1 +F +pt By + 21, tR1>51 t}
t=0

E|> 4" (p{ B2 —2ug Ry + p; By — 2u;tR2)62,t] -
=0

Since (uy,uy) € UH" is an open-loop saddle point for the zero-sum game, then for
every uj € U and uf € U, we have

J(ug,uy) < J(ug,uz) < J(uj,uz).

Denote the state processes in the above inequalities by X“h“é,X“h“?,X“/l’“?7
which are all L2—discounted globally integrable according to Proposition 2.
If we choose 32 = 0, then for every 81 € U,

D1, 0)(81.0) = lim © [(w, + By, u2) — (w1, u9)] > 0

e—0 €
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which implies,

E

> A (p! Bi+2u{ Ry +p/ By +2u] [R1)Br| > 0.
t=0

Thus, the corresponding adjoint process p satisfies: P—almost surely,
Bl pi+2Ryuiy + B py + 2Ry, =0,  t>0.
Similarly, By p; — 2Raus; + By p — 2R2ﬂ2,t = 0 for all ¢ > 0, P-almost surely. [
4.3. Identification of the equilibrium. Let us introduce the notations
{ I, = (-1)AR'B], = =(-1)3R;'[B] — Ri(Ri + R:)""(Bi + B)) 7],
A =T;+5 =(-1)'3(R+ R)'(Bi+ B;)T,i=1,2.

We then consider the following Riccati equations:
’y[ATP +20Q)] (A + (Blf1 + BQF2)P) =P, (34)
and

VAT +ANP+2Q+Q)] [(A+A)+ > (Bi+B)AP| =P.  (35)
i=1,2

We shall assume that there exist solutions P and P in S¢ to these equations. This
can be proved under suitable conditions, for example, by contraction arguments
when some coefficients are small enough. We also discuss in section 6 a way to
construct P and P with the help of other Algebraic Riccati equations (ARE for
short).

We now rewrite the equilibrium condition (32) in Proposition 12. The process
u = (uj,uz) is an OLSP and the process p is the corresponding adjoint process.
Taking conditional expectations E o in the first equation, we get:

(By + B1) Py + 2(Ry + Ry)ty . = 0
from which we derive:
=~y (R4 B) " (By + B) (36)
Plugging this expression back into the first equation of (32) we deduce:
w1 = I1ipe + E1pe, and U1, = APy (37)
for Ty, =21, Ay introduced in (33). Similarly, we find
ugt = Lapr + Zopr, and U2t = Nopy. (38)
Proposition 13. Assume there exist solutions P and P of (34)—(35), and that:
7HA+ 3 BiFiPHQ <1, 'yH(A—kfl) + 3 B+ Bi)AiPHQ <1 (39)
i=1,2 i=1,2
Let x be the process defined by: xg = €} + €} and fort >0,

Tip1 = Azy+ AT+ Z [Bi(T;P(w¢ — Tt) + Ay PT) + BiAi PTy] +e)yy +eiy. (40)
i=1,2

Let p be the process defined by:
p; = P(xy — %¢) + Py, t>0. (41)
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Let u = (uy,ug) be the process defined by:
Uit = FZP({Et - {ft) + Aipi't, 1= 1, 2, t 2 0. (42)
Then u is an admissible pair of controls and p is the associated adjoint process.

Condition (39) can be satisfied for instance by assuming that the coefficients of
the problem are small enough.

Proof. We first check the admissibility. We note that the dynamics (40) amounts
to (3) with control pair u defined by (42). Moreover, x satisfies:

t+1
- e T+l = Xt+1—j
xt+1=Amt+e?+1:A+xo+E AT Je?,
Jj=1

where A = [(A +A) + dim12(Bi+ Bi)AZP] Hence

t
I1%l2 < B[ DA (A1 2012 + | Y2 A=9e0)12) ],
j=1

t>0

which is finite by (39) and €?,¢ > 0, have a finite second moment.
Similarly, withI'=A+ 3., , Bil'; P,

t
I = %oy < B[ 30" (IF12 o — 7012 + | 30 Fel)2)],
j=1

£>0

which is finite. Hence the control pair u is admissible and transversality condi-
tion (16) is satisfied.
Furthermore, we have:

Pes1—pr = =Y [(AT = 610)pes1 +2Qze1 + A Pria +2QF 1| + 21 €)1 + 26t

(43)
where the processes Z" and Z' are deterministic and independent of time, and
defined by:

Z) =[(AT+AT)P+2(Q+Q)l,  and  Z} =[ATP+2Q].

Hence p is indeed the adjoint process associated to u. O

4.4. A convexity-concavity sufficient condition. Consider two deterministic
processes Vi = (Vi1 4)i>0 and Vy = (Va4)¢>0 following the dynamics

Vi1 = AVip + Avl,t + Bi1Bi: + BlBl,ta Vit=0 =0, (44a)
Voig1 = AVo + AVQ,t + Bafa s + Bsz,t, Vat=0 =0, (44Db)

where (81,32) € U x U are two L?—integrable control processes. Under Assump-
tion 1, by Lemma 3, we have V; € X and V4 € X.

Proposition 14 (Pontryagin’s maximum principle, sufficient condition). We as-
sume the following conditions:
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1. There exists a state process X = (x)i>0 and p = (pr)i>0 such that x,p
are (F;)i>0-adapted, L*—discounted globally integrable, and they satisfy the
forward-backward system of equations: for every t > 0,

zey1 = Amy + A%y + (BiT1 + Bol'a)py
+( (B1 + B1)A1 + (B2 + B2)Ay — BiT'y — 32F2)13t + €)1 + ey,
pe =7 (A Py +2Qzi1 + AT Py +2QTyq) + Z2 1€ + Z 1€l
(45)

with initial values zg = €) + €} and for some (Ft)e>0-predictable processes
(Z2, Z})i>1 satisfying Z3 = ZE = 0.

2. For any control processes (B1,82) € U x U, we have the following convexity-
concavity condition for the zero-sum game:

E

ZW’t (ViQVi4 + Vi QVi e + B \R1 B + BLRﬂu)} >0 (46)

t=0

E

Z’Yt (Vo QVoy + Vo[, QVay — By Rofayy — 52T,tf_32/5’2,t)1 <0 (47)
=0

where the processes (V1,Va) € X x X follows the dynamics (44a)—(44b).

Then, the pair of control processes (ui,us) € UH™ given by:
wir = Tipe + (A — T)pt, i=1,2 (48)

is an OLSP for the zero-sum game. Moreover, (uy,ug) satisfies the equilibrium
condition (32) of the Pontryagin mazimum principle.

Proof. The backward equation for process p implies that it satisfies the conditional
expectation condition (15). We show with equations (37)—(38) that the pair of
control processes (ug, uy) defined by equation (48) satisfies the equilibrium condition
(32). By substituting the right hand side of (48) with (w14,us2,) in the forward
equation for (x:);>0 in (45), we get that the process x follows dynamics (3) which
is controlled exactly by (uy,us) € UH".

Based on the proof of Lemma 11 for the Gateaux derivative of J, we write a
second-order expansion for the value function J at a point (uy,us) € U5 in the
direction (B31,32) € U x U. To alleviate the notation, we introduce a deterministic
process V = (V;);>¢ following a dynamics

Vit1 = AV; + AV, + B1B1 + B1B1 + Bafa + Bafa

with initial value Vp = 0. The linearity of the dynamics (3) shows that V; =
(g tePrmeteBe _ pmiuzy /e for every € > 0 and ¢ > 0. According to equation (28),
the difference between the values of J at point (u; 4+ ¢31,us + ¢32) and at point
(u1,ug) can be expressed by

J(uy +€B1,uz + €62) — J(u1, uz)
=c (Z]E [’ytVt-H (P41 —pt)] + Z’YtE [V(h(gt’pt) : Qﬂ)
t=0 t=0
| (49)
+ 562 ;VtE [Vfgh(%pt)ft : @]

=e(i) + €(ii),
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where & = (¢ — ¢)/e = V", V.7, 81, B, 83,53, ] € B2V and gy = (1 -
M) 4 MG € R24H4 for some \; € [0,1]. Since the pair of admissible control
processes (up,ug) satisfies the system of equations (32) at every time ¢ > 0, then
by applying Lemma 11, we have (i) = 0. We also notice that the Hessian of h(-)
with respect to ( is a constant matrix depending only on model parameters. Thus,
we obtain

(i7) = Z’VtE[VtTQVt +V, QVi + BItRlﬁl,t + BItRlﬂ_l,t - ﬁ;,tR262,t - B;tRzgz,t].

t=0
(50)
Consider a fixed control process u, for player 2. For every control process u} € U,
we choose 81 = (u] —uy)/e € U and B2 = 0. The convexity condition (46), together
with (49) and (50), yield that for every uj € U, J(uj,uz) > J(uy,uz). Similarly,
the concavity condition (47) implies that for every u € U, J(uy,ub) < J(uy, uy).
Therefore, we conclude that under the convexity-concavity condition for the two
processes (V1,Vs), a pair of control processes (uj,uy) satisfying the system of
equations (32) with adjoint process p is an OLSP for the zero-sum game. O

Remark 15. We can see from equations (49) and (50) that the convexity-concavity
condition is also a necessary condition if (uy,us) € U5 is an OLSP for the zero-
sum game.

Taking a closer look at the convexity condition (46) (resp. the concavity condition
(47)), it is indeed a quadratic function of the process Vi (resp. V3) and the
control B; € U (resp. B2 € U). So, we can apply results from the deterministic
Linear-Quadratic control problems to derive a sufficient condition for the convexity-
concavity condition. Let us define some new value functions Cy,(3; — B;) and
Cv.(B;) for i =1,2:

Cur (B~ ) = B[ 7" (Vi — Vi)™ ((-1)1Q) (Vi - T

t=0

+ (Bit — Bz‘,t)TRi(ﬂz’,t - th))},

Cv,(B;) =E

3 At (Vft ((—1)1'*1(@ + Q))Vi,t + B8R + Ri)ﬁi,t)]

t=0

Then the convexity-concavity condition (46)—(47) is equivalent to

i -8 v (By) > d i -8 v (B2) > 0.
sin Cv (B = A1) + Cvi (Br) 20, an soin Cv, (B2 — B2) + Cry (B2) 2 0
Here, we multiply @ and Q + Q by —1 for player i = 2 so that the concavity
condition is connected to a minimization problem. Let us assume that the following
discrete Algebraic Riccati equation (DARE-i):

i -1
0=(-1)"'Q = P+7ATPA - ?ATPB (Bl PBi+ R;) Bl PA,  (51)

admits a symmetric matrix P; € S? as solution satisfying 'yBlT P,B;,+ R; >~ 0 and
v||A — B;K;||* < 1 where K; = ’y(’yBZ-TPiBi + Ri)*lBZ-TPiA. Then, by applying the
Dynamically Programming principle and the expression of optimal value function
[45] starting at time ¢ = 1 with an initial V; ; = B;(8i.0—Bi.0), the value Cy, (8:—3;)
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can be expressed as:

min Cy, (B; — B;) = min E
Bi Bi,0=Bi

=minE {(Bz 87 (Ri + 'YBZ‘TPiBi)(Bi - Bz)i| > 0.

i

min _ Cly, (Bi — Bi)

Bi:Bi,o=pi

Existence of such a solution P; can be guaranteed under suitable conditions, see [52,

Theorem 3.1]. Moreover, for every given random variable B;, the value given by

minﬁiﬁm:&_ Cv,(Bi — B) is attained at B;; — B = —K;(Viy — Vi) for t > 1.
Similarly, if the discrete Algebraic Riccati equation for i = 1,2 (DARE-MF-i):

0=(-1)"YQ+Q)— P +~v(A+ A)TP(A+ A) (52)
—*(A+ A)TP(B; + By)(v(B; + B.) T Pi(B; + By)

_ -1 _ _ _
+(Ri+R)) (Bi+By) Pi(A+ A),
has a solution P; such that v(B; + B;) " P;(B; + B;) + (R; + R;) = 0 and ~||A +
1

B;) T P;(A+ A), then the value function Cy,(3;) can be expressed as

I%ln Cv,(B;) = mjinE {(@)T ((Ri +R) + (B + B;) " Pi(B; + Bz))Bz] > 0.

Furthermore, for every given random variable Bi7 the value min 5 . i o=p; Cv.(B;) is

_ _ B
attained at 3, = —L;V;; for t > 1.
We have directly the following sufficient condition for the convexity-concavity
condition.

Lemma 16. If the four discrete Algebraic Riccati equations (DARE-i) and (DARE-
MF-i) for i =1,2, i.e., (51) and (52), have solutions (P;, P;) such that

YBPiB;+R; =0,  y(Bi+B) Pi(Bi+ Bi) + (Ri + Ri) = 0,  (53)
then the convexity-concavity condition (46)—(47) for the process Vi and Vo holds.

Together with the sufficient condition of the Pontryagin maximum principle
(Proposition 14), we have

Corollary 17. Let (Py, Ps, P, 152) be solutions to the four discrete Algebraic Riccati
equations in Lemma 16, and they satisfy conditions (53), then the pair of control
processes (ur,uz) € UL defined in Proposition 1/ by (48) is an OLSP for the
zero-sum game.

To conclude this section, we propose a sufficient condition for the existence of
(Py, Py, Py, P,) in Corollary 17. We say that (A, B;) is y—stabilizable if there exists
a matrix K € R*? such that all eigenvalues of v'/?(A — B;K) in the complex plan
lie inside the unit circle, i.e. v||4 — B;K|* < 1.

Similarly, for the existence of P; to (DARE-MF-i) satisfying condition (53), we
can define R;(n) as the right hand side of (52) and consider the set

D; :={n eS| (B + B;)"7(B; + B;) + (R; + R;) = 0, R;(7) = 0}.
We notice that if v||Al* < 1, (A, B;) is y—stabilizable, for i = 1,2. So, under
Assumption 1, (A, By), (A4, B2), (4, B1) and (A, By) are all y—stabilizable.
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Corollary 18. Assume Assumption 1, and assume that @Q, QeSS Ri,Ri+R; -0
fori=1,2. If D1, Dy, D1, Dy # 0, and if the forward-backward system of equations
(45) holds for x and p, then there exists an OLSP for the zero-sum game.

5. Closed-loop information structure. In this section, we turn our attention
to closed-loop controls, that is, controls which are functions of the state and the
conditional mean. We will in fact focus on a specific class of such functions.

5.1. Admissible set of controls. We start by defining the class of functions we
will consider in the rest of this section.

Definition 19. For i = 1,2, a closed-loop feedback strategy (or policy) for player i
is a function vy, : R x RY — RY, (2,7) > (—1)'K;(x — &) + (—1)*L;Z parameterized
by a tuple 6; = (K;, L;) where K; and L; are (deterministic) matrices in R4, A
pair of policies given by parameters (61, 603) € (R*4)2 x (R**4)2 for the two players
is called a closed-loop feedback policy profile.

For simplicity, in the sequel, we will use interchangeably the terms strategy,
policy and parameters. In other words, for any 6, we identify the parameters 6 with
the induced closed-loop policy vg.

We consider the following set of admissible policies in the closed-loop setting:

Qclese — {(91,92) € (R™)? x (R4)? | x"1%2 ¢ X}, (54)

where the state process x/1:%2 = (xfl’eg)tzo is controlled by the pair of closed-loop
feedback control processes (u1,uz2) € Ujoe X Ujoe defined by

wiy = (1)K (a0 — 2000 4 (—1)i L2000, (55)

When we plug in the above closed-loop feedback controls (55) into the state
process dynamics (3), we obtain that, for every ¢ > 0,

wpil? = (A — B1K; + B2 K>) (xflﬂz _ jfl,ez)
/~1 — B L B L ~01,02 0 1
+ 141 + Dol ) oy + e+ e,

where 4 = A+ A, By =B+ By, and By = By + Bo. By Proposition 2, the process
x%1:92 i5 [2—discounted globally integrable under the assumption:

V|A—BiK) + BoKo||? <1,  and  4|A—BiLi + BeLo|? < 1. (56)
Thus, it is reasonable to consider the following subset of @Zﬂj“:

© = {(61,62) € (R™%)? x (R**%)? | (56) holds} . (57)

Omne can check that the set © is not convex (see e.g. the Appendix of [38]).

Moreover, the set ©¢¢%¢ does not have a simple expression in terms of the model
parameters. Without any additional assumptions, the two players need to decide
together the set of admissible policy profiles @g{fse before playing against each other
in a zero-sum game. However, in some situations, we can consider a subset of @ff;“
of the form ©; x O, where ©1, 0, are two independent closed subsets in Zx[ﬂl"se, SO
that a player is able to choose freely and independently her admissible strategy
without being affected by the L2-integrability issue of the state process caused by

the choice of strategy of her opponent.
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Under Assumption 1, namely ~||A||? < 1 and ~||A||> < 1, there exists two pairs
of real numbers (ny,72) € R? and (7)1, 72) € R? such that

= ARy (3Bl + 3 Ball?) < 1,7 = o A4y (1B + 71| Bal?) < 1

For i = 1,2, let us denote 7'%) =1 % (% — 1), and T(Li) =1 % (% — 1).

The following result provides an example in which the two players are able to
choose their admissible strategies independently of each other.

Lemma 20. Assuming the closed-loop feedback policies 61 = (K;y,L1) € R&xd %
R and 0y = (K2, Ly) € R x R4 satisfy | K;| < r&? and ||L;|| < T(LZ) for
i=1,2, then (91,92) € 0.

The proof relies on Cauchy-Schwarz inequality. If the context is clear, we omit
in the sequel the superscript (01, 62) in state processes (x?l’%)tzo.

5.2. Auxiliary processes. We will use the following re-parametrization:
Yt = Tt — T, Zr = Ty, t>0.

We denote y = (y¢)1>0 and z = (2¢)i>0 the two auxiliary state processes derived
from x. For the sake of clarity, we introduce some new notations on the control
processes using the sample re-parametrization method:

(y) . (y) .
wy) =y — 1y = — Ky, Uy 1= Uzt — Uzt = Koy,

(=) ._ = (=) ._ =
Uq b =Uit = _let; U’Qt =AUt = LQZt~

The processes (y¢)¢>0 and (2¢)r>0 defined in this way follow the dynamics

Yer1 = Ay + ng t) + Bzu(y) + €t+17 Yo ~ 6(1» (58)

Zp1 = Az + Blug7t) + BQU(Z) + €01, 20 ~ €, (59)
where €J, €} are random variables with distributions 9 and pd respectively. We
then observe that for every ¢,¢' > 0, the random variables y; and z; are respectively
Fl—measurable and F°—measurable, and they are independent.

The running cost at time ¢ defined by (2) can also expressed as:
(T, Teyun g, Ui g, Ua g, Uz t)
=y, Qut + (u(lyt))TRlu(y) (ué t)TRgu W) 4 2 Qz
+ (ur) T Ruut) = (u5) T Rous)

=y (e, us' us?)) + ezt ugy),

where Q = Q +Q, Ry = Ry + Ri, Ry = Ry + Ry, and ¢, : R* x R x R — R
and ¢, : RY x RY x RY — R are the running cost functions associated to (y;)¢>0 and
(2¢)e>0 defined by

ey ui’) ug)) =yl Que + (i) Rywl?) — (u5?)T Roul)

ex(zeulT u)) = 2 Qz + (W) T Riul?) — (uf?)) T Roul).

We denote by C(61,02) = J(ui,us) the utility function associated to a closed-
loop feedback policy profile (61, 6;) € ©. As what has been presented in the proof
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of Proposition 39, we introduce two auxiliary utility functions Cy (K1, Ko, §) and
C.(L1, Lo, %) defined as

Cy(KhKZag) :E Z’ytcy(ytau%lguué%z) ‘yO :g ) (60)
t=0

Ca(Ln, L2, 2) =B | 3 'eaee, ) uf)) |20 = z] : (61)
t=0

in which the control processes are (ugyt), ugzt)) = (=Kyyt,—L1z) and (ugyt),ugzg) =
(Kays, Lyz). Lemma 3 shows that x?%% is L2—integrable if and only if y and z
are L?—integrable. With the new notations, we let
C(61,62) = Ey[Cy(K1, K2, 9)] + Ez[C.(L1, Lo, Z)]. (62)
Now we can define the closed-loop saddle point for the zero-sum game.

Definition 21. A closed-loop feedback policy profile (0, 0;) € ©¢ose with 05 =
(K{,L7) and 65 = (K3, L3) is said to be a closed-loop saddle point for the zero-sum
game (CLSP for short) if and only if
e For every 6 = (K1, L1) € R x R4 guch that (61, 03) € ©close,
C(61,03) = C(67,063),
e And for every 0y = (K2, L) € R4 x R*? such that (67, 0) € ©°ose,
C(67,02) < C(67,03).

Remark 22. Note that the state processes associated with C(64,63), C(05,63),
and C(67,02) are all different.

Remark 23. We can see that the process (y:):>0 is completely controlled by

(K1, K>s) or by (ugy),uéy)), and likewise for the process (z:)i>0 by (L1, Lz2) or by
(ugz),uéz)). Moreover, the noise processes associated with (y:);>0 and (z;)¢>0 are
independent. So when the two players are at CLSP (67,6%), and one of them,
say controller 1, perturbs her policy with a 61 = (Ki,L;) different from 67 =
(K7,L3), we can look separately at Egz[Cy (K1, K3,9)] — E5[Cy (KT, K5,7)], and
E:[C.(Ly1, L3, 2)] — Bz [C.(L7, L, 2)].
We introduce here two sets related to the admissible policies with respect to the
processes (y¢)¢>0 and (2¢)¢>0. Let us denote by
0, = {(K1,K>) e R xR | y € X}, (63)
0. = {(L1,Ls) e R xR | z € X}, (64)
where y and z are two processes following the dynamics (58) and (59). The processes
y and z can be constructed without any prior knowledge from x, and they are
completely determined by the choice of matrix pairs (K1, K») and (L1, L2). From

Lemma 3, the set ©, (and similarly ©.) can be understood as the collection of pair
of matrices consisting of the first (or second) elements in policies 8; and 65.

Definition 24. A pair of matrices (K}, K3) € R x R?*? is said to be a closed-
loop feedback saddle point in ©, (CLSP —y for short) if for every § € R?, for every
K1, Ky € R4 such that (K, K3) € ©, and (K7, K3) € ©,,, we have

Cy(Kik7K2ag) Scy(Kik7K27g) SC’L/<K1aK;7g) (65)
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A pair of matrices (L}, L3) € R4 xR**? is said to be a closed-loop feedback saddle
point in ©, (CLSP — z for short) if for every Z € RY, for every Ly, Lo € R**? such
that (L1, L}) € ©, and (L7, Ls) € ©,, we have

CZ(LLL%Z) SCZ(L;L%%) SCZ(LML;Z) (66)

5.3. Notations and useful lemmas. We will use the following notations:

M(P)=~ATPA—-P+Q

Ly(P)=~ATPBy, Ly(P) =~AT PBy, L3 =~B| PBy (67)

Ni(P) =~B{ PB; + Ry, N2(P) =~vBy PBy — Ry.
5.4. Algebraic Riccati equations. We present here a few lemmas and some
notations that will be useful to understand the closed-loop saddle point in ©,
(CLSP —y). Since the processes y and z follow similar linear dynamics but with
different coefficients, we omit the proof for lemmas corresponding to CLSP —z. We

use the notation (u,v) to represent the product u'v for two vectors in RY. Using
the dynamics (58) for (y;):>0, we obtain the following result.

Lemma 25. For every symmetric matriz P € S%, we have

7t+1E[<Pyt+luyt+1>]
z'ytIEKPyt,yt}] +’7t+1E [(6%+1>TP€%+1]

Z{Z) M(P) = Q Ly(P) Lo(P) g{;)
+YE || Li(P)T  Ni(P)— Ry Lia(P) ul?
u) Ly(P)" Lio(P)" No(P) + R, ul¥)

where we recall the notation (67).
Let us denote N
Cy(P;g) = j P+ mE [(e1) " Pey] .

Corollary 26. For every P € S and every (K1, Ks) € ©,,, we have

=E Y 4| w? | | P MP) L) || u? | =7
t=0 uéz,lt) ,Cl(P)T Elz(P)T NQ(P) u(22,Jt)

Remark 27. Notice that the difference between Cy (K1, Ka,9) and C; (P;g) de-

pends on the cross product (Li2(P )Tugyt) , uéyt) ). When we perturb only one policy

parameter, say K; for example, the change involved in the cost Cy (K1, K2, §) is not
only caused by the state process (y;):>0 but also by the interactions between the
two feedback control processes, even if no term in definition (60) of Cy (K1, K2,7)
is directly related to this cross interaction between strategies. The cross product
L12(P) in equation (68) makes Proposition 32 for the CLSP harder to prove than
in a continuous-time result as discussed e.g. in [54].

Proof. The process y = (y:)¢>0 with dynamics (58) where (K, K2) € ©, satisfies
Yer1 = (A— B1 K1 + BoaKo)y, + €4, Yo = ¥
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By definition of ©,, see (63), y is L?—discounted globally integrable. By the defi-
nition of L?—asymptotical stability, lim;_,o E[y||y:||?] = 0. Thus,

Jim [E [ (Pys, ye)lyo = ]| < Jim || PIIE [v*[lye*|yo = ] = 0.

By applying recursively Lemma 25 from ¢ =T down to 0, and then letting T" tends
to infinity, we obtain equation (68). O

We introduce here another discrete ARE in S¢ for the discrete-time process (y;)¢
and the cost Cy:

0= M(P)— L(P)N(P)'L(P)" (69)
with (using the notations introduced in (67))
L(P) = [L1(P), Lo(P)] € R (EHH (70)
and the 2 x 2 block matrix
N(P) = Ni(P)  Lia(P) € RUEHDX(E+0) (71)

L12(P)T Na(P)

To distinguish with other AREs introduced earlier, we may refer (69) as (ARE-y).
In the spirit of Nash equilibria, we discuss in the following a few results related
to the situations when only one controller intends to change her strategy.
Let us denote by y** = (y7*):>0 the state process associated to a pair of strategies
(K1, K3) € ©, where K3 is a given matrix in R**¢. Then y2* follows the dynamics

yt+1 (A+BZK2) +Blu§ t)+€t+1 (A+B2 K5 — BlKl)ytg*+€%+1a yg* =17, (72)
where (u§y2 )i>0 is the control process adopted by player 1 (with parameter K7 ).

Corollary 28. There holds
Yo = 27]

C, <K17K27~) Cy (ij
T
M*(P)  L}(P) } { v }
—F t . 1 .
[27 ] [ E B

M?*(P) = M(P) + Lo(P)K3 + (L2(P)K3) " + (K3) T N2 (P)K

LY (P) = (A + B2K3) ' PB1 = L1(P) + (L12(P)K3) T

NT*(P) = vB{ PBy + Ry = Ni(P).
The ARE associated to y** and the value function Cy(-, K3,7) is given by

0= M>(P) — LT (PYNT (P)) (LT (P) T (73)
With a proper choice of K3, we can connect equation (73) to the (ARE-y).

where

Lemma 29. For any symmetric matriz P € S such that N1(P) and Sy =
No(P) — L12(P)TN1(P)~1L1o(P) are invertible, let us consider that player 2 fizes
her strategy with parameter

K} = (L’,lg(P)TNQ(P)‘l,ClQ(P)—NQ(P))71(£2(P)T—£12(P)TN1(P)‘1£1(P)T).
4

(74)
Then P is a solution to (73) if and only if it is a solution to the (ARE-y) (69).



428 R. CARMONA, K. HAMIDOUCHE, M. LAURIERE AND Z. TAN

Proof. To alleviate the notations, we omit the matrix P in this proof. First, we
notice that

K =85! (c; - /:IZN;RCI).
Then, the right hand side of ARE (73) becomes:
M2 = L2 (NPT = M= LNTLT + (£2 - ElelL‘lg)Kg
+ (K3)T (L] = LLNTLT) + (K3) T (Ne = LLAT £12) K.
Since Kj = —S5 ! (E;r - ﬁLNfQ’I) and Sy = Ny — LI,N] 1 L12, we have
M = L3 (W) )T
1,T 1 1 1 T
= M- LNTILT - (cg — LINT r,m) Sy (52 —LNT ,512) :

Using the invertibility of A} and Sa, we apply [48, Corollary 4.1] to N and obtain
M—LNILT

— M= (L1, L) [ NI A+ NT LSy LNTY = NT L1085 ! } [ cl ]

=Sy ' LLNT Sy Ly
T T
= M- LNTLT - (52 - Elelﬁu)S;l (cz - clelcu) .
Hence, M?* — L2*(N2*)~1(L2)T = M — LNTILT. O

We state here briefly the counterparts of Corollary 28 and Lemma 29 for the
situation when player 1 fixed her strategy to some predetermined matrix K} € R¢¥9,

y()::lj‘|,

MY(P) = M(P) = L1(P)K} — (L1(P)KT) " + (K7) T M1(P)K
LY (P) =v(A— B1K;) PBy = Lo(P) — (L12(P) " K}) T
NJ*(P) = yBy PBy — Ry = N(P),

Corollary 30.

Cy(K7, K2,9) — Cy(P;9)

(S A H )

2t Ug 'y

where

and the state process (y{*)i>o follows the dynamics
vt = (A= BUEDyl + B+l yyT =0 (75)
Lemma 31. If player 1 chooses her strategy with parameter
—1
Ki = = (L22(PIN2(P) " £12(P) T = Ni(P))  (£4(P)T = La2(PIN2(P)*£2(P)T),

where P € 8% and the matrices No(P) and Sy = N1(P) — L12(P)N2(P)~1L19(P)T
are invertible, then we have

MU (P) = L3 (PYN3* (P)) L3 (P)T = M(P) = LIP)N'(P)'L(P) .
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5.5. Sufficient condition. We now phrase a sufficient condition of optimality.
The necessary part will be discussed in Section 7, since it will serve as a basis for
our numerical algorithms. For a symmetric matrix P € S%, let us denote

K; = —(La(PIN;(P) Lua(P)T = Ni(P)) (L:(P)T — Lra(PING(P) ™ £5(P)T)
(76)
for i # j, 4,7 € {1,2}, provided the inverse of matrices involved above exist.
Proposition 32. Assume that we have the following two conditions:
1. The (ARE-y) (69) admits a symmetric solution P € S satisfying
vB] PB; + R; > 0, vBy PBy — Ry < 0. (77)
2. The pair of matrices (K{,K3) € ©,.
Then (K{,K3) is a CLSP —y in ©,. Moreover, we have

. _ . T ¥
Cy(K7, K5, 9) = Cy(Psy) =5 Pj+ ﬁE [(e1) " Pei] -

The control processes (uggft)’*)tzo and (u(fjt)’*)tzo corresponding to the CLSP — y
(K7, K3) are given by, for every t > 0,
W = Ky = Ky (78)
where the process (y; )i>o follows the dynamics
Yiy1 = (A— BiK{ + B2K3)y; + €t1+1a Yo = 7.
These two control processes satisfy the optimality condition: for every t > 0,
N(Pyu +L(P)Ty; =0 (79)

where ugy)’* = [(ugyt)*)—'—7 (uéyt)*)‘r]‘r € R, or equivalently

)

NU(PYul!)™ + Lio(PYul)™ = —£,(P) Ty (80)
LLPY) + No(Pyul)™ = —L4(P) Tyr . (81)
Proof. From condition (77), N7(P) = 0 and L12(P) " N1(P)~1L12(P) — N2(P) = 0,

so the matrix K3 is well defined in R*¢. Similarly, we have N2(P) < 0 and
L12(P)No(P)™1L12(P)T —N1(P) < 0, so that K7 is well-defined too. Moreover, [48,
Corollary 4.1] implies that the 2 x 2 block matrix A'(P) defined by (71) is invertible.
Applying Schur’s lemma to the block matrix in (68), we get: for ¢t > 0,

”
Yt M(P) L1(P) Lo(P) Yt
u) LiP)T Ni(P)  Lip(P) | | utY]
uéyt) Li(P)T Li2(P)T No(P) ugyt)

=y (M(P) = LPIN(P) T L(P)T )
+ (u + NE)LE) o) NP () + N (P LP) )
=(1)e + (id)e,

where ugy) = [(ugyt))—r, (uéyt))T]T € R?. Since P satisfies (ARE-y) (69), (i); = 0 for
every ¢t > 0. Thus, by Corollary 26, for every (K1, Ks) € ©, and j € R%,
Cy (K1, K2, ) — C*(P;9)
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Zv (u? + NPYLP) ) NP (uf?) + N (P) £(P) )

QOZﬂ]-

If we choose (Ki,K3) € R x R satisfying equation (79), then we obtain
(#9) = 0 for every ¢t > 0. In this case, we have

Cy(KT, K5,) = Cy(P3§) = 37 Pj + 7B [(e)TPel] < oo
Let us move on to obtain expressions for (Kj, K3). Since the matrix N(P)
is invertible, there exists a unique solution ugy)’* to (79) for every t > 0. We
plug-in the definition of £(P), N'(P), and ugy)’* = [(u§yg*)—r, (ugyt)*)T]T, equation
(79) is equivalent to the system of equations (80) and (81). So, by multiplying
L12(P)N>(P)~! on both sides of (81), and subtract it to (80), we obtain

(L12(PIN2(P) T L1a(P)T =M (P) u)”™ = (£1(P)T ~L12( PING(P) ™ Lo(P) T ).

From the assumptions, Li2(P)No(P)~1L12(P)T — Ni(P) < 0 is invertible. Hence,
we obtain the optimal feedback control for player 1 by

Ugyt) ) —Kiyf

where K7 is given by (76). Similarly, we can derive that u(y)

given by (76). Moreover, replacing ugy)’ and uéyt):o with their expressions in (78)

5y; with K3

back into (79), and by noticing that it holds true for every § € RY, we have
~Ni1(P)K} + L12(P)K3 = —L1(P)T
~L12(P)TKT + No(P)K3 = —La(P)T.
In the following, we will show that the pair (K7, K3) is a CLSP —y, which means
that it satisfies condition (65). First, under the assumption in the statement, we

know that (K7, K3) € ©,. Then, we look at the case when player 2 fixes her strategy
to K3, but player 1 adopts an alternative strategy K, satisfying (Ki, K3) € O,,.

(82)

The corresponding control at time ¢ is then given by u§y2 = —Kyy?*, where (y2*)i>0
has dynamics (72). By Corollary 28 and Schur’s lemma, we have
v = y]

Cy(KlaK27g) - C;(Pvg)

Zﬂyf*)T(MZ*(P) — L (PYNE(P) LR (P)T )y

+E Zv(uSyB FORR) TR ()T ) NP (P)

(u&yE +NEH(P) LY (P) )

yo* = g]

From Lemma 29, we know that a solution P to (ARE-y) (69) is also a solution to
(73). Moreover, we have —N{(P)K} + L12(P)K; = —£1(P)" which implies, by
definition of N?*(P) and L£3*(P), that

~K} = —(J\A(P))*l(cl(P)T + Elz(P)KS) = (NP ()L (P)

Thus, together with ug t) = — Ky y?* for every t > 0, we have
Cy (Kla K2 Y ) ( )
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=E| D 7)) (K] = K1) TNI(P) (KT = Ky
t=0

e :?J] :

Consequently, the condition N (P) = vB PB; + Ry = 0 implies
Cy(KlaK27g) - Cy(KfaK27g) > 0.

We can proceed similarly to prove that Cy, (K, K2, 7)—Cy (K7, K3,7) < 0 using the
fact that K5 = —(N3*(P))~1L3*(P)T and (yi*)i>o satisfies the dynamics (75). O

We present here similar results corresponding to the CLSP — z. Let the matri-
ces (N1, Ny, L1, Ly, Lis, M, N, L)(P) be defined by using the same expressions in
equations (67)(a), (b), (¢), but by replacing (A, By, Ba, Q) to (A, By, By, Q).

For a symmetric matrix P € S?, let us denote

Li =~ (Ea(PING(P) " £ra(P)T ~ Ni(P)) (£4P)T — Lol PIN (P) £, (P)T)

(83)
for i # j, 4,7 € {1,2}, provided the inverse of matrices appearing above exist.
Lemma 33. Assume the following Algebraic Riccati equation (ARE-z):

0=M(P)— L(P)N(P)L(P)" (84)
admits a solution P € S which is such that
¥B] PB4+ Ry » 0 and ~ yBy PBy — Ry < 0. (85)

Assume in addition that the pair of matrices (L7, L3) given by (83) is in ©,. Then,
(Ly,L3%) is a CLSP — z in O,.

Corollary 34. If the two pairs (K;,K3) € ©, and (L3, L%) € ©, defined in Lem-
mas 32 and 33 are CLSP —y and CLSP — z respectively, then (05,03) € ©¢lose
defined by 07 = (K{,LY), and 05 = (K5, L3), is a closed-loop saddle point for the
zero-sum game. The optimal value of the utility function is given by

Cﬂﬂ@:EWPﬂ+waﬂ+ﬁ%EMW?4+@Fmﬂ,

where P and P are solutions to the (ARE-y) (69) and (ARE-z) (84) satisfying
conditions (77) and (85) respectively.

6. Connection between closed-loop and open-loop saddle points. In this
section, we show that the open-loop and closed-loop equilibria are tightly related.
To this end, we impose the following assumption on the model parameters.

Assumption 2. We assume that { = d, and the matrices By, Ba, Ry, Ry and
Bi1, Bs, Ry, Ry are all invertible.

For an invertible matrix S € R%*¢ we denote S~T = (ST)"! = (S71)T.
If a solution P¢ € 8% to (ARE-y) is invertible, we have an alternative expression
for (ARE-y).

Lemma 35. Suppose Assumption 2 holds. Let P¢ € 8% be a solution to the ARE
(69). If P¢ and (P°)™' +yB1R;'B] —vBaRy'B] are invertible, then

M(P) = LIPON(P)IL(PS)T
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1 —1
=Q-P+ A" (W(Pc)l + B1R;'B] — BgR51B2T> A, (86)

Proof. First, under Assumption 2, we observe that
Sg = £12(PC)T - NQ(PC),ClQ(PC)ilNl (PC)

> > 1 — C\— — C
=By P°B; — (yBy P°By — Ry) (732 Y(P9)~'B; T) (yB{ P°B; + Ry)

1
=R, B;* <—BQR;BQT + ;(Pc)*l + BlR11B1T> By "R, (87)
and also
1
By B ' — —ReBy H(P°) !By T

1 " (88)
L12(P¢) Ny (PC) = ;Bz_l(PC)’lBl_TFh#—BQ_lBl.

NQ(PC)Clz(PC)71

Since L12(P¢) and S3 are invertible, by [48, Corollary 4.1] we obtain
S
2
= —A"P°B1S; ' No L) B PCA+ AT P°BS; ' By PCA

+ AT PBy (L35 + Ly N1S; N2 L)) Bf PCA— ATPCByL1) N1 Sy By PCA
= (i) + (i1) + (4i1) + (iv). (89)
We then use equation (88) to simplify () and (iv):

LPON(P)IL(P)T

1 1
(1) = —(ii) + ;ATPCB15§1R2B;1A, (iv) = —(ii) — ;ATBl_TRlsngQTPCA.
Moreover we have
1 1 1
(iii) = ;ATPCA + (i1) — ﬁATBfTR15§1R2B2‘1A + ;ATBl_TRlsngQTPCA
1
— —ATP°B;S;'RyBy ' A.
~
Then, equation (89) becomes
L(PON(PY)1L(PY)T =yATP°A— ATBT "R S; Ry By A
Together with equation (87), we conclude that
0= M(P°) — L(PN(P®)~tL(Pe)T
1 -1
=Q-P+ AT (7(}’0)—1 + B1R;'B] — BQR513;> A.
O

Lemma 36. Assume that Assumption 2 holds. Let P° € R*? be a solution to the
ARE (34) derived from the open-loop information structure, namely:

P° =~ (ATP°+2Q) (A+ (Bil'y + Bol'2) P?) (90)

where I'y = —%Rlef and I'y = %RQIB;. We consider the matriz given by

1
P¢ = iATP” + Q. (91)



LINEAR-QUADRATIC ZERO-SUM MFTG 433

IfATP° = (P°)T A, and P¢ and (P°)~ '+~ (B1Ry'B] — BoR; "B ) are invertible,
then P° is a solution to (ARE-y) (69).

Proof. This is a direct consequence of Lemma 35. By plugging the expressions of I'y
and T’y into equation (90) and replacing %ATPO + @ by P¢, under the invertibility
condition on P¢ and (P¢)~! +~ (B1Ry'B] — B2R; ' By ), we get

-1
1 1
SP = (V(Pc)_l + B1R{'B] — B;R213;> A.

Multiplying both sides by AT and rearranging the terms, we obtain (86). O

Remark 37. In addition to Assumption 2, if A is invertible, then from a positive
definite solution P¢ to (ARE-y) (69), we can define P° = 24~ T(P°¢ — Q) € Rx4,
By inverting the steps used in Lemma 36, we can show that P° solves (34).

The following corollary shows that both the pair of control processes associated
to a closed-loop saddle point and the pair of processes for an OLSP will lead to the
same state process, hence the same value function for the zero-sum game.

Corollary 38. We assume that Assumption 2 holds and A, A are invertible. Sup-
pose that there exists unique invertible solutions P° (resp. P°) and P¢ (resp. P°¢)
to the corresponding ARE in the open-loop information structure (34) (resp.(35))
and in the closed-loop information structure (69) (resp. (84)). Then, we have :

(i) The following holds, where ((K7,Ly), (K3,L3%)) are given in (76) and (83):

—B1K} + ByK} = BiT'| P° + ByI', P°
5 N T 92
—BL* + BoL} = ByA1 P° + ByAo P 92)

(ii) For every timet > 0, the state variable xfrﬂ; corresponding to a pair of closed-

loop feedback control (uy™,us™) with policies (05,05) = ((K7,L3), (K3, L3))
(55) has the same distribution as the state variable :5;117 M2 controlled by an

OLSP (u{"*,uy™) with parameters (P°, P°) (42).

Proof. According to Lemma 36, the unique solutions P (resp. P°) and P¢ (resp.
P¢) to the corresponding Algebraic Riccai equation satisfy:

Pe = %ATPOJrQ, and P = %(A+A)TPO+(Q+Q)'

(i) It is enough to show the connection between (K7, K3) to the pair of
matrices (—I'1 P°, —I'3P°), and the situation for (L7, L}) can be proved with similar

arguments. Let us denote by B = [By, Bo] € R¥™?% and R = [ ](%)1 2% ] . Then,
—Rs

by equation (82) and Lemma 35, since A is invertible, we have:
—B1K} + BoKj = —B(yB'P°B+ R)~' (yBT P°A)
=—(BR'B") (A" T(P°-Q)).
Together with P° = 24~ T(P¢ — Q) and the definition of I';, 'y, we obtain

1oy
~B 1K} + ByK} = —§BRleTP° = B1I'1 P° + Byl P°.

o0,% 0% 0,% 0%
uj’’,uy _ui’u,

(ii) By comparing the state dynamics of (zt — T, ) in the open-
>0

loop case and that of (yfr’e;)tzo (58) in the closed-loop case, we have yfiﬂ; 4
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ul*,ug* _uftuadt . . . . .. 6% .05 d
xt T =Xy 1% iy the sense of distribution. Similar arguments show z,'"? =
07,03 .

z,'?. Thus, the conclusion holds. O

7. Algorithms. In this section, we propose policy-gradient based algorithms to
find the Nash equilibrium of the zero-sum mean-field type game. We start with
a convenient expression for the gradient of the utility function, which leads to a
necessary condition of optimality (counterpart to the sufficient condition studied in
§ 5.5). Then, after introducing model-based methods, we explain how to extend
them to sample-based algorithms in which the gradient is estimated using a simu-
lator providing stochastic realizations of the utility. The results of this section have
initially been presented in [25].

7.1. Gradient expression. We henceforth focus on the following problem based
on closed-loop controls, introduced in Section 5. Each player i = 1,2 chooses
parameter 0 = (K}, L) such that § = (07, 0%) is a CLSP (see Defintion 21 and (57)
for the definition of the set ©).

For simplicity, we introduce the following notation x =z , and since
we focus on linear controls, using the notation C introduced in (62), we have

_ 01 62
0(91,92) = (111 , Uy )
Ki,Ko _ 01,02 01,02 Li,La __ 01,02
= Ty Tt = Ty

6o
u1 u2 61,02

Moreover, let y; and z , which is justified by
the fact that the dynamics of y and z depend respectively only on (K7, K3) and
(L1, Lo).

Let Plyfl’ r, and P71 be a solutions to the linear equations

P1y<17K2 = Q + KFRlKl - KQTRQKQ (93)
+’Y(A_BlK1+BQK2)TPI%1,K2(A_B1K1+B2K2)7
PfLLz = Q + LIRILI - L;RQLQ (94)

+ (A~ BiLy + B2L2)TP51,L2 (A~ ByLy + BaLy).

We now provide an explicit expression for the gradient of the utility function
with respect to the control parameters in terms of the solution to the equations (93)
and (94). Let us denote

y,1 BTP A K
Kl K2 Ki,K2 1
] [ ol
Eg(l Ko |: B;—P;/{l K2A:| Ky
z,1 r - e
512,112 — Birle’LzA~ R |:L1:|
EL71,L2 _B2 P517L2A Ly
with
R— [Rl +9B] P, i, B —WBTPKl K,_,B ]
—YBJ P} j.Bi  —Ro++Bj] Pl . B’
- [Ri+4BT P B —vBTPLl i
VB3 P}, 1, B —Re+7Bj P ., Bo
where
Ki,K. K K z Li,L L ,L
Elll(l,lﬁ {Z,}/t 1 2 yr 1 2)'17 L= {Z,}/t 1 2 1 2)T )
t>0 t>0

The following result has been proved in [25, Proposition 1].
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Proposition 39 (Policy gradient expression). For any 0 = (61,03) € O,

Vi, Cl01,02) = 2B 1 % i, Vi,0(01,6:) =2E77, 55 .. j=12

(95)
7.2. Model-based policy optimization. Let us assume that the model is known
and both players can see the actions of one another at the end of each time step.
To explain the intuition behind the iterative methods, we first express the optimal
control of a player when the other player has a fixed control. For some given 65 =
(K3, L), the inner minimization problem for player 1 becomes an LQR problem
with instantaneous utility at time t:

(ze — %) Qrey (T — Tt) + 7' Qi T

+ (ury — re) T Ry(ure — ) + ] (Ry + Ry g,

when player 1 uses control uy, where Qg, = Q@ — Ko Ry K5 and QL2 = Q — LQRQLQ,
and state dynamics given by:

X - 5 - 0 1
Tir1 = A, T + Ak, 0,7 + Brur s + Bt + €41 + €41,

where Ak, = A+ B2K5 and AK2,L2 = A+ ByLy + By(Ly — K3). Inspired by the
results in [38], we propose to find the stationary point 65 (62) = (K3 (K3), L (Ls)) of
the inner problem. By setting Vg, C(61,602) = 0 and by Proposition 39, this yields

K{(K>) =~(Ri +yB P} _B1)"'B| P}, [A+ ByK»], (96)

vy _ py
where PK2 = P (k). 10, solves

Py =Qk, +vAk, Py Ak, — v A, Py Bi(Ry + By Py B1) 'B| P} Ag,,

where QK2 =Q - K;—RQKQ and fle = A+ By K5. This equation is obtained by
considering the equation (93) for Pf{l, K, and replacing Kj by the above expres-
sion (96) for K{(K2). One can similarly introduce K3(K7), which is the optimal
K, for a given K1, and likewise for Li (L), L3(L1).

Based on this idea and inspired by the works of Fazel et al. [38] and Zhang et
al. [57], we propose two iterative algorithms relying on policy-gradient methods,
namely alternating-gradient and gradient-descent-ascent, to find the optimal values
of 6; and ;. Starting from an initial guess of the control parameters, the players
update either alternatively or simultaneously their parameters by following the gra-
dients of the utility function. In the alternating-gradient (AG) method, the players
take turn in updating their parameters. Between two updates of 65, 67 is updated
N7 times. In the gradient-descent-ascent (GDA) method, all the control param-
eters are updated synchronously at each iteration. For description of the algorithms
and more details, see e.g. [51] and [30,32,43,49] respectively (see also [57]).

At each step of these methods, the gradients can be computed directly using
the formulas provided in Proposition 39. In order to have a benchmark, one
can compute the equilibrium (67, 63) by solving the Riccati equations (69)—(84).
Alternatively, the Nash equilibrium can be computed by finding K5 such that
Vi, Cy(KF (kg),Kz){ T 0. The left-hand side has an explicit expression ob-

tained by combining (95) and (96).
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7.3. Sample-based policy optimization. The aforementioned methods use ex-
plicit expressions for the gradients, which rely on the knowledge of the model (the
coefficients of the dynamics and the utility function). However, in many situations
these coefficients are not known. Instead, let us assume that we have access to
the following (stochastic) simulator, called MKV simulator and denoted by 87,y
given a control parameter § = (01,02) = (K1, L1, Ka, La), 815y (0) returns a sam-
ple of the mean-field utility (i.e., the quantity inside the expectation in equation (4))
for the MKV dynamics (3) using the control 6 and truncated at time horizon T,
which is similar to the one introduced in [28]. In other words, it returns a realiza-
tion of the social utility ZtT:_Ol ~tcs, where ¢; is the instantaneous mean-field utility
at time t, see (5). We can estimate the gradient of the utility with respect to the
control parameters of each player. The estimation algorithm uses the simulator to
obtain realizations of the (truncated) utility when using perturbed versions of the
controls with O(M) perturbations. See [28,38] for more details

7.4. Numerical results. We now provide numerical results both for model-based
and sample-based versions of the two methods presented in the previous section.

Setting. The specification of the model used in the simulations is given in Table 1.
This setting has been chosen to illustrate the convergence when the equilibrium
controls are not symmetric, i.e. 6 # 3. To be able to visualize the convergence of
the controls, we focus on a one-dimensional example, that is, d = ¢ = 1.

Results with exact gradients. The parameters used are given in Table 1, inspired
by the values used for a single controller in [28] and numerical experiments.

Fig. 1 shows the trajectory of (K1, K») — Cy (K1, K2) and (L1, L) — C,(L1, L2)
generated by the iterations of AG and DGA methods. Iterations are counted in the
following way: in AG at iteration k, (6%,65) = (9;c mod M, [/ AT , HQ[k/Nlmaz]il)
while in DGA one step of for-loop corresponds to one iteration. The utility at the
starting point and at the Nash equilibrium are respectively given by a black star and
a red dot. In the AG, since 6, is updated N{™** times between two updates of 0,
the trajectory moves faster in the 6;-direction until it reaches an approximate best
response against 0y, after which the trajectory moves towards the Nash equilibrium.
This is also confirmed by the parameters convergence in Fig. 2(a). The relative error
on the utility is shown in Fig. 2(b). We observe that the convergence is slower with
AG because player 2 updates her control only every N7 iterations.

)

Sample-based results. The parameters used are given in Table 1 and were cho-
sen based on the values in [28] as well as numerical experiments. The figures are
obtained by averaging the results over 5 experiments, each based on a different real-
ization of the randomness in the initial points, in the dynamics and in the gradient
estimation.

Fig. 3 shows the trajectory of (K7, K») +— Cy (K7, K2) and (L1, L) — C,(L1, L)
generated by the iterations of AG and DGA methods. The convergence of the
parameters § = (K1, L1, Ko, Lo) is shown in Fig. 4(a). The evolution of the relative
error on the utility is shown in Fig. 4(b).

8. Conclusion. In this paper, we have studied zero-sum mean-field type games
with linear quadratic model under infinite-horizon discounted utility function. We
have identified the closed-form expression of the Nash equilibrium controls as linear
combinations of the state and its mean. Moreover, we have proposed two policy
optimization methods to learn the equilibrium. Numerical results have shown the
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FIGURE 1. Model-based policy optimization: Convergence of each
part of the utility. (a) C, as a function of (K7, K»). (b) C, as a
function of (Lq, Ls).

TABLE 1. Simulation parameters

Model parameters

A A Bi=B1 B,=B, Q@ Q R =R Ry=Ry, ~
0.4 0.4 0.4 0.3 04 04 0.4 0.4 0.9
Initial distribution and noise processes
€ € €? €l
U([-1,1]) U(-1,1]) N(0,0.01) N(0,0.01)
AG and DGA methods parameters
Nlmaw Ngna:): T m M2 K? L? Kg Lg
10 200 2000 0.1 0.1 0.0 0.0 0.0 0.0

Gradient estimation algorithm parameters
M T
10000 0.1

g
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FIGURE 2. Model-based policy optimization: Convergence of the
control parameters in (a) and of the relative error on the utility
in (b).

convergence of the two methods in both model-based and sample-based settings.
The question of convergence of the algorithms proposed here as well as model-free
methods for non-LQ or general-sum MFTG will be studied in future works.
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FIGURE 4. Sample-based policy optimization: Convergence of the

control parameters in (a) and of the relative error on the utility
in (b).
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