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STATIONARY REFLECTION
YAIR HAYUT AND SPENCER UNGER

Abstract. We improve the upper bound for the consistency strength of stationary reflection at
successors of singular cardinals.

§1. Introduction. Stationary reflection is an important compactness principle in
set theory. Its failure, the existence of a nonreflecting stationary set, is sufficient for
the construction of objects which witness the noncompactness of various properties.
Examples include freeness of abelian groups and metrizability of topological spaces
[16] and chromatic number of graphs [20, 21].

We recall the basic definitions:

DEerFINITION 1. Let x be a regular cardinal. A set S C & reflects at o if SNa is
stationary at o, where cf o > . We say that a stationary set S C & reflects if it reflects
at o for some a < k.

DEerFINITION 2. For a stationary set S C x, we denote by Refl(S) the assertion:
VT C S stationary, T reflects.

The main theorem of this paper deals with the consistency strength of stationary
reflection at R, ;. Until our work the best known upper bound was due to Magidor
[14].

TueoREM 3 (Magidor). Refl(R,, 1) is consistent relative to the existence of w-many
supercompact cardinals.

We prove:

THEOREM 4. Refl(R,,41) is consistent relative to the existence of a cardinal k which
is k- I}-subcompact.

Subcompact cardinals were defined by Jensen, and - H} -subcompact cardinals
were defined by Neeman and Steel (denoted H%-subcompact in [17]). Under GCH,
the large cardinal assumption in our theorem is weaker than the assumption that
k is kt-supercompact. Subcompactness and its variations were defined during
the investigation of square principles in core models. See Section 3 for the exact
definitions, and more details.
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938 YAIR HAYUT AND SPENCER UNGER

Our construction is motivated by an analogy with the consistency of stationary
reflection at N,. Reflection of stationary sets is an instance of reflection of a Hi-
statement. Namely, if S is a subset of x, then the statement “S is stationary” is
a I}l-statement in the model (H(k).€.S). If x is weakly compact, then this IT}-
statement will reflect to a smaller ordinal . So SN« is stationary and S reflects.

Thus, it was natural to suspect that the consistency strength of Refl(S:?) is a
weakly compact cardinal. Baumgartner [1] showed that after collapsing a weakly
compact to be ;. Refl(S;,?) holds and even any collection of X stationary subsets
of S&? will reflect at a common point. This thesis was supported by a result of
Jensen that stationary reflection is possible in L only at weakly compact cardinals.
Moreover, Magidor [14] showed that if any two stationary subsets of S, have a
common reflection point then @, is weakly compact in L.

Surprisingly, in [10]. Harrington and Shelah proved that the consistency strength
of Refl(S;?) is only a Mahlo cardinal. An important part of their result is the idea
that one must iterate to destroy the stationarity of certain “bad” sets to achieve
stationary reflection. These results show that there is a gap in the consistency
strength between stationary reflection and simultaneous reflection for collections
of stationary sets. This gap is explained by the difference between Jensen’s square
0. and Todorcevi¢’s square J(x"). See [11] for more details.

In our work, we exploit the strong analogy between weak compactness and H}-
subcompactness in order to get the consistency of stationary reflection at X, ;. Our
argument is similar to Baumgartner’s in the sense that we do not need to iterate to
destroy bad stationary sets. This analogy suggests that our assumption is not quite
optimal.

There is a vast gap between the strength in the large cardinal axioms which are
needed for stationary reflection at X, and at R, ;. This gap is related to the problem
of controlling the successor of a singular cardinal. The Weak Covering Lemma [13]
states that if there is no transitive model with a Woodin cardinal then there is a
definable class K which is generically absolute and for every x which is a strong limit
singular cardinal in V, (*)" = (s *)X. In K, O, holds for all infinite & by a result of
Schimmerling and Zeman [19]. Since [J,; is upwards absolute between models that
agree on x*, we conclude that if there is no inner model with a Woodin cardinal,
then O, holds at every successor of a singular cardinal and therefore stationary
reflection fails by a standard argument.

Thus, in order to obtain stationary reflection principles at the successor of a
singular cardinal, one needs either to violate weak covering or to start with a model
in which square principles fail. This requires large cardinal axioms which are much
stronger than the ones which are required for the parallel treatment of the successors
of regular cardinals.

The paper is organized as follows. In Section 2 we prove some standard facts about
Prikry forcing with collapses. In Section 3, we give the definitions of subcompact and
I1}-subcompact and calibrate the extent to which they imply stationary reflection.
In Section 4, we prove our main theorem.

§2. Prikry forcing. In this section we will review some facts about Prikry forcing
which are useful in this paper. We refer the reader to [9] for the proofs of the facts
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STATIONARY REFLECTION 939

cited in this section. For this section we assume that s is a measurable cardinal
and 2 = k™. Let i be a normal ultrafilter on x and j: V' — M be the ultrapower
embedding.

Fact 5. We have the following:

(1) fa={a: | E<KYEVN "M thena e M.
(2) [P = i)V =k
(3) IfP € M such that

M =P is j(kT)-cc, kT -closed forcing notion, |P| < j(k ™).

then there is K € V which is an M-generic filter for P.

Using part 5. let K C Col™ (k. < j(k)) be an M-generic filter. We define a forcing
P called Prikry forcing over the measure I/ with interleaved collapses using the
guiding generic K.

DErNITION 6. Let P be the following forcing notion with

P =(C1.P0.€0.P1.C1. oo Pt Cn1. A.C) €P,

if and only if

(1) 0 <n < w.nis called the length of p, and we write lenp = n.

(2) po < p1 < < pn_1 < & are called the Prikry points of the condition p.

(3) For 0 <i<n. ¢ € Col(p/,.< p;) where for notational convenience we set
p-1 = w and (temporarily) p, = k.

(4) AcU, minA4 > p,_1,supdome,_;.

(5) C is a function with domain 4, for all & € 4, C(a) € Col(a™,< k), and
[Clu € K.

For a condition p as above we write ph,, 47, ¢/, and C? with the obvious meaning.

We define two orderings. The direct extension, <*, is defined as follows. p <* ¢ if
lenp =leng, & O c; forie {-1.0,...,n— 1}, C? is stronger than C? pointwise, and
AP C A4. For a condition p of length n and p € 47, we denote by p —~ p the condition
of length n+ 1 with p; = pf fori <n, p, = p. ¢; = ¢ fori <n, ¢, = C(p). measure
one set 47\ supdome, and the natural restriction of C. The forcing ordering < is
given by a combination of direct extensions and adjoining points as above. Namely,
< is the transitive closure of the relation

{(p.q) eP?|p<*qorIpeA.q=p~p}.

For a condition p € P as above, the stem of p is {c_1, po. €0, .-+, pn_1. cn1). Clearly, if
p.p’ € P have the same stem then they are compatible. In particular, P is k-centered.
We also note that <* is only o-closed.

LEmMMA 7. P satisfies the Prikry Property. Namely, for every statement in the forcing
language ® and condition p € P there is ¢ <* p such that q - ® or q |- - .

Using the Prikry Property and a standard factorization argument, one can show
that the set of cardinals below  in the generic extension is exactly {w,w; }U{p,. p;T |
n < w}. In particular,  is forced to be X, of the generic extension.
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940 YAIR HAYUT AND SPENCER UNGER

Let p be a condition with stem s. The set of stems of conditions ¢ < p, leng = lenp
is naturally isomorphic to a finite product of Levy collapses. We will say that a set
of stems D is dense if it is dense with respect to this order.

Lemma 7 has several stronger versions which are called the Strong Prikry Property.
The version which we need is the following:

LemMA 8. Let D C P be a dense open set. There are a large set A € U and a
condition [C] € K such that the following holds. For every condition of the form
p = stem(p)~ (A, C), there is a dense set of extensions for the stem (with the same
length). E. such that for every g <* p with stemgq € E. there is a natural number m such
that for every q¢' < q. withleng’ =leng+m. ¢’ € D.

Let p be a condition of length #,

P =(C1.P0.€0.P1.Cl. oo PrtsCn1. 4. C).

Let P | p be the set of conditions in P which are stronger than p. Let P, | p be the
forcing

Col(w.<py) x Col(pg.<p1) x - x Col(p,,.<k)

below the condition (c_j....,c, 1). Note that we include in the definition of P, the
last collapse of all cardinals between p | and «. This will be useful later.

Let W be a model of set theory, V' C W.In W, let (p, | n < w) € W be a sequence
of V-regular cardinals below x and let C,, C Col” (p;". < p,s1). C.1 € Col” (w1. < po)
be filters.

LetC=(C,|-1<n<w)and P= (p, | n < w). Let us denote by G(C, P) the filter
which is defined from C and P. Namely, G(C. P) C P is defined by:

p={c1.00..c..Ch2.Mp1.Cn1.A. F) € G(C. P),

if and only if

(1) peP.

(2) For all m € w with m < n, p,, = n,, and ¢,, € G, (in particular, the domain of
¢p1 18 a subset of pl | x p,).

(3) c1€Cy.

(4) Forallm>n, p,, € Aand F(p,,) € Cp,.

THEOREM 9. Let C, P € W be as above. G(C, P) is V-generic if and only if

(1) Foreveryme {~1}Uw, C,, is V-generic.

(2) For every A €U, there is n < w such that for allm > n. p,, € A.

(3) Forevery C: k — V such that [C] € K there is n < w such that for all m > n,
C(pm) € Cm-

Proor. The forward direction is clear.

For the backwards direction, let G be the filter generated by C, P. Let D be a dense
open subset of P. We will find a condition r € GN D.

By the Strong Prikry Property (Lemma 8), there are a large set A and a member
[C] of K such that for every condition ¢ of the form stem(q)~ (B, F), with B C 4 and
VYo € dom(F), F(a) < C(a), there is dense subset E of the stems of P below stem(g)
as in the conclusion of Lemma 8.
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STATIONARY REFLECTION 941

Let g € G of some length n such that for all m > n, p,, € A and C(p,,) € C,,. Let
E be the witnessing dense open set of stems as above. By a standard argument using
Easton’slemma, C_ | x Cy x --- x C,_; is V'-generic. For notational convenience we call
this generic C;. Since (¢?;.¢{....c1 |) € Cy. there is some extension (c_y.c....Cy 1)
ofitin C¥NE. Let ¢’ be the strengthening of ¢ by (c_1.¢p. ..., 1).

By the conclusion of Lemma 8§, there is a natural number m such that any m-step
extension of ¢ is in D. So if we take a condition r € G with r < ¢’ of length n+m

then it follows that » € D. -

Let My = V and let}, , = id for alln < w. Let us define, by induction on n, transitive
classes M, and elementary embeddings j,,,: M,, — M,. Let us denote j, = ji,. Let
Juni1: My — M, .1 be the ultrapower by ji . (/) and let jn41 = juni1 ©Jmn fOT every
m<n.

Letj,: V — M, be the direct limit of the directed system (M, jmn | m <n < w).
Let j,»: M, — M, be the corresponding elementary embeddings.

THEOREM 10 (Gaifman). M, is well founded.
The following fact is well-known:
LeEMMA 11. My[{j.(x) | n < @)] is closed under k-sequences.

PROOF. Since W = M, [{j,(k) | n < ®)] is a model of ZFC, it is enough to show
that for every k-sequence of ordinals from V. s = (o | £ < k) belongs to W.

Let us fix for every ¢ < &, a natural number 1 and a function f: "¢ — Ord such
that jo, (f) (k.1 (k). ... jne1(K)) = .

Let F = {f; | E < k). jw(F) | & = (ju(f) | £ < k). By applying each function from
the sequence j,(F) | k to the corresponding initial segment of (j,(k) | n < ), we
get s. Since j,,(F) | k € W, we conclude that s € W. o

DerINITION 12. For a subset X of a partial order X we will denote by <X > the
upwards closure of X:

<X>={xeX|IPeX x>y}

The following well-known fact will play a major role in Section 4.

LEMMA 13. Letp € Pandlenp = n. Let G' C P, | p be a V-generic filter. In V[G']
there is an M,,-generic filter for j,,(IP) that contains j,(p).

PrOOF. Letn > 0. Let K, € Col(j,_1(k)*. < (k)M be <j,.1 ” K>, i.e.. the filter
generated from j,,_ | ” K. Note that K,, = j,_1 (K). The following argument is standard,
see [4]. -

Cram 14. K, is M,-generic.

ProoF. Let D € M, be a dense open set. Then there is a function f: k" — V such
that for all @ € k", f(a) is a dense open subset of the forcing Col(a ,.< k) where
we write @ = {ag.ay, ...a, 1 } listed in an increasing order. By the distributivity of the
forcing Col(a; . < k). for every o < k. the set Dy = [ on1.f (b () is dense open

in Col(a™, < k). Let ¢ be a function with domain & such that [¢];; = j1(¢)(k) € K,
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942 YAIR HAYUT AND SPENCER UNGER

and {a < k| g(a) € D, } € U. Such a condition exists, since K is M-generic. Let us
consider the function §: " — V which is defined as g(a) = g(a,_1).

Let r = ju(q) (5.1 (k). ... ju1(K)). r=ju1(j1(g)(x)) since:

Jn1Gi(g) (k) = ]n ([g)e)
= l(q)]/,l (U
= ]n ln(]n 1(9))(]11 I(K'))
= ( )(]n—l( ))
and by the definition of g, j,(§)(k.....ju1(k)) = ju(q)(ju1(x)). We conclude that
reD.
Since r :jn—l([q]l/l)v r€ K. B

Note that j,, ” K, = K, and that K, is also an M,,-generic filter.

Let C be the sequence of generic collapses from G’, augmented by the sequence
(K1.Ky,...). Let P={po,.... pn1.k.j1(k).j2(K),...), where po...., p,1 are the Prikry
points in the condition p. Let G = G(C, P) C j,,(P), as in Theorem 9.

For every A € j, (1) there is m < w such that A =, ,(A’). Note that the tail of the
sequence P, starting at point n +m, is contained in A. Similarly, if ¢’ € j,(K) then
4 = jmw(q) for some ¢ and therefore for every k > m, q(jx(k)) € K. Finally, each
K, is M ,-generic. Thus, the conditions of Theorem 9 hold and G is M,,-generic for
Jo(P).

2.1. Splitting generic filters. During the proof of the main theorem, Theorem 38,
we will need to analyze models of the form M, [P][#H] such that P is the critical
sequence and # has the form (<, ” H> | n < w) where H is a V'-generic filter for
some k" -closed forcing notion in M,,[P].

Let A be a forcing notion that has unique greatest lower bounds and a k™ -closed
dense subset, which is closed under those greatest lower bounds. Let us assume that
Jjn.(A) = A for all n < w (in particular, A € M, [P]). In this subsection we will define
and analyze a forcing notion, H, which will have the property that P and #H generate
an M,,-generic filter for j,, (IH).

A lot of information on the model M,[P][H] can be extracted without
understanding the forcing H. In particular, one can prove Lemmas 20 and 23
without mentioning H. Moreover, using Bukovsky’s Theorem [2], one can deduce
the existence of some forcing notion that introduces H over M,,[P], without knowing
what precisely this forcing is. In particular, one can prove Claim 40, which is central
in the Theorem 38, without explicitly constructing the forcing notion H. Despite
this, we prefer to construct the forcing H in detail, since we believe that its structure
helps to unravel some of the mysterious properties of .

In the following definition we will use the convention that a finite sequence s is
an end extension of a sequence ¢ if t = s [ lenz. In this case we will write ¢ < 5. Note
that s < s always holds. We will denote by s | tif s drand t 4.

The conditions of H are pairs of the form p = (T, F) where:

(1) TCk<*.Foreveryn e T andn<lenn,n [ne T. Letus order T by <.

(2) Any element of T is a strictly increasing finite sequence of regular cardinals.

(3) There is a single element s € T such that every ¢ € T is comparable with s and
lens is maximal. Let us denote stem(7') = s.
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STATIONARY REFLECTION 943
(4) Foreveryt € T, if stem(T) < 7 then
{a<k|t{(a)eT}elU.

(5) Fisafunction, F: T — A.
(6) (Stabilization) Let ¢ € T such that stem(7) < ¢. Let g; be the function g,(a) =
F(t~(a)) for all @ < & such that 1~ (a) € T. Then j(g,) (k) = F(¢).

For a condition p = (T, F) € H we write 77 = T, F? = F, and lenp = lenstem(T).
We denote stem(p) = (F(¢) | t < stem(T)).

For p,q € H, we define p < ¢ (p extends ¢) if 77 C T9 and F(5) <4 F4(y) for all
n € T?. We define p <* ¢ (p is a direct extension of ¢) if p < g and lenp = leng.

LemMA 15 (Strong Prikry Property). Let D C H be a dense open set and let p € H.
There is a direct extension p* < p and a natural number n < w such that any q < p*
withleng > nisin D.

Proor. Let D C H be dense open and p € H be a condition.

Let (57, | @ < k) be an enumeration of < such that if 7, <7, then oo < . Let
us define, by recursion, a decreasing sequence of conditions p, = (Ty. Fa), o < K,
such that stem(7,) = stem(7}) for all o < f. For all such conditions, the range of
F, is always chosen to be included in the " -closed subset of A.

Let p = py. Let s = stem(Ty). For each a, if 5, € T, end extends s, we look at
the tree T, = {5 € Ty | 1o £ n} and check if there is a condition ¢, = (I".F') € D,
which is a direct extension of p, [ T}, . If there is no such condition, we let po+1 = pa.

Otherwise, let us define:

T"={neTy|nLn,orneT},
F'=F,{n€eTy|nLn,}UF.

Forn € T"\ T’, requirement 2.1 might fail. Since " (7) is stronger than F, (7). we
may find a condition r, ., such that r,~ ., < F" (5~ (e)) for all @ and j(r),~ ., =
F"(n). Continue this way for  many steps we construct a function F’”” with domain
T" such that p, 1 = (T", F"") is a condition.

For a limit ordinal a < &, let p, = (T,. F,) be the pair, T, = ﬂka Ty, and F,(n)
is the greatest lower bound of Fy(y) for all # € T, (this lower bound exists by the
closure of the forcing A).

Let us verify that for all a < &, p,, is a condition. For limit ordinal «, T, is U-
splitting, using the closure of the measure . F,, satisfies condition 2.1, since for all
n € T,. F, () is the greatest lower bound of a decreasing sequence of length o < .
Since a < critj, applying j does not change this fact. For successor ordinals «, the
requirement follows from the construction.

We would like to continue and construct a condition p,, which is a lower bound
for the sequence p,.

Let T, = ()<, Ta- Since the set of successors of each element in the tree is
modified only finitely many times, 7 is a /-splitting tree with stem s.

Let us consider for each# € T, the following sequence of functions. Let gy : £" — A
be the function defined by g; (v) = lim, F, (7). Let

PZ :]n(gZ)(/ﬁ]l ("'/'3): :jn—l (K;))
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944 YAIR HAYUT AND SPENCER UNGER

Let us claim that for each 7. the sequence (p) | 7 < w) is decreasing. Indeed,

Py = Ji(gh) (k) = lim,q;, (o)/1(Fa(n™ (%))
< 1im04</'ij1 (F)a(i’]’\<l'€>) = hma</€]l(F) (7/ <K‘ )
= lima<n Fa(r/) = p;y'

By the elementarity of j,,
Jn((Fa | a<r)) = (Fl | a <ju(k)).
and for all @ < j,(k), for all # € dom F/",
Jnnst (F (g ~ (0)) | € <n(K))) Un()) = F ().

and therefore, we conclude that in general:

P;+l = jn-H(gZ 1)( ceedn(K))

lim,; o) Fa (7 (k.. ju()))
1ima<jn(n) ]n{rl(F)a(n < "'-’]n(ﬂ»)
lim,o, () ]'n‘n+l(F£1)(77A< Koo fn1(K)) 7 (n(K)))
limg o, ) (F& ) (0™ (K. . i1 (£)))

In(g) ™ (k.o jin1(K))) =

IA -l

Let F(7) be the greatest lower bound of (p) | n < ). Let us claim that requirement
2.1 holds for F. Namely, that for any #. if we let 4, () = F(y™ (), then j(h,)(x) =
F(n). By elementarity, j(h,)(x) is the greatest lower bound of the sequence q, Where
, :j(@;;“m) | o < k))(k). Let us compute:

@ = 15 |2 <))
e o (81 (R) | 0 < ) )
= ]n—H( ) ( ()ss]n(”))
= Jus1(gy* 1)( s]l( N AC) =

Thus, F(y) satisfies requirement 2.1 in the definition of H. Let p, = (T, F).

Let us consider the condition p,. By narrowing down the tree 7' = T, we may
assume that for any # € T one of the following two holds: Either for every o < &,
if 7 {a) € T then the extension of p by picking 77 (a) is in D, or that all of them
are not in D. By narrowing the tree 7 again, we may assume that for any element of
the tree # the minimal level of the tree that enters D above 7 is fixed. This induces
a coloring of T which is (by induction) fixed on levels. Clearly, if an element# € T
was colored by the number 7 then its successors are colored by n — 1. Let n be the
color of stem (7). Then, every direct extension of p,, with at least n new points is in
D, as required. =

The generic filter can be described compactly using a branch in the tree, P, and a
sequence of filters H = (H, | n < w) of A. Let G(P.H) be the set of all conditions
p €M such that foralln < w, P [n€ TP and FP(P | n) € H,.

LEMMA 16. For any increasing w-sequence in k and collection of filters H = (H,, |
n<w), G(P,H) is a filter.
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STATIONARY REFLECTION 945

ProoF. Let p,g € G(P.H). We want to show that they are compatible and have
a common lower bound in G(P,H). Let us assume, without loss of generality, that
lenp < leng. Then stem(7?) < stem(79) < P. In particular, the intersection of 77
and 7Y is a U-branching tree. Thus we may assume without loss of generality that
77=T1=T.

Let us consider F” and FY. For every element below the stem of the tree, the values
of those two functions are compatible since each H,, is a filter. For elements above
the stem, one can show, by induction on the height of # € T, that the compatibility of
FP(y) and F4(y) implies (using requirement 2.1 in the definition of the forcing) that
for a large set of extension of 7, F¥ (™ (a)) is compatible with F” (5™ (c)). Moreover,
by the definition of the filter G(P,#), if # is an initial segment of P then F”() is
compatible with F4(y). Narrowing down 7, we may assume that for any n € T,
FP(y) is compatible with F4(5), while the initial segments of P are allin 7. Let F(#)
be the greatest lower bound of F”(y) and F4(s). For every n. let g,(a) = F(n™(c))
and let g”, g7 be the analogous functions with respect to p and ¢. Then, j(g,)(x) is
the greatest lower bound of j(g}))(x) and j(g}l)(x) and therefore is the same as F(7).

We conclude that this condition satisfies requirement 2.1. Thus, it is in G(P,H).
as wanted. -

We wish to generate an M,,-generic filter for j, (H). Let H C A be a V-generic
filter. Let H,, = (<Jun " H> | m <n) and let H = (<, ”H> | n < w). Let P be the
critical sequence (j,(k) | n < ®). It is immediate that P,H € M,[H,].

We will show that G(P, H) is M,-generic for j,, (IH). We start by showing that H,,
is generic over M,. To do so we need the following lemma which is attributed to
Woodin in a paper of Cummings, see [4, Fact 2].

LemMA 17 (Cummings-Woodin). Let W be a model of ZFC. In W, let u be a
measurable cardinal, and let U be a normal measure on u. Let j: W — N be the
ultrapower embedding.

Let A be a forcing notion such that A = j(B) and B is a u-closed forcing notion. Let
G4 C A be a W-generic filter. Then j extends to an embedding :

J5 W[G4] — NI[<j” G4>].
which is definable in W[G 4], and G 4 is N[<j” G 4>]-generic.

CraM 18. H,, generates a generic filter for A" over M,,.

ProOF. We go by induction on n < . For n =0, this is true as H is a V-generic
for A. Assume that the claim holds for n < w.
Consider the elementary embedding:
jn,n+1 : Mn — Mn+1-

This is an ultrapower embedding, using the measure ji,({/) over M,,. We apply Lemma
17 with W = M,. u =j,(k). j =juni1. B= A" and G, = H,. We conclude that
there is an elementary embedding:

j:;,n-&-l : Mn[Hn] — Mn+1[<jn.n+l ” Hn>]-

By the definition of H,,, <juur1” Hu> = Hua1 [ [1,n+1]: the last n+ 1 coordinates
of Hn+1~
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By the second part of the lemma, H, is M, [H,.1 | [1.n+ 1]]-generic. In
particular, H is generic over this model. Since H is the first component of H, |
we conclude that #,,.| is M, -generic for the forcing A”*2. =

THEOREM 19. G(P,H) is M,,-generic for j,,(H).

Proor. LetD € M, bedense openandletp € G(P.H). Letn < w be large enough
so that there is D’ C j,(H) and p’ € j,(H) such that D = j, (D) and p = j,., ().
Without loss of generality, lenp = n.

Let

E={p €jy(H)|p*<*p.Im<w.Vr<p*lenr>m = re D'}.

By the Strong Prikry Property in M,,, E is dense and open in <*.

Let us claim that there is a condition r € E such that j,,(r) € G(P,H). Indeed,
since E is dense open in the direct extension relation, the collection of stems of
elements of E is dense open in the forcing A"*!. By the genericity of H,,. there is
s € H, which is a stem of an element in E. Let r be any element in E with stem(r) = s.
Let us claim that j,,(r) € G(P,H). Indeed. working in V fixes a condition 4 € H
such that s" = (jj,.,(h) | m < n) is stronger than s. Let ¥/ = (T”, F’) be any condition
of H such that stem(#') = s’. Then, by induction on k < w,

Jnnik(F')(stem(T") ™ (ju(K). ... jwsk-1(K))) = h.

We conclude that j,,(F')((k,....Jjx 1(k))) € jxw H for all k. Thus, j,.() €
G(P.H). Following the arguments of Lemma 16, by narrowing down the tree of
¥ in M,, we obtain a condition r’ <* ¢/, F' - i T"", and "’ < r. Since the
critical sequence starting from n enters any U-splitting tree from M,,, we get that
Jno(®") € G(P,H) as well.

We conclude that j,(r) € G(P,H). Let m < w be the natural number that
witnesses r € E. That is, for all ¢ < r with leng > m, ¢ € D’. By elementarity, any
extension of j,, () of length m is in D. In particular, G(P,H)ND # (). =

LemMA 20. M, [P[H] has the same j,,(k)-sequences of ordinals as M,,[P].

ProOOF. Since j, (k) is singular in M, [P]. it is enough to show that there is no
new sequence of ordinals in M,,[P][H] of length p < j,, (k).

Let us fix n < w large enough so that p < j,(k). M,[P] and M, have the same
Jjn(k)-sequences of ordinals by Lemma 11. Let us assume that there is a p-sequence
of ordinals,

x € My,[PI[H]\ Mo[P].

Recall that H,, = (<jim.n” H> | m < n). By Claim 18, H,, generates a generic filter for
A" which is a j,(k*)-closed forcing in M,,. In particular, since H,, is an M,-generic
filter for a j,(x™)-distributive forcing, M, has the same p-sequences as M,[H,] and
in particular, any p-sequence in M,,[P][H] belongs to M,. But since M,,[P] contains
all j, (k) sequence of ordinals from M,, (by applying Lemma 11 in M,,), we conclude
that x € M,,[P]. =

Let us give another argument for the distributivity of the extension by .
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DEFINITION 21. Let p, g € H. p <** g if there is a U-splitting tree T with stem(T) =
stem(77) = stem(7T9) and p’ = (T, F’ | T) <*g.

Using diagonal intersections, the partial order <** is k*-closed. Let (D; | i < &)
be a sequence of dense open subsets of H. Using the Strong Prikry Property, we can
construct a sequence of conditions (p; | i < k) which is decreasing in <*. There is no
<*-lower bound for those conditions, but there is a <**-lower bound, p,. For every
a < K, there is a natural number 7, such that for every increasing sequence s € T7+,
with lens > n,, maxs > «, the condition p’ = (TV*, FP= | T/%) is in D,,, where T is
the restriction of the tree T to its elements above s. This implies that for any name
for a k-sequence of ordinals there is a condition that forces it to be equivalent to a
name relative to the Prikry forcing.

Recall that P is the Prikry forcing with interleaved collapses and that G is an
M,,-generic filter for j,, (P).

Cramm 22. In M,,. P and H generate a generic filter for j,(H) which is mutually
generic to the quotient forcing for adding collapses over the standard Prikry forcing.
Moreover, the filter H does not add any j,,(k)-sequences of ordinals over M,,[G].

PrOOE. Work over V. Let P be a V-generic Prikry sequence. By elementarity,
there is a condition in H/P that forces that any x-sequence of ordinals in the
generic extension is already in ¥[P]. The quotient forcing for adding the interleaved
collapses over the Prikry sequence. P/ P, is x-centered and in particular x*-cc. also
in the extension by H.

Thus. by the distributivity of H/P over V[P]. every maximal antichain of P/P
belongs to V[P]. Therefore if G C P is a V-generic and # C H/P is V[P]-generic.
then it is also V[G]-generic.

The arguments for the distributivity of j,, (H)/P over M,[G] are the same as in
Lemma 20. Using the fact that M,[G][H] € (., MulG | n+1][H,] and that the
forcing that adds G | n+11s j,(x)-cc, we can trace back any name for a new sequence
of ordinals which is shorter than j, (k) to one of the M, and use the distributivity
of A" in M, in order to conclude that this name appears already in M,,[P]. -

The following lemma is a generalization of the classical theorem of Bukovsky [3]
and independently Dehornoy [7]. We will follow Bukovsky’s proof.

LEMMA 23. My,[P][H] = <0, MalHn)-
Proor. We already know that M,,[P][H] C (<, Ma[H.]. Let us show the other

direction.
Let x be a set of ordinals in the intersection of all M, [H,]. Since j,, is definable
in M,, we may define:
Xp = {g |]nw(€) S x} € My[H,].
The embedding j, ., extends to an embedding:
Iners Mu[Ha] = Mo[<jnow” Ha >] S M, [P][H].

Therefore, j,,(x,) is well-defined and belongs to M,,[P][#]. The model M, [P] is
closed under w-sequences. Since any H does not add any w-sequence of ordinals to
V, the same holds in M,,[P][H]. Thus, (j,..(x,) | n < w) € M,[P][H].
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Now we can reconstruct x as follows: { € x if and only if for all but finitely many
n <, € jnw(xy). =

We conclude that H € M,,[P][#] (as it belongs to any of the models M,[H.]).

§3. Subcompact cardinals. In this section we will discuss the relationship between
subcompactness of cardinals and stationary reflection. Both of these concepts are
related to Jensen’s square principle.

DEFINITION 24 (Jensen). Let & be a cardinal. A sequence C = (C, |a < k™) isa
O,-sequence if:

(1) C, is a closed unbounded subset of a.

(2) otpC, < k.

(3) Forall f e accCq. Cp=CoNp.

O, is a strong non-compactness principle, see [15] and [6]. For example:

LemmA 25. Let k be a cardinal such that O holds. For every stationary subset
S C k™ there is a stationary subset T C S that does not reflect.

Let 7 be a model of ZFC, such that x € V' is an infinite cardinal and [J,, holds. If
W is a larger model, V' C W, and (k)" = (k)" then W |= 0, w. Thus, in order
to obtain a model in which some type of stationary reflection holds at x™, without
collapsing ", we must start from a model in which either « is inaccessible or [,
fails. Since we are aiming towards stationary reflection at the successor of a singular
cardinal, the second possibility seems to be more natural.

The principle [, was originated from the study of the fine structure of L. Jensen
proved that [J,; holds in L for all infinite x and more sophisticated arguments provide
square sequences in larger inner models. While studying the properties that imply
the failure of square, Jensen isolated the notion of subcompactness.

DEFINITION 26 (Jensen). Let « be a cardinal. x is subcompact if for every A C
H(x") thereis p < k and B C H(p™) such that there is an elementary embedding:

Ji(H(p").€.B) = (H(k").€. 4),

with critj = p.

Note that j(p) = k. thus p is 1-extendible with target x. Moreover, the set of
ordinals 6 < k™ which are the supj” p* for some subcompact embedding with
critical point p is stationary.

Assuming GCH, the first subcompact cardinal is smaller than the first cardinal
which is kT -supercompact. Moreover, the first subcompact is weakly compact but
not measurable. Nevertheless, subcompact cardinals are still strong enough in order
to imply the failure of [Jj.

In [19]. Schimmerling and Zeman proved that [, holds for every s which is not
subcompact in models of the form L[E] which satisfy some modest iterability and
solidity requirements.

TueoreM 27 (Jensen). If k is subcompact then O, fails.
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PROOF. Assume otherwise, and let C be O, -sequence. Let p < . and C be such
that there is an elementary embedding:

Ji(H(p").€.C) = (H(x™),€.C).

Let Abej” p*. Forevery a € A, if cf a # & then cf a < p and therefore otp C, < p.

Let 6 = sup.A. and let us look at Cs. Since cfd = p™, otpCs > p*. On the
other hand for every a € accCs with cfa < p, otp(CsNa) = otp C, < p. which
is impossible. -

The same proof as above shows that the following stronger claim holds:

REMARK 28 (Zeman [22]). Let  be a subcompact cardinal. Then, there is no
sequence {C, | o € SQD such that :

(1) Forall C€C,, Cisaclubat a. otp C < k.
(2) Foralla € S%,. 0 < |Co| < k-

(3) Forall CeC,. pcaccC.CNP eCp.

We note that (k") can still hold where & is subcompact. Indeed, subcompactness
behaves much like Mahloness of x™, and cannot be destroyed by a forcing which
is kT -strategically closed, such as the standard forcing to add (k™) by initial
segments. Yet, the failure of J,; for a subcompact « indicates that subcompactness
has a deep connection to stationary reflection.

The following argument (essentially due to Zeman) is similar to the Harrington—
Shelah [10] argument for obtaining Refl(S;,>) from a Mahlo cardinal. In [22]. a
similar theorem is proven when the subcompact cardinal is collapsed to be w,
for some n. For completeness we include a proof here for the case in which the
subcompactness of k is preserved.

THEOREM 29 (Zeman). Let k be subcompact and assume that 2% = k™ and let
1 < k. Then, there is a forcing notion P that does not collapse cardinals and forces that
every stationary subset of SZ; reflects at a point in SQ; of arbitrary high cofinality.
Moreover, k remains subcompact in the generic extension.

Proor. Let Q be an Easton support iteration of length «. In the p step, if p is
not inaccessible, force with the trivial forcing. Otherwise, force with Add(p™, p™™).

Let us define a forcing notion P, which is essentially a k-support iteration of
length x**. Let us define, by induction on a < k™, P, and Q,. The forcing Qy was
already defined. Let Py be the trivial forcing and P; = Q.

Let o > 0. Let us pick a name S, for a subset of Sg+ for some 0 < 5. If there is
% < k such that P, forces that S, does not reflect at any ordinal of cofinality between
£ and k, then we let Q, be the forcing that adds a club C, disjoint from S, using
bounded conditions from V@,

For all y < k™. let P, be the collection of all sequences of length y. p. such that
suppp = {B <y |p(p) # 0} has size at most s and forall f< . p [ B IFp, p(f) € Qp.
We order P, in the natural way. Let P =P, ++.

Since our forcing notions are going to be only distributive and not closed (or
strategically closed), we wish to avoid the delicate point of whether the conditions
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from V@ are a dense subset of the iteration, and thus P is not defined as the standard
iteration of the Q,. =

Lemma 30. Every Py-name for a k-sequence of ordinals is forced to be a Qg-name.

ProOr. Let us prove the lemma by induction. For a = 1, P, = Qy and the
statement is trivial.

Let us assume now that the claim is true for all f < . Since |P, | < k™, we can code
P, as a subset of H(k™). Let 7 < p < & such that there is an elementary embedding:

Ji(H(pY).e.Ps) — (H(k). €. P,).

By elementarity, P; codes an iteration for killing nonreflecting subsets of p*, of
length & in the same way as IP,. Let us denote the components of the iteration by
Qp. We note that if Hy is Qp-generic, then j lifts to the extension of H(p*) by Hy | p.
In particular we can apply the elementarity of j to the coordinates Q -

We build a generic filter G for P; using the Cohen generic subsets of p* added by
the iteration Q. In fact we will show that P, is equivalent to the Cohen forcing of
subsets of p* over H(p™)[Hy | p].

To do this we define clubs E, and C, for y < . Intuitively, we will use the club
E, in order to show that @y is equivalent (externally to H(p")) to the forcing that
adds a Cohen subset of p*. We do this by taking the dense set of conditions p such
that for all , either p(y) = 0 or max(p(y)) € E,.

We will also construct clubs C, for all y < &. Those clubs are going to be H(p*)-
generic in the following sense: The natural filter G/; C I@/; given by the set of all p in
}f”ﬁ such that p(0) € Hy | p and

V0 <y < f.q(y) =0Vq(y) = C,Nnmax(gq(y) +1)

is H(p*)-generic.

We go by induction on . Suppose that we have constructed E, and C, for all
7 <B.

If = +1, then by elementarity and the definition of the iteration we have that
j(S‘C) = Sj(é) is forced by P; to be a set consisting of ordinals of cofinality less than
p which does not reflect at 6 = sup;” p*. Again by elementarity, we can interpret
S/’(C) Nj“p* using only G;.

By induction HNDg is equivalent to adding Cohen subsets of p™ and using a
straightforward density argument it follows that there is a dense subset of p in
P; such that each nontrivial coordinate of p has the same maximum element. It

follows that the condition m in P given by supp(m) = 4eG, SUPP j(¢) and for

all y € supp(m), m(y) = quégj(q)(y) U{d} is a master condition for j“G;. Indeed.
cfo > 7, so it is not a member of any of the nonreflecting stationary sets that we kill.
It follows that m decides Sj@ Nj” p*. This set is nonstationary in V[Hy | p][f;g],
since otherwise it would remain stationary in the full generic extension. It follows
that we can find a club D, in ¢ which is disjoint from it.
Let E; = acc{¢ < p* | j(¢) € D¢ }. Note that any « € E; such that j(a) ¢ D would
have cofinality p.
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If we consider the dense subset of @C whose maximum element is in E,, then
this forcing is isomorphic to adding a Cohen subset of p* over V[Hj | p][GC]. We
stress that this isomorphism can be computed in the model V[Hy | p][G;]. Let X;
be a Cohen subset of p* which is generic over V[Hp | p][Gg] (there are such sets
since G is equivalent to a subset of {* and Add(¢{*,¢*+) is {+*-cc). Applying the
isomorphism between Add" 0 !”}(p* 1) and Q; on X; we obtain a club C; which is
Q;-generic over V[Hy | p][G;]. In fact V[Hy | p][G:1[C:1= V[Ho | pl[G:1[X;]. This
completes the successor step.

If f is limit, then using E, for y < f and induction there is an isomorphism
between ]f”/; and Add(p™.B) as computed in V[Hy | p]. The fact that the sequence
(X, |y < B) is generic for Add(p™. ) implies that G/; is generic for 13,;.

We conclude that there is a generic filter G for P4. This generic filter is obtained
in a p*-distributive extension of Q! Thus, it does not introduce any new p-
sequences of ordinals (recall that H(p*) is closed under p-sequences and thus
computes correctly p-distributivity). The lemma follows by elementarity. -

By the chain condition of PP, we can make sure that in the generic extension, if
S is a subset of SQ; which does not reflect then IS = S, for some @ < x™* and
therefore it is nonstationary.

LemMA 31. & is subcompact in the generic extension.

PrOOF. Let p be a condition and let 4 be a name for a subset of H(x"). By the
chain condition of the iteration, there is an a < k™" such that A4 is a P,-name.
By the subcompactness of « thereis a cardinal p < x and an elementary embedding

Ji(H(p").€.P.Ps.4) = (H(k").€.p.Pa. A).

By the arguments of Lemma 30, we can find a master condition m, namely a
condition m < p such that for any dense open set D C [P which is definable from
parameters in H(p™) and A, there is ¢ € D such that m < j(g). It is clear that in this
case, if m belongs to the generic filter then j lifts to the generic extension.

Our argument shows that the set of such master conditions is dense in P, so the
lemma follows. -

This finishes the proof of Theorem 29.

The proof of the above theorem only provides stationary reflection for sets of
bounded cofinality. In [5], Cummings showed that one can start with a cardinal
which is xk*-supercompact, and force that every stationary subset of k' contains
a non-reflection stationary subset, while preserving the subcompactness of x and
much more. Nevertheless, in Cummings model, it is possible that there is a generic
extension that restores stationary reflection.

Similarly, in [18], Schimmerling analyzed the canonical square sequence in
extender models, L[E], and showed that the least cardinal x in which stationary
reflection holds for SQ: is much larger than the least subcompact.

Those results indicate that the consistency strength of Reﬂ(SQ:) might be actually
larger than a single subcomapct. Strengthening Cummings’ result, the next theorem
shows that it is consistent that  is subcompact yet there is no forcing extension
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that preserves « and ' and forces full stationary reflection at S’;,t. Schimmerling’s
results suggest that this would be the case also in an extender model, L[E].

THEOREM 32. Let k be subcompact. There is a generic extension in which k is

. . . + .
subcompact and there is a nonreflecting stationary set S C S%, and a partial square
(Calags).

PrOOF. By preparing the ground model, if necessary, we may assume that for
every 0 < k, which is not subcompact, [J; holds.
Let P be a forcing notion which consists of pairs (s, c) where:

(1) sis a bounded subset of S’i,t and for all limit « < sups, there is a club d, in
a. which is disjoint from s.

(2) If B € s then cf B is non-measurable.

(3) cis a function and dom ¢ is a successor ordinal between sups and ™.

(4) For every a € dome, c¢(a) is a closed subset of o (possibly the empty set).

(5) If & € domc)\ s then supc(a) = a.

(6) If B c accc(a) then c(a) N B = c(B).

We order P by (s'.¢’) < (s.c) if and only if s C 5, ¢ = ¢’ | domc and (' \ s) N
(domc) = 0 (note that s is an end extension of s above the maximum of the domain
of ¢, which is at least sups). —1

Cram 33. The forcing P is k + 1-strategically closed.

ProOr. We define a winning strategy for the good player. At successor stages,
the good player does nothing. At limit stages, if the current stage of the game is
({Sa.Cq) | @ < B). then setting p, = maxdom ¢, the good player plays

sp= U sw and e = | caUf(pp. {pa |a < B1)}.
a<f a<f

It is clear that this choice is a condition in [P which is stronger than all previous
conditions in the play provided that f < k. -

By the proof of the claim, it is clear that the strategy is definable in H(x™).
Moreover, throughout the game the ordinals p, will be a club which witness the
nonreflection of s at each limit point.

Let us show that  is subcompact in the generic extension. Let 4 be a name for a
subset of H (k™) in the generic extension. Since P C H(k"), we have 4 C H(k™").

Let p < k and B,P C H(p") be such that there is an elementary embedding:

j: (H(p").e.P.B) — (H(x").€.P.A).

Moreover, let us assume that p is the minimal cardinal for which such B and j
exist.

Cram 34. p is not subcompact.

PROOF. Assume that p is subcompact. Then there is some # < p and C,P and an
elementary embedding & such that:

k: (H(y").e.P.C) — (H(p").€.P.B).
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Then jo k is elementary, which contradicts the assumption that p is minimal.

The forcing P is p + 1-strategically closed by elementarity. By a theorem of Ishiu
and Yoshinobu [12], since [J, holds, P is pT-strategically closed. This strategy is
combined from the strategies for the shorter games and thus we can verify that the
sequence of p, which is constructed in the game is closed and disjoint from the
constructed non-reflecting set. Let

D ={D,, | p(x.y) is a first order formula.a € H(p™)}

be the set of all dense open subsets of P of the form
Dy,,={pe P | pIF—p(a.B) or pl-¢(a. B)}.

Let (D, | @ < p™) be an enumeration of D with length p*. Using the strategic
closure of P we can generate a decreasing sequence of conditions (pa | @< pT) such
that p, € D,.

Let G C P be the filter generated from the sequence (p, | & < p*). Let us show
that there is a condition m € P such that Vg € G.m < j(¢). This implies that m forces
that the embedding j lifts to the generic extension.

Indeed. let p, = (Sq.cq). Then clearly. for oo < f8. s, is an initial segment of s and
Cq is an initial segment of ¢g. Let 0 = sup;j” p™ and let us consider

s= oot
c= Uj(ca) U{({,0)}.

The strategy enables us to obtain a club E C p™ which is disjoint from (J,, so. /" E
is disjoint from s. Moreover, the closure of j” E differs from j” E only by points of
cofinality p. Since p is measurable those points cannot appear at s and therefore
also accj” E is disjoint from s. -

The theorem suggests that the consistency of full stationary reflection at
a subcompact cardinal might exceed the consistency of subcompact cardinal.
Moreover, since the forcing is kT -distributive, we can conclude that if x is measurable
subcompact or even more it will remain measurable subcompact after the forcing
and there is no generic extension in which stationary reflection holds at SQZ and
k.xT are preserved.

The exact large cardinal assumption which is required in order to get stationary
reflection at the set SQ,: where & is subcompact is unclear. In the previous theorem.
the set of all # < ™ such that there is an elementary embeddingj: H(p") — H(k™")
with sup;j” p* = f is stationary and non-reflecting. This is analogous to the case
of Mahlo cardinal in a generic extension of L in which stationary sets of bounded
cofinality might reflect at inaccessible cardinals but the set of inaccessible cardinals
does not reflect.

The following definition. due to Neeman and Steel, will play a major role in our
investigation of unbounded stationary reflection.

DEFINITION 35. A cardinal k is k- H{-subcompact if for every set A C H(k™),
and every I1}-statement ® such that (H(k"). €. 4) |= ®@. thereis p <k, BC H(p™").
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and an elementary embedding:

Ji(H(p").€.B) = (H(k").€. 4)
such that (H(p"),€,B) E @.

In their paper [17], this large cardinal notion is denoted by IT;-subcompact. We
feel that the notion - H%-subcompact is more appropriate as it emphasizes the
resemblance between x* and a weakly compact cardinal.

LEMMA 36. Let k be k- H{-subcompact. Then k is measurable.

PrOOF. Let @ be the I1}-statement “for every ¢ C P(x) which is an ultrafilter, U
is not k-complete”. If k is not measurable, ® holds. But for every p < « such that
there is an elementary embedding j: H(p*) — H (k") with critical point p. one can
obtain a measure of p by U, = {4 C p | p €(A4)}. So @ fails at H(p"). =

LEmMMA 37. Let k be k*- H{-subcompact. Then every sequence of < k many
. . + . .
stationary subsets of S%,. has a common reflection point.

PrOOF. Let S be a collection of stationary sets, |S| < . Let us reflect the IT]-
statement: “ VC C k™, which is closed and unbounded, for all S € S, CNS # (”.
Fix p > |S| such that there is an elementary embedding:

Ji(H(p").€.8) = (H(k").€.S).

Note thatif S € S, and a € Swith cf(a)) =#, then# < p. The ordinal § = sup;j” p+
will be a reflection point of every member of S. Indeed, for every S € S there is a
unique S € S such that j(S) = S. Every S € § is stationary at p* of cofinality < p.
Therefore, j” S = SN;” p* is stationary at J. -

Neeman and Steel showed that the consistency strength of simultaneous
stationary reflection at the successor of a threadable Woodin cardinal (indeed.
threadable successor of a threadable Woodin cardinal) is - H%-subcompact under
some iterability assumptions.

§4. Stationary Reflection at X, 1. In this section, we will prove the main theorem
of the paper which improves the upper bound of the consistency strength of
stationary reflection at the successor of a singular cardinal. The proof splits into two
components: the first component is a general statement about preservation of some
mildly indestructible reflection principles at the successor of a measurable cardinal
x under a forcing that changes the cofinality of x to @w and shoots a club through
the stationary set (S:+ )¥. The second is to show how to obtain the hypothesis of the
previous result from k- H} -subcompactness. We formulate the result this way, since
it may be possible to use a weaker large cardinal notion to obtain the hypothesis
of the first step. Further, we are able to use the first step to give an application to
stationary reflection for subsets of some bounded cofinality.

The idea to use Prikry forcing in order to force a measurable to be X, while
preserving its successor and maintaining stationary reflection at almost all stationary
subsets of X, ;| appears in several places. In the paper of Cummings, Foreman, and
Magidor [6, Section 11], they show that if  is k" -supercompact then after forcing
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with Prikry forcing stationary reflection holds outside the set of ordinals of ground
model cofinality . This was later improved by Faubion in [§], who obtained the
same result starting from a weaker assumption of a quasi-compact cardinal. Clearly
to obtain full stationary reflection in such a model, we must destroy the stationarity
of Sy and any other nonreflecting stationary sets which may appear in the extension.

We will state and prove the main theorem for simultaneous reflection of finitely
many stationary sets. The proof adjusts easily to the case of stationary reflection of
single sets.

THEOREM 38. Assume GCH. Let k be a measurable cardinal and let S C SQ; be
stationary. Let us assume that for every o < 0 < u < k regular cardinals, Sg e I[u].

Let us assume further that Add(k ™, 1) forces that every finite sequence of stationary
subsets of S reflects simultaneously at ordinals of unbounded cofinalities below k.
Then, there is a generic extension in which k = R,, k¥ = R, 1, the ground model S,’f
is nonstationary, and simultaneous reflection holds for finite sequences of stationary
subsets of S.

By the assumption of GCH, the approachability requirement is not satisfied
trivially only at successors of singular cardinals.

Proor. InV,letusfixanormal ultrafilteronk,U. Letj: V' — M be the ultrapower
embedding given by U. Let P be the Prikry forcing with interleaved collapses using
a guiding generic K as defined in Section 2.

Let P be the canonical name of the generic Prikry sequence added by P (so P
does not include the generic filters for the collapses). Let Q be the forcing notion
for adding a club to (SZ;) Y in V[P]. Note that Q is defined in a submodel of the
generic extension of V" by P.

Let us start by analyzing j,, (Q). 4

Cram 39. cf” Jo(kT) = k™. Moreover, in V there is a closed unbounded set D C
-
Jo (k™) such that D C (Sjg,i” )Mo

PrOOF. The sequence j, " s is cofinal at j,(x"). Indeed, let f < j, (k™). Then
there is a function f: k" — &% such that f = j,(f)(k.j1(k).....j.1(k)). Let y =
SUP,e.nf(a) < k. Then j,(y) > B.

Let D = accj, " k*. For every 6 € D. let us show that cf” 5 = cf* 6. Clearly.
cf”d < cfM . Let us assume that cf” 9 = < k and let (y; | i <#) be a sequence
of ordinals such that sup;_, ji,(7;) = 0. The sequence (j,, (7:) | i < #) belongs to M,
since it is ji, ((y; | i < %)) | n. Therefore, M,, computes the cofinality of d correctly. -

Let p, € P and let s, = (po...., pu,_1) be the Prikry part of the stem of p,.

Let D be as in the conclusion of the claim. Let P = s} {j,(x) | n < w). By a
theorem of Mathias, P is an M,,-generic Prikry sequence. So one can think of P
as the realization of j,,(P) using the generic filter over M,, which is obtained from
Lemma 13.

Since |, (Q)?|” = k™, in V, one can construct a tree of conditions in ji,, (Q)” which
is isomorphic to (k+)<*". This is done by induction. Assume that for 5 € (k+)<*",
gy, is defined. Let {1}, | @ < k™) enumerate all conditions in j,(Q)? which are stronger
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than ¢,. Foreacha < k™, let q,~ (o) be an extension of r’, such that max dy~(a) €D.

Ify € (k7)<¢", and leny is a limit ordinal, we let ¢, = {J, } U U, <teny 411y Where 6, =
sup{maxg,, | y < lenn}. Note that 6, € D since D is club. Moreover. ¢, € M,,[P].
since this model is closed under x-sequences from V.

Therefore, in V, there is a tree which is dense in j,(Q)” and isomorphic to the
forcing Add(x*.1)".

Let us remark that if P’ is any other Prikry sequence such that P’ differs from P by
only finitely many ordinals, then the interpretation of Q is the same. In particular,
for every n.ju(in(QF) = ju(@7.

Fix a V-generic for P, | p,. G'. and let G be the M,,-generic filter for j,, (IP), which
is derived from it. Let H be a V'-generic filter for j,,(Q)? where P is derived from G.

We will apply the machinery of Section 2.1 for A =, (Q)”. Let H be (<j,., " H> |
n<w) andlet H, = (<, ” H> | m < n). Recall that Px?H is generic for the forcing
Jjuo(H) over M,,, and that H € M,,[P][*] by Lemma 23.

CLamM 40. In M, [G][H] every finite collection of stationary subsets of jo, (k")
reflects at a common point.

Proor. For i<k, let S; Cj,(k") be stationary. Since H € M,,[P][H]. we may
assume that each S; is disjoint from the set of ordinals that has cofinality j,(x) in
M,,. Without loss of generality, the cofinality of the members of each S; is fixed to
be some 0; < k,,.

Work in M,,[G | (n, +n+ 1)][Hx]. n > m. In this model, one can construct G and
H as well as M,,,.

Let

i . . - GH
T, = {a <]n("§+) ‘]n,w(a) €S; }

If the sequence T for i < k are all stationary in j, (k™) then, since the forcing
that introduces G | (n, +n+ 1) has cardinality j,(x) in M,[#,]. one can find
stationary subsets of T%. T", in M,[H,,]. Since H is equivalent to a generic filter for
Add(j,(kT),n+1) over M, simultaneous stationary reflection holds in this model.
In particular, the sequence 7" for i < k reflects at common ordinals of arbitrary large
cofinalities. Let d be a common reflection point of 7", i < k, such that x,, > cfd > k,,_1.
Recall that T' consists of ordinals of cofinality 0; which is less than &, (in particular
lessthan k, ;). Let {f5; | i < cfd} be a continuous and increasing sequence of ordinals,
cofinal atd. Let A’ = {y < cfd | B, € T'}. By the assumption, A’ is stationary in ngé.

The forcing that introduces G | (n, +n+ 1) splits into a product of «,,_;-cc forcing
and k, -closed forcing. Using the approachability assumption cfd € I[cfd] and the
assumption that 0; < k,_; < cfJ, we conclude that each A’ is stationary in Mn[é [
(n, +n+1)] and in particular in M,[G | (n, +n+ 1)][H,]. The set jpe (A)) = jno Al
belongs to M,, and by downwards absoluteness from M,[G | (n, +n+ 1)][H,]. it is
stationary in M,,[G][H].

Thus, if each T7 is stationary then there is a condition that forces that the sequence
of S; reflects at a common point. Therefore, we conclude that at least one of the 7’ ,’, is
non-stationary. Let C,, be a club in M,,[G | (1, +n+ 1)][H,] disjoint from T/ for the
relevant i, < k. By the chain condition of the forcing that introduces G| (n.+n+ 1),
we may assume that C, € M,,[H,,]. Let C,, be a name for the club C,.
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Letus consider C =, -, jnw(Cy) e Hn> We claim that C € M,,[P][#H]. Indeed.
for each n the filter <j, ., ” H,,> is simply an initial segment of . ji,.., (C,) is a member
of M,,, and M, [P][H] is closed under w-sequences.

Let i < k be such that i, = i for infinitely many n > m. Let us show that C is
disjoint from S;. Indeed. if & € CN S; then o = j,,(a’) for some n < w. Without
loss of generality, we can take n to be such that i, = i. Then o’ € C, and in T!, a
contradiction to the choice of C,.

By elementarity. we conclude that when forcing over ¥ with P+ H/ P simultaneous
stationary reflection holds at ™ for finite collections. -

The proof shows that the forcing P+ H/ P preserves the stationarity of subsets of
SQ;. In particular, the conclusion is never vacuous, as the set S for which Refl(:S)
holds is stationary in the generic extension.

In order to use Theorem 38, we need to show that some indestructibility can be
achieved at the level of subcompact cardinals.

LEMMA 41. Let k be x*- H}-subcompact. There is a generic extension in which
GCH holds, & is k™ - H}-subcompact, and this property is indestructible under the
forcing Add(x*,1).

PrOOF. Let us assume, by forcing if needed, that GCH holds in the ground model.
Let L be the Easton support iteration of Add(a™,1) for all inaccessible o < k. Let
'L be the generic extension. -

Lemma 42. In VY, & is k- Il}-subcompact. Moreover, this remains true after
further forcing with Add(k™,1).

PrOOF. Work in V. Let 4 be a name for a subset of k™. Let ® be a Hl-statement
with parameter 4 which is true in the generic extension. Thus, the followmg 1'[1
statement holds in the structure (H (k") €, 1L, 4,1Fy):

VX CLx H(kM). kL o(X. A).

where ¢ is a first order statement in the language of forcing.

Since & is - IT}-subcompact in ¥, we can find some cardinal p < &, and L, 4
such that there is an elementary embedding:

ji (H(p").e.L.Al) — (H(kT). €. L, A k).

Itisclear that L=1 | p+1.
Let p be a condition in L. Without loss of generality, p € imj, and let ¢ € L such
that p = j(g). Let G be a generic filter for L that contains g. Let m =,/ (r(p)).

namely the union over the last coordinate of the j-image of all conditions in G. By
the directed closure of the forcing Add(x™, 1), m is a condition. Let G be a generic
that contains G | p+ 1 and m. Note that p € G. By Silver’s criterion, j extends to an
elementary embedding between H(p*) and H(x™") of the generic extension. Since
we assumed that g forces that ® holds at H(p*) and that p forces that ® holds at
H(x™), the conclusion of the lemma follows. =
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THEOREM 43. Simultaneous reflection for finite collections of stationary subsets of
N1 is consistent relative to a cardinal k which is k™ - I1}-subcompact.

Proor. By Lemmas 36 and 37, « is a measurable cardinal and every collection
of fewer than x many stationary subsets of SQZ reflects simultaneously at arbitrarily
high cofinalities below k. By Lemma 41, this property of x can be forced to be
indestructible under the forcing Add(x*, 1). By standard arguments, we may assume
that Sg € I[u] for every 0 < u < k regular. Finally, by applying Theorem 38 (with

S = SQ;) the conclusion holds. -

REMARK 44. In the model for the main theorem, there is a very good scale of
length k% by [6. Theorem 20]. By [6, Theorem 3], it follows that simultaneous
reflection for countable collections of stationary sets fails in the final model in a
strong way.

By using Theorem 29, if there is a measurable subcompact x and 7 < k then there
is a generic extension in which every stationary subset of & of cofinality < # reflects.
In this model, we obtain that any stationary subset reflects at ordinals of arbitrary
high cofinality. We may also assume that the approachability holds everywhere below
k. By the proof of Theorem 29, in this model, we obtain that stationary reflection
for stationary subsets of SQ; is indestructible under the forcing Add(x*.1). Thus,
we conclude:

THEOREM 45. Let k be a measurable subcompact cardinal and let n < w. There is

. oo . . R
a generic extension in which every stationary subset of S <‘§t' reflects.

It is interesting to compare Theorem 45 to Zeman’s Theorem on the upper bound
for the consistency strength of the failure of Oy, [22].

By Theorem 38, the consistency of stationary reflection at the successor of a
singular cardinal is bounded from above by the consistency of mildly indestructible
stationary reflection at the successor of a measurable cardinal.

QuEsTION. Assume that Refl(S) holds for some stationary subset of N, 1. Is
there an inner model with a measurable subcompact cardinal?
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