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Tackling Small Eigen-Gaps: Fine-Grained
Eigenvector Estimation and Inference

Under Heteroscedastic Noise
Chen Cheng, Yuting Wei , and Yuxin Chen , Member, IEEE

Abstract— This paper aims to address two fundamental
challenges arising in eigenvector estimation and inference for
a low-rank matrix from noisy observations: 1) how to estimate
an unknown eigenvector when the eigen-gap (i.e. the spacing
between the associated eigenvalue and the rest of the spectrum)
is particularly small; 2) how to perform estimation and inference
on linear functionals of an eigenvector—a sort of “fine-grained”
statistical reasoning that goes far beyond the usual �2 analysis.
We investigate how to address these challenges in a setting
where the unknown n × n matrix is symmetric and the additive
noise matrix contains independent (and non-symmetric) entries.
Based on eigen-decomposition of the asymmetric data matrix,
we propose estimation and uncertainty quantification procedures
for an unknown eigenvector, which further allow us to reason
about linear functionals of an unknown eigenvector. The proposed
procedures and the accompanying theory enjoy several important
features: 1) distribution-free (i.e. prior knowledge about the
noise distributions is not needed); 2) adaptive to heteroscedastic
noise; 3) minimax optimal under Gaussian noise. Along the way,
we establish valid procedures to construct confidence intervals
for the unknown eigenvalues. All this is guaranteed even in
the presence of a small eigen-gap (up to O(

�
n/poly log(n) )

times smaller than the requirement in prior theory), which goes
significantly beyond what generic matrix perturbation theory has
to offer.

Index Terms— Eigen-gap, linear form of eigenvectors, confi-
dence interval, uncertainty quantification, heteroscedasticity.

I. INTRODUCTION

AVARIETY of science and engineering applications
ask for spectral analysis of low-rank matrices in high
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dimension [1]. Setting the stage, imagine that we are interested
in a large low-rank matrix

M� =
r�
l=1

λ�l u
�
lu

��
l ∈ R

n×n, (1)

where r (r � n) represents the rank, and λ�l stands for the
lth largest eigenvalue of M�, with u�l ∈ Rn the associated
eigenvector. Suppose, however, that we do not have access to
perfect measurements about the entries of this matrix; rather,
the observations we have available, represented by a data
matrix M = M� + H , are contaminated by a substantial
amount of random noise (reflected by the noise matrix H).
The aim is to perform reliable estimation and inference on
the unseen eigenvectors of M� on the basis of noisy data.
Motivated by the abundance of applications (e.g. collaborative
filtering, harmonic retrieval, sensor network localization, joint
shape matching [2]–[6]), research on eigenspace estimation in
this context has flourished in the past several years, typically
built upon proper exploitation of low-rank structures. We have
now been equipped with a rich suite of modern statistical
theory that delivers statistical performance guarantees for
a number of spectral estimators (e.g. [7]–[16], [16]–[22]);
see [23] for a contemporary overview of spectral methods.

A. Motivation and Challenges

Despite a large body of work tackling the above problem,
there are several fundamental yet unaddressed challenges that
deserve further attention.

1) Stringent Requirements on Eigen-Gaps: A crucial
identifiability issue stands out when estimating individual
eigenvectors. In general, one cannot possibly disentangle the
eigenvectors u�1, · · · ,u�r unless there is sufficient spacing
between adjacent eigenvalues. After all, even in the noiseless
setting, one can only hope to recover the subspace spanned
by {u�i }, rather than individual eigenvectors, if all non-zero
eigenvalues are identical.

In principle, a “sufficient” eigen-gap criterion in the pres-
ence of noise is dictated by the noise levels, or more precisely,
the signal-to-noise ratios (SNRs). However, generic linear
algebra theory typically imposes fairly stringent, and hence
pessimistic, eigen-gap requirements for both eigenvector and
eigenvalue estimation. More concretely, imagine we wish to
estimate the lth eigenvector u�l : generic matrix perturbation
theory (e.g. the Davis-Kahan sinΘ theorem or the Wedin the-
orem [12], [24], [25]) typically cannot guarantee meaningful
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estimation of u�l unless

(classical theory) min
k:k �=l

|λ�l − λ�k|� �� �
eigen-gap

> �H�. (2)

This eigen-gap requirement can be problematic and hard to
satisfy as the noise size grows, casting doubts on our ability
to perform informative inference on individual eigenvectors.

2) Fine-Grained Estimation and Inference (Beyond �2 Guar-
antees): In many applications, it is often the case that the
ultimate goal is not to characterize the �2 or “bulk” behavior
(e.g. the mean squared estimation error) of an eigenvector esti-
mator, but rather to reason about the eigenvectors along a few
preconceived yet important directions. Take community recov-
ery for instance: the eigenvector of a certain adjacency matrix
encodes community membership of a set of users [26]; if we
wish to infer the community memberships of a few important
users, or the similarities between a few pairs of users, it boils
down to assessing the entrywise behavior or certain pairwise
linear functional of an eigenvector estimator. Another example
is concerned with harmonic retrieval: the leading eigenvector
of a properly arranged Toeplitz matrix represents the time-
domain response of the sinusoidal signals of interest [27];
thus, retrieving the underlying frequency involves inferring
the Fourier coefficients of this eigenvector at some given
frequencies. These problems can be formulated as estimation
and inference for linear functionals of an eigenvector, namely,
quantities of the form a�u�l (1 ≤ l ≤ r) with a some
prescribed vector. In principle, this task can be viewed as a
sort of fine-grained statistical analysis, given that it pursues
highly “local” and “delicate” information of interest.

Towards estimating a�u�l , a natural starting point is a
“plug-in” estimator, which computes a reasonable estimate �ul
of u�l and outputs a��ul. There are several critical challenges
that we shall bear in mind. To begin with, a dominant fraction
of prior theory focuses on �2 risk analysis of an eigenvector
estimator, which is often too coarse to deliver tight uncertainty
assessment for the plug-in estimator. In fact, the �2 risk bounds
alone often lead to highly conservative estimates for the risk
under consideration, making it hard to assess the performance
of the plug-in estimator. To further complicate matters, there
is often a severe bias issue surrounding the plug-in estimator.
Even when an estimator �ul is nearly unbiased in a strong
entrywise sense (meaning that the estimation bias is dominated
by the variability in every single coordinate), this property
alone does not preclude the possibility of bias accumulation
along the direction a. Addressing these issues calls for refined
risk analysis as well as careful examination into the bias-
variance trade-off.

B. A Glimpse of Our Approach and Our Contributions

1) Eigen-Decomposition Meets Statistical Asymmetry: The
current paper makes progress in a setting where the noise
matrix H consists of independent (but possibly heterogeneous
and heteroscedastic) zero-mean components. Our approach
is inspired by the findings of [17]. Consider, for example,
the case when H is a random and asymmetric matrix and
when M� is a rank-1 symmetric matrix. The results in [17]

reveal that an eigen-decomposition approach applied to M
(without symmetrization) achieves appealing statistical accu-
racy when estimating the leading eigenvalue of M�. The key
enabler is an implicit bias reduction feature when computing
vanilla eigen-decomposition of an asymmetric data matrix.
While [17] only provides highly partial results when going
beyond the rank-1 case, it hints at the potential benefits of
eigen-decomposition in super-resolving the spectrum.

2) Our Contributions: The main contributions of this paper
are summarized below, all of which are built upon an eigen-
decomposition approach applied to the asymmetric data matrix
M (without symmetrization). As an important advantage,
the proposed procedures and their accompanying theory are
distribution-free, meaning that they do not require prior knowl-
edge about the distribution of the noise and thus are fully
adaptive to heteroscedasticity of data.

• We demonstrate that the lth eigenvector u�l and eigen-
value λ�l can be estimated with near-optimal accuracy
even when the eigen-gap (2) is extremely small. More
concretely, for various noise distributions our results only
require

(our theory) min
k:k �=l

|λ�l − λ�k| � �H�poly log(n)√
n

,

(3)

which is about O(
√
n) times less stringent (up to log

factor) than generic linear algebra theory (cf. (2)).
• We propose a new estimator for the linear functional

a�u�l (obtained via proper de-biasing of certain plug-
in estimators) that achieves minimax-optimal statistical
accuracy. In addition, we demonstrate how to construct
valid confidence intervals for a�u�l .

• Additionally, we demonstrate how to compute valid con-
fidence intervals for the eigenvalues of interest. Inter-
estingly, de-biasing is not needed at all for performing
inference on eigenvalues, as the eigen-decomposition
approach implicitly alleviates the estimation bias.

Our findings unveil new insights into the capability of spec-
tral methods in a statistical context, going far beyond what
conventional matrix perturbation theory has to offer.

C. Notation

For any vector x, denote by �x�2 and �x�∞ the �2 norm
and the �∞ norm of x, respectively. For any matrix M ,
we let �M�, �M�F, �M�∞ and �M�2,∞ represent the
spectral norm, the Frobenius norm, the entrywise �∞ norm
(i.e. �M�∞ := maxi,j |Mij |), and the two-to-infinity norm
(i.e. �M�2,∞ := sup�x�2=1 �Mx�∞) of M , respectively.
The notation f(n) = O (g(n)) or f(n) � g(n) means that
there is a universal constant c > 0 such that |f(n)| ≤ c|g(n)|,
f(n) � g(n) means that there is a universal constant c > 0
such that |f(n)| ≥ c |g(n)|, and f(n) � g(n) means that
there exist constants c1, c2 > 0 such that c1|g(n)| ≤ |f(n)| ≤
c2|g(n)|. The notation f(n) 	 g(n) (resp. f(n) � g(n))
means that there exists a sufficiently large (resp. small) con-
stant c > 0 such that f(n) ≥ cg(n) (resp. f(n) ≤ cg(n)).
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In addition, we denote by ul,j , wl,j and u�l,j the jth entry
of ul, wl and u�l , respectively. Let e1, · · · , en represent the
standard basis vectors in Rn, 1n ∈ Rn the all-one vector, and
In ∈ Rn×n the identity matrix. We shall also abbreviate the
interval [b − c, b + c] to [b ± c], and denote min |b ± c| =
min{|b+ c|, |b− c|}, max |b± c| = max{|b+ c|, |b− c|}, and
min |||b ± c||| = min{|||b − c|||, |||b + c|||} for any norm ||| · |||.
Moreover, denote by Φ(·) the cumulative distribution function
(CDF) of a standard Gaussian random variable.

II. PROBLEM FORMULATION

A. Model

Imagine we seek to estimate an unknown rank-r matrix

M� =
r�
l=1

λ�l u
�
l u

��
l =: U�Σ�U�� ∈ R

n×n, (4)

where λ�1 ≥ λ�2 ≥ · · · ≥ λ�r denote the r nonzero eigenvalues
of M�, and u�1, · · · , u�r represent the associated (normalized)
eigenvectors. Here, for notational convenience we let

U� :=
�
u�1, · · · ,u�r

	 ∈ R
n×r,

Σ� :=

⎡⎣ λ�
1

. . .
λ�

r

⎤⎦ ∈ R
r×r. (5)

We shall also define

λ�max := max
1≤l≤r

|λ�l |, λ�min := min
1≤l≤r

|λ�l | and κ :=λ�max / λ
�
min.

(6)

What we have observed is a corrupted copy of M�, namely,

M = M� + H , (7)

where H ∈ Rn×n stands for a random noise matrix. This
paper focuses on the family of noise matrices satisfying the
following assumptions:

Assumption 1: The noise matrix H ∈ R
n×n satisfies the

following properties.

1) Independence and zero mean. The entries
{Hij}1≤i,j≤n are independent zero-mean random
variables; this indicates that the matrices H and M
are, in general, asymmetric.

2) Heteroscedasticity and unknown variances. Let
σ2
ij := Var(Hij) denote the variance of Hij . To accom-

modate more realistic scenarios, we allow σ2
ij to

vary across entries — commonly referred to as het-
eroscedastic noise. In addition, we do not a priori know
{σ2

ij}1≤i,j≤n. Throughout this paper, we assume

0 ≤ σ2
min ≤ σ2

ij ≤ σ2
max, 1 ≤ i, j ≤ n. (8)

3) Magnitudes. Each Hij (1 ≤ i, j ≤ n) satisfies either of
the following conditions:

(a) |Hij | ≤ B;
(b) Hij has a symmetric distribution obeying

P{|Hij | > B} ≤ cbn
−12 for some constant

cb > 0, and E[H2
ij 1{|Hij |>B}] = o(σ2

ij).

Remark 1: Here, the quantities B, {σi,j}, σmin and σmax

may all depend on n.
Remark 2: As we shall see momentarily, the lower bound

σ2
min on the noise variance is imposed only for our statistical

inference theory (or more precisely, it is imposed in order to
ensure the plausibility to estimate the variance of the esti-
mation error in an accurate manner). This lower bound σ2

min

is not needed at all in our eigenvector estimation guarantees
(e.g., Theorems 1 and 2).

The careful reader would naturally ask when we would
have an asymmetric noise matrix H . This might happen
when, for example, one has collected two independent samples
about each entry of M� and chooses to arrange the observed
data in an asymmetric manner. Moreover, when the noise
matrix is a symmetric Gaussian random matrix and possibly
contains missing data, [17, Appendix J] points out some simple
asymmetrization tricks that allow one to convert a symmetric
data matrix M to an asymmetric counterpart with independent
components; see Appendix G for an example.

In addition to the above assumptions on the noise,
we assume that the unknown matrix M� satisfies a certain
incoherence condition, as commonly seen in the low-rank
matrix estimation literature.

Definition 1 (Incoherence): The matrix M� with eigen-
decomposition M� = U�Σ�U�� is said to be μ-incoherent
if �U��∞ ≤ �

μ/n.

B. Goal

The primary goal of the current paper is to perform cer-
tain “fine-grained” statistical estimation and inference on the
unknown eigenvectors {u�1, · · · ,u�r}. To be more specific, we
aim at developing statistically efficient methods to estimate
and construct confidence intervals for linear functionals taking
the form a�u�l (1 ≤ l ≤ r), where a ∈ Rn is a pre-determined
fixed vector. Along the way, we shall also demonstrate how to
perform estimation and inference on the unknown eigenvalues
{λ�1, · · · , λ�r}. Ideally, all these tasks can be accomplished
even when the associated eigen-gaps are very small, without
requiring prior knowledge about the noise distributions and
noise levels.

III. ESTIMATION

This section presents our algorithms and the accompanying
theory for estimating an eigenvector u�l , a linear functional
a�u�l of this eigenvector, as well as the associated eigen-
value λ�l .

Two popular estimation schemes immediately come into
mind: (1) performing eigen-decomposition after symmetriz-
ing the data matrix (e.g. replacing M by 1

2 (M + M�));
(2) computing singular value decomposition (SVD) of the
asymmetric data matrix M . Contrastingly, this paper adopts
a far less widely used, and in fact far less widely studied,
strategy based on eigen-decomposition without symmetriza-
tion; namely, we attempt estimation of {u�l } and {λ�l } via the
eigenvectors and the eigenvalues of M , respectively, despite
the asymmetric nature of M in general. While conventional
wisdom does not advocate eigen-decomposition of asymmetric
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matrices (due to, say, potential numerical instability), our
investigation uncovers remarkable advantages of this approach
under the statistical context considered in the present paper.

A. Notation: Eigen-Decomposition Without Symmetrization

Before continuing, we introduce several additional notation
that shall be adopted throughout. Owing to the asymmetry
of M , the left and the right eigenvectors of M do not
coincide.

Notation 1: Let λ1, · · · , λr denote the top-r leading eigen-
values of M (so that min1≤l≤r |λl| is larger in magnitude than
any other eigenvalue of M ). Assume that they are sorted by
their real parts, namely, Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λr),
and denote by ul (resp. wl) the right (resp. left) eigenvector
of M associated with λl; this means

Mul = λlul and M�wl = λlwl. (9)

In addition, if ul and wl are both real-valued, then we
assume without loss of generality that 
ul,wl� ≥ 0.

Remark 3: As we shall justify shortly in Theorem 1, even
though M is in general asymmetric, the eigenvalue λl and the
eigenvectors ul and wl are, with high probability, real-valued
under the assumptions imposed in this paper.

B. Estimation Algorithms

We are now ready to present our procedures for esti-
mating the lth eigenvector of M�, on the basis of eigen-
decomposition of M (see Notation 1).

• Estimator for u�l (with the aim of achieving low �2
risk): �ul :=

1
�ul + wl�2

�
ul + wl

�
; (10)

• Estimator for a�u�l for a preconceived direction a:

�ua,l := min

����� (a�ul)(a
�wl)

w�
l

ul

���, �a�2

�
. (11)

Here, the rationale behind �ua,l is this: both a�ul and
a�wl might systematically under-estimate the quantity of
interest a�u�l . As a result, one is advised to first alleviate
the bias via proper de-shrinking, which is the role played by
the factor 1

w�
l ul

. The choice of this factor is based on in-depth

understanding of the behavior of a�ul and a�wl, and will be
better understood after we delve into technical details. As an
important feature, the proposed estimation procedures do not
rely on prior knowledge about the noise distributions.

Remark 4: The estimator (11) involves the term �a�2 due
to the trivial upper bound |a�u�l | ≤ �a�2�u�l �2 = �a�2.

C. Theoretical Guarantees

We now embark on theoretical development for the pro-
posed estimators. As alluded to previously, whether we can
reliably estimate and infer an eigenvector u�l depends largely
upon the spacing between the lth eigenvalue and its adjacent

eigenvalues. In light of this, we define formally the eigen-gap
metric w.r.t. the lth eigenvalue of M� as follows

Δ�
l :=

⎧⎨⎩ min
1≤k≤r,k �=l

|λ�l − λ�k|, if r > 1;

∞, otherwise.
(12)

Most of our theoretical guarantees rely on this crucial
metric. Moreover, our theory in this section is built upon a
set of assumptions on the noise levels:

Assumption 2: Suppose that the noise parameters defined
in Assumption 1 satisfy

Δ�
l > 2c4κ2 r2σmax

�
μ logn (13a)

B logn ≤ σmax

�
n logn ≤ c5λ

�
min/κ

3 (13b)

for some sufficiently large (resp. small) universal constant
c4 > 0 (resp. c5 > 0).

Remark 5: Consider, for example, the case where r, κ, μ �
1: the lower bound on Δ�

l in (13a) is O(
√
n) times smaller

than the lower bound on λ�min in (13b), meaning that the eigen-
gap can be considerably smaller than the minimum eigenvalue
of the truth.

The following theorem delivers statistical guarantees for
the proposed eigenvector estimators, with the proof postponed
to Appendix B. We recall the notation min |||z ± u�l ||| :=
min{|||z − u�l |||, |||z + u�l |||} for any norm ||| · |||.

Theorem 1 (Eigenvector Estimation): Suppose that
μκ2 r4 � n, and that Assumptions 1-2 hold. With probability
at least 1 − O(n−6), the eigenvalue λl and the associated
eigenvectors ul and wl (see Notation 1) are all real-valued,
and one has the following:

1) (�2 and �∞ guarantees)

min �ul ± u�l �2

� σmax

�
κ6n logn
λ�min

+
σmax

Δ�
l

�
μκ4r2 logn, (14a)

min �ul ± u�l �∞
� σmax

λ�min

�
μκ4r logn+

σmax

Δ�
l

�
μ2κ4r3 logn

n
; (14b)

these hold unchanged if ul is replaced by either wl or �ul
(cf. (10));

2) (statistical guarantees for linear forms of an eigenvector)
for any fixed vector a with �a�2 = 1, the proposed
estimator (11) obeys1

min
���ua,l ± a�u�l

��
� σmaxr

2
√
μκ4 logn

λ�
min

+ σ2
maxμr

2κ4 logn
(Δ�

l )2 |a�u�l |
+ σmax

�
μκ4r3 log nmax

k �=l
|a�u�

k|
|λ�

l −λ�
k| . (14c)

Interestingly, even though we work with eigen-
decomposition of asymmetric matrices, the obtained
eigenvalue and eigenvector are provably real-valued as
long as a fairly mild eigen-gap condition is satisfied. This

1If the rank r = 1, then the 2nd and the 3rd terms on the right-hand side
of (14c) are set to be zero.
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presents an important feature that cannot be derived from
generic matrix perturbation theory.

To interpret the effectiveness of this theorem, we find
it convenient to concentrate on the case with r, κ, μ � 1
under i.i.d. Gaussian noise. The implications in this case are
summarized below.

• �2 and �∞ guarantees. The �2 and �∞ statistical guaran-
tees derived in Theorem 1 read

min �ul ± u�l �2 � σmax

√
n logn

λ�min

+
σmax

√
logn

Δ�
l

=:E2;

(15a)

min �ul ± u�l �∞ � 1√
n
E2. (15b)

Our �∞ error bound is about O(
√
n) times smaller

than the �2 risk bound, implying that the energy of
the estimation error is more or less dispersed across all
entries.

• Improved eigen-gap requirements. Consistent estimation
of u�l — in the sense of min �ul ± u�l �2 = o(�u�l �2)
and min �ul ± u�l �∞ = o(�u�l �∞) — is guaranteed as
long as2

�H� logn � �M��; (16a)

Δ�
l � �H� logn√

n
. (16b)

While the condition (16a) is commonly seen in prior lit-
erature (up to some log factor), the eigen-gap requirement
(16b) is in stark contrast to classical matrix perturbation
theory (e.g. the Davis-Kahan sinΘ theorem or the Wedin
theorem [23]–[25]). In fact, prior theory typically requires
the spacing between λ�l and the rest of the eigenvalues
to at least exceed

Δ�
l � �H� (prior theory), (17)

which is about O(
√
n/ logn) times more stringent than

our requirement (16b).
• The influence of eigen-gaps and {a�u�i } upon estimation

accuracy. For any fixed unit vector a, our theoretical
guarantees for estimating a�u�l read

min
���ua,l ± a�u�l

��
� σmax

√
logn

λ�min

+
σ2

max logn
(Δ�

l )2
|a�u�l |

+ σmax

�
lognmax

k �=l

��a�u�k
����λ�l − λ�k
��� �� �

“interferers”

. (18)

The first term on the right-hand side of (18) is a universal
term that is no larger than O(1/

√
n) times the �2 bound

(15a). The other two terms are more complicated, which
depend on not only the spacing of the eigenvalues but
also the sizes of {a�u�i }1≤i≤r. More concretely, (1) the
influence of the target quantity a�u�l upon the estima-

tion error is captured by the multiplicative factor σ2
max

(Δ�
l )2 ,

2Note that when {Hij} are i.i.d. Gaussian, we have �H� � σmax
√

n with
high probability.

which scales inverse quadratically in Δ�
l ; (2) the linear

functionals of other eigenvectors (namely, {a�u�k}k �=l)
essentially behave as “interferers” that might degrade
estimation fidelity; in particular, the influence of a�u�k
(k 
= l) upon estimation loss can be understood through
the coefficient σmax/|λ�l −λ�k|, which is inversely propor-
tional to the associated eigen-gap |λ�l − λ�k|. Intuitively,
if a�u�k (k 
= l) becomes large, it results in stronger
“interference” when estimating a�u�l ; this adverse effect
would be easier to mitigate if the gap |λ�l −λ�k| increases
(so that it becomes easier to differentiate the lth and the
kth eigenvectors).

• The rank-1 case. When r = 1, the preceding theory can
be significantly simplified as follows

min �ul ± u�l �2 � σmax

√
n logn

λ�min

,

min �ul ± u�l �∞ � σmax

√
logn

λ�min

,

min
���ua,l ± a�u�l

�� � σmax

√
logn

λ�min

.

In particular, the same estimation error bound — which
is about

√
n times smaller than the �2 loss — holds for

any arbitrary direction as specified by a. In other words,
the estimation error is more or less identical over any
pre-determined direction.

Encouragingly, the above performance guarantees are minimax
optimal up to some logarithmic factor, as we shall elucidate
in Section III-D.

As it turns out, the feasibility of faithful eigenvector esti-
mation is largely dictated by our ability to locate the lth
eigenvalue λ�l and to disentangle it from the rest of the
spectrum, which becomes particularly challenging if the eigen-
gap Δ�

l is very small. In light of this, we develop the follow-
ing eigenvalue perturbation theory that significantly improves
upon generic linear algebra theory.

Theorem 2 (Eigenvalue Estimation): Suppose that μκ2 r4 �
n, and that Assumptions 1-2 hold. With probability at least
1 −O(n−6), one has

|λl − λ�l | ≤ c4σmax

�
μκ2r4 logn. (19)

In words, as long as the eigen-gap Δ�
l exceeds (13a),

the vanilla eigen-decomposition approach (without sym-
metrization) produces an estimate of λ�l with an estimation
error at most Δ�

l /2, meaning that we have managed to locate
λ�l with a high resolution. As mentioned previously, this eigen-
gap requirement can be interpreted as Δ�

l � �H� logn√
n

in
the Gaussian noise case with r, μ, κ � 1. For the sake of
comparison, we remind the reader that classical linear algebra
theory (e.g. Weyl’s inequality and the Bauer-Fike inequality)
only provides perturbation bounds with fairly low resolution
— namely, bounds at best on the order |λl − λ�l | ≤ �H� —
which are highly insufficient and in fact suboptimal for our
purpose.

It is worth emphasizing that the ability to obtain highly
accurate eigenvalue estimates is the key to tackling small
eigen-gaps. Given that we can estimate λ�l with a precision
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σmax

�
μκ2 r4 logn, we can distinguish λ�l from the rest of the

spectrum even when the associated eigen-gap is on the same
order. This also helps explain why a large body of prior theory
fell short of accommodating small eigen-gaps. As discussed in
[17, Section 4.3], the standard eigen-decomposition approach
when applied to symmetric matrices suffers from a non-
negligible bias issue, which fails to yield a high-precision
eigenvalue estimate. While the recent work [28] developed
a de-biasing scheme that allows one to cope with small eigen-
gaps in the presence of an i.i.d. symmetric Gaussian noise
matrix, the current paper covers a remarkably broader class
of noise distributions by exploiting the special property of
statistical asymmetry.

Finally, as mentioned before, one might be tempted to first
symmetrize the data matrix (i.e. replacing M with 1

2 (M +
M�)) before computing eigen-decomposition. While [17] has
discussed the non-negligible bias of this approach in eigen-
value estimation, it remains unclear whether or not this natural
approach suffers from a bias issue as well when estimating
the eigenvectors, and, more crucially, whether or not we can
still expect reliable eigenvector estimation after symmetrizing
the data matrix. Addressing these questions is instrumental in
understanding whether asymmetry plays an important role or it
merely provides theoretical convenience. While a theory for
this is yet to be developed, we shall compare these two
approaches numerically and demonstrate the gains of our
approach in Section V.

D. Minimax Lower Bounds

To assess the tightness of our statistical guarantees,
we develop localized minimax lower bounds on eigenvector
estimation, aimed at providing in-depth understanding about
how the estimation difficulty changes as a function of certain
salient parameters of the problem instance. To derive these
lower bounds, we consider the non-asymptotic local minimax
framework (see, e.g. [29]–[31]), an approach built upon the
concept of the hardest local alternatives that finds its roots
in [32].

Before stating our main results, let us first define several
sets that are properly localized around the truth. Let S

n ⊆ Rn

represent the set of n × n symmetric matrices. Denoting by
λl(A) the lth largest eigenvalue of A and ul(A) the associated
eigenvector of a symmetric matrix A, we define

M0(M�) :=
�
A ∈ S

n | rank(A) = r, λi(A) = λ�i

(1 ≤ i ≤ r), �A − M��F ≤ σmin

2

�
(20a)

M1(M�) :=
�
A ∈ S

n | rank(A) = r, λi(A) = λ�i

(1 ≤ i ≤ r), �ul(A) − u�l �2 ≤ σmin

4|λ�l |
�

(20b)

M2(M�) :=
�
A ∈ S

n | rank(A) = r, λi(A) = λ�i

(1 ≤ i ≤ r), �ul(A) − u�l �2 ≤ c4
σmin

√
n

|λ�l |
�
(20c)

for some sufficiently large constant c4 > 0.

Now we are ready to state our results, the proof of which
is deferred to Appendix E.

Theorem 3 (Minimax Lower Bounds): Consider any 1 ≤ l ≤
r ≤ n/2. Suppose that Hij

ind.∼ N (0, σ2
ij) with σ2

ij ≥ σ2
min,

and assume that 4σmin
√
n ≤ |λ�l | and σmin ≤ Δ�

l .

1) There exist some constants c0, c1 > 0 such that

inf
�ul

sup
A∈M0(M�)

E

�
min ��ul ± ul(A)�2

�
≥ c0

σmin

Δ�
l

;

(21a)

inf
�ua,l

sup
A∈M0(M�)

E

�
min

���ua,l ± a�ul(A)
���

≥ c1

���a�u�l
�� σ2

min

Δ�2
l

+ σmin max
k:k �=l

��a�u�k
��

|λ�l − λ�k|

�
. (21b)

2) There exists some constant c2 > 0 such that

inf
�ua,l

sup
A∈M1(M�)

E

�
min

���ua,l ± a�ul(A)
���

≥ c2
σmin

��a − (a�u�l )a
��

2��λ�l �� . (21c)

3) Then there exists some constant c3 > 0 such that

inf
�ul

sup
A∈M2(M�)

E

�
min ��ul ± ul(A)�2

�
≥ c3

σmin
√
n��λ�l �� .

(21d)

Here, the infimum in (21a) and (21d) is over all eigenvector
estimators, while the infimum in (21b) and (21c) is over all
estimators for the linear form of the lth eigenvector.

Remark 6: Note that each part of Theorem 3 captures one
bottleneck for the estimation task. Given that enlarging the
set of matrices under consideration can only lead to increased
minimax lower bound, we can take the supremum over the
union M0(M�) ∪ M1(M�) ∪ M2(M�) in order to yield
a minimax lower bound that reflects all these bottlenecks at
once.

Consider again the case with r, κ, μ � 1 under
i.i.d. Gaussian noise, and the case when |a�u�l | ≤ (1−�)�a�2

for an arbitrarily small constant � > 0 (so that a is not
perfectly aligned with u�l ). The theoretical guarantees derived
for our estimators (see Theorem 1, or (15) and (18)) match the
minimax lower bounds in Theorem 3 up to some logarithmic
factor, including both �2 loss and the risk for estimating an
arbitrary linear form a�u�l . In particular, the dependencies
of the estimation risk on Δ�

l , |λ�l − λ�k|, and {a�u�k} in
Theorem 1 — which might seem complicated at first glance
— are all optimal modulo some log factor. All this confirms
the effectiveness and optimality of the proposed estimator in
fine-grained eigenvector estimation.

IV. INFERENCE AND UNCERTAINTY QUANTIFICATION

This section moves one step further to the task of statistical
inference, with the aim of constructing valid and efficient
confidence intervals for the linear functionals a�u�l and the
eigenvalues λ�l (1 ≤ l ≤ r). More precisely, for any target
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coverage level 0 < 1 − α < 1, we seek to compute intervals
such that

P
�
a�u�l ∈ [calb, c

a
ub]

� ≈ 1 − α or

P
�−a�u�l ∈ [calb, c

a
ub]

� ≈ 1 − α. (22)

and

P
�
λ�l ∈ [cλlb, c

λ
ub]

� ≈ 1 − α (23)

Here, we have taken into account the difficulty in dis-
tinguishing u�l from −u�l using only the data M . As we
shall see, providing precise confidence intervals for the linear
functional is much more challenging than the estimation
task, and our theory requires additional assumptions beyond
Assumption 2 in order for our procedures to have exact
coverage.

A. Algorithms

1) Confidence Intervals for Linear Forms of Eigenvectors:
We start by constructing confidence intervals for the linear
form a�u�l . Towards this, two ingredients are needed: (1) a
nearly unbiased estimate of a�u�l , and (2) a valid length of
the interval (which is typically built upon a certain variance
estimate). We describe these ingredients as follows.

a) A modified nearly unbiased estimator �umodified
a,l : While

the estimator �ua,l (cf. (11)) discussed previously enjoys mini-
max optimal statistical accuracy, we find it more convenient to
work with a modified estimator when conducting uncertainty
quantification, particularly in the regime when a�u�l is very
small.3 More specifically, we introduce

�umodified
a,l :=

�
1
2a��ul + wl

�
, if

��a�u�l
�� is “small”,�ua,l, otherwise.

(24)

We shall make precise in Algorithm 1 what it means
by “small” in a practical and data-dependent manner. As
before, the proposed procedures are fully data-driven, without
requiring prior knowledge about the noise distributions. A few
informal yet important remarks are in order.

• When a�u�l is very “small” in magnitude, both a�ul
and a�wl serve as unbiased estimates of a�u�l , and the
averaging operation further reduces the uncertainty. Here,
the quantity

��va,l in Algorithm 1 captures the level of
the smallest possible uncertainty when estimating a�u�l .

• When a�u�l is not very “small”, the procedure is iden-
tical to estimator �ua,l proposed previously.
b) Construction of confidence intervals: As it turns out,

the estimation error of the modified estimator �umodified
a,l is well

approximated by a zero-mean Gaussian random variable with
tractable variance v�a,l (to be formalized shortly). Motivated
by this observation, we propose to first obtain an estimate
of the variance of �umodified

a,l — denoted by �va,l. The proposed
confidence interval for any given coverage level 0 < 1−α < 1
is then given by

CIa1−α :=
� �umodified

a,l ± Φ−1(1 − α/2)
��va,l

�
, (25)

3More precisely, in the regime where a�u�
l is very small, the uncertainty

of �umodified
a,l is nearly Gaussian, while that of �ua,l is non-Gaussian and more

complicated to describe.

where we abbreviate [b ± c] := [b − c, b+ c], and Φ(·) is the
CDF of a standard Gaussian.

c) Variance estimates: We shall take a moment to dis-
cuss how to obtain the variance estimate �va,l. As will be
seen momentarily, the proposed estimator �umodified

a,l admits
— modulo some global sign — the following first-order
approximation for a broad range of settings (up to global sign):

�umodified
a,l ≈ a�u�l +

1
2λ�l

a⊥�
l

�
H + H��u�l� �� �

uncertainty term

, (26)

where a⊥
l := a − (a�u�l )u

�
l . For a broad family of noise

distributions, the uncertainty term is approximately zero-mean
Gaussian with variance

v�a,l := Var

�
1

2λ�l
(a⊥
l )�

�
H + H��u�l  

=
1

4λ�2l

�
1≤i,j≤n

�
a⊥l,iu

�
l,j + a⊥l,ju

�
l,i

�2
σ2
ij , (27)

where a⊥l,j denotes the jth entry of a⊥
l . At first glance, eval-

uating this variance quantity precisely requires prior knowl-
edge about the noise level in addition to the truth (u�l , λ

�
l ).

To enable a model-agnostic and data-driven estimate of v�a,l,

we make the observation that 1
4λ�2

l

!
i,j

�
a⊥l,iu

�
l,j+a

⊥
l,ju

�
i

�2
H2
ij

is very close to v�a,l based on the concentration of measure
phenomenon. This in turn motivates us to estimate v�a,l via
a plug-in approach: (1) replacing u�l with an estimate �ul, (2)
replacing a⊥

l with a plug-in estimate �a⊥
l , (3) using λl in place

of λ�l , and (4) replacing Hij with an estimate �Hij , where�ul := 1
�ul+wl�2

(ul + wl) and"H = [ �Hij ]1≤i,j≤n := M − Msvd,r, (28)

with Msvd,r := arg minrank(Z)≤r �M − Z�F the best rank-r
approximation of M . As a byproduct, this variance estimate
in turn allows us to specify whether a�u�l is “small” (the case
where a�u�l is comparable to or smaller than the typical size
of the uncertainty component).

Remark 7: For estimating H (or equivalently, M�), it has
been shown that the SVD-based approach achieves appealing
entrywise accuracy (e.g. [9], [33]).

For ease of reference, the proposed procedure is summarized
in Algorithm 1. The computational cost of this procedure
mostly lies in computing the eigen-decomposition and the
SVD of M .

2) Confidence Intervals for Eigenvalues: Moving beyond
linear forms of eigenvectors, one might also be interested in
performing inference on the eigenvalues of interest. As it turns
out, this task is simpler than inferring linear functionals of
eigenvectors; one can simply estimate λ�l via the lth eigenvalue
λl (see Notation 1) and compute a confidence interval based
on the distributional characterization of λl. There is absolutely
no need for careful de-biasing, since the eigen-decomposition
approach automatically exploits the asymmetry structure of
noise to suppress bias. Similar to Section IV-A1, our procedure
for performing inference on λ�l is distribution-free (i.e. it does
not require prior knowledge about the noise variance) and
adaptive to heteroscedasticity of noise.



CHENG et al.: TACKLING SMALL EIGEN-GAPS: FINE-GRAINED EIGENVECTOR ESTIMATION AND INFERENCE 7387

Algorithm 1 Constructing a Confidence Interval for the Linear
Form a�u�l
1: Compute the lth eigenvalue λl of M , and the associated

right eigenvector ul and left eigenvector wl such that
Re(w�

l ul) ≥ 0 (see Notation 1).
2: Compute the following estimator

�ua,l := min

�#���� 1
w�
l ul

(a�ul) (a�wl)
����, �a�2

�
,

�umodified
a,l

:=

�
1
2a��ul + wl

�
, if

��a�ul
�� ≤ cb

��va,l log1.5 n,�ua,l, else,
(29)

where cb > 0 is some sufficiently large constant. Here,�va,l = ESTIMATE-VARIANCE �a⊥
l , �ul, λl with �a⊥

l := a −
(a��ul)�ul and �ul := 1

�ul+wl�2
(ul + wl).

3: For any prescribed coverage level 1 − α, compute the
confidence interval as

CIa1−α :=
� �umodified

a,l ± Φ−1(1 − α/2)
��va,l

�
. (30)

1: function ESTIMATE-VARIANCE(a,u, λ)
2: Compute "H := M − Msvd,r with Msvd,r :=

argminrank(Z)≤r �M − Z�F.

3: return v := 1
4λ2

!
1≤i,j≤n

�
aiuj + ajui

�2 �H2
ij .

To be more specific, a crucial observation, which we will
make precise shortly, is as follows

λl ≈ λ�l + u��l Hu�l , (31)

where the uncertainty term u��l Hu�l is approximately
Gaussian with variance

v�λ,l := Var
�
u��l Hu�l

	
=

�
1≤i,j≤n

�
u�l,iu

�
l,j

�2
σ2
ij . (32)

Similar to the estimator �va,l, we proposee to estimate v�λ,l
via the following estimator

�vλ,l :=
�

1≤i,j≤n

��ul,i�ul,j�2 �H2
ij , (33)

with �ul and "H defined in (28). All this suggests the following
confidence interval for λ�l :

CIλ1−α :=
�
λl ± Φ−1(1 − α/2)

��vλ,l � . (34)

See Algorithm 2 for the complete procedure for performing
inference on λ�l .

B. Theoretical Guarantees

We now set out to justify the validity of the proposed
confidence intervals. Before proceeding, we need to impose
another set of assumptions on the noise levels:

Algorithm 2 Constructing a Confidence Interval for λ�l
1: Compute the lth eigenvalue λl of M , and the associated

right eigenvector ul and left eigenvector wl such that
w�
l ul ≥ 0 (see Notation 1).

2: For any prescribed coverage level 1 − α, compute the
confidence interval as

CIλ1−α :=
�
λl ± Φ−1(1 − α/2)

��vλ,l � . (35)

Here, �vλ,l = ESTIMATE-VARIANCE �ul, �ul, 1 with�ul := 1
�ul+wl�2

(ul + wl).

Assumption 3: Suppose that the noise parameters defined
in Assumption 1 satisfy

σmaxκ
3
�
μ3r3 log1.5 n = o(Δ�

l ), (36a)

σmaxμκ
2r2

√
n log1.5 n = o(λ�min), (36b)

σmax

σmin
� 1, B = o

$
σmin

�
n

μ logn

%
. (36c)

Armed with the above assumptions, we are ready to present
theoretical guarantees.

Theorem 4 (Validity of Confidence Intervals (Rank-r)):
Assume M� is rank-r and μ-incoherent with μ4κ8 r2 log2 n =
o(n). Given any integer 1 ≤ l ≤ r, under Assumptions 1 and 3,
the confidence interval returned by Algorithm 2 obeys

P
�
λ�l ∈ CIλ1−α

�
= 1 − α+ o(1) (37)

uniformly over all 0 < α < 1. In addition, fix an arbitrarily
small constant 0 < � < 1, and consider any fixed vector a
with �a�2 = 1 obeying��a�u�l

�� ≤ 1 − �,
��a�u�l

�� = o

$
Δ�2
l

|λ�l |σmaxκ4r2μ logn

%
,

(38a)��a�u�k
�� = o

&
|λ�l − λ�k|

|λ�l |
�
μκ4r3 logn

'
, ∀k 
= l. (38b)

Then the confidence interval returned by Algorithms 1 obeys

P
�
a�u�l ∈ CIa1−α

�
= 1 − α+ o(1) or

P
�−a�u�l ∈ CIa1−α

�
= 1 − α+ o(1) (39)

uniformly over all 0 < α < 1.
We immediately make note of a direct consequence of

Theorem 4 (by taking a to be the kth standard basis vector
ek), which concerns entrywise confidence intervals for u�l .

Corollary 1 (Validity of Entrywise Confidence Inter-
vals (Rank-r)): Assume that M� is rank-r and μ-incoherent
with μ4 = o(n/ logn). Suppose that Assumptions 1 and 3 hold

and that
(

μ2κ6r6 log n
n

��λ�l �� = o
�
Δ�
l

�
. Then the confidence

interval constructed in Algorithms 1 with a = ek satisfies

P
�
u�l,k ∈ CIek

1−α
�

= 1 − α+ o(1) or

P
�−u�l,k ∈ CIek

1−α
�

= 1 − α+ o(1); (40)

this holds true uniformly over all 0 < α < 1.



7388 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 11, NOVEMBER 2021

The above results confirm the validity of our inferential
procedure in high dimension. Our theory applies to a very
broad family of noise distributions, without the need of any
prior knowledge about detailed noise distributions or noise
levels {σij}. The results are fully adaptive to heteroscedastic-
ity of noise, making them appealing for practical scenarios.
In the sequel, we discuss several important implications of
our results in a more quantitative manner. For simplicity of
discussion, we shall concentrate on the case where r, κ, μ � 1
and consider Gaussian noise with σmax � σmin. We shall also
assume �a�2 = 1 without loss of generality.

• We start with the rank-1 case (i.e. r = 1), in which
we have Δ�

l = ∞ according to the definition (12).
In this case, the conditions (38) admit considerable
simplification:

|a�u�1| ≤ 1 − � (41)

for any small constant � > 0. This means that our
theory covers a very wide range of linear functionals
a�u�1; basically, the proposed confidence interval finds
theoretical support unless the preconceived direction a is
already highly aligned with the truth u�1.

• Going beyond the rank-1 case, the eigen-gap condition
imposed in Assumption 3 and Corollary 1 reads

Δ�
l � σmaxpoly logn � �H�poly logn√

n
, (42)

which is allowed to be substantially smaller than the
spectral norm �H� of the noise matrix.

• Under such eigen-gap requirements, we develop an infor-
mative distributional theory underlying the proposed esti-
mators �ua,l, provided that {a�u�k}1≤k≤r are not too
large in the sense that

|a�u�l | � Δ�
l
2

|λ�l |σmax log1.5 n
;

|a�u�k| � |λ�l − λ�k|
|λ�l | logn

, k 
= l. (43)

In words, the condition (43) requires that both the target
quantity a�u�l and the “interferers” are dominated by
the respective (normalized) eigen-gaps. An important
instance that automatically satisfies such conditions has
been singled out in Corollary 1, leading to appealing
entrywise distributional characterizations and inferential
procedures.

• While our theorems focus on asymmetric noise matrices,
one can combine them with a simple asymmetrization
trick to yield valid confidence intervals when H is a
symmetric matrix with homoscedastic Gaussian noise.
See Appendix G for detailed discussion.

We note, however, that the additional requirement (43)
makes our inference results less general than our estimation
guarantees in Section III-C, except for the rank-1 case. In fact,
if (43) is violated, then the influence of the eigen-gaps might
become the dominant factor in the uncertainty term and needs
to be quantified in a precise fashion. Achieving this calls for
more refined theoretical analysis, and we leave it to future
investigation.

C. Key Ingredients Behind Theorem 4

Next, we single out two key ingredients that shed light on
not only the validity of, but also the statistical efficiency of,
our inferential procedures. To be specific, Theorem 4 is mainly
built upon distributional guarantees developed for the proposed
estimator �umodified

a,l and the lth eigenvalue λl of M . In a
nutshell, the quantity �umodified

a,l (resp. λl) is a nearly unbiased
estimator of a�u�l (resp. λ�l ) and is approximately Gaussian.
We formalize this distributional theory as follows, whose proof
is deferred to Appendix C.

Theorem 5 (Distributional Characterization (Rank-r)):
Instate the assumptions of Theorem 4. Let �umodified

a,l

(cf. Algorithm 1) be the proposed estimate for a�u�l . Then
one can write�umodified

a,l = a�u�l +
(
v�a,lWa,l + ζ or

−�umodified
a,l = a�u�l +

(
v�a,lWa,l + ζ (44a)

and

λl = λ�l +
(
v�λ,lWλ,l + ξ, (44b)

where v�a,l and v�λ,l are defined respectively in (27) and (32),
and

Wa,l :=
(a⊥
l )�

�
H + H��u�l

2λ�l
�
v�a,l

and

Wλ,l :=
u��l Hu�l�

v�λ,l
(45)

with a⊥
l := a − (a�u�l )u

�
l . The residual terms obey |ζ| =

o
��

v�a,l
�

and |ξ| = o
��

v�λ,l
�

with probability at least
1 −O(n−5). In addition, one has

sup
z∈R

��P(Wa,l ≤ z) − Φ(z)
�� = o(1) and

sup
z∈R

��P(Wλ,l ≤ z) − Φ(z)
�� = o(1). (46)

Informally, this theorem reveals the tightness of the follow-
ing first-order approximation (up to global sign)

�umodified
a,l ≈ a�u�l +

1
2λ�l

(a⊥
l )�(H + H�)u�l and

λl ≈ λ�l + u��l Hu�l (47)

for a wide range of directions a. In addition, the first-order
approximations are close in distribution to Gaussian random
variables. Such distributional characterizations would immedi-
ately lead to (1−α)-confidence intervals for any α, if an oracle
had informed us of the quantities v�a,l and v�λ,l. Fortunately,
the proposed �va,l and �vλ,l (see Algorithms 1 and 2) serve as
highly accurate estimates of v�a,l and v�λ,l, respectively, and
can be employed in place of v�a,l and v�λ,l. This observation is
asserted by the following theorem; the proof is postponed to
Appendix D.

Theorem 6 (Accuracy of Variance Estimates (Rank-r)):
Instate the assumptions of Theorem 4. With probability at
least 1−O(n−10), the variance estimators proposed in Algo-
rithms 1-2 satisfy�va,l = (1 + o(1))v�a,l and �vλ,l = (1 + o(1))v�λ,l. (48)
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Clearly, putting Theorems 5-6 together immediately estab-
lishes Theorem 4.

V. NUMERICAL EXPERIMENTS

This section consists of numerical experiments in various
settings, in order to demonstrate the performance of our
estimation and inference procedures and their accompanying
theory.

A. Eigen-Decomposition After Symmetrization?

As mentioned in the discussions after Theorem 2, one may
consider first symmetrizing the data matrix with 1

2 (M +
M�) before computing the eigen-decomposition. It is unclear
whether this procedure provides sensible eigenvector estima-
tors in the presence of small eigen-gaps and heteroscedastic
noise. This subsection is devoted to understanding the potential
sub-optimality of this approach via a simple example. Specif-
ically, consider the rank-2 model where

M� = λ�1u
�
1u

��
1 + λ�2u

�
2u

��
2 , (49)

with H satisfying our usual assumptions. To simplify presen-
tation, we define

1. Spectral-asym: eigen-decomposition applied to the
observed asymmetric data matrix M ;

2. Spectral-sym: eigen-decomposition applied to the sym-
metrized data matrix 1

2

�
M + M��.

a) A Numerical Example With Heteroscedastic Gaussian
Noise: We start by looking at an example with

u�1 =
1√
n
1n and u�2 =

1√
n

�
1n/2
−1n/2

 
. (50)

The noise matrix H is assumed to have independent zero-
mean Gaussian entries with variance

Var(H) :=
�
Var(Hij)

	
1≤i,j≤n

= σ2
1

�
1n/21�

n/2 − 1
2In/2 0

0 0

 
+σ2

2

$
1n1�

n−
1
2
In

%
,

(51)

and hence the variance of the symmetrized data satisfies

Var

$
H + H�

2

%
:=

�
Var

�
1
2 (Hij +Hji)

�	
1≤i,j≤n

=
σ2

1

2

�
1n/21�

n/2 0
0 0

 
+
σ2

2

2
1n1�

n . (52)

We plot in Fig. 1 the numerical performance of both
Spectral-asym and Spectral-sym in estimating u�2. For
Spectral-asym, the estimator �u2 is constructed as in
the expression (10), whereas the second eigenvector of
1
2

�
M + M�� is used for Spectral-sym. As can be seen,

Spectral-asym strictly outperforms Spectral-sym in all cases,
thus unveiling the real benefits of exploiting asymmetry
in eigen-decomposition. The interested reader is deferred
to Appendix H for some high-level interpretation of this
phenomenon.

Fig. 1. Numerical performance of Spectral-asym vs. Spectral-sym when
λ�
1 = 1 and λ�

2 = 0.95. Here, we define dist(u, v) := min{�u−v�2, �u+
v�2}. (a) plots the �2 estimation error vs. the dimension n, whereas (b) plots
the relative �2 error vs. n. For each n, the results are averaged over 1000 trials,
with σ1 = 1/

√
n log n and σ2 = 0.1/

√
n log n (see the expression (51)).

B. Estimation

This section is devoted to numerically studying the effi-
ciency of our estimators for linear functionals of the eigen-
vectors. Given any fixed a with �a�2 = 1, our estimator is
constructed as in the expression (11). Theorem 1 (in particular,
the upper bound (14c)) together with Theorem 3 implies that
the estimation error is controlled by the eigen-gap, the true
signal strength |a�u�l |, and the magnitude of the “interferers”.
In the following, we examine qualitatively the effects of these
quantities upon the estimation errors through some simple yet
representative examples.

a) Settings: Consider the rank-2 case as in Eq. (49)
again, where the leading eigenvalue is set to be 1 and the
orthonormal pair u�1 and u�2 are randomly generated. We focus
on estimating the linear functionals of the form a�u�2. In the
following, several quantities that are selected to examine how
they affect the estimation error |�ua,2 − a�u�2| include the
ground-truth |a�u�2|, the interferer |a�u�1|, and the eigen-gap
Δ�

2 = λ�1 − λ�2. In the following, we consider two scenarios:
the case where the observation matrix is generated from a
rank-2 underlying matrix M� plus heteroscedastic Gaussian
noise; and the case where entries are missing at random with
sampling rate 0.1 on top of the above-mentioned observation
model (more details are given below).
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b) Heteroscedastic Gaussian noise: Consider a het-
eroscedastic Gaussian noise matrix H with independent
entries Hij ∼ N (0, σ2

ij) obeying

Var(H) :=
�
Var(Hij)

	
1≤i,j≤n =

⎡⎢⎣
σ2
1

(σ1 + δσ)2

...
(σ1 + (n − 1)δσ)2

⎤⎥⎦ · 1�
n ,

(53)

where δσ determines the spacing between adjacent standard
deviation. The parameters chosen to be

σ1 = 0.1/
�
n logn, δσ = 0.9/((n− 1)

�
n logn).

c) Missing data model: Suppose that we only get to
observe a fraction of the entries of M�; more precisely, each
entry of M� is observed independently with probability p.
In this setting, we can take the observed data matrix via zero-
padding and rescaling as follows

Mij =

�
1
p (M

�
ij +

√
p +Hij), with probability p,

0, otherwise.
(54)

This way we guarantee that E[M ] = M�, and ,H =
[ +Hij ]1≤i,j≤n is a heteroscedastic Gaussian noise with variance
Var(,H) :=

�
Var( +Hij)

	
1≤i,j≤n equal to (53). In this case,

the matrix H := M − M� obeys

|Hij | ≤
����1pM�

ij

���� +
���� 1√
p
+Hij

���� � μ

np
+

+σmax

√
logn√
p

,

E[H2
ij ] � μ

n2 p
+ +σ2

max

with high probability, where +σmax := σ1 + (n − 1)δσ . When
the sampling rate exceeds p ≥ cpμ log2 n

n and the noise size is
below +σmax ≤ 1√

cpn logn
for some constant cp ≥ 1, one has

|Hij | � μ

np
+

+σmax

√
logn√
p

� 1
cp logn

,(
E[H2

ij ] �
√
μ

n
√
p

+ +σmax � 1�
cpn logn

,

thus satisfying Assumption 2 for cp sufficiently large. In the
numerical experiments here, we shall choose p = 0.1 and

σ1 = 1/
�

10 n logn, δσ = 9/((n− 1)
�

10 n logn).

d) Estimation error vs. size of the ground-truth: To study
the qualitative effect of the magnitude of the group-truth, var-
ious values of |a�u�2| are considered. For each configuration,
the dimension n is set to be 500 and we run 100 trials for
the box plot. The experiments are conducted for a variety of
eigen-gaps and directions a. A clear positive correspondence
is seen between the size |a�u�2| and the estimation error;
see Fig. 2.

Fig. 2. Estimation error vs. size of the ground-truth |a�u�
2|. The left

figure corresponds to the noisy observation case where |Δ�
2| = 0.01 and the

right figure corresponds to the missing observation case where |Δ�
2| = 0.05.

In both cases, a is chosen such that a�u�
1 = 0.

e) Estimation error vs size of the interferer: To study
the qualitative effect of the magnitude of the interferers,
we consider a range of values for |a�u�1| while holding
|a�u�2| = 0.5 unchanged. Again, for each configuration,
the dimension n is set to be 500 and we run 100 trials for
the box plot. The experiments are run with various values of
eigen-gaps. A negative dependency of the estimation error on
the interferer is observed. In particular, Fig. 3 illustrates how
the estimation errors grow as the interferer gets stronger.

f) Estimation error vs eigen-gap: In this part, we con-
sider various magnitudes of the eigen-gap and study how the
estimation error is influenced. Similar to what Theorem 1 and
Theorem 3 predict, the estimation task becomes easier when
the eigen-gap gets larger. Fig. 4 manifests this relationship in
the case when |a�u�1| = 0.5 and |a�u�2| = 0.2.

C. Uncertainty Quantification

This subsection performs numerical experiments to validate
our inferential procedures as well as the accompanying theory.
Throughout this subsection, we consider the rank-2 case again
as in the expression (11), where M� := λ�1u

�
1u

��
1 +λ�2u

�
2u

��
2 .

The ground truth M� is produced by setting λ�1 = 1 with
the corresponding eigenvectors u�1 and u�2 randomly gener-
ated. We aim to construct 95% confidence intervals (namely,
α = 0.05) for

1. the linear form a�u�2 for a given vector a;
2. the eigenvalue λ�2.
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Fig. 3. Estimation error vs. size of the interferer |a�u�
1|. The left

figure corresponds to the full observation case where |Δ�
2| = 0.01, while the

right figure corresponds to the missing observation case where |Δ�
2| = 0.05.

The unit vector a is chosen such that a�u�1 = 0 and a�u�2 =
0.5. Given that |a�u�2| is quite large, we are expected to
have |a�u2| ≥ cb

��va,2 log1.5 n with high probability, and
hence we can simply take �umodified

a,2 = �ua,2 in these numerical
experiments (according to (29) and (11)).

1) Heteroscedastic Gaussian Noise: The noise setting is
the same as in expression (53). The numerical results are
displayed in Fig. 5 and Tab. I. We also examine the necessity
of our requirement on the “interferers” (i.e. |a�u�k| � |λ�l −
λ�k|/(|λ�l | logn), k 
= l) as stated in Theorem 4. Specifically,
we make comparisons of the following two settings: (1) the
“no interferer” case where a�u�1 = 0 and a�u�2 = 0.5,
as plotted in Fig. 5(a)-5(f); and (2) the case with a strong
interferer where a�u�1 = 0.05 and a�u�2 = 0.5, as plotted
in Fig. 5(g)-5(i). Numerically, our distributional guarantees
are inaccurate when there exists a strong interferer, which is
consistent with what our theory predicts.

2) Heteroscedastic Bernoulli Noise: Consider a het-
eroscedastic Bernoulli noise matrix H with independent
entries such that Hij = −σij with probability 1/2 and
Hij = σij otherwise. The variance matrix is also chosen to
satisfy (53). The numerical results are plotted in Fig. 6 and
Tab. I.

3) Missing Data Model: In the case when we only get to
observe a fraction of the entries of M� as in model (54), in the
same way, we aim to provide confidence intervals with precise
coverages for both the linear functionals and the eigenvalues.
Our numerical results are shown in Fig. 7 and Tab. I.

Fig. 4. Estimation error vs eigen-gap |Δ�
2|. The left figure corresponds to

the full observation case, while the right figure corresponds to the missing
observation case.

TABLE I

NUMERICAL COVERAGE RATES FOR OUR 95% CONFIDENCE INTERVALS
OVER 10000 INDEPENDENT TRIALS

4) Conclusion: In all of the above numerical experiments,
the confidence intervals and the Q-Q (quantile-quantile) plots
we produce match the theoretical predictions in a reasonably
well manner, thus corroborating the validity and practicability
of our theoretical results. We have numerically verified the
need of controlling the “interferers” in Fig. 5(g)-5(i).

VI. PRIOR ART

Recent years have witnessed a flurry of activity in noisy
low-rank matrix estimation [2], [13], [21], [33]–[44]. Despite
the fundamental importance of estimating linear functionals
of eigenvectors (or singular vectors), how to accomplish
this task remains largely unknown. Only until very recently,
researchers started to understand estimation errors for a special
type of linear functionals, namely, the entrywise estimation
error for the leading eigenvector or the �2,∞ error for the
rank-r eigenspace. Examples include [9], [17], [20], [33],
[45]–[52], which have been motivated by various applications
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Fig. 5. Numerical results for inference for the linear form a�u�
l and

the eigenvalue λ�
l = 0.95 (l = 2) under heteroscedastic Gaussian noise.

In (a)-(f), we take a�u�
1 = 0 (no interferer), while in (g), (h) and (i)

a�u�
1 = 0.05 (with interferer). In both two settings, we take n = 1000,

set σ1 = 0.1/
√

n log n and δσ = 0.4/((n − 1)
√

n log n) (cf. (53)), and
run independent 10000 trials. In (a), (d) and (g), the confidence intervals
are sorted respectively by the magnitudes of the estimators �ua,l and λl in
these trials. Here, u2 is chosen such that u�

2 u�
2 ≥ 0. In (c), (f) and (i),

the empirical densities are compared to the pdf of the standard normal (red
curve).

Fig. 6. Numerical results for inference for the linear form a�u�
l and the

eigenvalue λ�
l = 0.95 (l = 2) under heteroscedastic Bernoulli noise. We take

n = 1000, set σ1 = 0.1/
√

n log n and δσ = 0.4/((n − 1)
√

n log n)
(cf. (53)), and run independent 10000 trials. In (a) and (d), the confidence
intervals are sorted respectively by the magnitudes of the estimators �ua,l and
λl in these trials. Here, u2 is chosen such that u�

2 u�
2 ≥ 0. In (c) and (f),

the empirical densities are compared to the pdf of the standard normal (red
curve).

including matrix completion, community detection, top-K
ranking, and so on. While tight �∞ eigenvector (resp. �2,∞
eigenspace) perturbation bounds in the presence of symmetric
noise matrices have been derived in the prior works [9], [20],
[52], all of these papers required the associated eigen-gap to
exceed the spectral norm of the noise matrix, thereby falling
short of addressing the scenarios with small eigen-gaps. The

Fig. 7. Numerical results for inference for the linear form a�u�
l and

the eigenvalue λ�
l = 0.85 (l = 2) in the presence of missing data.

We take n = 1000, set p = 0.1, σ1 = 1/
√

10 n log n and δσ =
0.4/((n − 1)

√
10 n log n) (cf. (54)), and run 10000 independent trials.

In (a) and (g), the confidence intervals are sorted respectively by the
magnitudes of the estimators �ua,l and λl in these trials. Here, u2 is chosen
such that u�

2 u�
2 ≥ 0. In (c) and (f), the empirical densities are compared to

the pdf of the standard normal (red curve).

work [33] also considered controlling the perturbation error
of certain Fourier coefficients of the leading singular vector
in a blind deconvolution problem, which, however, does not
generalize to other linear functionals. [53] developed sharp
concentration bounds for estimating linear forms of singular
vectors under i.i.d. Gaussian noise, which, however, required
the true singular values to be sufficiently separated (i.e. with
a spacing much larger than the minimal eigen-gap studied
herein). The recent work [28] is perhaps the only one that
studied finite-grained eigenvector perturbation in the face of a
small eigen-gap, which, however, is restricted to the case with
i.i.d. Gaussian noise.

Given that estimation of linear functionals of eigenvectors
is already largely under-explored, it is perhaps not surprising
to see the lack of investigation about inference and uncer-
tainty quantification for these quantities. This is in stark
constrat to sparse estimation and learning problems, for which
the construction of confidence regions has been extensively
studied [54]–[64]. A few exceptions are worth mentioning:
(1) [65]–[67] identified �2 confidence regions that are likely to
cover the low-rank matrix of interest, which, however, might
be loose in terms of the pre-constant; (2) focusing on low-
rank matrix completion, the recent work [68] developed a de-
biasing strategy that constructs both confidence regions for
low-rank factors and entrywise confidence intervals for the
unknown matrix, attaining statistical optimality in terms of
both the pre-constant and the rate; an independent work by
Xia et al. [69] analyzed a similar de-biasing strategy with
the aid of double sample splitting, and shows asymptotic
normality of linear forms of the matrix estimator; (3) [70], [71]
developed a spectral projector to construct confidence regions
for singular subspaces in the presence of i.i.d. additive noise;
(4) [18] considered estimating linear forms of eigenvectors
in a different covariance estimation model, whose analysis
relies on the Gaussianity assumption; (5) [72] characterized the
asymptotic normality of bilinear forms of eigenvectors, which
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accommodates heterogeneous noise; and (6) [44] established
the �2,∞ distributional guarantees for two spectral estimators
(i.e., plain SVD and heteroskedastic PCA) tailored to PCA
with heteroskedastic and missing data.

Additionally, the bulk distribution of the eigenvalues of
i.i.d. random matrices has been studied in the physics literature
(e.g. [73]–[78]), which falls short of the characterizing dis-
tributions of extreme eigenvalues. Several more recent papers
started to consider a super-position of a low-rank matrix and an
i.i.d. noise matrix, and studied the locations and distributions
of the eigenvalues beyond the bulk [79]–[81]. These results did
not cover a general class of heteroscadestic noise and did not
allow the rank r to grow with n. What is more, none of these
papers studied how to construct valid confidence intervals
for extreme eigenvalues, let alone inference for individual
eigenvectors.

VII. DISCUSSION

The present paper contributes towards “fine-grained” sta-
tistical analysis, by developing guaranteed estimation and
inference algorithms for linear functionals of the unknown
eigenvectors and eigenvalues. The proposed procedures are
model agnostic and are able to accommodate heteroscedastic
noise, without the need of prior knowledge about the noise
levels. The validity of our procedures is guaranteed even
when the eigen-gap is extremely small, a condition that goes
significantly beyond what we have learned from generic matrix
perturbation theory. The key enabler of our findings lies in an
appealing bias reduction feature of eigen-decomposition when
coping with asymmetric noise matrices.

Our studies leave open several interesting questions worthy
of future investigation. For instance, our current theory for
confidence intervals falls short of accommodating the scenar-
ios when quantity |a�u�l | far exceeds the associated eigen-
gap — how to determine the fundamental inference limits
for such scenarios and, perhaps more importantly, how to
attain the limits efficiently? In addition, our theory is likely
suboptimal in terms of the dependency on the rank r and the
condition number κ. Can we further improve the theoretical
support in these regards? Furthermore, our analysis framework
shed some light on how to perform inference on functions of
the eigenvectors. It would be interesting to develop a unified
framework that leads to valid confidence intervals for a broader
class of functions (e.g. quadratic functionals, or more general
polynomials) of the eigenvectors. Moving beyond estimation
and inference for individual eigenvectors, we remark that
our current theory falls short of delivering useful eigenspace
perturbation guarantees unless there exists a sufficient eigen-
gap between any adjacent pair of eigenvalues. The challenges
are at least two-fold when dealing with an asymmetric data
matrix: (1) the eigenvectors are, in general, not orthogonal
to each other, and (2) the eigenvectors might be complex-
valued even when the observed data are real-valued, both
of which are in stark contrast to what happens for a sym-
metric data matrix. How to extend our theory to accommo-
date more general eigenspace perturbation is left for future
investigation.

APPENDIX A
PRELIMINARIES

Denote by ul (resp. λl) the lth leading right eigenvector
(resp. eigenvalue) of M =

!r
j=1 λ

�
ju

�
ju

��
j + H . We make

note of several facts about ul and λl — previously established
in [17] — that will prove useful throughout.

To begin with, a simple application of the Neumann series
yields the following expansion [17, Theorem 2].

Lemma 1 (Neumann Expansion): Let ul and λl be the lth
leading right eigenvector and the lth leading eigenvalue of M
(cf. (7)), respectively. If �H� < |λ�l |, then one has

ul =
r�
j=1

λ�j
λl

�
u��j ul

�� ∞�
s=0

1
λsl

Hsu�j

�
. (55)

As an immediate consequence, we have the following
expansion for a�ul, which forms the basis of our estimators:

λl

λ�l
�
u��l ul

�a�ul

=
r�
j=1

λ�j
λ�l

· u��j ul

u��l ul

� ∞�
s=0

1
λsl

a�Hsu�j

�

= a�u�l +
1
λl

a�Hu�l +
∞�
s=2

1
λsl

a�Hsu�l

+
�
j:j �=l

λ�j
λ�l

u��j ul

u��l ul

� ∞�
s=0

1
λsl

a�Hsu�j

�
. (56)

As we shall see shortly, our theory relies heavily on approx-
imating (56) by the lower-order terms (w.r.t. H). This requires
controlling the influence of the high-order terms. Towards this
end, we make note of several useful bounds about H that have
been established in [17].

Lemma 2: Fix any vector a ∈ Rn, and suppose that
�u�l �∞ ≤ �

μ/n. Suppose the noise matrix H obeys
Assumption 1, and assume the existence of some sufficiently
small constant c1 > 0 such that

max
�
σmax

�
n logn,B logn

� ≤ c1λ
�
min. (57)

Then there exist some universal constants c2, c3 > 0 such
that with probability at least 1 −O(n−10),��a�Hsu�i

��≤�
μ

n

-
c2 max

�
σmax

�
n logn,B logn

�.s �a�2,

(58a)

�H� ≤ c3 max
�
σmax

�
n logn,B logn

�
. (58b)

Remark 8: The work [17] established the bound (58a) only
for the case with s ≤ 20 logn. Fortunately, the case with
s > 20 logn follows immediately by combining the crude
bound

��a�Hsu�
�� ≤ �H�s�a�2 and the inequality (58b) (by

choosing c2 = 2c3 and using the fact that (1/2)s � �
1/n).

Combining Lemmas 1-2, the paper [17] establishes the
following result.

Lemma 3: Consider a rank-r symmetric matrix M� =!r
i=1 λ

�
iu

�
iu

��
i ∈ Rn×n with incoherence parameter μ

(cf. Definition 1). Suppose that the noise matrix H obeys
Assumption 1 and Condition (57). Then for any fixed vector
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a ∈ Rn and any 1 ≤ i ≤ r, with probability at least
1 −O(n−10) one has�����a�

&
ui −

r�
k=1

u��k ui
λi/λ�k

u�k

'�����
≤ c2

max
�
σmax

√
n logn,B logn

�
λ�min

�
μκ2r

n
�a�2 (59)

for some universal constant c2 > 0. This result holds
unchanged if the ith right eigenvector ui is replaced by the
ith left eigenvector wi.

Remark 9: Under the additional condition that B logn ≤
σmax

√
n logn, the preceding bounds simplify to

��a�Hsu�i
�� ≤ �

μ

n

-
c2σmax

�
n logn

.s
�a�2, (60a)

�H� ≤ c3σmax

�
n logn, (60b)�����a�

&
ui −

r�
k=1

u��k ui
λi/λ�k

u�k

'����� ≤ c2
σmax

�
μκ2r logn
λ�min

�a�2.

(60c)

Another immediate consequence under our assumptions is
that, with probability at least 1 −O(n−10),

�H� ≤ λ�min/10. (61)

APPENDIX B
PROOF FOR EIGENVECTOR AND EIGENVALUE ESTIMATION

In this section, we shall start by proving the eigenvalue
perturbation bound stated in Theorem 2, which plays a pivotal
role in establishing the eigenvector estimation guarantees in
Theorem 1.

A. Proof of Theorem 2

This section aims to establish a slightly stronger version of
Theorem 2, stated as follows.

Theorem 7: Assume that μκ2r4 ≤ c3 n for some suf-
ficiently small constant c3 > 0. Suppose that the noise
parameters defined in Assumption 1 satisfy

Δ�
l >2c4κ2 r2 max

�
σmax

�
n logn,B logn

�(
μ
n (62a)

max
�
σmax

�
n logn,B logn

�
≤ c5λ

�
min (62b)

for some sufficiently large (resp. small) constant c4 > 0
(resp. c5 > 0). Then given any integer 1 ≤ l ≤ r, with
probability 1 −O(n−8), the eigenvalue λl and the associated
eigenvectors ul and wl (see Notation 1) are all real-valued,
and one has

|λl − λ�l | ≤ c4κr
2 max

�
σmax

�
n logn,B logn

�(
μ
n .

(63)

A few immediate consequences of this theorem and the
Bauer-Fike theorem are summarized as follows.

Corollary 2: Suppose that μκ2 r4 � n, and that Assump-
tions 1-2 hold. With probability at least 1 −O(n−6),

|λl − λ�l | ≤ min
�Δ�

l

2
, c3σmax

�
n logn

�
and���λl − λ�l

λ�l

��� ≤ 1
100

(64)

for some sufficiently small constant c3 > 0. In addition,
if either σmax

√
n logn = o(λ�min) or Δ�

l = o(λ�min) holds,
then with probability at least 1 −O(n−6),

λl = (1 + o(1))λ�l . (65)

1) Proof Outline: To establish this theorem, we borrow a
powerful idea from [79] that converts eigenvalue analysis to
zero counting of certain complex-valued functions. Specifi-
cally, consider the following functions

f(z) := det
�
I + U��(H − zI)−1U�Σ�

�
, (66a)

g(z) := det
�
I + U��(−z)−1U�Σ�

�
. (66b)

The intimate connection between these two functions and
the eigenvalues of M and M� is formalized in the following
observation made by [79].

Claim 1: If λmin > 2 �H�, then the zeros of f(·)
(resp. g(·)) on the region K := {z ∈ C : |z| > �H�} ∪ {∞}
are exactly the r leading eigenvalues of M (resp. M�).

With this claim in mind, we turn attention to studying the
zeros of f(·) and g(·). Given that f(·) can be viewed as
a perturbed version of g(·) (since f(·) can be obtained by
adding a perturbation H to g(·) in a certain way), we hope
that the zeros of f(·) do not deviate by much from the zeros
of g(·). Towards justifying this, we look at the following
γ-neighborhood of {λ�1, λ�2, · · · , λ�r}:

D(γ) :=
r/

k=1

B(λ�k, γ), (67)

where B(λ, γ) is a ball of radius γ > 0 centered at λ, namely,
B(λ, γ) := {z ∈ C : |z − λ| ≤ γ}. A crucial part of the
proof is to demonstrate that all zeros of f(·) lie in D(γ) —
or equivalently, in the γ-neighborhood of the zeros of g(·) —
for sufficiently small γ.

Remark 10: Somewhat surprisingly, γ is allowed to be as
small as poly log(n)√

n
�H� when r, κ, μ � 1.

In what follows, we shall assume that

γ < λ�min/4 and γ < Δ�
l /2. (68)

In view of (61), one has �H� < λ�min/4, thus indicating
that

|z| ≥ λ�min − γ > λ�min/2 > �H� for all z ∈ D(γ). (69)

Our proof is based on the following observations:
(i) Given that γ < Δ�

l /2, one has B(λ�l , γ) ∩ B(λ�k, γ) =
∅ for any k 
= l, and hence g(·) has exactly 1
zero in B(λ�l , γ); in addition, it is clear that g(·)
has l − 1 (resp. r − l) zeros in ∪k:k<lB(λ�k, γ)
(resp. ∪k:k>lB(λ�k, γ)).

(ii) Suppose that in each connected component of D(γ),
the functions f(·) and g(·) always have the same number
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of zeros. If this were true, then one would have (1) a
unique zero of f(·) in B(λ�l , γ); (2) l−1 zeros of f(·) in
∪1≤k<lB(λ�k, γ); (3) r− l zeros of f(·) in ∪k>lB(λ�k, γ).

(iii) Recalling how we sort {λ�k} and {λk}, we see that
the real part of any z ∈ ∪1≤k<lB(λ�k, γ) must exceed
λ�l−1 − γ > λ�l + γ and, similarly, the real part of any
z ∈ ∪k>lB(λ�k, γ) is at most λ�l+1 + γ < λ�l − γ. Thus,
the above arguments reveal that the unique zero of f(·)
in B(λ�l , γ) is λl, which obeys |λl − λ�l | ≤ γ.

(iv) In addition, note that the complex conjugate λl of λl
is also an eigenvalue of M , given that M is a real-
valued matrix. However, since there is only one zero
of f(·) residing in B(λ�l , γ), we necessarily have λl =
λl, meaning that λl is real-valued. A similar argument
justifies that the associated right eigenvector ul and left
eigenvector wl are real-valued as well.

Theorem 7 is thus established if we are allowed to pick

γ = c4κr
2 max

�
B logn, σmax

�
n logn

��
μ

n
. (70)

Clearly, this choice satisfies γ < λ�min/4 and γ < Δ�
l /2

under the assumptions of this theorem.
The remaining proof then boils down to justifying that f(·)

and g(·) have the same number of zeros in each connected
component of D(γ). Towards this end, we resort to Rouché’s
theorem in complex analysis [82].

Theorem 8 (Rouché’s Theorem): Let f(·) and g(·) be two
complex-valued functions that are holomorphic inside a region
R with closed contour ∂R. If |f(z) − g(z)| < |g(z)| for all
z ∈ ∂R, then f(·) and g(·) have the same number of zeros
inside R.

In order to invoke Rouché’s theorem to justify the claim
in (ii), it suffices to fulfill the requirement |f(z) − g(z)| <
|g(z)| on D(γ). Given that |z| > �H� for all z ∈ D(γ)
(see (69)), we can apply the Neumann series (H − zI)−1 =
−!∞

s=0 z
−s−1Hs to reach

f(z)

= det

&
I − U��

& ∞�
s=0

z−s−1Hs

'
U�Σ�

'

= det

&
I+U��(−z)−1U�Σ� −

∞�
s=1

z−s−1U��HsU�Σ�

'

= det

&�
I + U��(−z)−1U�Σ�

�&
I

−�
I+U��(−z)−1U�Σ�

�−1
∞�
s=1

z−s−1U��HsU�Σ�

''

= g(z) det

&
I − �

I + U��(−z)−1U�Σ�
�−1

·
∞�
s=1

z−s−1U��HsU�Σ�

'

= g(z) det

&
I − (I − Σ�/z)−1

∞�
s=1

z−s−1U��HsU�Σ�

� �� �
=:Δ

'
,

where the last line holds since U��U� = I. In addition,
observe that the zeros of g(·) are in the interior of D and that
g(z) 
= 0 for all z ∈ ∂D(γ). Hence, on ∂D(γ) we have

|f(z) − g(z)| < |g(z)|
⇐⇒ |g(z)| · | det(I − Δ) − 1| < |g(z)|
⇐⇒ | det(I − Δ) − 1| < 1. (71)

To justify (71) on ∂D, we make the following observations:
Claim 2: The condition (71) can be guaranteed as long as

�Δ� < 1/(2r).
Claim 3: There exists a universal constant c3 > 0 such that

with probability 1 −O(n−8), one has

�Δ� ≤ c3
max

�
B log n, σmax

√
n logn

�
γ

�
μκ2r2

n
. (72)

In summary, in order to guarantee |f(z) − g(z)| <
|g(z)| on ∂D(γ), it suffices to ensure that �Δ� ≤ 1/(2r)
(by (71) and Claim 2), which would hold as long as we

take γ = 2c3 max
�
B logn, σmax

√
n logn

�(
μκ2 r4

n (by

Claim 3). This in turn establishes Theorem 7 (and hence
Theorem 2) as long as c4 ≥ 2c3.

Finally, the proofs of the auxiliary claims are postponed to
Appendix B-A2.

2) Proofs for Auxiliary Claims in Appendix B-A1:
a) Proof of Claim 1: Note that both f(·) and

g(·) are holomorphic on K. Making use of the identity
det (I + AB) = det (I + BA), we have

f(z) = det
�
I + U�Σ�U��(H − zI)−1

�
= det

�
I + M�(H − zI)−1

�
= det

�
(H − zI + M�)(H − zI)−1

�
=

det(M − zI)
det(H − zI)

(73)

and g(z) = det
�
I + U�Σ�U��/(−z)� =

r0
i=1

$
1 − λ�i

z

%
.

(74)

These identities make clear that the zeros of g(·) (resp. f(·))
on K are all eigenvalues of M� (resp. M ). In particular,
the zeros of g(·) are precisely {λ�i }1≤i≤r.

It remains to show that there are exactly r zeros of f(·) lying
in K, and that they are exactly λ1, · · · , λr. This is equivalent
to showing that the set of eigenvalues of M contained in the
region K is {λi}1≤i≤r. Towards this, define M(t) = M� +
tH . From the Bauer-Fike theorem, all eigenvalues of M(t)
lie in the set

B(0, t�H�) ∪
�
∪rk=1B(λ�k, t�H�)� �� �

=:D(t�H�)

�
. (75)

Given that �H� < λmin/4 (according to (61) under our
assumptions), it is easily seen that B(0, t�H�) does not
intersect with D(t�H�) for all 0 ≤ t ≤ 1. Additionally,
the set of the eigenvalues of M(t) depends continuously on t
[83, Theorem 6], requiring M(t) to have the same number of
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zeros in B(0, t�H�) for all 0 ≤ t ≤ 1. Hence, M = M(1)
has exactly r eigenvalues in D(�H�) (since M� = M(0) has
r eigenvalues in this region). These eigenvalues necessarily
have magnitudes larger than any point in B(0, �H�) (since
�H� < λmin/4), thus indicating that the eigenvalues of M
in K are precisely λ1, · · · , λr .

b) Proof of Claim 2: Denoting by μ1, · · · , μr ∈ C the r
eigenvalues of I − Δ ∈ Rr×r, one has

��det(I − Δ) − 1
�� =

��� r0
i=1

μi − 1
���.

By virtue of the elementary inequality4 |1r
i=1(1 + ai) − 1| ≤1r

i=1(1 + |ai|) − 1, we arrive at

�� det(I −Δ)−1
�� ≤ r0

i=1

(1 + |μi − 1|)−1 ≤ (1+�Δ�)r−1,

where the last inequality follows from the Bauer-Fike theorem
(which forces that |μi−1| ≤ �Δ�). This means that Condition
(71) holds if (1 + �Δ�)r < 2; the latter condition is clearly
guaranteed if �Δ� ≤ 1/(2r).

c) Proof of Claim 3: Since γ < λmin/4, it always holds
that |z| > 3λmin/4 for all z ∈ ∂D(γ). Hence

�Δ� =
��� (zI − Σ�)−1

∞�
s=1

z−sU��HsU�Σ�
���

≤ �� (zI − Σ�)−1 �� ·
∞�
s=1

��U��HsU�Σ�
��

|z|s

≤ �Σ�� · �� (zI − Σ�)−1 �� ·
∞�
s=1

��U��HsU�
��

|z|s . (76)

Recall that �Σ�� = λmax. Also, on ∂D(γ) we have

�� (zI − Σ�)−1 �� ≤ max
1≤k≤r, z∈∂D(γ)

���� 1
z − λ�k

���� ≤ 1
γ
. (77)

Taken collectively, the above results yield

�Δ� ≤ λmax

γ

∞�
s=1

��U��HsU�
���

3
4λmin

�s
(i)

≤ λmaxr

γ

∞�
s=1

max1≤i,j≤r |u��i Hsu�j |�
3
4λmin

�s , (78)

where (i) makes use of the elementary inequality �A� ≤
r�A�∞ for any A ∈ Rr×r. Invoke Lemma 2 and a union

4This holds since

�����
r�

i=1

(1 + ai) − 1

����� =
���

r�
k=1

�
1≤i1,··· ,ik≤r

ai1 · · · aik

���

≤
r�

k=1

�
1≤i1,··· ,ik≤r

|ai1 | · · · |aik
| =

r�
i=1

(1 + |ai|) − 1.

bound to show that: with probability 1 −O(n−10r2),

�Δ�

≤ λmaxr

γ

∞�
s=1

&
c2 max

�
σmax

√
n logn,B logn

�
3
4λmin

's�
μ

n

(ii)

≤ λmaxr

γ
· c2 max

�
σmax

√
n logn,B logn

�
3
4λmin

·
∞�
s=1

$
1
2

%s�
μ

n

≤ 4c2 max
�
σmax

√
n logn,B logn

�
3γ

�
μκ2r2

n
,

where (ii) holds as long as
c2 max{B logn,σmax

√
n logn}

3
4λmin

≤ 1
2 .

B. Proof of Theorem 1

As mentioned previously, Theorem 2 enables us to prove
the statistical guarantees stated in Theorem 1. In the sequel,
we shall first establish perturbation bounds for the vanilla
eigenvector estimator (i.e. ul and wl) as well as the estimator�ul = 1

�ul+wl�2
(ul + wl).

Theorem 9: Consider any 1 ≤ l ≤ r. Suppose that μκ2 r4 �
n and that Assumptions 1-2 hold. Then with probability at
least 1 −O(n−6), we have:

1) (�2 perturbation of the lth eigenvector)

min �ul ± u�l �2

� κ2σmax

�
μr2 logn

Δ�
l

+
κ2σmax

√
n logn

λ�max

(79a)��u��k ul
��

� σmax
Δ�

l

�
μκ4r logn, k 
= l, (79b)

|u��l ul|
≥ 1 −O

-
(κ4σ2

maxn logn)
�

1
(Δ�

l )2
μr2

n + 1
(λ�

max)2

�.
;

(79c)

2) (perturbation of linear forms of the lth eigenvector) for
any fixed vector a with �a�2 = 1,

min
��a� (ul ± u�l )

��
� σmax

√
μκ2r4 logn

λ�
min

+σmax

�
μκ4r3 logn · max

k �=l
|a�u�

k|
|λ�

l−λ�
k|

+ σ2
maxμκ

4r2 logn
(Δ�

l )2 |a�u�l | + σ2
maxκ

4n logn
(λ�

max)2 |a�u�l |;
(79d)

3) (�∞ perturbation of the lth eigenvector)

min�ul±u�l �∞�σmax
λ�
min

�
μκ4r logn+ σmax

Δ�
l

(
μ2κ4r3 logn

n .

(79e)

In addition, the above results hold unchanged if ul is
replaced by either wl or �ul = 1

�ul+wl�2
(ul + wl).

Proof: See Appendix B-B1.
In words, Theorem 9 reveals appealing statistical perfor-

mance for the estimators ul, wl and �ul. However, when
estimating linear functionals of eigenvectors via, say, the plug-
in estimator a�ul, the bound (79d) suffers from an additional
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term σ2
maxκ

4n logn
(λ�

max)2 |a�u�l | compared to the desired bound (14c)

in Theorem 1. As it turns out, this extra term arises due to a
systematic bias of the plug-in estimates. To compensate for
the bias, one needs to properly enlarge the plug-in estimator,
thus leading us to the proposed estimators �ua,l. We now
establish the claimed performance guarantees for these prop-
erly corrected estimators for a�u�l ; the proof is deferred to
Appendix B-B2, which builds heavily upon the analysis of
Theorem 9.

Theorem 10: Instate the assumptions of Theorem 9. Fix
any vector a with �a�2 = 1. With probability exceeding

1−O(n−6), the estimator �ua,l := min
2���� (a�ul)(a�wl)

u�
l wl

���, 13
satisfies

min
���ua,l ± a�u�l

��
� σmaxr

2
√
μκ2 logn

λ�
min

+ σ2
maxμr

2κ4 logn
(Δ�

l
)2 |a�u�l |

+ σmax

�
μκ4r3 lognmax

k �=l
|a�u�

k|
|λ�

l −λ�
k| . (80)

Theorems 9-10 taken together establish Theorem 1.
1) Proof of Theorem 9: We shall start by proving the results

for ul; the proofs for the results w.r.t. wl are clearly identical.
a) Proofs for �2 perturbation bounds: To derive the �2

bound for ul, we start by considering the distance between ul
and the subspace spanned by the true eigenvectors {u�k}1≤k≤r.
The Neumann series (cf. Lemma 1) tells us that: when
�H� ≤ λ�min/4,�����ul −

r�
k=1

λ�ku
��
k ul
λl

u�k

�����
2

=

�����
r�

k=1

λ�k
�
u��k ul

�
λl

� ∞�
s=1

1
λsl

Hsu�k

������
2

≤

4556 r�
k=1

�����λ�k
�
u��k ul

�
λl

�����
2 �����

& ∞�
s=1

1
λsl

Hs

'
[u�1, · · · ,u�r ]

�����
≤

4556(λ�max)2

|λl|2
r�

k=1

��u��k ul
��2 �����

& ∞�
s=1

1
λsl

Hs

'�������� [u�1, · · · ,u�r ]
���

≤ λ�max

|λl|
∞�
s=1

$�H�
|λl|

%s
, (81)

where the last inequality holds since � [u�1, · · · ,u�r] � = 1
and

!r
k=1

��u��k ul
��2 ≤ �ul�2

2 = 1 (given that the u�k’s are
orthonormal). In view of the Bauer-Fike theorem and the
bound �H� ≤ λ�min/4, we have the crude lower bound

|λl| ≥ λ�min − �H� ≥ 3λ�min/4. (82)

This taken collectively with the inequality (81) yields�����ul −
r�

k=1

λ�ku
��
k ul
λl

u�k

�����
2

≤ λ�max

|λl| · �H�
|λl| − �H� ≤ λ�max

3
4λ

�
min

· �H�
1
2λ

�
min

=
8κ2

3
· �H�
λ�max

.

(83)

In addition, note that the Euclidean projection of ul
onto the subspace spanned by {u�k}1≤k≤r is given by!r
k=1(u

��
k ul)u�k. This together with (83) implies that

8κ2

3
· �H�
λ�max

≥
�����ul −

r�
k=1

λ�ku
��
k ul
λl

u�k

�����
2

≥ min
z∈span{u�

1 ,··· ,u�
r}
�ul − z�2

=

�����ul −
r�

k=1

(u��k ul)u�k

�����
2

=

45561 −
r�

k=1

��u��k ul
��2, (84)

where the last identity arises from the Pythagorean theorem.
The above inequality (84) indicates that most of the energy

of ul lies in span{u�1, · · · ,u�r}. In order to show that
|u��l ul| ≈ 1, it suffices to justify that |u��k ul| is very small
for any k 
= l. To this end, taking a = u�k in Lemma 3 and
making use of Condition (13b), we arrive at

�����u��k
&

ul −
r�
i=1

u��i ul
λl/λ�i

u�i

'����� ≤ c2
σmax

λ�min

�
μκ2r logn. (85)

In addition, the orthonormality of {u�i }1≤i≤r indicates that

u��k

&
ul −

r�
i=1

u��i ul
λl/λ�i

u�i

'
= u��k ul − λ�k

λl
u��k ul

=
-
1 − λ�k

λl

.
u��k ul (86)

and, as a result,

��u��k ul
�� ≤ ����1 − λ�k

λl

����−1

c2
σmax

λ�min

�
μκ2r logn. (87)

In order to control
���1 − λ�

k

λl

���−1

, we note that: for all k 
= l,
it follows from the triangle inequality and Theorem 7 that

|λ�k − λl| ≥ |λ�k − λ�l | − |λ�l − λl| ≥ |λ�k − λ�l | − Δ�
l /2

≥ |λ�k − λ�l |/2 ≥ Δ�
l /2, (88)

=⇒
����1 − λ�k

λl

����−1

=
|λl|

|λ�k − λl| ≤
λ�max + �H�

Δ�
l /2

≤ 4λ�max

Δ�
l

,

where we have also used the condition �H� ≤ λ�max.
Substitution into (87) yields

��u��k ul
�� ≤ 4λ�max

Δ�
l

· c2σmax

λ�min

�
μκ2r log n

=
4c2σmax

Δ�
l

�
μκ4r log n (89)
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for all k 
= l. Putting the above results together, we arrive at

min
�
�ul ± u�l �2

2

�
= 2 − 2|u��l ul| ≤ 2 − 2|u��l ul|2

≤ 2

�
1 −

r�
k=1

|u��k ul|2
�

+ 2

⎧⎨⎩
r�

k �=l,k=1

|u��k ul|2
⎫⎬⎭

�
$
κ2 �H�
λ�max

%2

+
$
σmax

Δ�
l

%2

μκ4r2 logn

�
$
κ2σmax

√
n logn

λ�max

%2

+
$
σmax

Δ�
l

%2

μκ4r2 logn, (90)

where the penultimate inequality relies on (84) and (89), and
the last line follows from (60b).

Finally, the advertised bound on |u��l ul| can be immedi-
ately established by combining the identity |u��l ul| = 1 −
1
2 min{�ul ± u�l �2

2} and the above bound (90).
b) Proof for perturbation of linear forms of eigenvectors:

Invoke the triangle inequality to obtain����a�
$

ul − u��l ul
λl/λ�l

u�l

%����
≤

�����a�
&

ul −
r�

k=1

u��k ul
λl/λ�k

u�k

'����� +
r�

k �=l,k=1

����u��k ul
λl/λ�k

�
a�u�k

����� .
(91)

The first term on the right-hand side of (91) can be
controlled via Lemma 3 and Condition (13b):�����a�

&
ul −

r�
k=1

u��k ul
λl/λ�k

u�k

'����� � σmax

λ�min

�
μκ2r logn · �a�2.

Regarding the second term on the right-hand side of (91),
we can invoke (87) to derive����u��k ul

λl/λ�k

���� � |λ�k|
|λl − λ�k|

σmax

λ�min

�
μκ2r logn

≤ λ�max

|λ�l − λ�k|/2
σmax

λ�min

�
μκ2r logn

� σmax

|λ�l − λ�k|
�
μκ4r logn, (92)

where the penultimate inequality results from (88). As a
consequence, one has�

k:k �=l,1≤k≤r

����u��k ul
λl/λ�k

�
a�u�k

�����
� r · σmax

�
μκ4r logn ·

�
max
k:k �=l

|a�u�k|��λ�l − λ�k
��
�
. (93)

Substituting the above bounds into (91) and rearranging
terms, we obtain����a�

$
ul − u��l ul

λl/λ�l
u�l

%����
� σmax

�
μκ2r logn

�
1

λ�min

�a�2 + κr max
k:k �=l

|a�u�k|��λ�l − λ�k
��
�
.

(94)

Next, recall from Theorem 7 that

|λl − λ�l | ≤ c4κr
2σmax

�
μ logn <

1
2
|λ�l |

=⇒ λl
λ�l

∈
�
1 − |λl − λ�l |

|λ�l |
, 1 +

|λl − λ�l |
|λ�l |

 
⊂ [0.5, 1.5] ,

provided that μκ2 r4 � n and that Condition (13b) holds. We
then make use of the bounds (63) and (79a) to deduce that

min
����1 ± u��l ul

λl/λ�l

����
=

����1 − λ�l
λl

+
λ�l
λl

− |u��l ul|
λl/λ�l

����
≤

����1 − λ�l
λl

���� +
����λ�lλl

���� · ��1 − ��u��l ul
����

� |λl − λ�l |
λ�min

+
��1 − ��u��l ul

����
� κr2σmax

√
μ logn

λ�min

+
�
κ4σ2

maxn logn
�2 1

(Δ�
l )2

μr2

n
+

1
(λ�max)2

3
.

The above bounds taken collectively demonstrate that

min
��a� (ul ± u�l )

��
≤

����a�
$

ul − sign
-u��l ul
λl/λ�l

.
u�l

%����
≤

����a�
$

ul − u��l ul
λl/λ�l

u�l

%����
+
����sign

-u��l ul
λl/λ�l

.
a�u�l −

u��l ul
λl/λ�l

a�u�l

����
=

����a�
$

ul − u��l ul
λl/λ�l

u�l

%���� + min
����1 ± u��l ul

λl/λ�l

���� · |a�u�l |
� Eau, (95)

where

Eau

:= σmax

�
μκ2r logn

�
1

λ�min

�a�2 + κr max
k:k �=l

|a�u�k|��λ�l − λ�k
��
�

+
2
κr2σmax

√
μ logn

λ�min

+
�
κ4σ2

maxn logn
�2 1

(Δ�
l )2

μr2

n

+
1

(λ�max)2

33
|a�u�l |.

Finally, when it comes to the �∞ perturbation bound,
we shall simply take a = ek (1 ≤ k ≤ r) in the above
inequality and use the incoherence condition |e�

k u�l | ≤
�
μ/n

(1 ≤ k ≤ r) to obtain����e�
k

$
ul − sign

-u��l ul
λl/λ�l

.
u�l

%����
� σmax

�
μκ2r logn

2
1

λ�min

+
κr

Δ�
l

�
μ

n

3
+
2
κr2σmax

√
μ logn

λ�min

+
�
κ4σ2

maxn logn
�2 1

(Δ�
l )2

μr2

n
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+
1

(λ�max)2

33�
μ

n

� σmax

�
μκ4r logn
λ�min

+
σmax

Δ�
l

�
μ2κ4r3 logn

n
,

where the last line results from Condition (13a) and
μκ2 r4 � n. This together with a union bound yields that:
with high probability, one has

min �ul ± u�l �∞
≤

���ul − sign
-u��l ul
λl/λ�l

.
u�l

���
∞

� σmax

�
μκ4r logn
λ�min

+
σmax

Δ�
l

�
μ2κ4r3 logn

n

as claimed.
c) Proof of the claims w.r.t. �ul := ul+wl

�ul+wl�2
: With the

above results in place, we can easily establish these claims
w.r.t. �ul as well. In what follows, we demonstrate how to
establish the bound (79d) regarding the linear form; the proofs
for �2 and �∞ bounds follow from nearly identical arguments
and are omitted for brevity.

To begin with, repeating the analysis (95) for wl yields����a�
$

ul − sign
-u��l wl

λl/λ�l

.
u�l

%���� � Eau, (96)

One can therefore combine (95) and (96) to obtain����a�
-ul + wl

2

.
− sign

-u��l wl

λl/λ�l

.
a�u�l

����
≤ 1

2

����a�
$

ul − sign
-u��l ul
λl/λ�l

.
u�l

%����
+

1
2

����a�
$

wl − sign
-u��l wl

λl/λ�l

.
u�l

%����
� Eau, (97)

where the first inequality arises from the triangle inequality
as well as the fact sign(u��l wl) = sign(u��l ul) (see (200) in
Lemma 15). This in turn allows us to deduce that����a�

- ul + wl

�ul + wl�2

.
− sign

-u��l wl

λl/λ�l

.
a�u�l

����
=
���� 2
�ul + wl�2

a�
-ul + wl

2

.
− 2

�ul + wl�2
sign

-u��l wl

λl/λ�l

.
a�u�l

+ sign
-u��l wl

λl/λ�l

.$ 2
�ul + wl�2

− 1
%

a�u�l

����
≤ 2

�ul + wl�2

����a�
-ul + wl

2

.
− sign

-u��l wl

λl/λ�l

.
a�u�l

����
+
$

2
�ul + wl�2

− 1
%��a�u�l

��
� Eau + (2 − �ul + wl�2)

��a�u�l
�� � Eau, (98)

where the first inequality follows from the triangle inequal-
ity, the penultimate inequality relies on (97) and the
fact �ul + wl�2 � 1 (see Lemma 15), and the last

inequality follows from the bound
��2 − �ul + wl�2

�� =
O
-
κ4σ2

maxn logn
(λ�

max)2 + μκ4r2σ2
max log n

(Δ�
l )2

.
(cf. Lemma 15) in addi-

tion to the expression of Eau. This establishes the bound (79d)
when ul is replaced by �ul.

2) Proof of Theorem 10: We start by considering the coarse
estimator �ua,l. Recall that a is a fixed unit vector obeying
�a�2 = 1. The following trivial bound holds true:

min
���ua,l ± a�u�l

�� ≤ 1. (99)

Consequently, it suffices to focus on the scenario when the
upper bound on the right-hand side of (80) is bounded above
by some small constant; that is, the case where

σmaxr
2
√
μκ4 logn

λ�
min

≤ c7 (100a)

σ2
maxμr

2κ4 logn
(Δ�

l
)2 |a�u�l | ≤ c8 (100b)

σmax

�
μκ4r3 lognmax

k �=l
|a�u�

k|
|λ�

l −λ�
k| ≤ c9 (100c)

for some sufficiently small constants c7, c8, c9 > 0.
The key step is to invoke the Neumann series (cf. Lemma 1)

for both ul and wl, which yields��ua,l

�2
=

�����
�
a�ul

��
a�wl

�-!r
k=1

u��
k wl

λl/λ�
k

!∞
s=0

(H�)su�
k

λs
l

.�-!r
k=1

u��
k ul

λl/λ�
k

!∞
s=0

Hsu�
k

λs
l

.
�����

=

�����
-
a�u�l · u��

l ul

λl/λ�
l

+ δ1

.-
a�u�l · u��

l wl

λl/λ�
l

+ δ2

.
u��

l wl

λl/λ�
l
· u��

l ul

λl/λ�
l

+ δ3

�����. (101)

Here, δ1, δ2, δ3 are defined as follows

δ1 := a�
-
ul − u��

l ul

λl/λ�
l

u�l

.
, (102a)

δ2 := a�
-
wl − u��

l wl

λl/λ�
l

u�l

.
, (102b)

δ3 := U1 + U2, (102c)

where the quantities U1 and U2 are given by

U1 :=
�
k:k �=l

u��k wl

λl/λ�k
· u��k ul
λl/λ�k

, (103a)

U2 :=
r�

k1=1

r�
k2=1

�
s1,s2:s1+s2≥1

u��k1 wl

λl/λ�k1
· u

��
k2

ul

λl/λ�k2
·u

��
k1

Hs1+s2u�k2
λs1+s2
l

.

(103b)

This motivates us to control each term on the right-hand
side of (101) separately.

• To begin with, it comes directly from the inequalities
(13b) and (100c) that

σmax

�
nκ6 log n
λ�min

+
σmax

Δ�
l

�
μκ4r2 logn ≤ c5 +

c9√
r
,

thus allowing us to invoke Theorem 9 to obtain, with
probability at least 1 −O(n−6), that

min
�|u��l wl|, |u��l ul|

� ≥ 3/4. (104)
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• In view of (94), with probability 1 − O(n−6) one has

max {|δ1|, |δ2|}

� σmax

�
μκ2r logn
λ�min

+σmax

�
μκ4r3 lognmax

k �=l

��a�u�k
����λ�l −λ�k�� .

(105)

• Next, substituting (92) into (103a) yields

|U1| ≤ rmax
k �=l

�����u��k wl

λl/λ�k
· u��k ul
λl/λ�k

�����
� r

$
σmax

Δ�
l

�
μκ4r logn

%2

=
σ2

maxμr
2κ4 logn

(Δ�
l )

2 .

(106)

In addition, one has

|U2|
(i)

�
r�

k1=1

r�
k2=1�

s1,s2:s1+s2≥1

1
|λ�l /λ�k1 · λ�l /λ�k2 |

·
�����u��k1 Hs1+s2u�k2

(λ�l /2)s1+s2

�����
(ii)

≤ κ2r2
�

s1,s2:s1+s2≥1

- 2
λ�min

.s1+s2 ��u��k1 Hs1+s2u�k2
��

(iii)

≤ κ2r2
∞�
s=1

�
s1,s2:s1+s2=s

$
2c2σmax

√
n logn

λ�min

%s�
μ

n

≤
�
μ

n
κ2r2

∞�
s=1

2s
$

2c2σmax

√
n logn

λ�min

%s

=
�
μ

n
κ2r2

4c2σmax
√
n logn

λ�
min

1 − 4c2σmax
√
n logn

λ�
min

(iv)� σmax

�
μκ4r4 logn
λ�min

,

where (i) follows from Corollary 2 (so that |λl| ≥ |λ�l |/2),
(ii) makes use of the fact |λ�k/λ�l | ≤ κ, (iii) arises from
Lemma 2, and the last line relies on the assumption (13b)
(so that 1− 4c2σmax

√
n log n

λ�
min

≥ 1
2 ). The above two bounds

taken together yield

|δ3| ≤ |U1| + |U2|

� σ2
maxμr

2κ4 logn
(Δ�

l )
2 +

σmaxr
2
�
μκ4 logn

λ�min

≤ 1/8,

(107)

where the last inequality holds as long as the constants
c7 and c8 in (100b) and (100c) are sufficiently small.

With the above bounds in mind, we are ready to control the
estimation error of �ua,l. We divide the proof into two separate
cases as follows.

a) Case 1: when |a�u�l | is “small”: Consider the case
where

|a�u�l | ≤ max {|δ1|, |δ2|} .

Continue the bound in (101) to deduce that

��ua,l

�2 =

������
-
a�u�l · u��

l ul

λl/λ�
l

+ δ1

.-
a�u�l · u��

l wl

λl/λ�
l

+ δ2

.
u��

l wl

λl/λ�
l
· u��

l ul

λl/λ�
l

+ δ3

������
(i)

≤
�
2|a�u�l | + |δ1|

��
2|a�u�l | + |δ2|

��
1
2

�2 − 1
8

≤ 72 (max {|δ1|, |δ2|})2 . (108)

Here, the inequality (i) makes use of the bound (104),
Corollary 2 (so that 1/2 ≤ |λl/λ�l | ≤ 2), and the inequality
|δ3| ≤ 1/8. Therefore, we can take the triangle inequality to
conclude that

min
���ua,l ± a�u�l

�� ≤ |�ua,l| +
��a�u�l

�� � max {|δ1|, |δ2|} ,
(109)

which combined with (105) leads to the desired bound for this
case.

b) Case 2: when |a�u�l | is “large”: We now move on
to the case where

|a�u�l | > max {|δ1|, |δ2|} . (110)

By the same argument above in (108), we have����(a�ul)(a�wl)
u�
l wl

− (a�u�l )
2

����
=

1���u��
l wl

λl/λ�
l
· u��

l ul

λl/λ�
l

+ δ3

���
���� $a�u�l ·

u��l ul
λl/λ�l

+ δ1

%

·
$
a�u�l ·

u��l wl

λl/λ�l
+δ2

%
−(a�u�l )

2

2
u��l wl

λl/λ�l
·u

��
l ul
λl/λ�l

+δ3

3����
=

������
a�u�l · u��

l ul

λl/λ�
l
·δ2+a�u�l · u��

l wl

λl/λ�
l
·δ1+δ1δ2−(a�u�l )

2 ·δ3
u��

l wl

λl/λ�
l
· u��

l ul

λl/λ�
l

+δ3

������
�

��a�u�l
��max{|δ1|, |δ2|}+(max {|δ1|, |δ2|})2+

�
a�u�l

�2 |δ3|�
1
2

�2− 1
8

�
��a�u�l

��&σmax

�
μκ2rlog n
λ�min

+σmax

�
μκ4r3lognmax

k �=l

��a�u�k
����λ�l −λ�k��
'

+
�
a�u�l

�2 ·&σ2
maxμr

2κ4 logn
(Δ�

l )
2 +

σmaxr
2
�
μκ4 logn

λ�min

'
,

(111)

where the last line relies on our upper bounds on |δ1|, |δ2| and
|δ3| (see (105) and (107)) as well as the assumption (110).

Recognizing the trivial fact (here, define max |a ± b| =
max{|a+ b|, |a− b|})

max |�ua,l ± a�u�l | ≥
��a�u�l

�� ,
we have

min
���ua,l ± a�u�l

��=��(�ua,l)2−(a�u�l )
2
��

max
���ua,l±a�u�l

�� ≤
��(�ua,l)2−(a�u�l )

2
��

|a�u�l |
.

(112)
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If (a�ul)(a
�wl)

u�
l wl

≥ 0, then

��(�ua,l)2 − (a�u�l )
2
�� =

����(a�ul)(a�wl)
u�
l wl

− (a�u�l )
2

���� .
If instead (a�ul)(a

�wl)

u�
l wl

< 0 holds, then��(�ua,l)2 − (a�u�l )
2
�� ≤ ��(�ua,l)2 + (a�u�l )

2
��

=
����(a�ul)(a�wl)

u�
l wl

− (a�u�l )
2

���� .
Therefore, putting these bounds together and invoking our

bound (111), we deduce that

min
���ua,l ± a�u�l

�� ≤
��� (a�ul)(a

�wl)

u�
l wl

− (a�u�l )
2
���

|a�u�l |

� σmax

�
μκ2r logn
λ�min

+ σmax

�
μκ4r3 lognmax

k �=l

��a�u�k
����λ�l − λ�k
��

+
��a�u�l

�� ·&σ2
maxμr

2κ4 logn
(Δ�

l )
2 +

σmaxr
2
�
μκ4 log n

λ�min

'

� σmaxr
2
�
μκ4 logn

λ�min

+ σmax

�
μκ4r3 lognmax

k �=l

��a�u�k
����λ�l − λ�k
��

+
��a�u�l

�� · σ2
maxμr

2κ4 logn
(Δ�

l )
2 . (113)

Taking collectively (109) and (113) establishes our estima-
tion error bound for this case.

APPENDIX C
PROOF FOR DISTRIBUTIONAL GUARANTEES (THEOREM 5)

A. Distributional Theory for Linear Forms of Eigenvectors

By virtue of Theorem 7, we know that λl, ul and wl are all
real-valued. Without loss of generality, assume that �a�2 = 1
and that u��l ul > 0, which combined with Lemma 15 and
Notation 1 yield

u�
l u�l = 1 − o(1), w�

l u�l = 1 − o(1), w�
l ul = 1 − o(1).

(114)

The main step lies in establishing the following claim

�umodified
a,l = a�u�l +

(a⊥
l )�

�
H + H��u�l
2λ�l

+ o

$
σmax

|λ�l |
%

(115)

= a�u�l +
(a⊥
l )�

�
H + H��u�l
2λ�l

+ o
�(

v�a,l
�

(116)

with a⊥
l := a − (a�u�l )u

�
l , where the last line results from

Lemma 12. Let us take Claim (115) as given for now and
come back to its proof in the sequel. To establish Theorem 5,

it suffices to pin down the distribution of
(a⊥

l )�(H+H�)u�
l

2λ�
l

and
show that it matches the distributional characterizations stated
in Theorem 5. This follows immediately from the classical
Berry-Esseen theorem, which we defer to Lemma 14.

The rest of the proof thus boils down to justifying the
claim (115), for which we divide into two cases.

1) The Case When |a�u�l | Is Not “small”: In this sub-
section, we focus on the scenario when

�
v�a,l logn =

o(|a�u�l |) which, according to Lemma 6, subsumes the
case

��va,l log n = o(|a�u�l |). Without loss of generality,
we assume that a�u�l > 0. By virtue of Lemma 12 and the
assumption σmax � σmin, we have

v�a,l �
σ2

max(1 − |a�u�l |2)
|λ�l |2

� σ2
max

|λ�l |2
,

where the last line follows from our assumption that |a�u�l |
is bounded away from 1. As a result, the regime considered
in this subsection enjoys the following property:

σmax log n
|λ�l |

= o(a�u�l ). (117)

The key starting point is the following decomposition��umodified
a,l

�2
=

���(a�ul)(a�wl)
u�
l wl

��� (118)

=
1���u��

l wl

λl/λ�
l
· u��

l ul

λl/λ�
l

-
1 + u��

l (H+H�)u�
l

λ�
l

.
+ τ3

���
�����
2

u��l ul
λl/λ�l

·
$

a�u�l +
a�Hu�l
λ�l

%
+ τ1

32
u��l wl

λl/λ�l

·
$

a�u�l +
a�H�u�l

λ�l

%
+ τ2

3�����, (119)

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ1 := a�ul − u��

l ul

λl/λ�
l
·
-
a�u�l + a�Hu�

l

λ�
l

.
,

τ2 := a�wl − u��
l wl

λl/λ�
l
·
-
a�u�l + a�Hu�

l

λ�
l

.
,

τ3 := u�
l wl − u��

l wl

λl/λ�
l
· u��

l ul

λl/λ�
l

-
1 + u��

l (H+H�)u�
l

λ�
l

.
.

(120)

Here, τ1, τ2, τ3 encompass second- or higher-order terms in
the Neumann series. As it turns out, these terms can be well-
controlled, as stated in the following lemma.

Lemma 4: Instate the assumptions of Theorem 4. With
probability at least 1 −O(n−6), we have

|τ1| = o

$
σmax

|λ�l |
%
, (121a)

|τ2| = o

$
σmax

|λ�l |
%
, (121b)

|τ3| �
$
σmaxκ

2 r
√
μ logn

|Δ�
l |

%2

+ o

$
σmax

|λ�l |
%
. (121c)

Here, we recall that Δ�
l = ∞ when r = 1, meaning that

|τ3| = o(σmax/|λ�l |) when r = 1.
Recall from Theorem 7 and Lemma 15 that |u��l ul| =

1−o(1), |u��l wl| = 1−o(1) and λl = (1+o(1))λ�l . Therefore,
Lemma 4 tells us that

|τ1| = o

$
σmax

|λ�l |
%

≤ o
�|a�u�l |

�
= o

$����u��l ul
λl/λ�l

· a�u�l

����% ;

|τ2| = o

$
σmax

|λ�l |
%

≤ o
�|a�u�l |

�
= o

$����u��l wl

λl/λ�l
· a�u�l

����% .
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In addition, Lemma 4 together with the assumption
σmaxκ

2 r
√
μ logn = o (|Δ�

l |) implies that |τ3| = o(1).
With these bounds in place, we see that τ1 and a�Hu�

l

λ�
l

are indeed very small terms, meaning that the term in (119)
involving τ1 obeys u��

l ul

λl/λ�
l

·
-
a�u�l + a�Hu�

l

λ�
l

.
+ τ1 and

u��
l ul

λl/λ�
l

a�u�l have the same signs. Similar conclusions hold
as well for the terms involving τ2 and τ3. As a result,

sign

2
(a�ul)(a�wl)

u�
l wl

3

= sign

⎧⎨⎩
�

u��
l ul

λl/λ�
l

a�u�l

��
u��

l wl

λl/λ�
l

a�u�l

�
u��

l wl

λl/λ�
l
· u��

l ul

λl/λ�
l

⎫⎬⎭
= sign

�
(a�u�l )

2
�

= 1.

This indicates that we can safely remove the absolute value
function in (119) to obtain��umodified

a,l

�2
=

1
u��

l wl

λl/λ�
l

u��
l ul

λl/λ�
l

-
1 + u��

l (H+H�)u�
l

λ�
l

.
+ τ3

·
2

u��l ul
λl/λ�l

$
a�u�l +

a�Hu�l
λ�l

%
+ τ1

3
·
2

u��l wl

λl/λ�l

$
a�u�l +

a�H�u�l
λ�l

%
+ τ2

3
. (122)

Armed with this expression, the next lemma develops the
distributional characterization of �umodified

a,l .
Lemma 5: Instate the assumptions of Theorem 4. With

probability at least 1 −O(n−6), it follows that�������umodified
a,l

�2 − $
a�u�l +

1
2λ�l

(a⊥
l )�

�
H + H��u�l%2

�����
� |a�u�l | · (|τ1|+|τ2|)+(a�u�l )

2 · |τ3|+O
$
σ2

max logn
λ�2l

%
.

(123)

The proof of this result is given in Section C-D.
Given our assumption a�u�l > 0, the expression (122)

together with the bounds on τ1, τ2 and τ3 immediately implies
that ������umodified

a,l +
$

a�u�l +
1

2λ�l
a⊥�
l

�
H + H��u�l%

�����
≥ (1 − o(1)) · a�u�l .

This combined with Lemma 5 leads to������umodified
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$
a�u�l +

1
2λ�l

a⊥�
l

�
H + H��u�l%

�����
=

���(�ua,l)2 −
-
a�u�l + 1

2λ�
l
a⊥�
l

�
H + H��u�l .2 �������ua,l +

-
a�u�l + 1

2λ�
l
a⊥�
l

�
H + H��u�l . ���

� |τ1| + |τ2| + |a�u�l | · |τ3| +O
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λ�2l · |a�u�l |

%
.

Taking this together with Lemma 4 as well as the condition
(117), we arrive at������umodified

a,l −
$

a�u�l +
1

2λ�l
a⊥�
l

�
H + H��u�l%

�����
� o

$
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|λ�l |
%

+ |a�u�l | ·
$
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√
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|Δ�
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%2
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$
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|λ�l |
%
, (124)

where the last line results from our assumption a�u�l =
o
-

Δ�2
l

|λ�
l |σmaxκ4 r2μ logn

.
.

The proof of the claim (115) is thus complete for this case.
2) The Case When |a�u�l | Is “small”: We then move on

to the scenario where |a�u�l | � �
v�a,l log1.5 n, which clearly

subsumes the case with |a�u�l | �
��va,l log1.5 n (according

to Lemma 6). Once again, this restriction combined with
Lemma 12 and the assumption σmax/σmin = O(1) requires
that

|a�u�l | � σmax log1.5 n

|λ�l |
. (125)

The proof is built upon the following “first-order” approxi-
mations of a�ul and a�wl.

Lemma 6: Instate the assumptions of Theorem 4. Fix any
vector a ∈ Rn with �a�2 = 1, and assume that

|a�u�k| = o

&
|λ�l − λ�k|

|λ�l |
�
μκ4r3 logn

'
, ∀k 
= l. (126)

Then under Assumption 3, with probability 1−O(n−6) one
has ���� λl

λ�l (u
��
l ul)

a�ul − a�u�l −
a�Hu�l
λ�l

���� = o

$
σmax

|λ�l |
%
(127)

If we further have |a�u�l | = o
�
1/

√
logn

�
, then with

probability 1 −O(n−6),⎧⎨⎩
1

u��
l ul

a�ul = a�u�l + (a⊥
l )�Hu�

l

λ�
l

+ o
-
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|λ�

l |
.

;
1

u��
l

wl
a�wl = a�u�l + (a⊥

l )�H�u�
l

λ�
l

+ o
-
σmax
|λ�

l |
.
.

(128)

Proof: See Appendix C-E.
In addition, we claim that the following relations hold⎧⎨⎩

1
u�

l u�
l

a�ul = a�ul + o
-
σmax
|λ�

l |
.
,

1
w�

l
u�

l

a�wl = a�wl + o
-
σmax
|λ�

l |
.
.

(129)

If these claims were valid, then one would have

�umodified
a,l =

�
a�ul + a�wl

�
/2

=
1

2u�
l u�l

a�u�l +
1

2w�
l u�l

a�u�l + o
-σmax

|λ�l |
.

= a�u�l +
(a⊥
l )�(H + H�)u�l

2λ�l
+ o

-σmax

|λ�l |
.
,
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where the last inequality follows from Lemma 6. This validates
the relation (115) for this case, as long as the relations (129)
hold true.

*Proof of the relations (129): As a direct consequence of
Lemma 6, we can write

1
u�
l u�l

a�ul − a�ul

=
1

u�
l u�l

a�ul ·
�
1 − u��ul

�
=

$
a�u�l +

a�Hu�l
λ�l

+ o
-σmax

|λ�l |
.%

(1 − u��ul). (130)

In view of Lemma 13, we have with probability at least
1 −O(n−10) that����a�Hu�l

λ�l

���� = O

$
σmax

√
logn

|λ�l |
%
.

In addition, Lemma 15 together with Assumption 3 guar-
antees that, with high probability,

|1 − u��l ul| = O

$
κ4σ2

maxn logn
(λ�max)2

+
μκ4r2σ2

max logn
(Δ�

l )2

%
= o

- 1
log1.5 n

.
.

Putting everything together and using the assumption
|a�u�l | � σmaxlog1.5 n

|λ�
l | , we conclude that

1
u�
l u�

a�ul − a�u = o

$
σmax

|λ�l |
%

as claimed. The claim w.r.t. wl follows from exactly the same
argument.

B. Distributional Theory for Eigenvalues

Take a = u�l . By definition, we have a�u�k = 0 for any
k 
= l. The expression (127) in Lemma 6 thus indicates that,
with probability 1 −O(n−6), we have����� λl

λ�l (u
��
l ul)

u�l
�ul − u�l

�u�l −
u�l

�Hu�l
λ�l

����� = o

$
σmax

|λ�l |
%
.

Rearranging terms and using the fact u��l u�l = 1 further
yield

|λl − λ�l − u�l
�Hu�l | = o (σmax) . (131)

Consequently, it is sufficient to characterize the distribution
of u�l

�Hu�l . Setting a = u�l in Lemma 14, we see that

Wλ,l = u�
l
�Hu�

l√
v�

λ,l

=
u�

l
�(H+H�)u�

l

2
√
v�

λ,l

obeys

sup
z∈R

��P(Wλ,l ≤ z) − Φ(z)
�� ≤ 8√

logn
(132)

as claimed.

C. Proof of Lemma 4

First of all, invoke the Neumann series (cf. Lemma 1 and
(56)) and rearrange terms to obtain

τ1 = a�ul − u��l ul
λl/λ�l

$
a�u�l +

a�Hu�l
λ�l

%
=

u��l ul
λl/λ�l

;
a�u�l +

1
λl

a�Hu�l +
∞�
s=2

1
λsl

a�Hsu�l

+
�
k:k �=l

λ�k
λ�l

u��k ul

u��l ul

� ∞�
s=0

1
λsl

a�Hsu�k

�<
− u��l ul
λl/λ�l

·
$

a�u�l +
a�Hu�l
λ�l

%
=

u��l ul
λl/λ�l

$
1
λl

− 1
λ�l

%
a�Hu�l� �� �

=:τ1,1

+
�
k:k �=l

u��k ul
λl/λ�k

∞�
s=2

1
λsl

a�Hsu�k� �� �
=:τ1,2

+
r�

k=1

u��k ul
λl/λ�k

� ∞�
s=2

1
λsl

a�Hsu�k

�
� �� �

=:τ1,3

and, similarly,

τ3 = u�
l wl − u��l wl

λl/λ�l
· u��l ul
λl/λ�l

$
1 +

u��l (H + H�)u�l
λ�l

%

=

⎛⎝ r�
j=1

λ�j
λl

�
u��j ul

�� ∞�
s=0

1
λsl

Hsu�j

�⎞⎠ ·

·
⎛⎝ r�
j=1

λ�j
λl

�
u��j wl

�� ∞�
s=0

1
λsl

Hsu�j

�⎞⎠
− u��l wl

λl/λ�l
· u��l ul
λl/λ�l

$
1 +

u��l (H + H�)u�l
λ�l

%
=

u��l wl

λl/λ�l
· u��l ul
λl/λ�l

· u��l (H + H�)u�l ·
$

1
λl

− 1
λ�l

%
� �� �

=:τ3,1

+
�
k:k �=l

u��k wl

λl/λ�k
· u��k ul
λl/λ�k� �� �

=:τ3,2

+
�

(k1,k2) �=(l,l)

u��k1 wl

λl/λ�k1
· u��k2 ul

λl/λ�k2
· 2u��k1 Hu�k2

λl� �� �
=:τ3,3

+
r�

k1=1

r�
k2=1

�
s1,s2:s1+s2≥2

u��k1 wl

λl/λ�k1
· u

��
k2

ul

λl/λ�k2
·u

��
k1

Hs1+s2u�k2
λs1+s2
l� �� �

=:τ3,4

.

In the special case where r = 1, one has τ1,2 = τ3,2 =
τ3,3 = 0. In what follows, we develop bounds for these terms
separately.

a) Controlling τ1,1 and τ3,1: We have learned from The-
orem 7, Lemma 13 and Lemma 15 that: under Assumption 3,
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one has λl = (1 + o(1))λ�l , u�
l u�l = 1 − o(1),����λl − λ�l

λl

���� � σmax

�
μκ2r4 logn
|λ�l |

and

(133)

max
�|a�Hu�l |, |u��l Hu�l |

�
� σmax

�
logn. (134)

It then follows that

|τ1,1| �
��a�Hu�l

�� · ���λl − λ�l
(λ�l )2

��� � σ2
maxκr

2√μ logn
|λ�l |2

≤ σmax

|λ�l |
· σmaxκr

2√μ logn
|λ�min|

= o
-σmax

|λ�l |
.

|τ3,1| �
��u��l Hu�l

�� · ���λl − λ�l
(λ�l )2

��� = o
-σmax

|λ�l |
.

with the proviso that σmaxκr
2√μ logn = o (λ�min).

b) Controlling τ1,2 and τ3,3: We make the observation
that for any 1 ≤ k ≤ r,����a�Hu�k

λl

���� (i)

� σmax

√
logn

|λl| � σmax

√
logn

|λ�l |
(ii)
= o

&
Δ�
l

|λ�l |
�
μκ6r3 log2 n

�
logn

'

= o

&
|λ�l − λ�k|

|λ�l |
�
μκ4r3 logn

'
, (135)

where (i) is a consequence of Lemma 13, and (ii) holds as
long as σmax

�
μκ6r3 log2 n = o(Δ�

l ). Similarly, for any
1 ≤ k1, k2 ≤ r,�����u��k1 Hu�k2

λl

����� = o

&
Δ�
l

|λ�l |
�
μκ6r3 logn

'
. (136)

Additionally, one can invoke the inequality (87) to deduce
that for any k 
= l,

��u��k ul
�� �

����1 − λ�k
λl

����−1
σmax

λ�min

�
μκ2r logn

� λ�l
|λ�l − λ�k|

· σmax

λ�min

�
μκ2r logn. (137)

Putting the above bounds together and using the conditions
|a�u�k| = o

- |λ�
l −λ�

k|
|λ�

l |
√
μκ4r3 logn

.
and |u��l ul| = 1 − o(1) give

|τ1,2| �
�

k �=l,1≤k≤r

����λ�kλ�l
���� · ����u��k ul

u��l ul

���� $����a�Hu�k
λl

���� + |a�u�k|
%

= o

$
σmax

|λ�l |
%

+ o

$
r · λ�max

|λ�l − λ�k|
· σmax

λ�min

�
μκ2r log n

· |λ�l − λ�k|
|λ�l |

�
μκ4r3 logn

%
= o

$
σmax

|λ�l |
%
. (138)

In addition, for every pair (k1, k2) 
= (l, l), Theorem 9
implies that�

u��k1 ul
� �

u��k2 ul
�

=

⎧⎨⎩O
-
σ2
max

(Δ�
l )2μκ

4r logn
.
, if k1 
= l, k2 
= l,

O
-
σmax
Δ�

l

�
μκ4r logn

.
, else,

(139)

which together with (136) and σmax

�
μκ6r3 log2 n = o(Δ�

l )
indicates that

I1 :=

������
�
k1 �=l

�
k2 �=l

λ�k1λ
�
k2

λ2
l

�
u��k1 wl

� �
u��k2 ul

� · 2u��k1 Hu�k2
λl

������
� r2κ2 max

k �=l,j �=l
��u��k ul

�� · ��u��j wl

�� · o& Δ�
l

|λ�l |
�
μκ6r3 logn

'

= o

&$
σmax

Δ�
l

�
μκ6r3 logn

%2

· Δ�
l

|λ�l |
�
μκ6r3 logn

'

= o

$
σmax

|λ�l |
· σmax

Δ�
l

�
μκ6r3 logn

%
= o

$
σmax

|λ�l |
%

;

I2 :=

������
�
k1 �=l

λ�k1λ
�
l

λ2
l

�
u��k1 wl

� �
u��l ul

� · 2u��k1 Hu�l
λl

������
� rκmax

k1 �=l
��u��k1 wl

�� · o& Δ�
l

|λ�l |
�
μκ6r3 logn

'

= o

&
σmax

Δ�
l

�
μκ6r3 logn · Δ�

l

|λ�l |
�
μκ6r3 log n

'

= o

$
σmax

|λ�l |
%

;

I3 :=

������
�
k2 �=l

λ�l λ
�
k2

λ2
l

�
u��l wl

��
u��k2 ul

�· 2u��l Hu�k2
λl

������=o
$
σmax

|λ�l |
%
.

Putting the preceding bounds together yields

|τ3,3| ≤ I1 + I2 + I3 = o

$
σmax

|λ�l |
%
. (140)

c) Controlling τ1,3 and τ3,4: It can be deduced from (133)
and |u��l ul| = 1 − o(1) that

|τ1,3| �
r�

k=1

����λ�kλ�l
���� · ����u��k ul

u��l ul

���� ∞�
s=2

����a�Hsu�k
λsl

����
� κ

r�
k=1

∞�
s=2

����a�Hsu�k
λsl

���� . (141)

In addition,

κ

r�
k=1

∞�
s=2

����a�Hsu�k
λsl

���� � κ

|λ�l |
r�

k=1

∞�
s=2

����2sa�Hsu�k
(λ�min)s−1

���� , (142)

where the last line follows since |λl| ≥ λ�min−�H� ≥ λ�min/2
(by the Bauer-Fike theorem and (61)). Applying Lemma 2
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(or (60a)) yields

κ

|λ�l |
r�

k=1

∞�
s=2

����2sa�Hsu�k
(λ�min)s−1

����
≤ λ�minκ

|λ�l |
�
μ

n

r�
k=1

∞�
s=2

$
2c2σmax

√
n logn

λ�min

%s

≤ λ�minκr

|λ�l |
�
μ

n

-
2c2σmax

√
n logn

λ�
min

.2

1 − 2c2σmax
√
n logn

λ�
min

� λ�minκr

|λ�l |
�
μ

n

$
σmax

√
n logn

λ�min

%2

= o

$
σmax

|λ�l |
%
, (143)

provided that σmax

�
μκ2r2n logn = o(λ�min). The above

bounds thus imply that

|τ1,3| = o

$
σmax

|λ�l |
%
. (144)

Similarly, we can upper bound τ3,4 by

|τ3,4| � κ2
r�

k1=1

r�
k2=1

�
s1,s2:s1+s2≥2

�����u��k1 Hs1+s2u�k2
λs1+s2
l

�����
� κ2

|λ�l |
r�

k1=1

r�
k2=1

�
s1,s2:s1+s2≥2

�����2s1+s2u��k1 Hs1+s2uk�
2

(λ�min)s1+s2−1

�����
≤ λ�minκ

2 r2

|λ�l |
�
μ

n

�
s1,s2:s1+s2≥2

$
2c2σmax

√
n logn

λ�min

%s1+s2

(i)
=
λ�minκ

2 r2

|λ�l |
�
μ

n

�⎛⎝ 1

1 − 2c2σmax
√
n log n

λ�
min

⎞⎠2

− 1

− 2 · 2c2σmax

√
n logn

λ�min

�
(ii)
=

λ�minκ
2r2

|λ�l |
�
μ

n
·
$

2c2σmax

√
n logn

λ�min

%2

·
3 − 4c2σmax

√
n log n

λ�
min-

1 − 2c2σmax
√
n logn

λ�
min

.2

� λ�minκ
2r2

|λ�l |
�
μ

n

$
σmax

√
n logn

λ�min

%2

= o

$
σmax

|λ�l |
%
,

(145)

provided that σmaxκ
2 r2

√
nμ logn = o(λ�min). Here,

(i) and (ii) make use of the elementary identity that!
s1,s2:s1+s2≥2 a

s1+s2 = 1
(1−a)2 − 1 − 2a = 3a2(1−2a)

(1−a)2 for
all 0 < a < 1.

d) Controlling τ3,2: Clearly, one has τ3,2 = 0 if r = 1.
When r ≥ 2, this term τ3,2 is the same term as U1 defined
in (103a). Recalling our bound for inner product |u��k wl| and

|u��k ul| when k 
= l from (137), we deduce that

|τ3,2| �
�
k:k �=l

$
λ�k
λ�l

%2

·
$

λ�l
|λ�l − λ�k|

· σmax

λ�min

�
μκ2r logn

%2

≤ r

$
σmaxκ

2
√
μr logn

|Δ�
l |

%2

≤
$
σmaxκ

2r
√
μ logn

|Δ�
l |

%2

.

Putting all this together, we arrive at

|τ1| ≤ |τ1,1| + |τ1,2| + |τ1,3| = o

$
σmax

|λ�l |
%

|τ3| ≤ |τ3,1| + |τ3,2| + |τ3,3| + |τ3,4|

= O

$
σmaxκ

2r
√
μ logn

|Δ�
l |

%2

+ o

$
σmax

|λ�l |
%

as claimed. The bound on |τ2| can be established using exactly
the same way as for |τ1|.

D. Proof of Lemma 5

Direct calculation yields��umodified
a,l

�2 − $
a�u�l +

1
2λ�l

a⊥�
l

�
H + H��u�l%2

=
R

u��
l wl

λl/λ�
l
· u��

l ul

λl/λ�
l

-
1 + u��

l (H+H�)u�
l

λ�
l

.
+ τ3

, (146)

where R = R1 −R2 and

R1 =
2

u��l ul
λl/λ�l

·
$

a�u�l +
a�Hu�l
λ�l

%
+ τ1

3
·
2

u��l wl

λl/λ�l
·
$

a�u�l +
a�H�u�l

λ�l

%
+ τ2

3
,

R2 =
2

u��l wl

λl/λ�l
· u��l ul
λl/λ�l

$
1 +

u��l (H + H�)u�l
λ�l

%
+ τ3

3
·
2

a�u�l +
1

2λ�l
a⊥�
l

�
H + H��u�l32

.

Rearranging terms and using the above bounds, we can
derive

R1 =
u��l wl

λl/λ�l
·u

��
l ul
λl/λ�l

·
2�

a�u�l
�2

+
�
a�u�l

�·a�(H+H�)u�l
λ�l

+
a�Hu�l
λ�l

· a�H�u�l
λ�l

3
+ a�u�l · (τ1 + τ2)

+ o
�|a�u�l | · (|τ1| + |τ2))

�
,

R2 =
u��l wl

λl/λ�l
· u��l ul
λl/λ�l

·
2

(a�u�l )
2 +

�
a�u�l

�
·
�
a⊥
l + (a�u�l )u

�
l

�� (H + H�)u�l
λ�l

+
$

1 +
u��l (H + H�)u�l

λ�l

%
·
�
a⊥�
l (H + H�)u�l

�2
4(λ�l )2

+
u��l (H + H�)u�l

λ�l
· a⊥�

l (H + H�)u�l
λ�l

3
+ (1 + o(1))(a�u�l )

2 · τ3.
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By definition, we have a⊥
l +(a�u�l )u

�
l = a, which further

gives

|R| = |R1 −R2|

=

�����(1 + o(1))

�
a�Hu�l
λ�l

· a�H�u�l
λ�l

−
$

1 +
u��l (H + H�)u�l

λ�l

% �
a⊥�
l (H + H�)u�l

�2
4λ�2l

−

u��l (H + H�)u�l
λ�l

· a⊥�
l (H + H�)u�l

λ�l

�
+ a�u�l (τ1 + τ2) + o

�|a�u�l |(|τ1| + |τ2))
�

− (1 + o(1))(a�u�l )
2τ3

�����
� |a�u�l | · (|τ1| + |τ2|) + (a�u�l )

2 · |τ3| + σ2
max logn
λ�2l

with probability exceeding 1−O(n−6). Here, the last line uses
Lemma 13. Substitution into (146) yields�������umodified

a,l

�2−$
a�u�l +

1
2λ�l

a⊥�
l

�
H+H��u�l%2

�����≤ |R|
1 − o(1)

� |a�u�l | · (|τ1| + |τ2|) + (a�u�l )
2 · |τ3| + σ2

max logn
λ�2l

as claimed.

E. Proof of Lemma 6

The first claim���� λl

λ�l (u
��
l ul)

a�ul − a�u�l −
a�Hu�l
λ�l

���� = o

$
σmax

|λ�l |
%
(147)

follows immediately from the bound on |τ1| in Lemma 4 and
the facts λl = (1 + o(1))λ�l and u�

l u�l = 1 − o(1). As an
immediate consequence, one has���� a�ul

u�
l u�l

���� � ���� λlλ�l a�ul

u�
l u�l

����
≤

���� λlλ�l a�ul

u�
l u�l

− a�u�l −
a�Hu�l
λ�l

���� +
��a�u�l

�� +
����a�Hu�l

λ�l

����
� o

-σmax

|λ�l |
.

+ |a�u�l | +
σmax

√
logn

|λ�l |
� |a�u�l | +

σmax

√
logn

|λ�l |
. (148)

Next, the bound (131) tells us that

λl
λ�l

− 1 =
λl − λ�l
λ�l

=
u��l Hu�l

λ�l
+ o

-σmax

|λ�l |
.
.

This in turn allows us to bound����$λlλ�l −1
%

a�ul

u�
l u�l

���� � σmax

√
logn

|λ�l |
2
|a�u�l |+

σmax

√
logn

|λ�l |
3

= o
-σmax

|λ�l |
.
,

as long as |a�u�l | = o
�
1/

√
logn

�
. Putting the above bounds

together, we arrive at the advertised bound���� a�ul

u�
l u�l

− a�u�l −
(a⊥
l )�Hu�l
λ�l

����
=
���� λlλ�l a�ul

u�
l u�l

− a�u�l −
(a⊥
l )�Hu�l
λ�l

−
$
λl
λ�l

− 1
%

a�ul

u�
l u�l

����
≤
���� λlλ�l a�ul

u�
l u�l

− a�u�l −
(a⊥
l )�Hu�l
λ�l

− u��l Hu�l
λ�l

a�u�l

����
+O

$
u��l Hu�l

λ�l
a�u�l

%
+ o

-σmax

|λ�l |
.

≤
���� λlλ�l a�ul

u�
l u�l

− a�u�l −
a�Hu�l
λ�l

����
+O

$
σmax

√
logn

|λ�l |
|a�u�l |

%
+ o

-σmax

|λ�l |
.

≤ o
-σmax

|λ�l |
.
,

where the penultimate inequality holds with the proviso that
|a�u�l | = o

�
1/

√
logn

�
.

The proof for the left eigenvector wl is essentially the same
and is thus omitted for brevity.

APPENDIX D
PROOF FOR VARIANCE ESTIMATION (THEOREM 6)

Without loss of generality, we assume �a�2 = 1 and λ�l = 1
in this section.

A. Proof Outline

e) The estimation accuracy of �va,l: Before continuing,
we note that under the assumption that |a�u�l | = o(�a�2) =
o(1), we have learned from Lemma 12 (or (197)) that

1
2σ

2
min�a⊥

l �2
2 ≤ v�a,l ≤ σ2

max�a⊥
l �2 ≤ σ2

max�a�2
2. (149)

In addition, the assumption |a�u�l | ≤ (1−�)�a�2 for some
constant 0 < � < 1 implies that

1 = �a�2
2 ≥ �a⊥

l �2
2 = �a�2

2 − (a�u�l )
2 ≥ 2�− �2 > 0.

(150)

Consequently, under the assumptions σmax/σmin � 1 and
� � 1 one has

v�a,l � σ2
max. (151)

Recall the construction of our variance estimator

�va,l :=
1

4λ2
l

�
1≤i,j≤n

��a⊥l,i�ul,j + �a⊥l,j�ul,i�2 �H2
ij , (152)

where �a⊥
l := a − (a��ul)�ul and a⊥

l := a − (a�u�l )u
�
l .

To control the size of �va,l, we find it convenient to introduce
a surrogate quantity

+va,l :=
1
4

�
1≤i,j≤n

�
a⊥l,iu

�
l,j + a⊥l,ju

�
l,i

�2
H2
ij , (153)

which turns out to be very close to our estimator �va,l.
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Lemma 7: With probability exceeding 1−O(n−5), one has���va,l − +va,l

�� = o(v�a,l).
Proof: See Appendix D-B.

This observation allows us to turn attention to bounding +va,l

instead. The result is this:
Lemma 8: With probability exceeding 1 − O(n−10), one

has |+va,l − v�a,l| = o(v�a,l).
Proof: See Appendix D-C.

Putting Lemmas 7-8 together and invoking the triangle
inequality, we establish the advertised bound

�va,l=v�a,l +O(|�va,l − +va,l| + |+va,l − v�a,l|)=(1 + o(1))v�a,l.
(154)

The rest of this section is thus mainly dedicated to estab-
lishing Lemma 7 and Lemma 8.

f) The estimation accuracy of �vλ,l: The proof for �vλ,l =
(1 + o(1))v�λ,l follows from a very similar argument, and is
hence omitted.

B. Proof of Lemma 7

Without loss of generality, assume 
ul,u�l � > 0, which
combined with Lemma 15 and Notation III-A gives


�ul,u�l � > 0 and 
wl,u
�
l � > 0. (155)

To prove this lemma, let us first recall that, under the
assumptions stated in Theorem 4 one has���ul − u�l

��
∞ � o

�
1√

μn logn

�
, ��ul�∞ ≤ 2

(
μ
n ,

(156a)��a��ul − a�u�l
�� � o

�
1

μ2 log2 n

�
, (156b)

where (156a) comes from Lemma 15, and (156b) arises from
(79d) and (98).

We also need the following properties that control the differ-
ence between each term of �va,l with that of +va,l. In particular,
we introduce the following two lemmas.

Lemma 9: Suppose that Assumption 3 holds and that
32κ2

�
μr/n ≤ 1. Then one has

ξ := �"H − H�∞ = �Msvd − M��∞ � σmax
μκ4r

√
logn√
n

(157)

with probability exceeding 1 −O(n−9).
Proof: See Appendix D-D.

Lemma 10: With probability at least 1−O(n−8), for every
1 ≤ i, j ≤ n, one has

|a⊥l,i| ≤
��ai�� +

��u�l,i�� ≤ |ai| +
�
μ/n; (158)

|ζij | :=
��ai�ul,j + aj�ul,i − (aiu�l,j + aju

�
l,i)

��
≤ o

&
|ai| + |aj | +

��u�l,i�� +
��u�l,j��√

μn logn
+

1
μn logn

'
. (159)

Proof: Recalling that �a⊥
l = a−(a��ul)�ul and a⊥

l = a−
(a�u�l )u

�
l , we obtain as a consequence of inequalities (156a)

and (156b) that���a⊥l,i − a⊥l,i
�� =

���a − (a��ul)�ul − a + (a�u�l )u
�
l

	
i

��
=

��(a��ul)�ul,i − (a�u�l )u
�
l,i

��
≤ ��a��ul�� · ���ul,i − u�l,i

�� +
��a��ul − a�u�l

��·��u�l,i��
≤ o

-
1√

μn logn

.
+ o

-
1

μ2 log2 n

.
·
(

μ
n

= o
-

1√
μn logn

.
and

��a⊥l,i�� ≤ ��ai�� +
��a�u�l

�� · ��u�l,i�� ≤ ��ai�� +
��u�l,i��

≤ ��ai�� +
�
μ/n. (160)

These in turn allow one to derive���a⊥l,i�ul,j + �a⊥l,j�ul,i − (a⊥l,iu
�
j + a⊥l,ju

�
i )
��

≤ ���a⊥l,i�ul,j + �a⊥l,j�ul,i − (a⊥l,i�ul,j + a⊥l,j�ul,i)��
+
��a⊥l,i�ul,j + a⊥l,j�ul,i − (a⊥l,iu

�
j + a⊥l,ju

�
i )
��

≤����a⊥l,i − a⊥l,i
��+���a⊥l,j − a⊥l,j

������u�l,i�� +
��u�l,j�� + ��ul − u�l �∞

�
+
���a⊥l,i�� +

��a⊥l,j��� ��ul − u�l �∞
≤ o

$
1√

μn logn

%$��u�l,i�� +
��u�l,j�� + o

$
1√

μn logn

%%
+
���ai�� +

��aj�� +
��u�l,i�� +

��u�l,j��� · o$ 1√
μn logn

%
= o

&
|ai| + |aj | +

��u�l,i�� +
��u�l,j��√

μn logn
+

1
μn logn

'
.

We are ready to establish the claim. Invoking the above two
lemmas yields��4λ2

l �va,l − 4+va,l

��
=
����

i,j

�
a⊥l,iu

�
l,j + a⊥l,ju

�
l,i + ζij

�2 �H2
ij

−
�

i,j

�
a⊥l,iu

�
l,j + a⊥l,ju

�
l,i

�2
H2
ij

���
≤
�

i,j
2
��ζij�� ���a⊥l,iu�l,j + a⊥l,ju

�
l,i

�� +
��ζij ��� (|Hij | + ξ)2

+
�

i,j
2
���a⊥l,iu�l,j + a⊥l,ju

�
l,i

�� +
��ζij ���2 ξ (|Hij | + ξ)

(i)

� 1
n
√

log n

�
i,j

$
a2
i + a2

j +
��u�l,i��2 +

��u�l,j��2 +
1

μn logn

%
· (|Hij | + ξ)2 +

μ

n

�
i,j
ξ

$
a2
i + a2

j +
��u�l,i��2 +

��u�l,j��2
+

1
μn logn

%
· (|Hij | + ξ)

� 1
n
√

logn

·
��

i,j

$
a2
i + a2

j +
��u�l,i��2 +

��u�l,j��2 +
1

μn logn

%
H2
ij� �� �

=:α1

�

+
1

n
√

logn

·
��

i,j

$
a2
i + a2

j +
��u�l,i��2 +

��u�l,j��2 +
1

μn logn

%
ξ2� �� �

=:α2

�
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+
μ

n

·
�

i,j

$
a2
i +a

2
j+

��u�l,i��2+
��u�l,j��2+

1
μn logn

%
ξ (|Hij |+ξ)� �� �

=:α3

,

where (i) follows since (according to (159) and the incoher-
ence condition)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��a⊥l,iu�j + a⊥l,ju
�
i

�� +
��ζij ��

�
-��ai�� +

��aj�� +
��u�l,i�� +

��u�l,j�� +
(

1
μn logn

.
·
-��u�l,i�� +

��u�l,j�� +
(

1
μn logn

.
�

(
a2
i + a2

j +
��u�l,i��2 +

��u�l,j��2 + 1
μn log n ·�μ

n

�
�

μ
n

-
a2
i + a2

j +
��u�l,i��2 +

��u�l,j��2 + 1
μn logn

.
;��ζij �� -��a⊥l,iu�j + a⊥l,ju

�
i

�� +
��ζij��.

�
-��ai�� +

��aj�� +
��u�l,i�� +

��u�l,j�� +
(

1
μn logn

.2

·
(

1
μn log n ·�μ

n

�
-
a2
i + a2

j +
��u�l,i��2 +

��u�l,j��2 + 1
μn logn

.
1

n
√

logn
.

We then control α1, α2 and α3 separately.
• Regarding the term α1, it is first seen (using the assump-

tion �a�2
2 = 1) that

E[α1] �
�

i,j

$
a2
i +a

2
j+

��u�l,i��2+
��u�l,j��2+

1
μn logn

%
σ2

max

� nσ2
max.

In addition, Bernstein’s inequality tells us that with prob-
ability exceeding 1 −O(n−10),

|α1 − E[α1]|
�

#�
i,j

Var
�-
a2
i + a2

j +
μ

n

.
H2
ij

�
logn

+ max
i,j

�-
a2
i + a2

j +
μ

n

.
H2
ij

�
logn

�
#�

i,j

-
a2
i + a2

j +
μ

n

.2

B2σ2
max logn

+ max
i,j

-
a2
i + a2

j +
μ

n

.
B2 logn

�

4556�
i,j

2�
a2
i + a2

j

�2 +
-μ
n

.2
3
B2σ2

max logn

+B2 logn

�

4556�
i,j

2
a2
i + a2

j +
-μ
n

.2
3
B2σ2

max logn

+B2 logn

� Bσmax

�
n logn+B2 log n � σ2

maxn,

where the fourth line follows since a2
i + a2

j ≤ �a�2
2 =

1, and the last inequality comes from Assumption 3.
Consequently,

α1 ≤ |α1 − E[α1]| + E[α1] � σ2
maxn. (161)

• By virtue of Lemma 9 and the assumption �a�2 = 1,
the second term α2 can be upper bounded by

α2 =
�

i,j

$
a2
i + a2

j +
��u�l,i��2 +

��u�l,j��2 +
1

μn logn

%
ξ2

= 2n
2
�a�2

2 + �u�l �2
2 +

1
μ logn

3
ξ2

� nξ2 � σ2
maxμ

2κ8r2 logn.

• When it comes to α3, we first make the observation that

ξ (|Hij | + ξ)

�
�
μξ2 logn if |Hij | � ξμ logn

1
μ logn (|Hij | + ξ)2 if |Hij | � ξμ logn

� μξ2 logn+
1

μ logn
(|Hij | + ξ)2 1{|Hij | � ξμ logn}

� μξ2 logn+
1

μ logn
H2
ij .

As a consequence, one can derive

α3

� μ logn

·
�

i,j

$
a2
i + a2

j +
��u�l,i��2 +

��u�l,j��2 +
1

μn logn

%
ξ2� �� �

=α2

+
1

μ logn

·
�

i,j

$
a2
i + a2

j +
��u�l,i��2 +

��u�l,j��2 +
1

μn logn

%
H2
ij� �� �

=α1

= α2μ logn+
1

μ logn
α1.

Putting the above bounds together, we conclude that��4λ2
l �va,l − 4λ�2l +va,l

��
� 1
n
√

logn
α1 +

1
n
√

logn
α2 +

μ

n

$
α2μ logn+

1
μ logn

α1

%
� 1
n
√

logn
α1 + α2

μ2 logn
n

�
$

1√
logn

+
μ4κ8r2 log2 n

n

%
σ2

max

= o(σ2
max),

provided that μ4κ8 r2 log2 n = o(n). This combined with
the fact that λl = (1 + o(1))λ�l (cf. Corollary 2) and the
inequality (151) gives

�va,l − +va,l = o(v�a,l).

C. Proof of Lemma 8

The randomness in the quantity +va,l purely comes from Hij .
Given that +va,l is the sum of independent random variables,
it is easily seen that E[+va,l] = v�a,l. Invoke Bernstein’s
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inequality [84] to guarantee that with probability at least
1 −O(n−10),��4(+va,l − v�a,l)

��
=

��4(+va,l − E[+va,l])
��

=
��� �
1≤i,j≤n

�
a⊥l,iu

�
l,j + a⊥l,ju

�
l,i

�2
(H2

ij − E[H2
ij ])

���
�

#�
i,j

Var
�
(a⊥l,iu

�
l,j + a⊥l,ju

�
l,i)2H

2
ij

�
logn

+ max
i,j

���(a⊥l,iu�l,j + a⊥l,ju
�
l,i)

2B2
��� log n

(i)

�
#�

i,j

(a⊥l,i)4(u
�
l,j)4σ2

maxB
2 logn+ max

i,j
(a⊥l,iu

�
l,j)

2B2 logn

�
#�

max
i,j

(a⊥l,i)2(u
�
l,j)2

��
i,j

(a⊥l,iu
�
l,j)2σ2

maxB
2 logn

+ max
i,j

(a⊥l,iu
�
l,j)

2B2 logn

(ii)

� Bσmax

�
μ logn
n

+
μB2 logn

n

(iii)
= o

�
σ2

max

�
= o(v�a,l),

where the inequality (i) uses the fact that Var[H2
ij ] ≤ E[H4

ij ] ≤
B2E[H2

ij ] ≤ B2σ2
max, (ii) follows since maxi,j(a⊥l,iu

�
j )

2 ≤
�u��2

∞ ≤ μ/n and �a⊥
l �2

2 ≤ �a�2
2 = �u��2

2 = 1, (iii) arises
from Assumption 3, and the last identity follows from (151).
Combining the above pieces, we obtain |+va,l− v�a,l| = o(v�a,l)
as claimed.

D. Proof of Lemma 9

For notational convenience, we denote by Msvd =
UsvdΣsvdV

�
svd the compact SVD of Msvd (or equivalently,

the rank-r SVD of M ). We shall also define the rotation
matrix

Q := arg min
R∈Or×r

�����
�

Usvd

Vsvd

 
R −

�
U�

U�

 �����
F

, (162)

where Or×r denotes the set of r × r orthonormal matrices.
We first record a perturbation bound regarding the singular

subspace of Msvd.
Lemma 11: Instate the assumptions of Lemma 9. With

probability exceeding 1 −O(n−9) one has

max
��UsvdQ − U��2,∞, �VsvdQ − U��2,∞

�
� κ2γ

�
μr

n
,

(163)

where γ � σmax
√
n logn

λ�
min

.
As immediate consequences of Lemma 11 and Assump-

tion 3, we have�
�Usvd�2,∞ ≤ �UsvdQ − U��2,∞ + �U��2,∞ � κ

�
μr
n ,

�Vsvd�2,∞ ≤ �VsvdQ − V ��2,∞ + �V ��2,∞ � κ
�

μr
n ,

(164)

provided that κ2
�
μr/n ≤ 1.

We are now ready to control the entrywise error of Msvd.
Towards this, we make note of the following bound

�Msvd − M��∞
� �Q�ΣsvdQ − Λ�� · �Usvd�2,∞�Vsvd�2,∞

+ �Λ�� (�Usvd�2,∞ + �V ��2,∞)

· (�UsvdQ − U��2,∞ + �UsvdQ − U��2,∞) , (165)

which can be obtained by combining the inequalities
(C.17)-(C.18) in [9]. In addition, following the argument in
[9, Appendix C.3.3], we obtain

�Q�ΣsvdQ − Λ�� � γλ�min, (166)

where γ is defined in (168a). Substituting (163), (164) and
(166) into (165) and combining terms, we reach

�Msvd − M��∞
� γ · μκ

2r

n
λ�min + γ · μκ

4r

n
λ�min � γ · μκ

4r

n
λ�min

� σmax

�
μ2κ8r2 logn

n
. (167)

Finally, it follows from our construction that "H − H =
M −Msvd −H = M� −Msvd, which combined with (167)
establishes this lemma.

Proof of Lemma 11: In order to invoke [9, Theorem 2.1]
and the symmetric dilation trick in [9, Section 3.3], we need
to first verify the assumptions required in [9, Section 2.1].
To this end, we introduce the following auxiliary quantity and
function

γ := cγ
σmax

√
n logn

λ�min

(168a)

ϕ(x) :=

⎧⎪⎨⎪⎩
cϕ

-
σmax

√
n logn

λ�
min

x+ B log n
λ�
min

.
, if 1√

n
≤ x ≤ 1

cϕ

-
σmax

√
n logn

λ�
min

+ B
√
n log n
λ�
min

.
x, if 0 ≤ x < 1√

n

(168b)

for some sufficiently large constants cγ , cϕ > 0. We then make
the following observations:

• To begin with, the two-to-infinity norm of the truth can
be bounded by

�M��2,∞=�U�Λ�U���2,∞≤�U��2,∞ ·�Λ�� · �U��

≤ λ�max

�
μr

n
= λ�min

�
μκ2r

n
. (169)

• In view of the matrix Bernstein inequality [84], with
probability exceeding 1 −O(n−6) one has

�M − M�� = �H� � σmax

�
n logn

=
σmax

√
n logn

λ�min

λ�min ≤ γλ�min. (170)
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• Denote by Hi,· the ith row of H . For any fixed W ∈
Rn×r, the matrix Bernstein inequality yields

�Hi,·W �2 �

4556 n�
j=1

σ2
i,j�Wj,·�2

2 logn+B�W �2,∞ logn

� σmax�W �F

�
logn+B�W �2,∞ logn

= λ�min�W �2,∞

·
2 �W �F√

n�W �2,∞
σmax

√
n logn

λ�min

+
B logn
λ�min

3
(171)

with probability exceeding 1 −O(n−10). This combined
with (168b) and 1√

n
≤ �W �F√

n�W �2,∞
≤ 1 gives

P

2
�Hi,·W �2 ≥ λ�min�W �2,∞ϕ

$ �W �F√
n�W �2,∞

%3
≥ 1 −O

�
n−10

�
. (172)

With the above observations in place, [9, Theorem 2.1]
together with the dilation trick in [9, Section 3.3] implies that:
with probability at least 1 −O(n−5), one has

�UsvdQ − U� − HU�(Λ�)−1�2,∞

= �UsvdQ − MU�(Λ�)−1�2,∞

� κ2γ�U��2,∞ + γ�M��2,∞/λ�min

� γκ2

�
μr

n
+ γ

�
μκ2r

n
� γ

�
μκ4r

n
, (173)

where the last line arises from the incoherence condition as
well as the inequality (169). In addition,

�U�(Λ�)−1�2,∞ ≤ �U��2,∞�(Λ�)−1� ≤ 1
λ�min

�
μr

n
,

�U�(Λ�)−1�F ≤ �U��F�(Λ�)−1� ≤
√
r

λ�min

,

which taken collectively with (171) (by setting W =
U�(Λ�)−1) demonstrate that

�HU�(Λ�)−1�2,∞ � σmax

√
r logn

λ�min

+
B

λ�min

#
μr log2 n

n

� σmax

√
μr logn

λ�min

(174)

with probability 1 − O(n−9). Taking it together with (173)
and using the triangle inequality immediately yield

�UsvdQ − U��2,∞

≤ �UsvdQ − U� − HU�(Λ�)−1�2,∞ + �HU�(Λ�)−1�2,∞

� γ

�
μκ4r

n
+
σmax

√
μr logn

λ�min

� γ

�
μκ4r

n

as claimed. The part concerning Vsvd follows from the same
argument.

Remark 11: The careful reader would note that the results
in [9] require another relation between the incoherence condi-
tion and γ (namely, Assumption A1). This relation cannot be
satisfied with the current choice of γ given in (168a), unless
we increase it to

γ = cγ
σmax

√
n logn

λ�min

+

�
μκ2r

n
. (175)

Fortunately, the second term of (175) can be removed with
slightly more refined analysis, provided that Assumption 3
holds. In short, the analysis of [9] is built upon a sequence
of auxiliary leave-one-out estimates M (m) (1 ≤ m ≤ n)
— obtained by zeroing out the mth row/column of M —
which allows us to approximate M while being statistically
independent of the data in the mth row/column. However,
the approximation error M (m)−M does not decrease to zero
even if H = 0, leading to a bias term that is non-vanishing as
σmax → 0. To address this issue, it suffices to replace M (m)

by ,M (m), where ,M (m) is obtained by replacing all entries
in the mth row/column of M by their expected values. This
allows us to ensure that ,M (m)−M → 0 as σmax → 0, which
in turn leads to the removal of the second term of (175). The
refined proof is nearly identical to the original proof in [9],
and is hence omitted here for the sake of brevity.

APPENDIX E
PROOF FOR MINIMAX LOWER BOUNDS (THEOREM 3)

In the following, we prove each lower bound repectively.

A. Proof of Eqs. (21a) and (21b)

Without loss of generality, consider any 1 ≤ l ≤ r and
any k 
= l. Consider the following hypotheses regarding the
eigen-decomposition of M� ∈ Rn×n:

H0 : M = M� + H =
r�
j=1

λ�ju
�
ju

��
j + H ;

Hk : M = Mk + H = λ�l +ul+u�
l + λ�k+uk+u�

k

+
�

j:j �=k,j �=l
λ�ju

�
ju

��
j + H .

In words, Hk is obtained by perturbing the lth and the
kth eigenvectors under H0, with the remaining eigenvectors
unaltered. In particular, for any k 
= l, we shall pick +ul and+uk such that they are equivalent to u�l and u�k modulo global
rotation, namely,

u�lu
��
l + u�ku

��
k = +ul+u�

l + +uk+u�
k ; (176)

as we shall see, this rotational invariance constraint (176) plays
a pivotal role in understanding the effect of the eigen-gap upon
estimation accuracy. In what follows, we let P0 (resp. Pk)
denote the distribution of M under H0 (resp. Hk), and let
P0,i,j (resp. Pk,i,j) stand for the distribution of Mij under H0

(resp. Hk).
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g) Step 1: calculation of KL divergence: We first calcu-
late the KL divergence of P0 from Pk as follows

KL (Pk �P0)
(i)
=

�
1≤i,j≤n

KL (Pk,i,j �P0,i,j)

(ii)
=

�
1≤i,j≤n

�
M�
ij − (Mk)ij

�2
2σ2

ij

≤ �M�−Mk�2
F

2σ2
min

.

(177)

Here, (i) holds since KL divergence is additive for indepen-
dent distributions [85, Chapter 2.4], and (ii) follows since

KL
�N (μ1, σ

2) �N (μ2, σ
2)
�

=
(μ1 − μ2)2

2σ2
.

In addition, a little algebra reveals that

M� − Mk

= λ�k
�
u�l u

��
l + u�ku

��
k

�
+ (λ�l − λ�k)u�l u

��
l

− �
λ�k

�+ul+u�
l + +uk+u�

k

�
+ (λ�l − λ�k) +ul+u�

l

�
= (λ�l − λ�k)

�
u�lu

��
l − +ul+u�

l

�
,

where the last relation makes use of the condition (176).
Therefore, we continue the bound (177) to reach

KL (Pk �P0) ≤ �M� − Mk�2
F

2σ2
min

=
(λ�l − λ�k)

2

2σ2
min

��u�lu
��
l − +ul+u�

l

��2

F

≤ (λ�l − λ�k)
2

σ2
min

�u�l − +ul�2
2 , (178)

where the last line holds due to the following inequality that
holds for any unit vectors u and v:

�uu� − vv��2
F

= �u�4
2 + �v�4

2 − 2
uu�,vv�� = 2 − 2(u�v)2

= (2 − 2u�v)(1 + u�v) = 1
2�u − v�2

2 · �u + v�2
2

≤ 2�u − v�2
2. (179)

h) Step 2: bounding minimax probability of error: Define
the minimax probability of error as follows

pe,k

:= inf
ψ

max
�
P {ψ rejects H0 | H0} ,P {ψ rejects Hk | Hk}

�
,

(180)

where the infimum is over all tests. Standard minimax lower
bounds [85, Theorem 2] tell us that: if

KL (Pk �P0) ≤ 1/16,

then one necessarily has pe,k ≥ 1/5. This taken col-
lectively with the upper bound (178) implies that: if
(λ�

l −λ�
k)2

σ2
min

�u�l − +ul�2
2 ≤ 1/16, or equivalently, if

�u�l − +ul�2 ≤ σmin

4
��λ�l − λ�k

�� ,
then the minimax probability of error pe,k is lower bounded
by 1/5.

i) Step 3(a): establishing minimax �2 lower bounds:
The above minimax probability of testing error has direct
implications on �2 eigenvector estimation. Suppose that �u�l −+ul�2 = σmin

4|λ�
l −λ�

k| , then the calculation in (178) indicates that

�M� − Mk�F ≤
√

2
��λ�l − λ�k

�� · �u�l − +ul�2 <
σmin

2 ,

and hence Mk ∈ M(M�). Moreover, when σmin ≤ ��λ�l−λ�k��,
one has

�u�l + +ul�2 = �2u�l − (u�l − +ul)�2 ≥ �2u�l �2 − �u�l − +ul�2

≥ 2 − σmin

4
��λ�l − λ�k

��
>

σmin

4
��λ�l − λ�k

�� = �u�l − +ul�2,

meaning that �u�l−+ul�2 = min �u�l±+ul�2. Thus, the standard
reduction scheme described in [85, Chapter 2.2] leads to

inf
�ul

sup
A∈M0(M�)

E

�
min ��ul ± ul(A)�2

�
� pe,k�u�l − +ul�2

� σmin��λ�l − λ�k
�� ,

where the infimum is taken over all estimator for ul(A). Since
the preceding bound holds for all k 
= l, we conclude that

inf
�ul

sup
A∈M0(M�)

E

�
min ��ul ± ul(A)�2

�
� max
k:k �=l

σmin��λ�l − λ�k
��

=
σmin

Δ�
l

.

j) Step 3(b): establishing minimax lower bounds on
estimating linear functionals of eigenvectors: The preceding
minimax probability of error also has direct implications on
estimating linear functionals of eigenvectors. In order to satisfy
the rotational invariance constraint (176), we set

[+ul, +uk] = [u�l ,u
�
k]
�

cos θk sin θk

− sin θk cos θk

 
for some θk ∈ [−π/2, π/2]. Before continuing, we shall also
make precise the connection between �u�l − +ul�2 and θk.
Specifically, the above relation allows one to derive

u�l − +ul=u�l (1−cos θk)+u�k sin θk = 2u�l sin2 θk

2 +u�k sin θk

and, as a consequence,⎧⎪⎨⎪⎩
�u�l −+ul�2 ≤ (1−cos θk) + | sin θk| = 2 sin2 θk

2 + | sin θk|
≤ 3|θk|,

�u�l − +ul�2 ≥ | sin θk| ≥ 2
π |θk|.

(181)

In what follows, we shall take sign(θk) = sign
�a�u�

k

a�u�
l

�
, and

generate the magnitude |θk| as follows

|θk| ∼ Uniform
-�

σmin

120
��λ�

l −λ�
k

�� , σmin

12
��λ�

l −λ�
k

�� �., (182)

which combined with (181) guarantees that

σmin

60π
��λ�l − λ�k

�� ≤ �u�l − +ul�2 ≤ σmin

4
��λ�l − λ�k

�� . (183)
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We aim to translate the difficulty in distinguishing H0 and
Hk into a fundamental lower bound on estimating the linear
functional. Towards this, we are in need of computing the
difference of the linear functional under these two hypotheses
(namely, a�u�l − a�+ul). The above expressions give��a�u�l − a�+ul��

=
��2�a�u�l

�
sin2 θk

2 +
�
a�u�k

�
sin θk

��
(i)
= 2

��a�u�l
�� sin2 θk

2 +
��a�u�k

�� · | sin θk| (184)

� θ2k
��a�u�l

�� + |θk| ·
��a�u�k

�� ,
where the identity (i) results from the condition sign(θk) =
sign

�a�u�
k

a�u�
l

�
.

We shall also control
��a�u�l + a�+ul��, for which we divide

into two cases:
• If |a�u�l | ≥ σmin

|λ�
l −λ�

k| |a
�u�k| ≥ 12|θk| · |a�u�k|, then the

identity u�l + +ul = 2u�l −
�
u�l − +ul� together with (184)

yields��a�u�l + a�+ul��
=

��2|a�u�l | − 2|a�u�l | sin2 θk

2 − |a�u�k| · | sin θk|
��

≥ 2
��a�u�l

�� cos2 θk

2 − |a�u�k| · |θk|
≥ ��a�u�l

��− |a�u�k| · |θk| ≥ 1
2 |a�u�l |

� θ2k
��a�u�l

�� + |θk| ·
��a�u�k

�� ,
where we have used the fact that σmin ≤ |λ�l − λ�k| (so
that |θk| ≤ σmin

12|λ�
l
−λ�

k
| ≤ 1

12 and hence cos2 θk

2 ≥ 1
2 ).

• Suppose now that |a�u�l | < σmin
|λ�

l −λ�
k| |a

�u�k|. As one can
easily verify (which we omit for brevity), the scheme
(182) guarantees that with probability exceeding 1/2, one
has��a�u�l + a�+ul��

=
��2|a�u�l | − 2|a�u�l | sin2 θk

2 − |a�u�k| · | sin θk|
��

� max
�|a�u�l |, |a�u�k| · |θk|

�
� θ2k

��a�u�l
�� + |θk| ·

��a�u�k
�� .

Putting the above cases together reveals that��a�u�l + a�+ul�� � θ2k
��a�u�l

�� + |θk| ·
��a�u�k

��
with probability exceeding 1/2. Consequently, one can find

|θk| ∈
�

σmin

120
��λ�

l −λ�
k

�� , σmin

12
��λ�

l −λ�
k

�� � such that

min
��a�u�l ± a�+ul��

� θ2k
��a�u�l

�� + |θk| ·
��a�u�k

��
� ��a�u�l

�� σ2
min��λ�l − λ�k

��2 +
��a�u�k

�� σmin��λ�l − λ�k
�� ,

where we recall that min |a± b| := min{|a− b|, |a+ b|}.
Suppose for the moment that Mk ∈ M0(M�). Applying

the standard reduction scheme [85, Chapter 2.2] once again
yields

inf
�ua,l

sup
A∈M0(M�)

E

�
min

���ua,l ± a�ul(A)
���

� pe,kmin
��a�u�l ± a�+ul�� �

σ2
min

��a�u�l
����λ�l − λ�k

��2 +
σmin

��a�u�k
����λ�l − λ�k

�� ,

where the infimum is taken over all estimators for a�ul(A).
Recognizing that the preceding inequality holds for all k 
= l,
we immediately arrive at the advertised claim

inf
�ua,l

sup
A∈M0(M�)

E

�
min

���ua,l ± a�ul(A)
���

� σ2
min max

k:k �=l

��a�u�l
����λ�l − λ�k
��2 + σmin max

k:k �=l

��a�u�k
����λ�l − λ�k
��

=
��a�u�l

�� σ2
min

Δ�2
l

+ σmin max
k:k �=l

��a�u�k
����λ�l − λ�k
�� .

Finally, it remains to justify that Mk ∈ M0(M�) for all
k 
= l. When |θk| ≤ σmin

12|λ�
l −λ�

k| , invoking (178) and (181)
yields

�M� − Mk�2
F ≤ 2 (λ�l − λ�k)

2 �u�l − +ul�2
2

≤ 18 (λ�l − λ�k)
2 |θk|2M < σ2

min/4.

This means that Mk ∈ M0(M�), thus concluding the
proof.

B. Proof of Eq. (21c)

Consider the following two hypotheses

H0 : M = M0 + H := λ�l u
�
l u

��
l +

�
j:j �=l

λ�jvjv
�
j + H ,

Ha : M = Ma + H := λ�l +ua+u�
a +

�
j:j �=l

λ�jvjv
�
j + H ,

where the vj’s are orthonormal vectors obeying 
vj ,a� =

vj ,u�l � = 0 for any j 
= l, and +ua is defined as

+ua :=
1

�u�l + δa⊥�2
(u�l + δa⊥), with

a⊥ = a − (a�u�l )u
�
l and δ =

σmin

12|λ�l | · �a⊥�2
.

Recognizing the simple fact 
a⊥,u�l � = 0 , we can derive

�u�l + δa⊥�2 =
(

1 + δ2�a⊥�2
2 and

+ua :=
1�

1 + δ2�a⊥�2
2

(u�l + δa⊥).

Our proof proceeds as follows. Without loss of generality,
we shall assume that a�u� ≥ 0.

• Let P0 (resp. Pa) denote the distribution of M under H0

(resp. Ha). Repeating the derivation in (177) gives

KL (Pa �P0) ≤ �M0 − Ma�2
F

2σ2
min

=
(λ�l )

2

2σ2
min

�u�lu��l − +ua+u�
a �2

F

≤ (λ�l )
2

σ2
min

�u�l − +ua�2
2, (185)
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where the last inequality comes from (179). In addition,

�u�l − +ua�2

=
���u�l −

1�
1 + δ2�a⊥�2

2

(u�l + δa⊥)
���

2

≤ ��u�l − (u�l + δa⊥)
��

2
+
-
1 − 1�

1 + δ2�a⊥�2
2

.
· ��u�l + δa⊥

��
2

≤ δ�a⊥�2 +

�
1 + δ2�a⊥�2

2 − 1�
1 + δ2�a⊥�2

2

· (1 + δ�a⊥�2)

≤ δ�a⊥�2 + (1 + δ�a⊥�2) δ�a⊥�2 ≤ 3δ�a⊥�2,

(186)

where we have made use of the fact that δ�a⊥�2 =
σmin
12|λ�

l | ≤
1
12 . Combining this with (185) and our choice

of δ, we arrive at

KL (Pa �P0) ≤ 9δ2(λ�l )
2�a⊥�2

2

σ2
min

=
1
16
. (187)

• Define the minimax probability of error as follows

pe,a

:=inf
ψ

max
�
P{ψ rejects H0 |H0},P{ψ rejects Ha |Ha}

�
,

where the infimum is over all tests. It then follows from
[85, Theorem 2] that: if

KL (Pk �P0) ≤ 1/16,

one necessarily has pe,a ≥ 1/5. This taken collectively
with the upper bound (187) implies that: the minimax
probability of error pe,a in distinguishing H0 and Ha is
indeed lower bounded by 1/5.

• Combining (186) with the fact δ�a⊥�2 = σmin
12|λ�

l | gives

�+ua − u�l �2 ≤ σmin

4|λ�l |
,

thus indicating that Ma ∈ M1(M�). Apply the standard
reduction scheme [85, Chapter 2.2] to yield

inf
�ua,l

sup
A∈M1(M�)

E

�
min

���ua,l±a�ul(A)
����min

��a�(u�l ±+ua)
��.

(188)

Everything then boils down to lower bounding
min

��a�(u�l ± +ua)
��. On the one hand, it is seen

that��a�(u�l − +ua)
��

=

�����a�u�l −
1�

1 + δ2�a⊥�2
2

(a�u�l + δa�a⊥)

�����
≥ δ

��a�a⊥
���

1 + δ2�a⊥�2
2

− ��a�u�l
��&1 − 1�

1 + δ2�a⊥�2
2

'
≥ 1

2δ�a⊥�2
2 −

��a�u�l
�� · δ2�a⊥�2

2

≥ 1
4δ�a⊥�2

2.

On the other hand, one can employ the assumption
a�u� ≥ 0 to derive��a�(u�l + +ua)

��
=

�����a�u�l +
1�

1 + δ2�a⊥�2
2

(a�u�l + δa�a⊥)

�����
≥ a�u�l +

1�
1 + δ2�a⊥�2

2

δ�a⊥�2
2

≥ 1
2δ�a⊥�2

2.

Putting all this together, we conclude that

min
��a�(u�l ± +ua)

�� ≥ 1
4δ�a⊥�2

2,

which taken collectively with (188) and our choice
δ = σmin

12|λ�
l |·�a⊥�2

yields

inf
�ua,l

sup
A∈M1(M�)

E

�
min

���ua,l ± a�ul(A)
���

� min
��a�(u�l ± +ua)

�� � σmin

|λ�l |
�a⊥�2.

C. Proof of Eq. (21d)

The proof of this part uses Fano’s inequality. We start by
constructing a proper packing set of the space: N unit vectors
{vi}1≤i≤N within the subspace perpendicular to {u�i }i�=l
obeying

• 
vi,u�j� = 0 for all 1 ≤ i ≤ N , 1 ≤ j ≤ r and j 
= l;
• there exists some sufficiently small constant c3 > 0 such

that

�vi − vj�2 ≥ c3
σmin

√
n

|λ�l |
, 1 ≤ i 
= j ≤ N ;

• there exists some sufficiently large constant c4 > 0 such
that

�vi − u�l �2 ≤ c4
σmin

√
n

|λ�l |
, 1 ≤ i ≤ N.

Standard packing arguments [1, Chapter 5.1] imply that N can
be as large as

N = exp
-
n log

c4
2c3

.
. (189)

In addition, when 4c4
σmin

√
n

|λ�
l | < 1, it follows that

�vi − vj�2 ≤ �vi − u�l �2 + �vj − u�l �2 ≤ 2c4
σmin

√
n

|λ�l |
,

(190)

�vi + vj�2 ≥ 2�vi�2 − �vi − vj�2 ≥ 2 − 2c4
σmin

√
n

|λ�l |
> 2c4

σmin
√
n

|λ�l |
, (191)

thus indicating that

min �vi ± vj�2 ≥ min {c3, 2c4} σmin
√
n

|λ�l |
, 1 ≤ i 
= j ≤ N.

(192)
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The next step is to associate each vector vi (1 ≤ i ≤ N )
with a hypothesis as follows

Hi : M = Mi + H := λ�l viv
�
i +

�
j:j �=l

λ�ju
�
ju

��
j + H .

If we denote by Pi the distribution of M under Hi (1 ≤
i ≤ N), then we can invoke the argument in (177) and (179)
to upper bound

KL (Pi �Pj) ≤ �Mi − Mj�2
F

2σ2
min

=
(λ�l )

2

2σ2
min

�viv�
i − vjv

�
j �2

F

≤ (λ�l )
2

σ2
min

�vi − vj�2
2

≤ 4c24n (193)

for any i 
= j, where the last inequality follows from (190).
This upper bound on KL divergence plays an important role
in invoking Fano’s inequality. More specifically, recall that
Fano’s inequality [85, Corollary 2.6] asserts that if

1
N

N�
i=2

KL (Pi �P1) ≤ 1
4

logN,

then the minimax probability of testing error must satisfy

pe,N := inf
ψ

max
1≤i≤N

P {ψ 
= i | Hi} ≥ 1/4,

where the infimum is over all tests. Combining this with the
upper bound (193) and the packing number (189), we see that
if

4c24n ≤ N

4(N − 1)
logN =

N

4(N − 1)
· n log

c4
2c3

, (194)

then one would have pe,N ≥ 1/4. Clearly, the condition (194)
would hold as long as c4/c3 is sufficiently large.

To finish up, it suffices to invoke the standard reduction
scheme [85, Chapter 2.2] to obtain

inf
�ul

sup
A∈M2

E

�
min ��ul ± ul(A)�2

�
� min

1≤i�=j≤N
{min �vi ± vj�2} � σmin

√
n��λ�l �� ,

where the last inequality is a consequence of the condition
(192). This concludes the proof.

APPENDIX F
A FEW MORE AUXILIARY LEMMAS

Lemma 12: Suppose that H satisfies Assumptions 1. Fix
any a ∈ Rn. Then one has

Var

�
1

2λ�l
a�(H+H�)u�l

 
=

1
4(λ�l )2

�
1≤i,j≤n

(aiu�l,j+aju
�
l,i)

2σ2
ij

=: v�a,l, (195)

which satisfies

1
2

-
�a�2

2+
�
a�u�l

�2. σ2
min

(λ�l )2
≤v�a,l≤

1
2

-
�a�2

2+
�
a�u�l

�2. σ2
max

(λ�l )2
.

(196)

Proof: See Appendix F-A.
If we further have a�u�l = o(�a�2), then one has

1 + o(1)
2

σ2
min�a�2

2

(λ�l )2
≤ v�a,l ≤

1 + o(1)
2

σ2
max�a�2

2

(λ�l )2
. (197)

Lemma 13: Suppose that H satisfies Assumptions 1 and
obeys B ≤ σmax

(
n

μ log n . Fix any a ∈ R
n. Then with

probability at least 1 −O(n−10), we have

max
���a�Hu�l

�� , ��a�H�u�l
�� , ��a�(H + H�)u�l

���
� σmax�a�2

�
logn (198)

for all 1 ≤ l ≤ r.
Proof: See Appendix F-B.

Lemma 14: Fix any unit vector a ∈ Rn, and con-
sider another fixed unit vector u� obeying �u��∞ ≤�
μ/n. Suppose that H satisfies Assumption 1 and obeys

B ≤ σmin

�
n/(μ logn). Then the distribution of W :=

a�(H+H�)u�

2
√
v�

satisfies

sup
z∈R

��P(W ≤ z) − Φ(z)
�� ≤ 8√

logn
, (199)

where Φ(·) is the CDF of a standard Gaussian, and v� :=
Var

�
1
2a� �

H + H��u�
�
.

Proof: See Appendix F-B.
Lemma 15: Suppose that H satisfies Assumptions 1 and

2. Let ul (resp. wl) be the lth right (resp. left) eigenvec-
tor of M obeying u�

l u� > 0 and u�
l wl > 0, and set�ul := 1

�ul+wl�2
(ul + wl). Then with probability exceeding

1 −O(n−10), one has⎧⎪⎪⎪⎨⎪⎪⎪⎩
u��l ul=1 −O

-
κ4σ2

maxn logn
(λ�

max)2 + μκ4r2σ2
max logn

(Δ�
l )2

.
≥ 49/50,

u��l wl=1 −O
-
κ4σ2

maxn log n
(λ�

max)2 + μκ4r2σ2
max logn

(Δ�
l )2

.
≥ 49/50,�u�

l u�l = 1 −O
-
κ4σ2

maxn log n
(λ�

max)2 + μκ4r2σ2
max logn

(Δ�
l )2

.
≥ 49/50,

(200)

and

�ul + wl�2 = 2 +O

$
κ4σ2

maxn logn
(λ�max)2

+
μκ4r2σ2

max logn
(Δ�

l )2

%
≥ 9/5. (201)

In addition, if Assumption 3 holds, then with probability at
least 1 −O(n−10),

max {�ul − u�l �∞, �wl − u�l �∞, ��ul − u�l �∞}

� σmax

λ�min

�
μκ4r logn+

σmax

Δ�
l

�
μ2κ4r3 logn

n

� o

$
1√

μn logn

%
. (202)

Proof: See Appendix F-C.
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A. Proof of Lemma 12

Without loss of generality, assume that λ�l = 1 and that
�a�2 = 1. The first claim (195) follows from direct calcula-
tions. Regarding the second claim (196), we first establish the
lower bound

v�a,l ≥
1
4

�
1≤i,j≤n

(aiu�l,j + aju
�
l,i)

2σ2
min

=
1
4

�
1≤i,j≤n

-
a2
i (u

�
l,j)

2 + a2
j(u

�
l,i)

2 + 2aiu�l,iaju
�
l,j

.
σ2

min

=
1
2

-
1 +

�
a�u�l

�2.
σ2

min,

where we have used the fact that
!

i,j a
2
i (u

�
l,j)

2 =!
i a

2
i

!
j(u

�
l,j)

2 = 1. A similar argument leads to the
advertised upper bound v�a,l ≤ 1

2 (1 + (a�u�l )
2)σ2

max.

B. Proofs of Lemma 13 and Lemma 14

Without loss of generality, we shall assume λ�l = 1
throughout the proof. We shall also assume that |Hij | ≤ B
for all 1 ≤ i, j ≤ n.5 By direct calculations, the following
quantity of interest can be expressed as

a�(H + H�)u�

2
=

1
2

�
i,j

(aiu�j + aju
�
l,i)Hij =: T1. (203)

The above quantity is the sum of n2 independent zero-mean
random variables, each obeying

Var
�
(aiu�l,j + aju

�
l,i)Hij

	
= (aiu�l,j + aju

�
l,i)

2σ2
ij ; (204)

|(aiu�l,j + aju
�
l,i)Hij | ≤ |aiu�l,j + aju

�
l,i|B. (205)

Proof of Lemma 13: We shall only establish the lemma
for the quantity a�(H +H�)u�l ; the bounds on a�Hu�l and
a�H�u�l follow similarly. Invoking Bernstein’s inequality
for bounded random variables [84], we guarantee that with
probability at least 1 −O(n−11),����

i,j

(aiu�l,j + aju
�
l,i)Hij

���
�

#�
i,j

Var
�
(aiu�l,j + aiu�l,j)Hij

�
logn

+ max
i,j

���(aiu�l,j + aju
�
l,i)B

��� logn

≤
#�

i,j

(aiu�l,j + aju�l,i)2σ2
max logn

+ max
i,j

���(aiu�l,j + aju
�
l,i)B

��� logn

�
#�

σ2
max logn

��
i,j

�
(aiu�l,j)2 + (aju�l,i)2

�
+B�u�l �∞�a�2 logn

�
(�

σ2
max logn

��a�2
2�u�l �2

2 +B�u�l �∞�a�2 logn.

5Otherwise, we can first look at the truncated version �Hij :=
Hij 1{|Hij|≤B} (which is also zero-mean with variance obeying

Var[ �Hij ] = (1 + o(1))σ2
ij under our assumptions), and then argue that

Hij = �Hij (∀i, j) with high probability. This argument is fairly standard
and is hence omitted for brevity.

Now, as an immediate consequence of the incoherence
condition and the identity �a�2 = �u�l �2 = 1, we have����

i,j

(aiu�l,j + aju
�
l,i)Hij

��� � σmax

�
logn+B logn

�
μ

n
.

Combining this with the expression (203) and the assump-
tion B ≤ σmax

(
n

μ logn , we complete the proof of the

inequality (198) via the union bound.
Proof of Lemma 14: To establish this inequality, the key

is to make use of the following Berry-Esseen type inequality
[86, Theorem 3.7] .

Theorem 11: Let ξ1, ξ2, . . . , ξn be independent zero-mean
random variables satisfying

!n
i=1 Var[ξi] = 1. Then

sup
z∈R

���P- n�
i=1

ξi ≤ z
.
−Φ(z)

���≤10γ, where γ :=
n�
i=1

E[|ξi|3].

(206)

In order to apply Theorem 11, let us define

ξij :=
1�

Var[T1]
1
2
(aiu�j + aiu

�
j )Hij and W =

�
i,j

ξij ,

where it follows from the equality (204) that

v� := Var[T1] =
1
4

�
i,j

(aiu�j + aju
�
i )

2σ2
ij . (207)

By definition, it is easily seen that
!

i,j Var[ξij ] = 1.
Therefore, the property (206) follows. In order to establish
inequality (199), it suffices to upper bound γ in Theorem 11.

To this end, we first make the observation that

γ =
�
i,j

E[|ξij |3]

=
1

Var[T1]3/2
1
8

�
i,j

E
�|(aiu�j + aiu

�
j )Hij |3

	
≤ 1

8(v�)3/2

·
�
i,j

E

�
max
i,j

|(aiu�j + aiu
�
j )Hij | · |(aiu�j + aiu

�
j )Hij |2

 
≤ 1

8(v�)3/2
�
i,j

E
��a�2�u��∞B · |(aiu�j + aiu

�
j )Hij |2

	
≤ 1

8(v�)3/2
�a�2�u��∞B(4v�) =

1
2(v�)1/2

�a�2�u��∞B.

Re-organizing terms and using �a�2 = �u��2 = 1 as well
as the incoherence condition, we have

γ ≤ B

�
μ

4v�n
. (208)

It thus remains to lower bound v�. Again, use Lemma 12
and the fact �a�2 = 1 to arrive at 4 v� ≥ 2σ2

min. Substitution
into (208) allows us to further control γ as

γ ≤ B

σmin

�
μ

2n
≤ 1√

2 logn
,

where the last inequality arises since B ≤ σmin

�
n/(μ logn).

Applying Theorem 11 concludes the proof.
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C. Proof of Lemma 15

To begin with, Theorem 7 tells that that ul and wl are both
real-valued under Assumption 2. It has also been shown in
Theorem 9 that⎧⎨⎩u��l ul = 1 −O

-
κ4σ2

maxn logn
(λ�

max)2 + μκ4r2σ2
max logn

(Δ�
l )2

.
≥ 49/50��u��l wl

��=1−O
-
κ4σ2

maxn log n
(λ�

max)2 + μκ4r2σ2
max log n

(Δ�
l )2

.
≥ 49/50

provided that u��l ul > 0 and that Assumption 2
holds. This immediately indicates that (i) �ul − u�l �2 =�

2 − 2
ul,u�l � ≤ 1/5 and �ul + u�l �2 = 2�u�l �2 − �ul −
u�l �2 ≥ 9/5, and (ii) one either has w�

l u�l ≥ 49/50 or
w�
l u�l ≤ −49/50. If w�

l u�l ≤ 49/50, then one necessarily
has

w�
l ul=w�

l u�l +w�
l (ul−u�l )≤−49/50+�wl�2�ul−u�l �2

≤ −49/50 + 1/5 < 0,

thus contradicting the assumption that w�
l ul > 0. As a result,

one concludes that

u��l wl=1−O
$
κ4σ2

maxn logn
(λ�max)2

+
μκ4r2σ2

max logn
(Δ�

l )2

%
≥49/50.

(209)

Further, it follows from Theorem 9 that

min
� �ul − u�l �∞ , �ul + u�l �∞

�
� σmax

λ�min

�
μκ4r logn+

σmax

Δ�
l

�
μ2κ4r3 logn

n

≤ o
- 1√

μn logn

.
,

where the last line holds under Assumption 3. Suppose that
�ul+u�l �∞ ≤ �ul−u�l �∞. Then the above inequality implies
that

�ul + u�l �2 ≤ √
n�ul + u�l �∞

=
√
nmin {�ul − u�l �∞, �ul + u�l �∞} � 1,

which is contradictory to the relation �ul+u�l �2 ≥ 9/5 shown
above. Therefore, we must have

�ul − u�l �∞ = min {�ul − u�l �∞, �ul + u�l �∞}

� O

&
σmax

√
μ logn��λ���

'
= o

- 1√
μn logn

.
(210)

as claimed. Similarly, we shall also have �ul − u�l �2 =
min{�ul±u�l �2} under Assumption 2, which combined with
Theorem 9 gives

max {�ul − u�l �2, �wl − u�l �2}
� O

$
κ4σ2

maxn logn
(λ�max)2

+
μκ4r2σ2

max logn
(Δ�

l )2

%
. (211)

In addition, the above results further imply that

�ul + wl�2 − 2

=
�ul + wl�2

2 − 4
�ul + wl�2 + 2

(i)� �ul + wl�2
2 − 4

= �ul�2
2 + �wl�2

2 − 2 + 2{
ul,wl� − 1}
(ii)
= 2{
ul,wl� − 
u�l ,u�l �}
= 2{
ul − u�l ,wl� + 
u�l ,wl − u�l �}
(iii)
= O

$
κ4σ2

maxn logn
(λ�max)2

+
μκ4r2σ2

max logn
(Δ�

l )2

%
, (212)

where (i) holds since 2 ≤ �ul+wl�2+2 ≤ 4, (ii) follows since
�ul�2 = �wl�2 = 1, and (iii) comes from Cauchy-Schwarz
and the �2 bound (211).

To finish up, it remains to show that the claimed bounds hold
when ul is replaced by �ul. Regarding the bound on �u�

l u�l ,
we make the observation that

�u�
l u�l

=
1
2
(u�

l u�l + w�
l u�l ) + �u�

l u�l −
1
2
(ul + wl)�u�l

=
1
2
(u�

l u�l + w�
l u�l ) +

$
1

�ul + wl�2
− 1

2

%
(ul + wl)�u�l

= 1 −O

$
κ4σ2

maxn logn
(λ�max)2

+
μκ4r2σ2

max logn
(Δ�

l )2

%
+

2 − �ul + wl�2

2�ul + wl�2
· (ul + wl)�u�l

= 1 −O

$
κ4σ2

maxn logn
(λ�max)2

+
μκ4r2σ2

max logn
(Δ�

l )2

%
,

where the last line comes from (212). The advertised �∞ norm
bounds for �ul follow from the same arguments; we omit it for
brevity.

APPENDIX G
EXAMPLE: A SYMMETRIC CASE WITH HOMOSCEDASTIC

GAUSSIAN NOISE

In this section, we isolate a simple example to illustrate
the potential applicability of our main results in the presence
of certain symmetric noise matrices. Specifically, consider
the symmetric and homoscedastic case with Gaussian noise,
namely,

Hij = Hji
i.i.d.∼ N (0, σ2), 1 ≤ i ≤ j ≤ n; (213a)

M� =
r�
l=1

λ�l u
�
l u

��
l , M = M� + H . (213b)

Clearly, this setting differs from the model in Assumption 1
in that both H and M are now symmetric matrices. To invoke
our theorems, we need to first asymmetrize the data matrix.
Towards this, we propose a procedure as follows, motivated
by a simple asymmetrization trick pointed out by [17].

1) Generate ,M = M +,H , where ,H is a skew-symmetric
matrix obeying+Hij = − +Hji

i.i.d.∼ N (0, σ2), 1 ≤ i < j ≤ n.

(214)
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2) Run Algorithm 1 with input data matrix ,M .

In short, the above scheme injects additional noise to the data
matrix before implementing the inferential procedures. The
theoretical support is this:

Corollary 3: Consider the model (213). Then Theorems 4,
5 and 6 continue to hold, if Algorithms 1 and 2 take ,M as
the input matrix.

Proof: The key observation is that: under our construc-
tion, the quantities Hij + +Hij and Hij − +Hij are uncorrelated
and hence independent. Therefore, the effective noise matrix
Heff := H + ,H is in general asymmetric and contains
i.i.d. entries drawn from N (0, 2σ2). Given that

Heff + H�
eff = H + H� + ,H + ,H� = H + H�, (215)

applying Theorems 4, 5 and 6 immediately concludes the
proof.

Interestingly, the above findings indicate that: a sim-
ple asymmetrization trick via proper noise injection allows
one to construct confidence intervals under symmetric and
homoscedastic Gaussian noise. We caution that the above
procedure requires prior knowledge on the noise level σ,
which can often be reliably estimated in the homoscedastic
case.

While noise injection does not affect the first-order uncer-
tainty term a�(H + H�)u�l , it does inflate the higher-
order residual terms. For practical purposes, we recommend
running the above procedure independently for multiple times
and returning the “average” of them. This is summarized as
follows, which might help improve practical performance.

1) Generate K matrices M (k) = M + H(k) (1 ≤ k ≤
K), where {H(k)} are independent skew-symmetric
matrices obeying

H
(k)
ij = −H(k)

ji
i.i.d.∼ N (0, σ2), 1 ≤ i < j ≤ n.

(216)

2) For each 1 ≤ k ≤ K , run Algorithm 1 with input data
matrix M (k). We denote by λ

(k)
l the lth eigenvalue

of M (k), u
(k)
l the associated right eigenvector, �u(k)

a,l

the resulting estimator for a�u�l , respectively. Here,
we calibrate the global signs of {u(k)

l } by ensuring

u(k)

l ,u
(k+1)
l � ≥ 0 for all 1 ≤ k < K . We also let �v(k)

a,l

and �v(k)
λ,l represent the resulting variance estimators.

3) Average the estimators

�ua,l =
1
K

K�
k=1

�u(k)
a,l and λl =

1
K

K�
k=1

λ
(k)
l . (217)

4) For any prescribed coverage level 1 − α, return the
confidence intervals for a�u�l and λ�l as follows

CIa1−α :=
� �ua,l ± Φ−1(1 − α/2)

(�v(1)
a,l

�
; (218a)

CIλ1−α :=
�
λl ± Φ−1(1 − α/2)

(�v(1)
λ,l

�
. (218b)

APPENDIX H
SYMMETRIZE OR NOT? SOME HIGH-LEVEL

INTERPRETATION

The numerical experiments reported in Section V reveal the
potential benefit of Spectral-asym compared to Spectral-sym.
Here, we provide some informal interpretation.

If we hope the eigenvector u2 to behave as a reliable
estimate of u�2 (meaning that |u�

2 u�2| = 1 − o(1)), then
we would necessarily require |u�

2 u�1| = o(1). To develop
an understanding about the size of u�

2 u�1, we recall from
Neumann’s series that (see [17] or Appendix A)

u��1 u2 =
λ�1

�
u��1 u2

�
λ2

+
λ�2

�
u��2 u2

�
λ2

∞�
s=1

u��1 Hsu�2
λs2

+
λ�1

�
u��1 u2

�
λ2

∞�
s=1

u��1 Hsu�1
λs2

, (219)

or equivalently,

u��1 u2 =
λ�2

�
u��2 u2

�
λ2 − λ�1 − λ�1

!∞
s=1

u��
1 Hsu�

1
λs
2

∞�
s=1

u��1 Hsu�2
λs2

.

(220)

Consequently, an important condition that allows one to
control quantity u��1 u2 is to ensure that each summand in
expression (220) is as small as possible.

Towards this end, let us single out the second-order term
u��1 H2u�2, which suffices for us to develop some intuition
(here, we assume that λ2 ≈ λ�2 so that the denominator λ2

2

does not affect the order of this term).

• If H is asymmetric, then it has been shown in [17] (see
also Appendix A) that��u��1 H2u�2

�� � σ2
max

√
μn logn (221)

with high probability, which is exceedingly small given
the assumption that σmax

√
n logn� 1.

• If H is replaced by ,H := 1
2 (H + H�), then in general

there is no guarantee that u��1 ,H2u�2 can be equally well-
controlled. Take the case (50) and (51) for example:
straightforward calculations reveal

E

�
u��1 ,H2u�2

�
=u��1 Var

�
1
2 (H+H�)

�
u�2 = 1

4σ
2
1n�σ2

maxn,

(222)

which far exceeds the order (221) with asymmetric
data matrices. If this is the case, then one would have
to require a better control of the multiplicative term

λ�
2

λ2−λ�
1−λ�

1
�∞

s=1
u��

1 Hsu�
1

λs
2

in (220), which is often equiv-

alent to imposing a more stringent separation condition
on the eigenvalue pair (λ�1, λ

�
2).

The take-home message is this: Spectral-sym might sometimes
be suboptimal when dealing with heteroscedastic noise, par-
ticularly when the variance structure of the noise matrix is
somewhat “aligned” with the true eigen-structure. As a result,
Spectral-sym might not be as robust as Spectral-asym when
performing eigenvector estimation.
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