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ABSTRACT

Bottom-up coarse-graining methods provide systematic tools for creating simplified models of molecular systems. However, coarse-grained
(CG) models produced with such methods frequently fail to accurately reproduce all thermodynamic properties of the reference atomistic
systems they seek to model and, moreover, can fail in even more significant ways when used at thermodynamic state points different from
the reference conditions. These related problems of representability and transferability limit the usefulness of CG models, especially those
of strongly state-dependent systems. In this work, we present a new strategy for creating temperature-transferable CG models using a single
reference system and temperature. The approach is based on two complementary concepts. First, we switch to a microcanonical basis for
formulating CG models, focusing on effective entropy functions rather than energy functions. This allows CG models to naturally represent
information about underlying atomistic energy fluctuations, which would otherwise be lost. Such information not only reproduces energy
distributions of the reference model but also successfully predicts the correct temperature dependence of the CG interactions, enabling tem-
perature transferability. Second, we show that relative entropy minimization provides a direct and systematic approach to parameterize such
classes of temperature-transferable CG models. We calibrate the approach initially using idealized model systems and then demonstrate its
ability to create temperature-transferable CG models for several complex molecular liquids.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057104

I. INTRODUCTION

Coarse-graining methods are critically important tools in mul-
tiscale modeling, extending the applicability of molecular simula-
tions to complex systems that would otherwise be computationally
intractable due to large system sizes or long relaxation timescales.1±6

In contrast to ad hoc top-down coarse-grained (CG) modeling
approaches, systematic bottom-upmethods for CGmodelingÐsuch
as iterative Boltzmann inversion (IBI),7,8 relative entropy mini-
mization,9±11 and multiscale coarse-graining (MS-CG),12±15Ðcreate
CG models systematically based on reference atomistic simulations
within the framework of statistical mechanics. By starting from all-
atom (AA) or otherwise detailed simulation data, such methods find
effective CG interactions best matching, e.g., configurational prob-
abilities in the case of relative entropy, or forces on CG sites in the
case of MS-CG. However, inherent in this systematic simplification
is a loss of information about the original model,9,16,17 leading to

inaccurate results when the CG model is applied under condi-
tions differing from the reference AA simulation. Even at the same
reference conditions, a CG model faithfully reproducing structural
correlations may be unable to accurately capture AA thermody-
namic properties.18±20 Many approaches have now been proposed
to ameliorate these transferability and representability problems,
respectively, for various state variables.21±26

Here, we consider temperature, in particular, which has been
especially challenging to address in CGmodels. We propose that the
nature of the CG model should be rethought in terms of a micro-
canonical perspective and demonstrate that the relative entropy
minimization technique is particularly well-suited to developing
models within a microcanonical framework. In turn, we show that
it is possible to find temperature-dependent CG models that both
capture structure and reproduce AA thermodynamics over a range
of temperatures using a single reference trajectory in the coarse-
graining procedure.
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To discuss how information loss hinders CGmodels from accu-
rately recovering the behavior of underlying AA systems, we first
review some statistical-mechanical results. Consider an AA system
of n particles with coordinates rn and a potential energy function
UAA(rn) in the canonical ensemble with volume V and tempera-
ture T = 1/kBβ. To create a CG system from it, we group particles
into N < n sites and define a mapping function M(rn) from AA
coordinates to CG coordinates RN . Of course, we lose information
about the original system already after this step as each R

N has an
entire space of rn that corresponds to it. Importantly, however, one
can exactly capture the projected CG behavior of the equilibrium
AA system if the CG model adopts an interaction energy function
equal to

WAA(RN) = −kBT ln(VN−n ∫ e
−βUAA(rn)δ[RN

−M(rn)] drn),
(1)

the AA potential of mean force (PMF).9,18,27 However, even for a
simple pairwiseUAA, the dependence ofWAA onRN will be complex
and not easily decomposable into a pairwise form due to multibody
effects.22,28,29 To make simulations of the final CG model tractable, a
pairwise approximate CG potentialWCG(RN) is typically employed,
and a systematic coarse-graining algorithm then searches for the
WCG best matching WAA. (We use the notation WCG in this work
for CG interaction potentials, rather than, e.g., U or UCG, to empha-
size their connection with an underlying PMF WAA.) As discussed
above, the criterion for ªbestº can use correspondence of forces as in
MS-CG, probability distributionsPAA(rn) vsPCG(RN) as in relative
entropy minimization, or low-dimensional structural correlations as
in iterative Boltzmann inversion (IBI)7,8 and inverse Monte Carlo
(IMC) coarse-graining.28,30

Neglecting multibody effects in the approximation of WAA

by WCG can be problematic when transferring CG models from
one density to another or between compositions for multicom-
ponent mixtures, as PMFs can be strongly dependent on these
state variables.31,32 A number of techniques have been proposed to
tackle these problems using bottom-up CG methods. For exam-
ple, IBI has been modified to include Kirkwood±Buff theory33,34

to more accurately coarse-grain liquid mixtures and to use sim-
ulations from multiple reference states to improve transferabil-
ity.35,36 Extensions of the MS-CG method have been proposed that
also support multiple reference states in an extended-ensemble for-
mulation21,37 as well as three-body38,39 and density-dependent40±42

interactions. Local density potentials, which adjust interactions
based on the local environments around CG sites,43 serve as
another technique for handling multibody effects. They have been
applied successfully with the relative entropy approach to capture
phase behavior in highly non-ideal liquid mixtures,22,44 and sim-
ilar local density and order parameter-dependent potentials have
been used successfully withMS-CG23,45±47 and other coarse-graining
approaches.48,49

Temperature remains a critically important thermodynamic
variable of concern for CG model transferability. The temperature
dependence of effective interactions in fluid systems has widely been
investigated50±55 and has relevance to phase behavior;56,57 strongly
temperature-dependent phenomena are also present in polymer sys-
tems, including proteins.58,59 Yet, correctly capturing temperature

dependence can be very difficult, and systematic coarse-graining
methods that identify WCG with WAA as a kind of T-independent
potential energy can be fundamentally flawed. As can be seen in
Eq. (1), WAA has a complex, non-linear dependence on T and, in
general, is a temperature-dependent free energy for effective CG
interactions,18 with distinct energetic and entropic contributions.60

Even more broadly, however, a CG interaction WCG that correctly
captures the behavior of WAA(RN) will still not alone be capa-
ble of recapitulating average AA energies ⟨UAA⟩ or the distribution
thereof. For example, it can be shown26,61 that a systematic discrep-
ancy will occur between ⟨WCG⟩ and ⟨UAA⟩, even without attempting
to transfer a CG model to a new temperature.

As with density, several recent approaches have sought
to address issues of transferability and representability in the
temperature-energy space. A straightforward way to transfer a CG
model over a relatively small temperature interval is via reweight-
ing, as has been demonstrated with the MS-CG approach.24 How-
ever, reweighting techniques are ineffective over large temperature
ranges due to statistical noise and lack of overlap between energy
probability distributions,62 and it may be impractical to regener-
ate a CG model for every desired temperature. Furthermore, this
method does not solve the problem of representability with respect
to AA energies. Recent works by Lebold and Noid25,26 present a
dual-potential approach to modeling AA energies and predicting
CG model temperature dependence; creating these models requires
a separate optimization step on top of an existing CG model.
Another set of methods addressing transferability issues involves
models whose CG sites can take on multiple distinct states. These
include ªsurface hoppingº63,64 and an extension of the ªultra-coarse-
grainingº or UCG methodology65,66 by Jin, Yu, and Voth57 to incor-
porate semi-global density potentials. Finally, although many of
these systematic approaches have been proposed, most practically
useful temperature-transferable models for solution and polymer
systems58,67±69 rely on ad hoc rescaling or linear and non-linear
fitting to capture changes in model parameters with temperature.
Such models can be sufficient to accurately reproduce the depen-
dence of CG configurational probabilities on temperature. However,
if a deeper statistical-mechanical understanding of the temperature
dependence of a CG view of a system is sought, it is difficult to extract
from these kinds of models.

In the present work, we extend the relative entropy coarse-
graining approach9±11 to provide a systematic and statistical-
mechanically consistent way to generate temperature-transferable
CG models that also correctly reproduce AA energy distribu-
tions over a range of temperatures. In this approach, we first
posit that temperature-transferable CG models should be formu-
lated in the microcanonical ensemble. Thus, rather than target-
ing the temperature-dependent WAA(RN), they should approxi-
mate the microcanonical quantity from which it can be generated,

ΩAA(E,RN) = eSAA(E,RN)/kB , which gives the number of AA states
mapping onto a given CG configuration with a given energy (related
to the entropy in the joint energy-configuration space). The precise
relationship is

e
−βWAA(RN)

= ∫ e
−βE

ΩAA(E,RN) dE
= ∫ e

−βE+SAA(E,RN)/kB dE. (2)
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It is easy to see that this microcanonical formulation explicitly
extracts the temperature dependence such that for any β, it is possi-
ble to predict the effective CG interaction. Along the same lines, this
approach predicts the probability for observing a CG configuration
with a given energy as projected from the AA ensemble,

PAA(E,RN)∝ e
−βE

ΩAA(E,RN) = e−βE+SAA(E,RN)/kB . (3)

Here, our core proposal is that temperature-transferable CG models
should target the approximation

ΩCG(E,RN) ≈ ΩAA(E,RN) (4)

rather than WCG ≈WAA as has been the conventional basis for
bottom-up CG models. Extending the idea of matching probability
distributions, CG approximations to ΩAA(E,RN) can be performed
by aligning the AA and CG-predicted joint configuration/energy
distributions, where the CG model now gives

PCG(E,RN)∝ e
−βE

ΩCG(E,RN) = e−βE+SCG(E,RN)/kB . (5)

A straightforward approach to this problem is to minimize the rel-
ative entropy in this joint space. The conventional definition of
the relative entropy measures the overlap of the configurational
distributions and is given by

Srel = ∫ PAA(RN) ln PAA(RN)
PCG(RN) dRN , (6)

where here the relative entropy compares probability distributions
over CG coordinates in the AA and CG models, PAA(RN) and
PCG(RN). The microcanonical-formulated CG models, which also
predict an energy distribution, then suggest that we instead define

S
∗

rel =∬ PAA(E,RN) ln PAA(E,RN)
PCG(E,RN) dE dRN , (7)

involving joint distributions PAA(E,RN) and PCG(E,RN) over CG
coordinates along with AA energies. The interpretation of these
probabilities is as follows. Each CG configuration R

N contains a
number of AA configurations rn that map to it, giving a distribution
of AA energies E conditioned on the CG coordinates, PAA(E∣RN).
A conventional CG model only attempts to capture PAA(RN), dis-
carding information about these energy fluctuations that are inti-
mately tied to the temperature dependence of effective interactions
between CG sites. In contrast, by attempting to capture the joint
distribution, a microcanonical CG model can retain some of this
information.

In this work, we show how thismicrocanonical perspective pro-
duces CG force fields that are both temperature-transferable and that
predict distributions of expected energies for models based on ref-
erence AA systems. This modified method, which minimizes the
relative entropy in the space of both energies and configurations
to approximate ΩCG(E,RN) ≈ ΩAA(E,RN), has several benefits in
extracting transferability information from reference AA simula-
tions, relative to models not containing information about under-
lying energy fluctuations. Importantly, it allows for the development

of a CG model from a single AA simulation at one temperature,
in a single optimization, to produce a thermodynamically consis-
tent temperature-transferable model. In place of single energy values
for each CG interaction, these models now provide distributions of
interaction energies, along with effective interactions (e.g., CG force
fields) that can be used in standard molecular simulations. Further-
more, the models can be decomposed in a dual-potential-like man-
ner at any temperature to study the pairwise potentials representing
the mean and variance of the energy distributions or, alternatively,
the energetic and entropic contributions to the free energy. This
decomposition emerges in a straightforward way within the present
statistical±mechanical framework.

II. THEORY AND METHODS

Here, we discuss the theoretical details of the microcanoni-
cal coarse-graining approach and its implementation with relative
entropy optimization. While we summarize the standard relative
entropy coarse-graining approach, we omit the details of the numer-
ical optimization and simulation analysis procedures, as these have
been described in other works.9,11,70 Due to the significant number of
variables in the theoretical framework, Table I is provided as a guide
to the notation used throughout this section.

A. Microcanonical coarse-graining

The present approach centers on the joint distribution over
energy and CG coordinates. We can define such a distribution for
an AA system as

PAA(E,RN) = ∫ PAA(rn)δ[E −UAA(rn)]δ[RN
−M(rn)] drn,

(8)

where, as discussed previously,M(rn) is a CG mapping, UAA(rn) is
the AA force field, and PAA(rn)∝ e−βUAA(rn) is the corresponding
canonical configurational probability distribution. It is convenient
to define an energy-specific density of states and corresponding
entropy

ΩAA(E,RN) = eSAA(E,RN)/kB

= V
N−n ∫ δ[E −UAA(rn)]δ[RN

−M(rn)] drn (9)

such that it can be shown that

PAA(E,RN) = e−βEΩAA(E,RN)
∬ e−βE

′

ΩAA(E′,R′N) dE′ dR′N (10)

and

PAA(E∣RN) = e−βEΩAA(E,RN)
∫ e−βE

′

ΩAA(E′,RN) dE′ . (11)

The advantage of expressing the joint probability of Eq. (10) in terms
ofΩAA is that the temperature dependence is explicitly extracted out.
By comparison with Eq. (1), integrating PAA(E,RN) over energy
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TABLE I. Table of symbols used in the description of the microcanonical relative entropy coarse-graining theory.

Symbol Description Symbol Description

c(R), cm(Rm) CG term heat capacity SCG(E,RN) CG microcanonical entropy
E System energy Srel Relative entropy
Eij, Em CG term energy S∗rel Extended relative entropy
M Number of CG force field

terms
SWAA(RN) AA PMF entropy

M(rn) CG mapping u(R), um(Rm) CG term mean energy
n Number of AA particles U(RN) CG mean energy
N Number of CG sites UAA(rn) AA potential energy
Nmol Number of molecules UWAA(RN) AA PMF energy
PAA(E,RN) AA joint probability u∞(R), u∞,m(Rm) CG term reference energy
PAA(E∣RN) AA conditional probability U∞(RN) CG reference energy
PAA(rn) AA configurational

probability
u∞,1 One-body reference energy

PAA(RN) AA projected probability w(R),wm(Rm) CG term interaction potential
PCG(E,RN) CG joint probability WAA(RN) AA PMF for CG coordinates
PCG(E∣RN) CG conditional probability WCG(RN) CG force field
PCG(RN) CG configurational

probability
γ(R), γm(Rm) CG term variance

Pm(Em∣Rm) CG term conditional
probability

Γ(RN) CG variance

R, Rij CG pair distance γ1 One-body variance
Rm CG term coordinates λ Force field parameters
r
n AA coordinates λu Reference energy parameters
R
N CG coordinates λγ Variance parameters

s(R), sm(Rm) CG term entropy ΩAA(E,RN) AA density of states
S(RN) CG entropy ΩCG(E,RN) CG density of states
SAA(E,RN) AA microcanonical

entropy
Ωm(Em,Rm) CG term density of states

levels E allows the PMFWAA to be expressed in terms ofΩAA,

WAA(RN) = −kBT ln∫ e
−βE

ΩAA(E,RN) dE. (12)

This approach separates the parts of WAA involving temperature
(the factors of kBT and e−βE) from those specific to the system of
interest, which are now entirely contained within the temperature-
independent function ΩAA. It is interesting to note that, in a micro-
canonical formulation of dissipative particle dynamics that is con-
ceptually distinct from the approach proposed here, Español and
co-workers71,72 utilized a configuration-dependent entropy with a
similar form to that of Eq. (9).

In a conventional CGmodel optimization with relative entropy,
we would minimize Eq. (6) to find WCG(RN), given its chosen
functional form with free parameters to be varied for best cor-
respondence with the approximated multibody WAA. This, how-
ever, would result in a CG model with unknown temperature
dependence and no information about the underlying distribu-
tion of AA energies. Instead, in the microcanonical approach using
the relative entropy, we minimize Eq. (7) in the joint probability
space of both coordinates and energy. The minimization is per-
formed with a CG model defined not by WCG(RN) but instead

by an approximate temperature-independent density of states,

ΩCG(E,RN) = eSCG(E,RN)/kB , that best matches the target or ªexactº
ΩAA. The critical distinction with the conventional approach
is that the microcanonical CG formulation becomes inherently
temperature-independent, while the resulting effective CG potential
(more correctly, the potential of mean force) becomes a derived
function with an explicit temperature dependence,

WCG(RN) = −kBT ln∫ e
−βE

ΩCG(E,RN) dE. (13)

Similarly, the CGmodel nowmakes a prediction for the distribution
of AA energieswithin each CG configuration, that is, the distribution
of energies for all AA configurations mapping to a common CG one,

PCG(E∣RN) = e−βEΩCG(E,RN)
∫ e−βE

′

ΩCG(E′,RN) dE′ , (14)

as well as the joint configuration-energy distribution,

PCG(E,RN) = e−βEΩCG(E,RN)
∬ e−βE

′

ΩCG(E′,R′N) dE′ dR′N . (15)

J. Chem. Phys. 155, 094102 (2021); doi: 10.1063/5.0057104 155, 094102-4

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

Using the conditional probability expressions from Eqs. (11)
and (14), we can recast the extended relative entropy of Eq. (7)
in terms of the conventional relative entropy defined purely in the
configuration space and a correction related to the configuration-
dependent energy distributions in the two models (see the supple-
mentary material, Sec. II A, for more details),

S
∗

rel = Srel + ⟨ln PAA(E∣RN)
PCG(E∣RN)⟩

AA

. (16)

Note that here, where E and R
N appear in AA averages, they denote

UAA(rn) and M(rn), respectively. This expression illustrates that
the relative entropy incurs an additional penalty (a positive incre-
ment) when the energy distributions within CG configurations fail
to match beyond the configurational distributions. This formulation
also enables existing Srel optimization strategies11,70 to be extended
to the microcanonical approach by attention to the correction term.

B. Approximations to the coarse-grained density
of states

Tomake this formalism practical, we must find a computation-
ally tractable form for ΩCG that approximates the true ΩAA.WCG in
a conventional CGmodel [referred to hereafter as a non-transferable
model to differentiate from explicitly transferable models following
Eq. (13)] is typically cast as a sum of pairwise and other low-body
terms. Here, we take ΩCG as a convolution over low-body densities
of states to show that this reduces to the same kind of result. Imagine
that we decompose the density of states intoM distinct ªterms.º For
example, each of these termsmight correspond to a distance between
a pair of particles (i.e., a pairwise approximation). Then, we would
write

ΩCG(E,RN) = ∫ ⋅ ⋅ ⋅∫ δ[E − M

∑
m=1

Em] M

∏
m=1

Ωm(Em,Rm)
× dE1, . . . ,dEM , (17)

whereΩm are the densities of states for each ofM terms andRm each
represent some subset of coordinates from R

N relevant to a partic-
ular term m = 1, . . . ,M. For a pairwise decomposition, for example,
we might have terms such as

Ωm(Em,Rm) = Ω(Eij,Rij). (18)

Equation (17) shows that, within this approximate decomposition,
the total density of states is a convolution in energy space over all
the component terms.We can show that the effective interaction at a
given temperature is, as we would expect, a simple sum of individual
term interactions. Substituting Eq. (17) into Eq. (13) and performing
the integration over E, we find

WCG(RN) = M

∑
m=1

wm(Rm). (19)

Here, the individual CG force interactions wm stem from a Laplace
transform of the corresponding term density of states,

wm(Rm) = −kBT ln∫ e
−βEm

Ωm(Em,Rm) dEm. (20)

We can also define conditional probability distributions for each
term,

Pm(Em∣Rm) = e−β∥Em−wm(Rm)∥
Ωm(Em,Rm) (21)

or, alternatively,

Pm(Em∣Rm) = e−βEmΩm(Em,Rm)
∫ e−βE

′

mΩm(E′m,Rm) dE′m , (22)

and we show that the overall conditional CG energy probability
distribution is a convolution of the term distributions,

PCG(E∣RN) = ∫ ⋅ ⋅ ⋅∫ δ[E − M

∑
m=1

Em] M

∏
m=1

Pm(Em∣Rm)
× dE1, . . . ,dEM . (23)

We see overall that an additive decomposition of the PMF is associ-
ated with a termwise decomposition of the density of states, in which
energies associated with each term are sampled independently up to
the constraint that they sum to the total E.

To make progress, we must propose a particular dependence of
eachΩm on Em, which, in turn, specifies the dependence of each wm

on T by Eq. (20), and a particular probability distribution family for
Pm and PCG(E∣RN). We choose a Gaussian functional form forΩm,
which can be shown to lead to a normal distribution for Pm. This
is motivated not only by the central limit theorem (which we might
expect to be relevant to high degrees of coarsening with many AA
configurations mapping to each CG one) but also by mathematical
convenience as the convolution in Eq. (23) then becomes trivial to
carry out. Specifically, we take

Ωm(Em,Rm) = Cm√
2πγm(Rm) exp(−

∥Em − u∞,m(Rm)∥2
2γm(Rm) ), (24)

where Cm is an arbitrary normalization constant, which we set equal
to 1 in this work as it cancels in Eq. (22) and thus does not affect any
of the energy probability distributions (see the supplementary mate-
rial, Sec. II B, for further discussion of this assignment). Importantly,
u∞,m(Rm) and γm(Rm) are temperature-independent parameters
defining the configuration dependence of the term densities of states;
if the terms are a pairwise decomposition, for example, we have
u∞(Rij) and γ(Rij), which could be modeled by splines or tabulated
functions. By Eq. (22), we then find the term energy distribution

Pm(Em∣Rm) = 1√
2πγm(Rm) exp(−

∥Em − um(Rm)∥2
2γm(Rm) ), (25)

where it can be shown with some algebra that the mean energy is

um(Rm) = u∞,m(Rm) − βγm(Rm). (26)

Note that, with Cm = 1, Ωm takes the exact form of a normal prob-
ability density with mean u∞,m, but Pm is the correct, explicitly
temperature-dependent, probability density function for the energy
Em. The notation u∞,m distinguishes this temperature-independent
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reference energy in the density of states from the mean energy um,
which tends to u∞,m in the T →∞ limit.

Now, by Eq. (20), the effective term free energy takes the form

wm(Rm) = u∞,m(Rm) − β

2
γm(Rm). (27)

The entropic component of the term interaction then readily
follows:

sm(Rm) = −∂wm

∂T
= −

kBβ
2

2
γm(Rm), (28)

which, of course, is consistent with the relation

um(Rm) = wm(Rm) + Tsm(Rm) = u∞,m(Rm) − βγm(Rm). (29)

These equations tie together the energy distribution-centric repre-
sentation of the system, in which both the reference energies u∞,m

and variances γm of the microcanonical representation provide the
energy-entropy decomposition of the effective interactions. Finally,
we can find a heat capacity contribution,

cm(Rm) = ∂um

∂T
= kBβ

2
γm(Rm). (30)

The scaling cm ∼ T
−2 arising naturally from the use of the normal

distribution may not be appropriate for all systems, especially when
extrapolating over large temperature ranges. However, as we will
show, it is still capable of capturing the temperature dependence of
configurations and energy distributions for a variety of systems and
conditions.

With these results, it becomes straightforward to use Eqs. (23)
and (25) to show that the overall energy distribution also has a
normal form,

lnPCG(E∣RN) = − [E −U(RN)]2
2Γ(RN) −

1
2
ln[2πΓ(RN)], (31)

where

U(RN) = U∞(RN) − βΓ(RN)
=

M

∑
m=1

um(Rm),
U∞(RN) = M

∑
m=1

u∞,m(Rm),
Γ(RN) = M

∑
m=1

γm(Rm).

(32)

Similarly, Eq. (19) then implies a term-additive overall force
fieldÐan approximation to WAA(RN) at any temperatureÐof the
form

WCG(RN) = M

∑
m=1

u∞,m(Rm) − β

2

M

∑
m=1

γm(Rm)
= U∞(RN) − β

2
Γ(RN). (33)

Note that this can also be written as

WCG(RN) = M

∑
m=1

um(Rm) − T M

∑
m=1

sm(Rm)
= U(RN) − TS(RN), (34)

where S(RN) = ∑M
m=1sm(Rm). For convenience, we will work from

here on with the form given in Eq. (33) since for a givenmodel, there
is no hidden temperature dependence within the terms U∞ and Γ

(which are strictly temperature-independent). It is equally valid to
work with the energy-entropy representation of Eq. (34), provided
that the appropriate temperature dependence of both U and S is
applied. Equations (26) and (28) can be used to translate between
the forms; whatever approach is taken, the relations of Eq. (29) will
always hold and the decomposition of the free energy will always
remain self-consistent.

We now specialize in the theory, and in the examples to follow,
to consider CG models that consist of single-site molecules inter-
acting in a pairwise fashion. In other words, we consider that all M
terms correspond to contributions from different pair distances and
have the same underlying form of Ωm. As a result, the effective CG
force field becomes

WCG(RN) =∑
i<j

u∞(Rij) − β

2
∑
i<j

γ(Rij). (35)

This particularly instructive result shows that the microcanonical
approachÐin conjunction with a pairwise decomposition and Gaus-
sian form of the density of statesÐadmits an effective CG pair
interaction that must determine two functions, u∞(R) and γ(R),
rather than conventional approaches that target a single interac-
tion potential w(R). In this sense, the decomposition into ener-
getic and entropic terms that govern the temperature dependence
of the CG interaction is naturally captured by the microcanonical
approach.

It is also important to note that u∞(R) and γ(R) cannot be
separately determined by targeting the configurational distribution
at one temperature alone since it is only their combined effect
that governs configurational probabilities. However, minimizing the
extended relative entropy of Eq. (7), which also includes the effect
of the energy distribution per Eq. (31) in which u∞(R) and γ(R)
appear nonlinearly, provides a systematic strategy to determine both
of these functions from a single reference system. In practice, we
here model these functions as splines, but in general, any functional
form would be admissible, and other physically-inspired forms may
be more appropriate for particular systems.

Finally, we note that this formalism is not restricted to a
strictly pairwise decomposition but is readily extensible to include
other common force field forms, including bond, angle, and dihe-
dral interactions. It also accommodates less conventional terms,
such as local density potentials, that have been proposed to
improve CG model transferability.22,44,45 In general, any conven-
tional CG force field term can be adapted to the microcanon-
ical coarse-graining approach proposed here by decomposition
into temperature-independent and temperature-dependent contri-
butions analogous to Eq. (33).
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C. Optimizing temperature-transferable models

The above-discussed approach models the CG force field,
WCG, as a pairwise sum involving the pair functions u∞(R) and
γ(R), which here we describe using splines. In the microcanoni-
cal approach to coarse-graining, we thus optimize these CG mod-
els by minimizing the extended relative entropy S∗rel with respect
to the force field parameters, i.e., the spline knots of u∞(R) and
γ(R). This optimization is carried out using a Newton-like algo-
rithm handling linear equality constraints by Gaussian elimination
and inequality constraints by projection. The details of the evalu-
ation of the standard Srel and its derivatives are discussed in more
detail by Chaimovich and Shell.11

Here, we provide a brief overview of the relevant equations for
relative entropy minimization that includes information relevant to
the optimization of the extended form. We specifically focus on the
derivatives of S∗rel that are relevant to gradient-based optimization
search methods. Note that in what follows, we assume that the CG
models employ the Gaussian form for the density of states as dis-
cussed in Sec. II B and consist of pairwise nonbonded interactions
between CG sites.

Broadly, if a CG force field is parameterized in terms of a vector
of parameters λ, it can be shown that9,11

∇λSrel = β⟨∇λWCG⟩AA − β⟨∇λWCG⟩CG, (36)

where ⟨⋅ ⋅ ⋅ ⟩AA and ⟨⋅ ⋅ ⋅ ⟩CG represent canonical ensemble averages
for the AA and CG systems, respectively. Second derivatives can be
found similarly in terms of ensemble averages involving first and sec-
ond λ-derivatives ofWCG. For extended S

∗

rel, note thatPAA(E∣RN) is
independent of λ; thus,

∇λS
∗

rel = ∇λSrel − ⟨∇λ lnPCG(E∣RN)⟩
AA

. (37)

The first term on the RHS of Eq. (37) has been discussed extensively
with respect to conventional relative entropyminimization.9,11,73 For
CG models consisting of pairwise nonbonded interactions charac-
terized by spline forms for u∞(Rij) and γ(Rij), the to-be-optimized
parameters λu and λγ, respectively, are spline knot points. The con-
ventional contribution to the relative entropy derivative following
Eq. (36) is implemented for splines as discussed by Chaimovich and
Shell,73 here with∇λu

WCG = ∇λu
U∞ and∇λγ

WCG = −(β/2)∇λγ
Γ.

Derivatives of the extended relative entropy that contain the
additional term involving the energy distribution according to
Eq. (37) then follow

∇λu
lnPCG(E∣RN) = E −U(RN)

Γ(RN) ∇λu
U∞(RN) (38)

and

∇λγ
lnPCG(E∣RN) = ⎛⎝

1
2
[E −U(RN)

Γ(RN) ]
2

−
β[E −U(RN)]

Γ(RN)
−

1

2Γ(RN))∇λγ
Γ(RN). (39)

Second derivatives are given in the supplementary material,
Sec. II C.

Although this microcanonical coarse-graining formalism with
the pairwise approximation as described so far seems reasonable and
consistent with other pairwise-based coarse-graining protocols, it
likely neglects energy fluctuations not associated with pairwise inter-
actions but rather intra-CG site interactions. Indeed, even when CG
sites are non-interacting (i.e., all spatially distanced), energy fluctu-
ations exist due to internal CG-site degrees of freedom. Take the
case of an ideal polyatomic gas in which each molecule is coarse-
grained to a single site. Although there should be no direct pairwise
interactions between the CG molecules, the system should still sam-
ple a distribution of energies as the internal degrees of freedom of
its molecules fluctuate. This suggests the inclusion in the micro-
canonical formalism of one-body contributions to energy fluctua-
tions that the CG model should capture. In other words, the ideal
gas reference caseÐin which each molecule contributes intramolec-
ular, temperature-dependent mean energies and variances to the
overall energy distributionÐmotivates a more general inclusion of
one-body interactions in the microcanonical CG model.

These considerations suggest that we introduce into the CG
model additional optimizable parameters u∞,1 and γ1 that summa-
rize one-body terms in the force field, just as another (u∞,m, γm)-
pair would, but with no configuration dependence. The presence of
these parameters does not affect configurational probabilities but
allows for the overall energy probability distribution in the CG
model to better match the underlying AA system, which would be
necessary in the ideal, polyatomic gas limit. This strategy is simi-
lar to the energy-matching offset employed by Lebold and Noid25 in
studying implicit solvationmodels and to the one-body contribution
terms used in the state-dependent ultra-coarse-graining approach
with rapid local equilibrium (UCG-RLE).74 However, here, we use
two parameters to capture the temperature dependence of this con-
tribution to the mean of the energy distribution and the associated
contribution to its fluctuations.

To capture the one-body contributions, we modify the defi-
nitions in Eq. (32) to incorporate the net one-body contributions,

U∞(RN) = Nmolu∞,1 +

M

∑
m=1

u∞,m(Rm),
Γ(RN) = Nmolγ1 +

M

∑
m=1

γm(Rm),
(40)

where Nmol is the number of molecules in the system. In turn, the
influence of these contributions on the gradient of the extended
relative entropy is

∂ lnPCG(E∣RN)
∂(Nmolu∞,1) =

E −U(RN)
Γ(RN) (41)

and

∂ lnPCG(E∣RN)
∂(Nmolγ1) =

1
2
[E −U(RN)

Γ(RN) ]
2

−
β[E −U(RN)]

Γ(RN)
−

1

2Γ(RN) . (42)

Section II C of the supplementary material provides a discus-
sion of second derivatives of lnPCG(E∣RN) with respect to these
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parameters as well as cross derivatives between them and two-body
parameters.

In our implementation of this extended relative entropy opti-
mization problem, a few special adjustments were made on top of
the optimization framework discussed in previous works (Refs. 11
and 73). Optimizations of new models either were started with all
spline knots set to zero and u∞,1 and γ1 set to reproduce the mean
energy and variance of reference AA simulations or were initial-
ized from models at nearby temperatures as needed to improve
numerical convergence. For optimizations of CG models of dode-
cane and water, spline knots associated with u∞(R) and γ(R) were
constrained to give constant slopes in the inner-core regions of the
pairwise potentialsÐregions that were not well sampled in the sim-
ulations and thus have insufficient statistics for determining the
corresponding knot values.

D. Molecular dynamics of model fluids

The molecular dynamics (MD) simulations used for AA refer-
ence trajectories, CG model optimization, and CG model simula-
tions of ideal harmonic oscillator dimers and tetramers, along with
Lennard-Jones/harmonic tetramers, were run using the LAMMPS75

software package. Simulations were performed with Nmol = 16
(ideal) and 256 (Lennard-Jones, LJ) molecules, and Langevin
dynamics were performed with time step Δt = 10−3σm1/2ϵ−1/2 and
time constant τ = 0.1σm1/2ϵ−1/2 to maintain temperatures at chosen
values between kBT/ϵ = 1.2 and 1.6 for the ideal systems and 1.1 and
1.4 for the LJ systems. Densities were ρσ3 = 10−3 for the ideal sys-
tems and 0.8 for the LJ systems. Force constants for harmonic bonds
were κAA = 10ϵσ

−2. Simulation results were recorded every 500 steps
for between 107 and 5 × 107 steps for AA systems or between 106

and 5 × 106 steps for CG systems. LJ interactions were truncated and
shifted at rc = 2.5σ. CG potentials for LJ tetramer systems were rep-
resented by cubic splines with a cutoff distance of Rc = 5.4σ and with
Nknot = 18 knot points spaced by ΔRknot = 0.3σ.

Simulations of liquid TraPPE-UA76 dodecane were performed
using the OpenMM77 software package. We used a time step
Δt = 2.5 fs and an Andersen thermostat with inverse collision fre-
quency τ = 250 fs. Nmol = 512 molecules were simulated at tempera-
tures from T = 350 to 450 K and at a constant density ρ = 710 kg/m3.
Total simulation time at each condition was 25 ns. Similar condi-
tions were employed for the CG optimization simulations with total
time 2.5 ns each, although using LAMMPS with a Langevin thermo-
stat. CG potentials were represented by cubic splines with a cutoff
distance of Rc = 2 nm and Nknot = 40, giving ΔRknot = 0.05 nm. AA
simulations of liquid SPC/E78 and SPC/Fw79 three-site water were
also performed using OpenMM, with time step Δt = 1 fs, thermo-
stat time τ = 100 fs, and total time 10 ns. Nmol = 512 molecules at
ρ = 998 kg/m3 for SPC/E and ρ = 1008 kg/m3 for SPC/Fw, and
T from 270 to 380 K, were used. CG model-optimization simula-
tions for the water molecules were performed in LAMMPS simi-
larly to dodecane, except with a CG pair potential cutoff distance of
Rc = 1 nm.

III. COARSE-GRAINING MODEL SYSTEMS

Before applying the extended relative entropy approach with
microcanonical coarse-graining to practically relevant systems, we

first investigate several idealized but instructive case studies to
demonstrate the theoretical framework behind the approach and
understand complexities associated with its implementation. We
first consider an ideal harmonic oscillator example that can be solved
analytically, for comparison with numerical results. We then study
the performance of the numerical implementation of the method on
a Lennard-Jones tetramer system, demonstrating its ability to pre-
dict CG interaction potentials, structure, and energy distributions,
before moving on to more realistic fluid models.

A. Ideal harmonic oscillators

Consider an ideal gas of Nmol molecules, each a chain of four
particles linked by harmonic springs such that the potential energy
of the system is

UAA(rn) = κAA

2

Nmol

∑
i=1

3

∑
j=1
∣r4i+j−3 − r4i+j−4∣2, (43)

where n = 4Nmol and κAA is the harmonic spring con-
stant. Define a coarse-graining mapping M such that if R

N

=M(rn), then Rk = (r2k−1 + r2k)/2, where N = 2Nmol [i.e., that
lumps together the first two and last two sites within each molecule
to form a CG dimer, as shown in Fig. 1(a)]. We begin by finding
ΩAA(E,RN) from its definition in Eq. (9) using the potential of
Eq. (43),

ΩAA(E,RN)
=

1
V2Nmol

∫ δ

⎡⎢⎢⎢⎢⎣E −
κAA

2

Nmol

∑
i=1

3

∑
j=1
∣r4i+j−3 − r4i+j−4∣2

⎤⎥⎥⎥⎥⎦
× δ[RN

−M(rn)] drn. (44)

The required integration over a hypersphere corresponding to the
energy constraint on the harmonic potential is complicated by the
presence of additional constraints from the CGmapping. Appropri-
ate elimination, diagonalization, and scaling substitutions (see the
supplementary material, Sec. II D, for details) yield

ΩAA(E,RN) = 1
V2NmolΓ(3Nmol)(

2
√
6π

3κAA
)3Nmol

× (E − κAA

3
∑Nmol

i=1
∣R2i − R2i−1∣2)3Nmol−1

, (45)

where in the context of this example, Γ denotes the gamma function.
With an expression for ΩAA, we can calculate any property

related to a hypothetical ideal CG system exactly matching the AA
system. From Eq. (12),

WAA(RN) = κAA

3

Nmol

∑
i=1
∣R2i − R2i−1∣2 − 3NmolkBT ln(2

√
6πkBT

3V2/3κAA
).
(46)

This result reveals a single harmonic oscillator for each CG
molecule (with spring constant 2κAA/3) and a separate temperature-
dependent but configuration-independent contribution. To
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FIG. 1. (a) Coarse-graining a linear tetramer with three harmonic bonds in the
AA system to a dimer with one bond in the CG system. (b) Theoretical (±) and
simulated (×) AA and CG energy distributions, respectively, for the system with
kBT/ϵ = 1.2. (c) AA results at kBT/ϵ = 1.6, along with CG results from simulations
at kBT/ϵ = 1.6 using the model optimized at kBT/ϵ = 1.2.

understand the effect of this latter quantity, we find the
configuration-dependent entropy

SWAA(RN) = −∂WAA

∂T
= 3NmolkB[1 + ln(2

√
6πkBT

3V2/3κAA
)] (47)

and the configuration-dependent energy

UWAA(RN) =WAA + TSWAA

= 3NmolkBT +
κAA

3

Nmol

∑
i=1
∣R2i − R2i−1∣2. (48)

The effective energy as a function of CG coordinates consists of
a configuration-dependent interaction as well as a temperature-
dependent offset that captures the energy contribution of the fluc-
tuating, removed degrees of freedom in the AA system. Note that
moving from the AA view of the system with its 3Nmol oscillators
to the CG representation with its Nmol oscillators results in a loss of
2Nmol oscillators; the offset thus contributes 3kBT/2 for each of these
lost sets of degrees of freedom, as one might expect.

We can also find the conditional energy probability distribution
for this CG representation,

PAA(E∣RN) = Ẽ3Nmol−1e−βẼ(kBT)3NmolΓ(3Nmol) , (49)

where Ẽ = E − (κAA/3)∑Nmol
i=1 ∣R2i − R2i−1∣2. Equation (49) has the

form of a gamma distribution offset by the harmonic energy for the
CG system, where the possible energies above this reference energy
correspond to different configurations of AA particles consistent
with the given CG configuration. While this probability distribution
and associated PMF provide an exact CGmodel for this example sys-
tem, in general, systems of interest will be much more complicated
and an approximate form of ΩCG will need to be used. To illustrate
such an approximation, we use the normal distribution of Sec. II B
for the model, corresponding to a CG force field of the form

WCG(RN) = Nmol(u∞,1 −
βγ1

2
) + κCG

2

Nmol

∑
i=1
∣R2i − R2i−1∣2, (50)

along with a conditional energy probability distribution

PCG(E∣RN) = 1√
2πNmolγ1

× exp
⎛
⎝−
[E + βNmolγ1/2 −WCG(RN)]2

2Nmolγ1

⎞
⎠. (51)

It can be shown that the choices u∞,1 = 6kBT0, γ1 = 3k
2
BT

2
0 , and

κCG = 2κAA/3 correspond to the minimum of the relative entropy
S∗rel, where T0 is a reference temperature at which the model is
parameterized (see the supplementary material, Sec. II D, for more
details).

A few things should be noted about the CG model defined by
Eqs. (50) and (51). First, the volume dependence appearing in the
logarithmic terms present in Eqs. (46) and (47) is absent fromWCG,
as it does not influence the configurational or energy probability
distributions relevant to the CG model. A temperature-dependent
but configuration-independent contribution is still present; here,
Nmol(u∞,1 − βγ1/2) with u∞,1 = 6kBT0 and γ1 = 3k

2
BT

2
0 . This solu-

tion turns out to ensure that the mean and variance of the nor-
mally distributed PCG(E∣RN) match that of the gamma distributed
PAA(E∣RN) at the reference temperature T0. The distributions
match exactly at T = T0 in the Nmol →∞ limit where the shape of
the gamma distribution approaches that of a normal one. However,
they diverge as T moves further away from T0, as the constant heat
capacity of the harmonic oscillator model leads to a variance increas-
ing with temperature, while the normal distribution model instead
has a constant variance.
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The correspondence between the distributions is shown
in Fig. 1(b). The exact distribution of AA energies here is
found from the original force field UAA(rn) or by integrating
PAA(E∣RN)PAA(RN) over all RN . In any case, it also follows a
gamma distribution,

PAA(E) = E9Nmol/2−1e−βE(kBT)9Nmol/2Γ(9Nmol/2) . (52)

Likewise, integrating the product of Eq. (51) with PCG(RN) over all
position coordinates gives a normal distribution PCG(E), with

⟨E⟩CG = (6 − 3T0

T
)NmolkBT0 +

3NmolkBT

2
, (53)

⟨E2⟩
CG
− ⟨E⟩2CG = 3Nmolk

2
BT

2
0 +

3Nmolk
2
BT

2

2
. (54)

Both the exact and CG analytical energy distributions (solid lines
in Fig. 1) show excellent agreement at kBT0/ϵ = 1.2 since choosing
T = T0 in Eqs. (52)±(54) gives consistent means 9NmolkBT/2 and
variances 9Nmolk

2
BT

2/2. The black crosses show results from explicit
MD simulations of the AA system, while the red crosses stem from
random sampling of the distribution of Eq. (51) using an MD tra-
jectory from the CG system. Note that the parameters u∞,1, γ1, and
κCG in these CG simulations are not set to their analytically optimal
values; instead, the employed values are determined by numerically
minimizing S∗rel with the help of the derivatives in Eqs. (37)±(39).

Figure 1(c) shows similar results, but this time at a new tar-
get temperature of kBT/ϵ = 1.6. The theoretical and simulated AA
distributions are found normally, while the theoretical CG distri-
bution is found using parameters calculated at the original T0 but
extrapolated to the new target T per the temperature-transferable
scheme. Likewise, CG simulations are performed at T, but the input
parameters are those from optimization at T0 such that those same
parameters are used in the random sampling from the conditional
energy probability distribution. Since the exact harmonic oscillator
model predicts a mean energy and variance increasing in tempera-
ture, while the normal approximation produces a constant variance
and a heat capacity decreasing with temperature, the results are as
expected. The energy distribution predicted from the CG model has
both a lower mean and a variance than the underlying AA system
at the new temperature. However, the optimized parameters per-
form as well as they can to replicate the energy distribution given
the constraints of the normal approximation and still provide a good
estimate over a range around the parameterization temperature with
no training to the AA system at other temperatures.

B. Lennard-Jones tetramers

Having demonstrated the microcanonical coarse-graining
approach with an analytical example, we turn to a more compli-
cated case, here a system of linear tetramers each held together by
harmonic bonds. We now let nonbonded pairs of particles interact
with the Lennard-Jones (LJ) potential u(r) = 4ϵ(σ12/r12 − σ6/r6).
We then study the temperature-transferable framework for CG
models that coarsen each molecule to a single site. All pairs of CG

sites interact with a pairwise potentialw(R) composed of a reference
energy term u∞(R) and a fluctuation term γ(R); these terms are rep-
resented by splines, as discussed in Sec. II C. This system cannot be
treated analytically to create a benchmark against which to compare
CG model results; however, the models are readily tested against
AA simulations at different temperatures to evaluate the captured
temperature dependence.

We begin by considering the accuracy with which the micro-
canonical CG model recovers pair potentials at various tempera-
tures. A naïve approach to a transferable model might involve linear
or nonlinear interpolation of potential parameters using CG mod-
els developed at multiple temperatures. In the present formulation,
however, a model should be able to achieve similar performance
over some temperature range using only a single AA simulation at
one reference temperature. We demonstrate this approach for the
tetramer system in Fig. 2(a). As controls, we determine two poten-
tials with standard relative entropy optimization at kBT/ϵ = 1.1 and

FIG. 2. (a) CG potentials for Lennard-Jones tetramers at density ρσ3
= 0.8, includ-

ing two potentials found from the ordinary relative entropy approach at kBT/ϵ
= 1.1 and 1.4 and one potential for kBT/ϵ = 1.1 calculated from a transferable
model optimized at kBT/ϵ = 1.4. (b) Values of CG potentials at particular locations
[see the dotted lines in (a)] over a range of temperatures. The crosses are results
from independent non-transferable CG models, while the solid lines represent a
single transferable model optimized at kBT/ϵ = 1.4.
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kBT/ϵ = 1.4. Then, we optimize a transferable model at kBT/ϵ = 1.4
and evaluate its predicted behavior at the two temperatures. The
transferable model agrees nearly exactly with the non-transferable
model at the parameterization temperature but, more importantly,
completely predicts the explicitly determined potential at the lower
temperature when extrapolated. Figure S1(a) (see the supplementary
material, Sec. I, for all supplementary figures) presents similar results
for transfer in the opposite direction in temperature, also showing
accurate reproduction of the interaction at the higher temperature
when developed at the lower one.

The ability to extrapolate in temperature using the micro-
canonical approach is particularly evident in Fig. 2(b), which shows
values of CG potentials at select pair separation distances for the
temperature-transferable model (optimized at a single temperature
from a single reference simulation), in comparison to the same
results from non-transferable models optimized independently at
each temperature. As seen, the potential values at all the tempera-
tures in the range are predicted well by the transferable model, with
a greatly reduced computational effort compared to that required to
separately optimize a suite of non-transferable CG models. (In this
case, optimization of transferable models required roughly the same
number of optimization steps as non-transferable models while
taking ∼ 60% more computation time due to additional averaging
required from Eq. (37). For this particular problem, this is still a
major improvement, given the number of temperatures at which
models were optimized and that additional AA simulations must be
performed to parameterize non-transferable models at new temper-
atures. In general, performance of transferable vs non-transferable
model optimization for other systems was similar.) Figure S1(b) also
illustrates the behavior for transfer in the opposite direction starting
from kBT/ϵ = 1.1.

It is important to note the nature of the normal energy approx-
imation used here and its consequences for parameterizing models
at different temperatures. Figures S1(c) and S1(d) show values of
the nominally temperature-independent reference energy and fluc-
tuation pairwise potentials u∞(R) and γ(R) at the two parameter-
ization temperature extremes considered in this system. Although
similar, the results are distinct at the two endpoints of the temper-
ature range. This is simply a consequence of the approximations
taken by the models: were they able to capture the exact dependence
of the temperature-independent ΩAA(E,RN), they would naturally
be identical at both temperatures. However, as they represent only
local approximations to this density of states for energies and config-
urations sampled near the parameterization temperature, they will
necessarily show differences as this temperature is changed.

As seen in Figs. 2 and S1(b), slight differences in transfer-
ability performance occur with the direction taken, with transfer
up in temperature appearing slightly less accurate than the trans-
fer down. However, recall that minimizing S∗rel as defined in Eq. (7)
tries to match the overall joint probability distribution P(E,RN)
between the AA and CG systems, not just P(RN) as is the case
for conventional Srel minimization. The latter approach should, in
principle, produce a CG potential that exactly matches the radial
distribution function (RDF) g(R) between the systems,11 and by
Henderson’s theorem,80 it will yield a particular interaction poten-
tial w(R) unique to that g(R). However, as pointed out by Wang,
Stillinger, and Torquato,81 g(R)may be very insensitive tow(R) for
certain systems, i.e., w(R)may be very sensitive to small changes in

g(R). Thus, even a small sacrifice in the accuracy at which g(R) is
captured in order to better represent the joint configurational and
energy distribution could lead to a considerable change in w(R). As
such, evaluating a transferable model based on its reproduction of a
particular pair potential alone is not very informative with respect to
how well it can predict structure and energies.

Therefore, we consider RDFs generated from MD simula-
tions of the transferable CG models across temperature. We quan-
tify the agreement of RDFs from transferable models at particular
temperatures, g(R), with those from AA simulations at the same
temperatures, gref(R), by introducing a distance metric functional

D∥g, gref∥ = 4πρ∫ Rc

0
R
2∥g(R) − gref(R)∥2 dR. (55)

To assess their structural accuracy, we compare D for the trans-
ferable models to D for non-transferable ones at the same refer-
ence temperatures. An example akin to that of Fig. 2(a) is shown
in Fig. 3(a), now with g(R) rather than w(R). In this case, the

FIG. 3. (a) Radial distribution function for the AA LJ tetramer system at kBT/ϵ
= 1.1, compared with those for transferable (tr.) and non-transferable (non-tr.) CG
models parameterized at kBT/ϵ = 1.4. (b) RDF similarity for models parameter-
ized at kBT/ϵ = 1.4. The reference (ref.) points give D for a non-transferable CG
model optimized individually at each temperature; these are non-zero only due to
sampling noise from the finite-length simulations.
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potential generated by the fully optimized transferable model from
kBT/ϵ = 1.4 is better able to reproduce the target g(R) at the desired
temperature kBT/ϵ = 1.1 than a non-transferable model optimized
at kBT/ϵ = 1.4. Figure 3(b) then presents the similarity metric D for
different temperatures. As the temperature falls from the reference
parameterization temperature kBT/ϵ = 1.4, values of D rise, indicat-
ing an increasing deviation of RDFs predicted by the transferable
models from the true g(R). Given the linear approximation in β
made for the temperature dependence of the potentials, imperfect
prediction is to be expected. However, it is encouraging to see that
the transferable model significantly outperforms a non-transferable
one also parameterized at kBT/ϵ = 1.4.

Additional plots of D vs T for this system are shown in Fig. S2
using different model-optimization temperatures. Curiously, values
of D, representing structural transferability error, are slightly lower
in the increasing temperature (kBT/ϵ = 1.1→ 1.4) than the decreas-
ing temperature (1.4→ 1.1) case, in contrast to the trend in effective
potentials implied by Figs. 2(a) and S1(a). The reason for this asym-
metry is not clear, although it may be related to the sharpening of
the peak of g(R) when moving from higher to lower temperatures
vs its broadening whenmoving in the opposite direction. In any case,
these behaviors represent extremal cases, and normally, it would
make sense to choose an intermediate temperature during CGmodel
parameterization to provide better structural transferability perfor-
mance over the desired range of temperature. This intermediate case
is also demonstrated in Fig. S2.

To conclude the investigation of this system, we consider how
well the transferable models predict energy distributions across tem-
perature space. Properly capturing PAA(E) at the parameterization
temperature is a representability-related issue that, as we shortly
show, even a non-transferable CG model will fail to do, in gen-
eral. Predicting this distribution at other temperatures is moreover
a transferability problem. An ideal CG model developed at a single
temperature would address both of these requirements over a range
of transferred temperatures. The actual models that we consider
here, as a consequence of the approximations made to implement
the microcanonical coarse-graining framework, necessarily limit the
accuracy to some degree.

Specifically, we discuss the ability of transferable CG models
for this system to capture PAA(E). Figure 4(a) gives a compari-
son of different energy distributions predicted by CG models both

optimized and evaluated at kBT/ϵ = 1.4. The black curve gives the
target distribution from the AA system, that of UAA, which a perfect
transferable model should be able to match exactly. A conventional,
non-transferable model yields effective CG energies distributed as
indicated by the purple curve labeled WCG,non-tr, which are only
given for comparison as this distribution corresponds to effective
configurational free energies, not potential energies. The positive
values of WCG,non-tr are consistent with the mostly repulsive inter-
actions between sites in the CGmodel. On the other hand, the trans-
ferable model has WCG distributed as illustrated by the green curve
(WCG,tr), which while closer to the target distribution due to the con-
stant offset from the one-body terms still represents an effective free
energy distribution and thus naturally does not match the AA ener-
gies. Section II B discusses why the CG configurational potential at
a given temperature is different from the one that should be used to
estimate AA energies. Note that the large offset between the means
of these distributions is to be expected; this comes entirely from the
one-body terms that are absent in the non-transferable model. The
pairwise interaction potentials of these two models are effectively
identical, and the configurational probability distributions are not
influenced by configuration-independent constant offsets, such as
the offset applied by the one-body terms.

In contrast, the transferable model inherently makes a predic-
tion for the actual underlying potential energies of the AA system.
In Fig. 4(a), the blue curve giving the distribution of the function
U(RN)matches the expected mean energy of the target AA system.
Here, it is important to note thatU(RN) represents the mean energy
of all AA configurations mapping to the same CG one; thus, it is
in effect ªpre-averagedº over AA configurations within CG states,
which is why its distribution is narrow. On the other hand, the
CG model can also give the full AA energy distribution by con-
volving the within-CG-state distribution PCG(E∣RN) with correct
sampling of PCG(RN). That is, a mean and variance can be found
for every frame in a CG trajectory, and the resulting collection of
normal distributions can be sampled to obtain a final distribution
E (dashed red curve) predicting that of UAA almost perfectly as
illustrated.

Now, we turn to the energy distributions when the analysis is
at a new temperature kBT/ϵ = 1.1, distinct from the parameteriza-
tion temperature. Figure 4(b) shows the corresponding results for
this temperature-transferred case. The distributions of the WCG are

FIG. 4. (a) Energy probability distribu-
tions for the LJ tetramer system at
kBT/ϵ = 1.4. WCG,non-tr is WCG(R

N) for
a non-transferable model, while the other
distributions including WCG,tr are from a
transferable model. (b) Distributions for
the same model as in (a), now simulated
at kBT/ϵ = 1.1.
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still far from the AA energy distribution at this new temperature, as
expected. There is now a noticeable difference between the expected
distribution for UAA and that of E predicted by the temperature-
transferable model, although by comparison with Fig. 4(a), the new
prediction at the lower temperature is a much better estimate of the
new target distribution than the original prediction at the higher
temperature. Even if the magnitude of the distribution shift is not
recovered exactly, the model correctly captures that ⟨UAA⟩ decreases
with T, addressing the combined representability and transferability
problems associated with reproducing this distribution.

One important issue that needs to be considered is the best
method for handling the one-body parameters, u∞,1 and γ1. Ideally,
they would be optimized simultaneously with the rest of the param-
eters defining the transferable force field, using Eqs. (41) and (42),
which is the main approach that we use here. However, in a num-
ber of cases, in practice, we found that the precise distribution of AA
energy fluctuations between the one-body contribution γ1 and the
two-body term γ(R) has a very weak effect on the extended relative
entropy. The flexibility in balancing these contributions can lead to
amplification of numerical noise in the optimized values of the fluc-
tuations and even failure of the optimization algorithm due to the
large condition number of the Hessian of the relative entropy (see
Fig. S3 for details). One can simply fix the one-body parameters,
setting Nmol(u∞,1 − βγ1) and Nmolγ1 equal to the mean and vari-
ance, respectively, of the energy in an AA trajectory at the reference
temperature. They can also be set to zero, or to recapitulate only
intramolecular mean energies and variances, using energies taken
from a simulation of a single molecule in an infinite volume (i.e.,
from the ideal gas state). We investigate these choices in more detail
in the supplementary material, Sec. II E. However, in general, for
the models presented here, we successfully perform optimizations of
all parameters simultaneously using well-chosen initial guesses (e.g.,
from results at nearby temperatures).

IV. APPLICATION TO MOLECULAR FLUIDS

Having explored the microcanonical strategy for coarse-
graining themodel systems of Sec. III, we turn now to two illustrative
and more realistic test cases. For these, we report on results for the
strategy involving simultaneous optimization of the one-body terms
with the other parameters, as mentioned just above, which produces
the best transferability performance.

A. United-atom dodecane

Figure 5 presents results for a CG model of TraPPE united-
atom (UA) dodecane, in which each 12-site molecule is coarsened
to a single site. Figure 5(a) shows non-transferable CGmodel poten-
tials at two temperatures 350 and 450 K for a liquid at ρ = 710 kg/m3

and demonstrates that a third, transferable potential parameterized
from the high temperature shows excellent agreement when trans-
ferred to the lower one. We see similar accuracy when transferring
in the opposite direction [see Figs. S5(a) and S5(b)]. Figure 5(b)
quantifies RDF similarity measured for a model optimized at 450 K
and used at lower temperatures. The values of D in blue are for a
non-transferable model (i.e., the same pair interaction potential at
all temperatures), while those in red are for a transferable one. We
see good transferability for temperatures close to the optimization

FIG. 5. (a) Transferable CG potentials for TraPPE-UA dodecane between 350 and
450 K. (b) RDF similarity vs temperature for non-transferable (non-tr.) and trans-
ferable (tr.) models optimized at 450 K. The inset shows RDFs of the models at
350 K. (c) Predicted CG (E) vs UA (UUA) energy distributions for the transferable
model.

conditions, but the transferable model performs less accurately
with increased extrapolation downward as one might expect,
although still significantly outperforming the non-transferable
model.
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The inset in Fig. 5(b) compares UA RDFs of molecular cen-
ters of mass at 350 K (black) with CG RDFs at 350 K from non-
transferable (blue) and transferable (red) models optimized at 450 K.
Along most of the inner ªshoulderº region of the RDFs below
10 Å, the transferable model RDF follows the UA result more closely
than that of the non-transferable model. Models optimized at 350 K
also show good structural transferability performance when extrap-
olating up in temperature [see Figs. S5(c) and S5(d)]. Finally, as
for the Lennard-Jones systems, we show at these two temperature
extremes the values of the underlying potentials u∞(R) and γ(R) in
Figs. S5(e) and S5(f). As mentioned before, some differences are
seen, highlighting that the transferability performance will be imper-
fect due to the approximations taken. We note again, however, that
for practical use of these transferable models, it may be better to take
an intermediate temperature within the range of interest rather than
an endpoint, as this will increase the overall transferability accuracy
of the models.

Finally, Fig. 5(c) shows predicted energy distributions at two
temperatures, 350 and 450 K from the transferable CG model opti-
mized at 450 K, compared to corresponding UA distributions. The
energy distribution is captured perfectly at the optimization temper-
ature, just as in the LJ tetramer case. The qualitative decrease in the
mean energy with decreasing temperature is also predicted correctly,
although the exact magnitude is slightly in error. The discrepancy
arises from the approximation of the constant variance made by the
chosen model (due to the normal distribution assumption), leading
to an effective increase in heat capacity with decreasing tempera-
ture. A more appropriate approximation might invoke a constant
heat capacity (or one increasing with temperature), but this could
come at the loss of simplicity and mathematical tractability of the
functional form ofΩm(Em,Rm). Once again, E from the transferable
model at the new temperature gives a more accurate prediction of
the behavior of UUA at this temperature than either distribution at
the initial temperature.

B. Three-site water models

Finally, we consider a CG model of SPC/E water at a density
of 998 kg/m3 and temperatures within the liquid range. Figure 6
presents results for this model, starting in Fig. 6(a) with CG poten-
tials at 270 and 380 K. Typical single site, pair spline CG mod-
els of water show a characteristic functional form,12,73,82±88 with a
strongly T-dependent inner potential well near 3 Å and a variable
outer well near 5 Å. We see those same features here but notice
unusual behavior of the transferable CG model in its temperature
variation. In the outer well, w(R) at 270 K is slightly lower than
at 380 K, and the transferable model optimized at 380 K predicts
this decrease at 270 K, as expected. However, for the inner well,
while the non-transferable CG potential for this system increases
when moving from 380 to 270 K, the transferable prediction shows
a decrease, moving in the opposite direction from the higher tem-
perature case. Although it may appear that this is a failure of the
model, closer examination shows that the slope of the transferred
potential, which is related to the effective pair forces, is preserved
well particularly around the inner well. We show this more explic-
itly in Fig. S6, for this case, as well as for the reverse transfer
from 270 to 380 K; recovery of the correct forces at this inner
well is good in both directions even though significant differences

FIG. 6. (a) Transferable CG potentials for SPC/E water between 270 and 380 K.
(b) RDF similarity vs temperature for non-transferable (non-tr.) and transferable
(tr.) models optimized at 380 K. (c) Predicted CG vs AA energy distributions.

are seen in the potentials u∞(R) and γ(R) [see Figs. S7(a) and
S7(b)].

Interestingly, and relatedly, the transferable model nonetheless
exhibits very accurate transferability performance in terms of g(R),
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as shown in Fig. 6(b). Although the CG potential transferred from
380 to 270 K has a very different predicted form than that from the
non-transferable model optimized directly at 270 K, the transferred
potential still very accurately predicts the behavior of g(R) near its
first peak and trough. The results from the CG potential transferred
from 380 to 270 K are in very close agreement with the AA results,
while results from a non-transferable model optimized at 380 K
show substantial deviations. Evidently, matching the forces between
water molecules near this first peak just below 3 Å is much more
important for resolving the temperature dependence than match-
ing the exact potential values. Moreover, the transferable model still
does a reasonable job in reproducing AA energy distributions. As
shown in Fig. 6(c), it gives a perfect match in mean and variance at
the model-optimization temperature 380 K. Transferability of this
predicted energy distribution, while not perfect, is still reasonable,
as shown at 270 K.

Why then does the transferable model predict changes to the
effective w(R) that are so different from explicit, conventional non-
transferable CG model optimization at the two temperatures? We
hypothesize that this apparent behavior is due to compromises
that relative entropy optimization makes, given the approximations
made in the microcanonical CG formulation. Specifically, by assum-
ing a normal underlying density of states, Eq. (27) shows that the
effective pair interaction w(R)must decrease with increasing β and
hence decreasing T. Thus, the non-transferable model in which
w(R) increases at lower temperatures would not be possible in the
microcanonical case with positive energy variance γ(R). To com-
pensate for this limitation, relative entropy minimization attempts
to find w(R) that most closely matches the joint probability distri-
bution of configurations and energies in the AAmodel. As discussed
above, it likely leverages the fact that many low-dimensional corre-
lation functions such as g(R) can be insensitive to certain features
of the interactions, including longer-range attractions, in contrast
to short-range repulsions that tend to be very important.81,89 This
picture is reinforced by the fact that the transferable potential does
a good job of reproducing forces rather than absolute pair energies
(which interestingly is an idea reinforced in force-matching strate-
gies for coarse-graining12,90 that seek to recover gradients of the AA
PMF). However, we note that other approximations may be relevant
to this picture, including the use of low-order CG interactions to
capture the complex multi-body AA PMF that is fundamentally of
interest. More specifically, here, the low-body decomposition of the
energy- and conformation-dependent coarse-projected AA density
of states also incurs its own errors, in addition to the assumed form
of the density of states.

To gain more insight into the behavior of our water models, we
make a comparison with the work of Lebold and Noid26 in which
a dual-potential approach is used to develop single-site CG mod-
els for SPC/E water. In particular, Fig. S7(c) corresponds to Fig. 2 of
Ref. 26, showing a pairwise interaction potentialw(R) for a transfer-
able model optimized at 300 K and the corresponding mean energy
potential u(R). Qualitatively, the behavior of these functions is simi-
lar to the respectiveU2 and E2 given in Ref. 26. Comparing Fig. S7(d)
showing entropy potentials with Fig. 4(a) of Ref. 26, the same kind of
behavior is observed below 3 Å, although entropy potentials approx-
imated by finite differences show a relatively consistent deviation
from the model entropy potential compared to the highly oscilla-
tory potentials seen in Ref. 26. Curiously, there is a quantitative

difference between the interaction potentials that may arise from
incomplete convergence of the IBI approach noted in Ref. 26 and the
insensitivity of g(R) to the potentials.We do not investigate the den-
sity dependence of our models here, but it is also worth noting that
our density ρ = 998 kg/m3 differs from the density ρ = 988 kg/m3 of
Ref. 26. The inner well in the energy potential E2 of Ref. 26 is much
deeper than the one seen hereÐthismay be a consequence of the lack
of one-body terms in the dual-potential approach used for water in
Ref. 26. In a different study, Lebold and Noid25 considered implicit
solvent models using their approach and introduced an energy off-
set that, if applied for these SPC/E water models, would likely change
the nature of the energy potential.

Although the authors of Ref. 25 studied different systems than
the ones we consider here, they presented an interesting theoretical
result that is instructive to compare with the results of our approach.
There, the authors showed that energy fluctuations in a system can
be decomposed into those due to the averaged behavior of CG sites
and those occurring within the sites themselves; in our notation,

σ
2
UAA
= ⟨[UWAA(RN) − ⟨UAA⟩AA]2⟩AA + ⟨[UAA −UWAA(RN)]2⟩

AA
.

(56)

The models in Ref. 26 can accurately predict mean energies, but
energy fluctuations are consistently too small. This is a consequence
of only capturing the pre-averaged behavior of the energy fluctu-
ations, i.e., the first of the two ensemble averages in Eq. (56). In
our CG models, this corresponds to fluctuations in U, which can be
seen in, e.g., Fig. 4(a) to be lower than those of UAA in our models.
However, the variance of E predicted by the models here is actually

σ
2
E = σ

2
U + ⟨Γ⟩CG (57)

(see the supplementary material, Sec. II F); the first term gives the
averaged fluctuations, while the second re-introduces the atomistic
fluctuations within CG sites that would normally be lost in coarse-
graining. This comparison highlights the critical importance of cap-
turing all the contributions to fluctuations in an AA system when
trying to recover its energy distribution.

Overall, these results for SPC/E water are promising and sug-
gest that even in small rigid molecules with few coarse-grained
degrees of freedom (here, only orientational degrees of freedom),
the microcanonical approach is still able to well-resolve the tem-
perature dependence of configurational and energetic probabil-
ity distributions. We have also conducted tests with the flexible
but otherwise very similar SPC/Fw water model. The presence of
intramolecular bonded fluctuations in this non-rigid model does
not appear to influence the behaviors described above, including
the tendency of the microcanonical approach to match pairwise
forces in the inner attractive region of the potential. Results for this
model, provided in Fig. S8, are almost identical to those for rigid
SPC/E.

V. CONCLUSIONS

In this work, we proposed a new framework for the system-
atic development of temperature-transferable coarse-grained (CG)
models. This approach is built upon two key ideas: that temperature-
transferable CG models can be treated in a microcanonical manner
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by considering configuration-dependent densities of states and that
relative entropy provides a natural way to systematically optimize
such models by extension to joint energy-configuration distribu-
tions. The theoretical framework underlying this approach is based
on a rigorous decomposition of the CG free energy into ener-
getic and entropic components. Energy fluctuations associated with
degrees of freedom removed during coarse-graining, rather than
being discarded entirely, are naturally encapsulated within micro-
canonical CGmodels and their predicted energy distributions. Con-
tributions to CG energies are partitioned into standard two-body
terms representing interactions between CG sites and additional
one-body terms nominally representing degrees of freedom internal
to individual sites. Overall, these models allow not only for accu-
rate transferability but also for the unique ability to sample AA
energy distributions for any given coarse configuration as well as the
entire CG ensemble. The distributions themselves can also be trans-
ferred to new temperatures, addressing the combined representabil-
ity and transferability problem as it pertains to temperature and
energy.

Overall, our test results for model Lennard-Jones systems indi-
cate that the approach is robust and able to accurately predict radial
distribution functions and energy distributions over ranges of tem-
peratures. Dodecane and water results confirm these findings on real
systems. Handling of the one-body parameters necessary to match
energy distributions can be performed in several ways; optimizing
them alongside other parameters, or fixing them based on reference
simulations, appears to give the best results. Future work explor-
ing this approach and our implementation might investigate more
numerically robust ways to parameterize this class of models, with
attention to both optimal strategies for addressing the one-body
terms as well as effective treatment for the poorly sampled inner-
core region of pair potentials. Other questions related to the method
include its relationship to other schemes for creating temperature-
transferable models and their performance on different kinds of
systems.

The termwise decomposition of the density of states along with
the normal distribution approximation for the energies is motivated
primarily by its mathematical convenience. Additionally, a Gaus-
sian functional form for the overall CG density of states in Eq. (17)
corresponds to a parabolic approximation to the CG configuration-
dependent microcanonical entropy. Given that this function should
be concave with respect to the energy, the normal approximation
is especially natural since it acts as an expansion to second order,
giving the simplest possible physically realistic functional form for
the microcanonical entropy. For all the systems studied here, over-
all energy distributions were very accurately approximated to be
normal. In theory, more complex or weakly coarse-grained systems
involving interactions leading to highly non-Gaussian energy distri-
butions, and strong correlations between degrees of freedom, could
reach the limits of the assumptionsmade here. As the decomposition
of the density of states into terms is quite general, other distribu-
tion forms such as the gamma distribution that models constant
heat capacities could be used. More complex forms such as Gaussian
mixture models might be applicable in theory, although the neces-
sary convolutions would quickly become intractable for all but the
simplest of models. We note that the random energy model for dis-
ordered systems,91,92 which makes a similar normal energy approx-
imation, has been used to study protein folding,93,94 suggesting that

such amodel for energies can still be useful when applied to complex
macromolecular systems.

The present method is also not limited to the pairwise non-
bonded interactions and normal energy distributions that we con-
sider here. For example, bonded potentials and other non-bonded
multibody interactions such as local density potentials could be
employed. More broadly, this work suggests a general strategy for
addressing transferability issues by extending the relative entropy to
add variables that augment the conventional configurational distri-
bution. While here we illustrated the extension to the joint energy-
configuration probability space (i.e., energy is added as a distribution
variable), this conceptual approach suggests the potential for using
additional fluctuating variables natural to other ensembles, such as
volume in the isothermal±isobaric ensemble, as has been considered
in the context of MS-CG.18,37,41 In each case, the relative entropy
formalism can then be used to determine a form for the appropri-
ate partition function (or thermodynamic potential) relevant to the
fluctuations of interest. The novel features of this approach make
it a potentially productive strategy for overcoming the transferabil-
ity problem in coarse-graining and ultimately for creating more
powerful and useful multiscale models.

SUPPLEMENTARY MATERIAL

See the supplementary material for supplementary figures pre-
senting additional data on transferable model performance, deriva-
tions of selected equations, and discussion of optimization of one-
body parameters.
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