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Recent advances in biocompatible materials, miniaturized

instrumentation, advanced computational algorithms, and

genetic tools have enabled the development of novel methods

and approaches to quantify the behavior of individuals or

groups of animals. In conjunction with technologies that allow

simultaneous monitoring of neural responses, quantitative

studies of complex behaviors can reveal tighter links between

the external sensory cues in the vicinity of the organism and

neural responses they elicit, and how internal neural

representations finally get mapped onto the behavior

generated. In this review, we examine a few approaches that

are beginning to be widely exploited for understanding neural–

behavioral response transformations.
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Introduction
Classical neuroscience has been built on the back of

excellent electrophysiological experiments where scien-

tists were able to probe and manipulate individual or

small groups of neurons in simple neuronal circuits [1–4].

While these studies have provided an invaluable under-

standing of neural computations at the single neuron

level, the causal link between neural responses and

behavioral outputs often remained tenuous. Recent prog-

ress has allowed both monitoring and controlling neurons

with high spatial and temporal resolution. Transgenic

insects that express optical fluorescent markers or con-

trollable non-native ion channels/pumps in select neurons

are widely being used to characterize how these neurons

encode information about various sensory cues and drive

different motor programs. Combined with clever

manipulations that simultaneously allow insects to

‘behave,’ correlations and sometimes stronger associa-

tions between neural and behavioral responses can be

probed.

While quantitative methods to understand neural

responses are the norm, similar approaches for character-

izing behavior are only beginning to be widely adopted.

Particularly, behavior in invertebrates can be challenging

to quantify due to their smaller scale and alien anatomy

compared to mammals. Traditional manual approaches to

analyze and quantify insect behavior, while useful, have

many limitations. For example, humans can only observe

relatively simple behavioral motifs, patterns on short time

scales, and are prone to individual biases/inconsistencies.

Furthermore, manual identification and classification of

behaviors become increasingly challenging as the amount

of data generated by experiments continues to grow. With

the advent of high-resolution, high-speed cameras and

other time-resolved measurements, algorithmic advances

in computer vision and machine learning are necessary to

automate analysis pipelines. Taking advantage of such

advances, much progress has been made to characterize

more complicated behaviors with greater speed and

certainty.

In this review, we focus on a few recent studies that have

taken novel approaches to link neural responses with

behavioral response motifs.

Categorizing and quantifying behavioral
responses
Modern advances in data acquisition and processing allow

behavioral responses to be monitored at fine temporal and

spatial resolutions. Error-prone manual tracking methods

have been supplanted by computer vision methods such

as centroid/center-of-mass tracking, which allow accurate

positional tracking of an organism over time. These

algorithms have been further optimized with the use of

markers such as RFID tags [5–9], radar transponders [10–

12], QR codes [13–17], and non-inhibitive paint [18,19],

as well as through the use of denoising and filtering

algorithms (Figure 1a). Analysis of animal movements

with these approaches is particularly suitable for studying

group behavior, and has been used in a wide range of

studies, from social interactions in honeybees and ants

[20–25], to behavioral variance and modulation by group

composition in locusts [26], and social enhancement of

light avoidance abilities in cockroaches [27]. Such high-

fidelity behavioral tracking combined with genomic and
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transcriptomic data could be utilized for probing and

understanding the molecular basis for behavioral varia-

tions or phenotypic plasticity [28].

More recently, applications of deep neural networks have

allowed markerless recognition of individual organisms.

Tools such as IDtracker have been successfully utilized

to study social interactions during foraging in zebrafish

[29], and social modulation of looming response in fruit

flies [30]. Among the most noteworthy tools that have

recently been developed are DeepPoseKit and Dee-

pLabCut, where the authors trained deep convolutional

neural networks (CNNs) to detect organisms by provid-

ing a handful of frames labeled with poses of interest [31–

33]. Through a process of iterative learning, the CNNs

learned to recognize and accurately track the insect with

fine temporal (high frame rate) and spatial (few pixels)

resolutions. Furthermore, similar approaches allow auto-

mated segmentation of complex behavioral responses as

sequences of elemental behavioral motifs (Figure 1b)

[34,35,36�]. These robust networks could be applied to

even study insects in their natural environments (field

studies), as part of large social groups, and even in the

presence of multiple species.

In some scenarios, such as capturing idiosyncratic beha-

viors (e.g. grooming) or interactions between individuals

in group studies, pose-estimation with 3D tracking might

be necessary. In general, 3D pose estimation is a more

complex problem and requires the use of multiple syn-

chronized cameras, and calibration of XYZ coordinates

across cameras using well-positioned landmarks [37–39],

or by custom solutions such as swarm markers [40].

Nevertheless, such approaches have successfully been

used to study the physical properties of gnat swarms [40],

and the energy dynamics of movement through complex

obstacles in cockroaches [41,42]. Computational tools

such as DeepLabCut and DeepPoseKit are now enabling

estimation of poses in 3D space with minimal equipment

requirements [31–33].

Mapping neural activity onto behavioral
responses
Precise quantification of behavioral responses can also be

exploited to understand the significance of neural activity

in different regions and how they evolve. Efforts to

understand neural bases for a behavioral response can

be roughly categorized into three categories: (i) the map-
ping problem: identifying regions that are activated during

a behavior and therefore are potentially important for

generating that response, (ii) the dynamics problem: under-

standing how neural responses patterned over time cor-

relates with, and therefore contributes towards, behav-

ioral response changes over time, and (iii) the idiosyncrasy
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Methods for tracking and quantifying behavior.

(a) A wide range of tracking tools have been used for quantifying behavioral responses. Centroid/ center-of-mass tracking allows markerless

tracking of the position of an insect in a well-defined arena. The addition of markers such as QR codes and colored paints allows more precise

tracking of individuals in a group and even specific body parts. Deep learning-based methods allow tracking of different species in a group,

untagged tracking of individual body parts, and extraction of behavioral motifs and poses.

(b) A pipeline for extracting behavioral motifs. The organism is identified using an object identification algorithm and its pose is decomposed to a

lower dimension. Different behavioral motifs are identified in this low-dimensional space. The identified response motifs and the transition

probabilities of moving from one behavioral motif to another can be estimated to develop a probabilistic model for generating a behavioral

response.
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problem: linking neural response variability across organ-

isms with individual behavioral preferences and

responses.

The mapping problem

The first step in understanding neural mechanisms that

mediate a behavioral response is to determine which

neurons and neural circuits are important for (i) proces-

sing the sensory cue that triggers the behavior, and (ii)

executing the motor programs that carry out the voluntary

movement. Since monitoring responses of all neurons in

the insect brain during the execution of the behavioral

response is not feasible yet, one remedying step would be

to identify all neurons that were active and therefore

potentially important for generating that behavioral

response. The immediate early genes (IEGs) that are

rapidly and transiently expressed in neurons following

activation are one family of candidate markers that could

be used for labeling active neurons. In two recent studies,

a specific IEG was used to identify a few neural loci

important for courtship behavior in male silkmoths (Bom-
byx mori) [43] and fruit flies (Drosophila melanogaster) [44].

In both these insects, exposure to female pheromone

increased neural responses and therefore elevated hr38
expression in activated neurons throughout the brain.

The labeled activity maps partially overlapped with neu-

rons that are known to be part of sexually dimorphic

circuits expressing fruitless( f ru) and/or doublesex
(dsx). Notably, in the fruit fly system, activity-dependent

expression of light-activated ion channels (CsChrimson) in

fru or dsx neurons allowed reactivation of the neural

circuits with red light and thereby regenerate the abdo-

men bending behavior observed in males during court-

ship [44]. Since IEGs, such as hr38, are also found in other

insects such as honeybees [45], whether this strategy for

labeling neurons important for a specific behavior can be

widely adopted remains to be determined.

Alternately, using the genetic tool kit in fruit flies (D.
melanogaster), a recent tour de force study combined genetic

perturbations and machine vision analysis of behavior to

identify the neural populations in the fly brain that might

contribute to a wide variety of motor responses [46��].
Analyzing videos from an incredible 400 000 flies, behav-

ioral motifs were identified in a semi-supervised fashion

(i.e. part human and part algorithmic labeling). In parallel,

expression patterns of �2200 genes and the effect of

neural activation on different behavioral motifs were

analyzed to generate ‘brain-behavioral correlation maps

(Figure 2a).’ As can be noted, this high-throughput

approach allows the identification of large ensembles of

neurons that contribute to a mean behavioral response (i.

e. averaged over time and individuals).

The dynamics problem

The behavioral responses elicited by most stimuli are

often temporally structured (i.e. dynamic). Can the

behavioral responses at different time points, and the

transitions between them be predicted from the neural

activity? This issue was investigated in the context of

olfaction and odor-driven behavior in locusts (Schistocerca
americana) [19]. The authors showed that most odorants

activate two distinct ensembles of neurons, one during

the stimulus presentations (ON ensemble), and the sec-

ond after stimulus termination (OFF ensemble). The

authors found that the ON neural response was sufficient

to predict whether an odorant would evoke a behavioral

response and the speed of response initiation (i.e. the

opening of sensory appendages close to the mouth upon

conditioned stimulus presentations in anticipation of the

reward). However, the OFF ensemble responses were

more reliable predictors of when the behavioral response

to the conditioned stimulus was terminated.

In a series of follow-up studies, the authors found neural

responses evoked by the same odorant varied when

perturbed by altering background odorants, ambient con-

ditions, and stimulus history. Yet, the behavioral

responses were robust to such perturbations, and the

locusts trained to recognize an odorant could do so and

open their palps in an invariant fashion [19,47,48,49�] To

resolve this apparent confound, the authors demonstrated

a simple logical classifier (OR-of-ANDs) where a flexible

combination of active ON and OFF neurons was suffi-

cient to successfully predict the invariant behavioral

response observed (Figure 2b) 49�].

In sum, these results indicate how activating different

neural ensembles that are part of the same circuit over

time could help orchestrate predictable temporally pat-

terned changes observed in behavior, and that the neural-

behavioral mapping could be highly robust to extrinsic

perturbations.

The idiosyncrasy problem

Does a sensory stimulus drive stereotyped neural

responses in different individuals, or do the neural

responses vary and thereby could underlie the generation

of idiosyncratic behaviors among individuals? A recent

study in flies characterized the variability of innate odor

preferences amongst flies from the same inbred lab wild-

type colony [50]. Using a two-choice odor assay, the

authors found that the distribution of odor preference

scores across flies varied when compared to the null

distribution (i.e. no odor preference). The odor prefer-

ences remained stable across days. Notably, imaging of

odor-evoked responses in transgenic flies expressing

genetically encoded calcium indicators in the antennal

lobe’s principal neurons revealed gross stereotyped

responses that were embellished with several fly specific

response variations. The authors found that odor prefer-

ence variability could be reduced through endogenous

mechanisms such as serotonin synthesis inhibition (by

feeding flies with alpha-methyltryptophan), carrying
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mutant dopamine receptor gene (Dop1R1), or by activat-

ing different subtypes of local neurons in the antennal

lobe. On the other hand, exogenous variables such as

changes in weather (higher variability observed during

winter) and diet (switch from normal cornmeal/dextrose

to commercial flake food) led to increases in behavioral

variability.

Neural recordings during the execution of a
behavioral response
Compared to the studies discussed so far, a more direct

approach would involve monitoring neural responses in a

behaving insect. Recently, the use of virtual reality setups

and electrophysiological recordings in ambulatory pre-

parations is being explored to go beyond neural-behav-

ioral correlational maps.

Virtual reality setups

Virtual reality (VR) setups have become increasingly

popular for simultaneous recordings of neural responses

while the external stimuli are presented in a controlled

manner to affect behaviors. A majority of the VR setups

have used tethered flight or head-fixed walking on a

floating ball while visual, olfactory, or mechanosensory

inputs are systematically varied. Using such a VR setup, a

recent study had explored how different flying insects

(fruit flies, mosquitos, hoverflies, and craneflies) navigate

in complex environments and perform long-range search

behavior as they forage for food [51��]. Manipulating

visual, olfactory, and mechanosensory cues the authors

found that flying insects could use computations such as

object segmentation, perspective and motion parallax,

and multimodal integration in real-time as they localized

and moved towards a target.

In addition to investigating behavioral algorithms

exploited by insects, the VR setups have been used to

examine the neural representation of a behavioral

response. In a recent study in fruit flies (D. melanogaster),
a walking setup directly positioned under a 2-photon

microscope was used to investigate how the head direc-

tion is encoded in the ellipsoid body of the fly’s central

complex [52��]. To understand the structure of the recur-

rent ellipsoid body neuronal network, the authors used a

combination of focused ion beam electron microscopy to

reveal synaptic connections between circuit elements.

Next, using RNA-sequencing and fluorescence in-situ
hybridization they characterized receptors and
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Neural-behavioral response transformations.

(a) Genetic tools in the Drosophila model can be exploited to determine which brain region contributed to generating a behavioral response. A

cartoon version of the ‘brain-behavior maps’ that can be expected from this approach is shown.

(b) A model for mapping neural responses and how they change over time onto behavioral response dynamics in locusts is shown. Different sets

of projection neurons were activated during (ON response), and after the termination of a stimulus (OFF response). Responses from the ensemble

of ON neurons were sufficient to predict the onset of the behavioral response, whereas OFF neuronal responses were better indicators of when

and how the behavioral responses terminated [47].
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neurotransmitters at various synaptic connections and

therefore the type of interactions (excitatory versus inhib-

itory) at various parts of the network. Finally, imaging

calcium signals from ellipsoid body neurons in head-fixed

walking flies, the authors dissected how the different

structural motifs of this network facilitate its functioning

as a ring attractor (a compass-like neural network where

neurons tuned to the same head direction excite each

other, but neurons encoding different head directions

inhibit one another).

VR techniques have also been successfully used to study

the neural bases for a wide range of behaviors including,

looming objects and motion parallax in locusts [53],

stereopsis in the praying mantis [54], sensorimotor flight

control in Drosophila [55],and selective attention in hon-

eybees [28]. While there are some restrictions imposed on

the mobility of the organism, this approach offers a great

alternative when outdoor studies can be too expensive or

infeasible (e.g. due to weather conditions). Combining

markerless tracking with dynamically adjusting arenas

such as treadmills [56] and wind tunnels has the potential

to allow more unrestricted behaviors, but further work

remains to be performed in terms of accurate tracking,

precise closed-loop control, arena design, and stimulus

delivery.

Neural recordings in ambulatory preparations

To achieve simultaneous neural and behavior monitoring,

fast and accurate tracking of animal behavior is, however,

only half the story. The scale of insects has posed a

significant engineering challenge in the fabrication of

recording probes that can allow relatively unrestricted

movement. Recent advances in microfabrication techni-

ques have led to the development of miniature electrode

arrays which have the potential for use in many insect

models. However, the commercial availability of suitable

probes remains limited for mobile experiments, and

preparing custom in-house electrodes is often an easier

solution [57].

Traditionally, mobile preparations have required balanc-

ing the increase in noise with electrode length against the

mobility offered to the animal. While relatively long

electrodes that do not hinder the insect’s movement have

been used successfully [58], miniaturization of amplifier

technology has increasingly made it possible to mount the

pre-amplifiers and digitizers for data transmission directly

on the animal, minimizing noise while enabling free-

roaming movement [59–61]. This can optionally be com-

bined with small wireless transmitters to provide nearly

unfettered mobility to the animal being recorded

(Figure 3a). Such an approach has been combined with

custom electrodes to localize odor sources and study

neural underpinnings of behavioral responses in locusts

(Figure 3b) [53,62], and movement in cockroaches [58].

Conclusions
The last decade has seen several advances made towards

developing genetic, electrophysiological, computational,

and instrumentation toolkits to understand molecular and

neural bases for behavioral responses in insects. In par-

ticular, the ability to monitor and quantify behavioral

responses has provided key constraints in interpreting

and understanding the functional relevance of neural

responses observed in different brain regions and over

time. The current set of studies, however, have only

begun to probe and understand the rules that govern

how variable and complex neural activity underlie behav-

ioral responses. A more complete understanding of these

rules would require, at minimum, technical advances to

address the following challenges:
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(a) Photo of a dragonfly with a mounted wireless recording backpack, capable of recording EMG and nerve cord signals in a mobile preparation,

using RF signals to power the electronics. (Image adapted from Thomas et al. provided by Dr Anthony Leonardo.) [59].

(b) Photo of a tethered ambulatory locust preparation with a flexible electrode surgically implanted in the antennal lobe for recording olfactory

signals during behavioral assays [62].
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� Can we monitor neural and behavioral responses from a

single insect over extended periods (days to months to

entire lifetime)?

� Can we create a wider library of behavioral responses

that can be monitored and quantified?

� Can we monitor several insects simultaneously and

determine how they interact?

Notwithstanding the progress made, current approaches

have been designed for noiseless settings inside a labora-

tory, and therefore limit the complexity of experiments

that can be performed. Thus, there is still a need for

designing solutions to the problem of monitoring and

quantifying neural/behavioral responses in complex and

eventually in open field settings or their natural habitats.
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41. Li C, Wöhrl T, Lam HK, Full RJ: Cockroaches use diverse
strategies to self-right on the ground. J Exp Biol 2019, 222
http://dx.doi.org/10.1242/jeb.186080.

42. Othayoth R, Thoms G, Li C: An energy landscape approach to
locomotor transitions in complex 3D terrain. Proc Natl Acad Sci
U S A 2020, 117:14987-14995 http://dx.doi.org/10.1073/
pnas.1918297117.

43. Fujita N, Nagata Y, Nishiuchi T, Sato M, Iwami M, Kiya T:
Visualization of neural activity in insect brains using a
conserved immediate early gene, Hr38. Curr Biol 2013, 23:2063-
2070 http://dx.doi.org/10.1016/j.cub.2013.08.051.

44. Takayanagi-Kiya S, Kiya T: Activity-dependent visualization and
control of neural circuits for courtship behavior in the fly
Drosophila melanogaster. Proc Natl Acad Sci U S A 2019,
116:5715-5720 http://dx.doi.org/10.1073/pnas.1814628116.

45. Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J:
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