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Recent advances in biocompatible materials, miniaturized
instrumentation, advanced computational algorithms, and
genetic tools have enabled the development of novel methods
and approaches to quantify the behavior of individuals or
groups of animals. In conjunction with technologies that allow
simultaneous monitoring of neural responses, quantitative
studies of complex behaviors can reveal tighter links between
the external sensory cues in the vicinity of the organism and
neural responses they elicit, and how internal neural
representations finally get mapped onto the behavior
generated. In this review, we examine a few approaches that
are beginning to be widely exploited for understanding neural-
behavioral response transformations.
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Introduction

Classical neuroscience has been built on the back of
excellent electrophysiological experiments where scien-
tists were able to probe and manipulate individual or
small groups of neurons in simple neuronal circuits [1-4].
While these studies have provided an invaluable under-
standing of neural computations at the single neuron
level, the causal link between neural responses and
behavioral outputs often remained tenuous. Recent prog-
ress has allowed both monitoring and controlling neurons
with high spatial and temporal resolution. Transgenic
insects that express optical fluorescent markers or con-
trollable non-native ion channels/pumps in select neurons
are widely being used to characterize how these neurons
encode information about various sensory cues and drive
different motor programs. Combined with clever
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manipulations that simultaneously allow insects to
‘behave,” correlations and sometimes stronger associa-
tions between neural and behavioral responses can be
probed.

While quantitative methods to understand neural
responses are the norm, similar approaches for character-
izing behavior are only beginning to be widely adopted.
Particularly, behavior in invertebrates can be challenging
to quantify due to their smaller scale and alien anatomy
compared to mammals. Traditional manual approaches to
analyze and quantify insect behavior, while useful, have
many limitations. For example, humans can only observe
relatively simple behavioral motifs, patterns on short time
scales, and are prone to individual biases/inconsistencies.
Furthermore, manual identification and classification of
behaviors become increasingly challenging as the amount
of data generated by experiments continues to grow. With
the advent of high-resolution, high-speed cameras and
other time-resolved measurements, algorithmic advances
in computer vision and machine learning are necessary to
automate analysis pipelines. Taking advantage of such
advances, much progress has been made to characterize
more complicated behaviors with greater speed and
certainty.

In this review, we focus on a few recent studies that have
taken novel approaches to link neural responses with
behavioral response motifs.

Categorizing and quantifying behavioral
responses

Modern advances in data acquisition and processing allow
behavioral responses to be monitored at fine temporal and
spatial resolutions. Error-prone manual tracking methods
have been supplanted by computer vision methods such
as centroid/center-of-mass tracking, which allow accurate
positional tracking of an organism over time. These
algorithms have been further optimized with the use of
markers such as RFID tags [5-9], radar transponders [10-
12], QR codes [13-17], and non-inhibitive paint [18,19],
as well as through the use of denoising and filtering
algorithms (Figure 1a). Analysis of animal movements
with these approaches is particularly suitable for studying
group behavior, and has been used in a wide range of
studies, from social interactions in honeybees and ants
[20-25], to behavioral variance and modulation by group
composition in locusts [26], and social enhancement of
light avoidance abilities in cockroaches [27]. Such high-
fidelity behavioral tracking combined with genomic and
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Methods for tracking and quantifying behavior.

(a) A wide range of tracking tools have been used for quantifying behavioral responses. Centroid/ center-of-mass tracking allows markerless
tracking of the position of an insect in a well-defined arena. The addition of markers such as QR codes and colored paints allows more precise
tracking of individuals in a group and even specific body parts. Deep learning-based methods allow tracking of different species in a group,
untagged tracking of individual body parts, and extraction of behavioral motifs and poses.

(b) A pipeline for extracting behavioral motifs. The organism is identified using an object identification algorithm and its pose is decomposed to a
lower dimension. Different behavioral motifs are identified in this low-dimensional space. The identified response motifs and the transition
probabilities of moving from one behavioral motif to another can be estimated to develop a probabilistic model for generating a behavioral

response.

transcriptomic data could be utilized for probing and
understanding the molecular basis for behavioral varia-
tions or phenotypic plasticity [28].

More recently, applications of deep neural networks have
allowed markerless recognition of individual organisms.
Tools such as IDtracker have been successfully utilized
to study social interactions during foraging in zebrafish
[29], and social modulation of looming response in fruit
flies [30]. Among the most noteworthy tools that have
recently been developed are DeepPoseKit and Dee-
pLabCut, where the authors trained deep convolutional
neural networks (CNNs) to detect organisms by provid-
ing a handful of frames labeled with poses of interest [31—
33]. Through a process of iterative learning, the CNNs
learned to recognize and accurately track the insect with
fine temporal (high frame rate) and spatial (few pixels)
resolutions. Furthermore, similar approaches allow auto-
mated segmentation of complex behavioral responses as
sequences of elemental behavioral motifs (Figure 1b)
[34,35,36°]. These robust networks could be applied to
even study insects in their natural environments (field
studies), as part of large social groups, and even in the
presence of multiple species.

In some scenarios, such as capturing idiosyncratic beha-
viors (e.g. grooming) or interactions between individuals

in group studies, pose-estimation with 3D tracking might
be necessary. In general, 3D pose estimation is a more
complex problem and requires the use of multiple syn-
chronized cameras, and calibration of XYZ coordinates
across cameras using well-positioned landmarks [37-39],
or by custom solutions such as swarm markers [40].
Nevertheless, such approaches have successfully been
used to study the physical properties of gnat swarms [40],
and the energy dynamics of movement through complex
obstacles in cockroaches [41,42]. Computational tools
such as DeepLabCut and DeepPoseKit are now enabling
estimation of poses in 3D space with minimal equipment
requirements [31-33].

Mapping neural activity onto behavioral
responses

Precise quantification of behavioral responses can also be
exploited to understand the significance of neural activity
in different regions and how they evolve. Efforts to
understand neural bases for a behavioral response can
be roughly categorized into three categories: (i) the map-
ping problem: identifying regions that are activated during
a behavior and therefore are potentially important for
generating that response, (i1) #he dynamics problem: under-
standing how neural responses patterned over time cor-
relates with, and therefore contributes towards, behav-
ioral response changes over time, and (iii) #e idiosyncrasy
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problem: linking neural response variability across organ-
isms with individual behavioral preferences and
responses.

The mapping problem

The first step in understanding neural mechanisms that
mediate a behavioral response is to determine which
neurons and neural circuits are important for (i) proces-
sing the sensory cue that triggers the behavior, and (i1)
executing the motor programs that carry out the voluntary
movement. Since monitoring responses of all neurons in
the insect brain during the execution of the behavioral
response is not feasible yet, one remedying step would be
to identify all neurons that were active and therefore
potentially important for generating that behavioral
response. The immediate early genes (IEGs) that are
rapidly and transiently expressed in neurons following
activation are one family of candidate markers that could
be used for labeling active neurons. In two recent studies,
a specific IEG was used to identify a few neural loci
important for courtship behavior in male silkmoths (Bom-
byx mori) [43] and fruit flies (Drosophila melanogaster) [44].
In both these insects, exposure to female pheromone
increased neural responses and therefore elevated /4738
expression in activated neurons throughout the brain.
The labeled activity maps partially overlapped with neu-
rons that are known to be part of sexually dimorphic
circuits  expressing  fruitless( fru) andfor  doublesex
(dsx). Notably, in the fruit fly system, activity-dependent
expression of light-activated ion channels (CsChrimson) in
fru or dsx neurons allowed reactivation of the neural
circuits with red light and thereby regenerate the abdo-
men bending behavior observed in males during court-
ship [44]. Since IEGs, such as hr38, are also found in other
insects such as honeybees [45], whether this strategy for
labeling neurons important for a specific behavior can be
widely adopted remains to be determined.

Alternately, using the genetic tool kit in fruit flies (D.
melanogaster), a recent tour de force study combined genetic
perturbations and machine vision analysis of behavior to
identify the neural populations in the fly brain that might
contribute to a wide variety of motor responses [46°°].
Analyzing videos from an incredible 400 000 flies, behav-
ioral motifs were identified in a semi-supervised fashion
(i.e. part human and part algorithmic labeling). In parallel,
expression patterns of ~2200 genes and the effect of
neural activation on different behavioral motifs were
analyzed to generate ‘brain-behavioral correlation maps
(Figure 2a).” As can be noted, this high-throughput
approach allows the identification of large ensembles of
neurons that contribute to a mean behavioral response (i.
e. averaged over time and individuals).

The dynamics problem
The behavioral responses clicited by most stimuli are
often temporally structured (i.e. dynamic). Can the

behavioral responses at different time points, and the
transitions between them be predicted from the neural
activity? This issue was investigated in the context of
olfaction and odor-driven behavior in locusts (Sckistocerca
americana) [19]. The authors showed that most odorants
activate two distinct ensembles of neurons, one during
the stimulus presentations (ON ensemble), and the sec-
ond after stimulus termination (OFF ensemble). The
authors found that the ON neural response was sufficient
to predict whether an odorant would evoke a behavioral
response and the speed of response initiation (i.e. the
opening of sensory appendages close to the mouth upon
conditioned stimulus presentations in anticipation of the
reward). However, the OFF ensemble responses were
more reliable predictors of when the behavioral response
to the conditioned stimulus was terminated.

In a series of follow-up studies, the authors found neural
responses evoked by the same odorant varied when
perturbed by altering background odorants, ambient con-
ditions, and stimulus history. Yet, the behavioral
responses were robust to such perturbations, and the
locusts trained to recognize an odorant could do so and
open their palps in an invariant fashion [19,47,48,49°] To
resolve this apparent confound, the authors demonstrated
a simple logical classifier (OR-of-ANDs) where a flexible
combination of active ON and OFF neurons was suffi-
cient to successfully predict the invariant behavioral
response observed (Figure 2b) 49°].

In sum, these results indicate how activating different
neural ensembles that are part of the same circuit over
time could help orchestrate predictable temporally pat-
terned changes observed in behavior, and that the neural-
behavioral mapping could be highly robust to extrinsic
perturbations.

The idiosyncrasy problem

Does a sensory stimulus drive stereotyped neural
responses in different individuals, or do the neural
responses vary and thereby could underlie the generation
of idiosyncratic behaviors among individuals? A recent
study in flies characterized the variability of innate odor
preferences amongst flies from the same inbred lab wild-
type colony [50]. Using a two-choice odor assay, the
authors found that the distribution of odor preference
scores across flies varied when compared to the null
distribution (i.e. no odor preference). The odor prefer-
ences remained stable across days. Notably, imaging of
odor-evoked responses in transgenic flies expressing
genetically encoded calcium indicators in the antennal
lobe’s principal neurons revealed gross stereotyped
responses that were embellished with several fly specific
response variations. The authors found that odor prefer-
ence variability could be reduced through endogenous
mechanisms such as serotonin synthesis inhibition (by
feeding flies with alpha-methyltryptophan), carrying
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Neural-behavioral response transformations.

(a) Genetic tools in the Drosophila model can be exploited to determine which brain region contributed to generating a behavioral response. A
cartoon version of the ‘brain-behavior maps’ that can be expected from this approach is shown.

(b) A model for mapping neural responses and how they change over time onto behavioral response dynamics in locusts is shown. Different sets
of projection neurons were activated during (ON response), and after the termination of a stimulus (OFF response). Responses from the ensemble
of ON neurons were sufficient to predict the onset of the behavioral response, whereas OFF neuronal responses were better indicators of when

and how the behavioral responses terminated [47].

mutant dopamine receptor gene (Dopl/R1), or by activat-
ing different subtypes of local neurons in the antennal
lobe. On the other hand, exogenous variables such as
changes in weather (higher variability observed during
winter) and diet (switch from normal cornmeal/dextrose
to commercial flake food) led to increases in behavioral
variability.

Neural recordings during the execution of a
behavioral response

Compared to the studies discussed so far, a more direct
approach would involve monitoring neural responses in a
behaving insect. Recently, the use of virtual reality setups
and electrophysiological recordings in ambulatory pre-
parations is being explored to go beyond neural-behav-
ioral correlational maps.

Virtual reality setups

Virtual reality (VR) setups have become increasingly
popular for simultaneous recordings of neural responses
while the external stimuli are presented in a controlled
manner to affect behaviors. A majority of the VR setups
have used tethered flight or head-fixed walking on a
floating ball while visual, olfactory, or mechanosensory

inputs are systematically varied. Using such a VR setup, a
recent study had explored how different flying insects
(fruit flies, mosquitos, hoverflies, and craneflies) navigate
in complex environments and perform long-range search
behavior as they forage for food [51°°]. Manipulating
visual, olfactory, and mechanosensory cues the authors
found that flying insects could use computations such as
object segmentation, perspective and motion parallax,
and multimodal integration in real-time as they localized
and moved towards a target.

In addition to investigating behavioral algorithms
exploited by insects, the VR setups have been used to
examine the neural representation of a behavioral
response. In a recent study in fruit flies (D. melanogaster),
a walking setup directly positioned under a 2-photon
microscope was used to investigate how the head direc-
tion is encoded in the ellipsoid body of the fly’s central
complex [52°°]. To understand the structure of the recur-
rent ellipsoid body neuronal network, the authors used a
combination of focused ion beam electron microscopy to
reveal synaptic connections between circuit elements.
Next, using RNA-sequencing and fluorescence 7n-situ
hybridization  they characterized receptors and
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Figure 3
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(a) Photo of a dragonfly with a mounted wireless recording backpack, capable of recording EMG and nerve cord signals in a mobile preparation,
using RF signals to power the electronics. (Image adapted from Thomas et al. provided by Dr Anthony Leonardo.) [59].
(b) Photo of a tethered ambulatory locust preparation with a flexible electrode surgically implanted in the antennal lobe for recording olfactory

signals during behavioral assays [62].

neurotransmitters at various synaptic connections and
therefore the type of interactions (excitatory versus inhib-
itory) at various parts of the network. Finally, imaging
calcium signals from ellipsoid body neurons in head-fixed
walking flies, the authors dissected how the different
structural motifs of this network facilitate its functioning
as a ring attractor (a compass-like neural network where
neurons tuned to the same head direction excite each
other, but neurons encoding different head directions
inhibit one another).

VR techniques have also been successfully used to study
the neural bases for a wide range of behaviors including,
looming objects and motion parallax in locusts [53],
stereopsis in the praying mantis [54], sensorimotor flight
control in Drosophila [55],and selective attention in hon-
eybees [28]. While there are some restrictions imposed on
the mobility of the organism, this approach offers a great
alternative when outdoor studies can be too expensive or
infeasible (e.g. due to weather conditions). Combining
markerless tracking with dynamically adjusting arenas
such as treadmills [56] and wind tunnels has the potential
to allow more unrestricted behaviors, but further work
remains to be performed in terms of accurate tracking,
precise closed-loop control, arena design, and stimulus
delivery.

Neural recordings in ambulatory preparations

T'o achieve simultaneous neural and behavior monitoring,
fast and accurate tracking of animal behavior is, however,
only half the story. The scale of insects has posed a
significant engineering challenge in the fabrication of
recording probes that can allow relatively unrestricted
movement. Recent advances in microfabrication techni-
ques have led to the development of miniature electrode
arrays which have the potential for use in many insect

models. However, the commercial availability of suitable
probes remains limited for mobile experiments, and
preparing custom in-house electrodes is often an easier
solution [57].

"T'raditionally, mobile preparations have required balanc-
ing the increase in noise with electrode length against the
mobility offered to the animal. While relatively long
electrodes that do not hinder the insect’s movement have
been used successfully [58], miniaturization of amplifier
technology has increasingly made it possible to mount the
pre-amplifiers and digitizers for data transmission directly
on the animal, minimizing noise while enabling free-
roaming movement [59-61]. This can optionally be com-
bined with small wireless transmitters to provide nearly
unfettered mobility to the animal being recorded
(Figure 3a). Such an approach has been combined with
custom electrodes to localize odor sources and study
neural underpinnings of behavioral responses in locusts
(Figure 3b) [53,62], and movement in cockroaches [58].

Conclusions

The last decade has seen several advances made towards
developing genetic, electrophysiological, computational,
and instrumentation toolkits to understand molecular and
neural bases for behavioral responses in insects. In par-
ticular, the ability to monitor and quantify behavioral
responses has provided key constraints in interpreting
and understanding the functional relevance of neural
responses observed in different brain regions and over
time. The current set of studies, however, have only
begun to probe and understand the rules that govern
how variable and complex neural activity underlie behav-
ioral responses. A more complete understanding of these
rules would require, at minimum, technical advances to
address the following challenges:
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e Can we monitor neural and behavioral responses from a
single insect over extended periods (days to months to
entire lifetime)?

e Can we create a wider library of behavioral responses
that can be monitored and quantified?

e Can we monitor several insects simultaneously and
determine how they interact?

Notwithstanding the progress made, current approaches
have been designed for noiseless settings inside a labora-
tory, and therefore limit the complexity of experiments
that can be performed. Thus, there is still a need for
designing solutions to the problem of monitoring and
quantifying neural/behavioral responses in complex and
eventually in open field settings or their natural habitats.
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