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ABSTRACT: We combine experiment and simulation to develop
a powerful, validated approach for characterizing the conforma-
tional landscapes of disordered polypeptoids. Polypeptoids have
become an important class of polymers, capable of precisely
defined sequences while remaining gram-synthesizable—properties
that have driven a rapidly expanding set of applications, including
antifoulants, therapeutics, sensing, and directed self-assembly. The
characterization of polypeptoid structure provides critical molec-
ular insight into sequence—structure—function relationships.
Structurally disordered polypeptoids require new approaches to

0.10

f\,\ — DEER
1 \ . .
/ | ;A= = Simulation
1
I
= 7 .
3 0.0s [ Increasing
: oS length
S l‘,\y 9
Q. H
1
1
1
0.00kL
0 20 40 60
Ree [A]

interrogate their wide range of conformations in solution. Here, we measure full end-to-end distance distributions, instead of
configurational averages, using double electron—electron resonance (DEER) spectroscopy and enhanced sampling molecular
modeling. We demonstrate excellent agreement between the experiments and simulations for a set of model hydrophilic
polypeptoids. Moreover, we illustrate the utility of this combined experiment—simulation approach in probing structure—function
relationships by characterizing the basic polymer physics of this polypeptoid series, demonstrating that the polypeptoids probed here

exhibit excluded volume behavior.

H 1. INTRODUCTION

Polypeptoids, or N-substituted glycines, possess both the
robustness of synthetic polymers and the tunability of
polypeptides and other biomolecules.'" They can now be
routinely synthesized at gram scale, sequence-specifically up to
50 monomers in length in a process that eliminates the need
for protection/deprotection procedures common in polypep-
tide synthesis, allowing access to a wide variety of chemistries."
As such, they have been extensively explored for a broad range
of applications, including as antifoulants,” antimicrobials,®>™>
other therapeutics,® delivery agents,”® sensing applications’
such as stimuli-responsive materials," binder materials for
batteries,"' crystallization modulators,'> and programmable
self-assembly.”~"° Many of these applications leverage the
sequence-specificity of polypeptoids that has been shown to
significantly modulate secondary'®™*" and self-assembled
structures®** and therefore function. Thus, advancement of
polypeptoid-containing materials and the fundamental design
rules that they follow requires elucidation of sequence—
structure—function relationships.

Many polypeptoids used in these applications are structur-
ally disordered and adopt a wide range of conformations.
Sequence has been shown to tune functional properties even in
these structurally disordered cases. For example, variations in
the location and number of hydrophobic or charged monomers
can modify antifouling and fouling release,”>** loading and
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release in drug delivery,25 gene transfection efﬁciency,26 and
the degree of melting point depression,”’ among other
properties. Further evidence suggests that shifts in the
conformational distributions of these disordered polypeptoids,
modulated by the polypeptoid sequence, contribute to changes
in function.”’~>" However, the difficulty of probing the
structure of disordered polypeptoids both experimentally and
computationally has hindered the development of fundamental
design rules to guide the discovery of novel and efficacious
polypeptoids. Experiments typically report on dominant or
average structures, obscuring variations within the ensemble of
conformations. On the other hand, modeling provides direct
access to the conformational landscape through insight into
atomic-scale structures and structural correlations. However,
polypeptoid simulations encounter major sampling challenges
due to the long time scales associated with conformational
transitions, which has also hampered the validation of
polypeptoid simulation models.
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In this work, we pursue a novel combined experimental—
computational approach of measuring and comparing struc-
tural ensembles, as opposed to dominant or average structures,
to elucidate a fundamental picture of polypeptoid conforma-
tional landscapes. Specifically, we measure the probability
distribution of the distance between the ends (end-to-end
distance) of a hydrophilic polypeptoid of varying length
(Figure la,c) using double electron—electron resonance
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Figure 1. Hydrophilic polypeptoids used here to cross-validate the
experimental and computational workflows are synthesized, charac-
terized, and simulated. (a) Polypeptoids comprise an alternating
sequence of hydrophilic monomers terminated on both ends by spin
labels for electron paramagnetic resonance, which measures the
distance between the oxygen radicals, R, oo, shortened to R, in the
text. (b) Disarcosine is simulated to validate the expanded ensemble
sampling. The arrows show rotation around the @, ¢, and y dihedrals
in the polypeptoid backbone. (c) Polypeptoids of varying lengths are
probed both through DEER and cw-EPR experiments and through
MD simulation. Note that N is the number of hydrophilic monomers,
not including the terminal spin labels.

(DEER) spectroscopy and leverage recently developed
inversion techniques to accurately extract these broad distance
distributions. We measure the same distributions computa-
tionally using an expanded ensemble simulation technique that
directly speeds up the sampling of the slow backbone bond
rotations to resolve the full equilibrium conformational
ensemble. The hydrophilic polypeptoid we choose to study
(Figure 1a) comprises an alternating sequence of methoxyethyl
and propanol side chains. The former have been previously
studied as promising antifoulants” and as model polar side
chains in self-assembling systems”” and the latter enhance the
polypeptoid’s solubility in water.

DEER is an electron paramagnetic resonance technique that
provides unique access to conformational ensemble informa-
tion by measuring the full distance distribution from a
composite time-domain signal that reports on distances
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between pairs of spin labels.”” It is especially advantageous
for comparison with simulations because its probes are
relatively small,”’ minimally perturb the conformational
ensemble,”’ and can be directly simulated.’* DEER has
traditionally been used to probe distances in structured
biomacromolecules™ or average distances in unstructured
systems. In recent years, its ability to detail the full probability
distribution over accessible distance ranges has garnered
significant interest. The application of DEER to characterize
disordered biological and synthetic polymeric systems through
this distance distribution is emerging,33_39 and methodological
developments are continually improving the accurate reso-
lution of the shape as well as the width of broad
distributions.”’™** Recent work on aqueous solutions of
polyethylene oxide, a canonical disordered, synthetic polymer,
demonstrates consistency between the broad distance
distributions determined by DEER and simulation,”” suggest-
ing that DEER is well positioned to characterize the
conformational landscape of disordered macromolecules.
Single-molecule Forster resonance energy transfer (FRET)
also probes conformational distributions,”> but DEER requires
fewer assumptions%’47 and captures far more molecules,
resulting in more accurate distance distributions.

The accessible distance range for DEER is generally
considered to be between 20 and 80 A.**** Supplementing
DEER at shorter distances, we use the analysis of continuous
wave electron paramagnetic resonance (cw-EPR) line shapes
where the dipolar interaction between two spin labels with
distances between 8 and 25 A leads to broadening of the
spectrum that can be related to the distances between them by
spectral simulation. Unlike DEER, cw-EPR cannot fully resolve
multifeatured distributions but is a complementary probe of
the existence and approximate width and character of the
distribution in the short-distance region.

Simulations of polypeptoids present unique challenges
because the polypeptoid amide bond isomerizes on long
time scales (seconds*”) relative to achievable simulation
lengths due to a large (~17 kcal/mol’®) barrier to isomer-
ization.”" Polypeptoid forcefields have a correspondingly large
barrier in the @ amide-bond dihedral potential, which hinders
simulation studies of appreciable chain lengths since the
number of isomerization states expands combinatorically with
the degree of polymerization. To accurately probe conforma-
tional space, the sampling technique must accelerate cis—trans
isomerizations for each amide bond. Here, we present and
validate a technique to sample amide-bond dihedral isomer-
ization in long polypeptoids by simulating in an expanded
ensemble of states in which the amide-bond dihedral potentials
are scaled down, after which properties are rigorously
reweighted back to the original state. This approach, which
has previously been used to enhance conformational sampling
in small molecules”® but has not yet been applied to
polypeptoids, addresses many of the challenges of select earlier
simulation strategies that do not extend well to longer chains in
explicit solvent.”>™>° More recently, the metadynamics
technique has provided an eflicient and targeted solution to
specifically enhance sampling of the slow degrees of free-
dom.>*™>® However, the successful tuning of key algorithm
convergence parameters can be difficult and a significant
amount of simulation time is spent exploring regions of phase
space inconsequential to the equilibrium ensemble. The
approach presented here similarly targets specific degrees of
freedom, the amide-bond isomerizations, and demonstrates
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excellent convergence properties while remaining extensible to
longer chains.

For the model polypeptoid studied here, the combined
simulation and DEER workflows show excellent agreement,
both in the shape of the end-to-end distance distributions and
in the scaling of the mean end-to-end distance with increasing
polypeptoid length that furthermore suggests that these
hydrophilic polypeptoids obey excluded volume behavior.
The distance distribution extracted using cw-EPR for a shorter
polypeptoid also agrees with simulation, offering an important
supplemental experimental probe of short polypeptoids.

B 2. METHODS

2.1. Polypeptoid Synthesis. Polypeptoid sequences varying the
number of alternating hydrophilic monomers (Figure 1a), N = 3, 9,
11, 1S, and 19, and containing spin labels on both ends are
synthesized using an automated Prelude peptide synthesizer following
previously established methods.®® Full details on polypeptoid
synthesis are included in Section S1.

2.2. Experimentally Probing Conformational Landscapes
with 4-Pulse DEER. DEER spectroscopy probes conformational
distributions, rather than just averaged quantities, because the time-
domain signal is a composite representing the product of individual
dipole—dipole interactions of the molecular ensemble that can be
decomposed into its constituents. Figure 2a—c provides an overview
of the workflow by which DEER spectroscopy generates an end-to-
end distance distribution. DEER involves the application of
microwave pulses to doubly spin-labeled macromolecules in a static
magnetic field according to the sequence illustrated in Figure 2a. The
microwave pulses with the (probe) frequency w, excite a subset of
electron spins (called “@, spins”), while the pulse with the (pump)
frequency wy excites a separate subset (called “wy spins”). The w,
sequence leads to a refocused electron spin echo (ESE) at time (27, +
7,) with an amplitude that depends primarily on the bandwidths of
the pulses and the relaxation times of the excited spins. With the
application of the pump pulse at @y that results in the excitation of wy
spins, any of the w, spins that are dipolar-coupled to wy spins will
experience changes in their local magnetic fields, communicated
through their dipolar couplings. Since the relaxation mechanisms that
govern the contributions of @, spins to the refocused ESE depend on
the local magnetic fields at the w, spins, this will have the effect of
attenuating the ESE relative to the @, sequence in the absence of the
pump pulse at wp. As the wy pulse is moved in time between the
second and third @, pulses, the ESE amplitude is modulated at the
frequencies corresponding to the strengths of the dipolar couplings
between @, and wjg spins. In this way, a time-domain signal is
generated that consists of frequencies that can be related to dipole—
dipole distances. In the time domain, the DEER signal consists of a
form factor, F(t), that contains the dipole—dipole interaction
information of interest and a background decay. The background
decay is owed primarily to intermolecular interactions and is removed
using the division of the overall signal by (typically) a stretched-
exponential function.*” We collect the DEER time-domain signal
using a Bruker QT-II resonator in a pulsed Q-band Bruker ES80
Elexsys spectrometer with a 300 W TWT amplifier (Applied Systems
Engineering, Model 177 Ka), as described in Section S2. Raw time-
domain data are shown in Figure S7, and background-corrected time-
domain data are shown in Figure 6.

Most commonly, the conversion of F(t) to a distance distribution,
P(r), is achieved using Tikhonov regularization, where the
mathematical inversion of F(t) occurs through a modified least-
squares regression to find a solution for P(r).** This method,
however, can struggle to find a unique solution, especially when F(t)
represents a broad and/or multimodal P(r). Method development for
deriving reliable P(r) from F(t) is an active area of research, and
several recent publications propose various solutions, e.g., neural
network processing,®” DeerLab,” and singular value decomposi-
tion.*>** Of particular interest are the techniques using singular value
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Figure 2. DEER enables the resolution of distributions of distances.
(a) A pump pulse at frequency wy inverts the population of spins at
that frequency (represented here by spin B), consequently inverting
the local field of spin B on spins at the observer frequency, @, (spin A,
in this case). Interaction between the w, and @y spin populations
changes the frequency of spin A, observed in the echo intensity
measured at @, as a function of the time corresponding to the pump
pulse position. In the pulse schematic shown, 7 pulses fully invert
spins, while 7/2 pulses tip the spins only 90°. The times between
observer frequency pulses are denoted as 7; and 7,. (b) Inversion of
this time-domain signal yields a distribution of distances in the form
of a P(R,.). (c) Distance between the spin labels determines the
frequency of the oscillations in the time-domain data with shorter
distances resulting in faster oscillations. The observed time-domain
signal is a product of the frequencies corresponding to each distance
in the ensemble.

decomposition (SVD) that have been developed by Srivastava and
Freed (designated as SF-SVD). These methods involve factorization
of the time-domain signal into discrete distance regions, such that
P(r) is constructed from a linear combination of individual “singular-
valued” components.”>** This approach has been shown to be robust
for analyzing broad and multimodal distributions®"®> and hence is the
primary approach used in this paper. Each distance distribution is
obtained by denoising the data using WavPDS®® and then fitting the
denoised data with the software SVDReconstruction.” Both software
packages are available via the National Biomedical Research Center
for AdvanCed ESR Technology hosted by the Cornell Center for
Advanced Computing. We present P(R,,) found with SF-SVD in the
main text and present those found via Tikhonov regularization using
the LongDistances software package®® in Section S2.

The lower limit of the DEER technique is approximately 20 A,°**
as discussed in Section $9.3%*%% FEor this reason, DEER-derived
distributions are presented with the region below 20 A in shaded blue.

2.3. Measuring Distances below the DEER-Resolvable
Region with cw-EPR. To complement DEER in the short-distance
regime, cw-EPR spectroscopy probes distances between 8 and 25 A
We acquire the cw-EPR spectra on a Bruker EMXplus X-band EPR
spectrometer equipped with a Bruker ER4119HS-W1 resonator, as

https://doi.org/10.1021/acs.macromol.1c00550
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described in Section S4. This technique extracts end-to-end distances
from the effects of dipolar coupling between nearby unpaired
electrons. When the extent of EPR line broadening by the dipole—
dipole interactions exceeds the intrinsic cw-EPR line width of the spin
label under the given experimental condition, its effect results in
spectral broadening that can be related to dipolar distances through
spectral simulation.”® Line broadening is observed for doubly labeled
polypeptoids where dipolar coupling originates from distances
typically below 18—25 A.**®" Quantitative analyses leading to
distance distributions are performed using ShortDistances spectral
simulation software.*””® As Figure 3 illustrates, deconvolution analysis
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Figure 3. cw-EPR probes distances less than 25 A. Short distances
inaccessible with DEER can be determined from dipolar broadening
accessed with cw-EPR. Deconvolution analysis iteratively fits a
Gaussian approximation of the distance distribution, P(R,.), para-
meterized by average distance, (R,.), and width, 6, to the EPR
spectrum of a doubly labeled sample by convoluting the EPR
spectrum of a singly labeled sample with the dipolar broadening from
the distance distribution.

starts with generating Gaussian distance distributions parameterized
by an average distance, (R.), and width, o (full width at half-
maximum). The distributions are convoluted with EPR spectra of
singly labeled samples (representing spectra unaffected by dipolar
broadening) and compared to the experimental EPR spectra for
doubly labeled samples. The parameters, (R..) and o, are iteratively
varied until the parameters best reproduce the broadened EPR
spectrum and then are used to calculate the P(R,,). We determine the
95% confidence intervals for the resulting distance distribution from
the covariance matrix of the fit parameters (Section S4).

2.4. Polypeptoid Forcefield Parameterization and Simu-
lation. In this study, we primarily utilize the MFTOID>? forcefield to
simulate polypeptoids but also compare results with other peptoid
models: GAFF-¢,”* a modified AMBER99SB-ILDN forcefield,”® and
a modified CGenFF forcefield.’” Section S8 gives details of the
forcefield parameterization. With any given forcefield, we create and
geometry-minimize initial polypeptoid structures in the fully extended
conformation using Avogadro 1.2.0.”" We place each polypeptoid in a
box of length at least 20 A longer than its end-to-end distance when
fully extended (Table S2) and solvate the boxes using GROMACS
2016.1.”%”*> We perform simulations using the OpenMM simulation
engine.”* Electrostatic interactions are computed using particle-mesh
Ewald. Lennard-Jones nonbonded interactions are cut off at 10 A.
Hydrogen bonds are constrained with SHAKE,”® and water is kept
rigid with SETTLE.® We simulate Langevin dynamics with an
integration time step of 2 fs, a temperature of 300 K, and a friction
coefficient of 0.01 ps™'. The pressure is set to 1 bar using a Monte
Carlo (MC) barostat with 500 fs between MC barostat moves.

2.5. Expanded Ensemble Sampling. To sample across slow
polypeptoid isomerization time scales, we develop a new sampling
approach based on an expanded ensemble,”””* allowing the system to
visit states in which the dihedral potentials for the @ dihedral (Figure
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1b) are “softened”, i.e., the force constant is scaled by a factor, .., that
varies between 0 and 1. When simulating with the modified CGenFF
forcefield, we multiply all backbone dihedral potentials (¢ and y in
Figure 1b, in addition to @) by A, since isomerization of the ¢
dihedrals is also slow (Section S12). To simulate in the expanded
ensemble, we perform Monte Carlo (MC) moves to change the A.,-
state every 20 ps. For each MC move, we use metropolized
independence sampling’® to compute the proposal and acceptance
probabilities for each A-state. These probabilities are biased by
weights for each state that are modified in the equilibration period to
achieve a flat sampling of states and then fixed in the production
period. Based on the probabilities, a new A,.-state is proposed and
accepted or rejected. For each system, there are a discrete set of .-
states, distributed so that the self-transition probabilities are nearly
flat. We reweight the properties computed during the expanded
ensemble production period back to the original, unsoftened state
using MBAR.*%!

2.6. Comparison of Polypeptoid Forcefields. Simulation
forcefield models for polypeptoids have seen far less development
and refinement than their peptide counterparts. Several polypeptoid
forcefields have been developed starting from general or protein
forcefields and reparameterizing to fit either experimental or quantum
mechanical measurements of short polypeptoids. Previous validation
of forcefields has shown that they accurately reproduce the
configurations of very short™ or highly structured polypeptoids.****
Many studies, for instance, compare simulations with crystal
structures,>*>**** 5o that only sequences that show a single
dominant conformation can be evaluated. However, to date, there
has been little work testing whether these polypeptoid forcefields
accurately reproduce the broader and multifeatured conformational
distributions of longer and disordered systems.

Figure 4 shows the end-to-end distance distribution of the
hydrophilic polypeptoid of length N = 11 measured by DEER (top)

0.10f (i) DEER 00 0 0 0 0 00
less reliable
0.05f
]
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—— mod. AMBER
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MFTOID
1
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Figure 4. Experiments validate models for disordered polypeptoids.
For the N = 11 polypeptoid, (top) the end-to-end distribution
measured using DEER and fit with SF-SVD. The shaded region
around the distribution gives 95% confidence intervals, computed as
described in Section S2. The shaded blue box denotes the region
below the accessible region for DEER. (Bottom) End-to-end
distributions computed from simulations using various polypeptoid
forcefields. Shaded regions show a 68% confidence interval computed
using bootstrapping (Section S13).

and computed from simulations using various forcefields (bottom). In
the accessible region, the MFTOID and GAFF-¢ forcefields show
better agreement with the experiment than the modified AMBER and
modified CGenFF forcefields. Moving beyond visual assessment, to
quantify the agreement between the experimentally (Ppgpgz) and
computationally (P,,,) derived end-to-end distance distributions, we
compute the Jensen—Shannon distance (JS).*® Smaller distances
reflect greater overlap between two probability distributions and thus
better quantitative agreement between the experiment and simulation

https://doi.org/10.1021/acs.macromol.1c00550
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We limit computations to the DEER-accessible region (>20 A) for
both distributions. Distances between the experimental distribution
and simulated distributions using the MFTOID, GAFF-¢, modified
AMBER, and modified CGenFF forcefields are 0.16 + 0.06, 0.19 +
0.07, 0.30 + 0.09, and 0.22 + 0.07, respectively (ranges give a 95%
confidence interval). An alternative metric gives similar trends (Table
$22). The modified AMBER and modified CGenFF forcefields
therefore show the weakest agreement with the experimental
distribution, while MFTOID and GAFF-¢ seem comparable in
accuracy. The latter, however, enforces an asymmetry in the ¢
dihedral angle distribution that is not physical for the achiral
polypeptoids studied here, and thus the MFTOID forcefield is the
model we adopt for the remainder of this work.

We attribute these differences to the polypeptoid forcefield
parameters themselves and not the different water models used, as
Figure S31 shows that the P(R,.) for N = 11 with the MFTOID
forcefield is consistent for the mTIP3P and SPC/E water models.
Below the DEER-accessible region (<20 A), the forcefields also show
differences in the height of the low-distance peak, suggesting that the
strength of spin-label aggregation varies among the forcefields. These
differences could be due to the polypeptoid forcefield or the spin-label
forcefield, but the latter is less likely because forcefields implemented
with the same spin-label parameters (MFTOID and modified
CGenFF) still give different P(R,.)’s in this region. Furthermore,
the backbone end-to-end distance distributions for the labeled and
unlabeled N = 11 polypeptoids, using the MFTOID forcefield, are
consistent (Figure S34), suggesting that the presence of the spin label
does not significantly perturb the polypeptoid backbone conforma-
tional distribution. Thus, small deviations in the spin-label parameters,
at least for the MFTOID forcefield, should not have a significant
effect on the overall computed conformational landscape of the

polypeptoid, especially for longer lengths.

B 3. RESULTS AND DISCUSSION

3.1. Expanded Ensemble Simulation Accurately and
Efficiently Samples Isomerization States. The expanded
ensemble simulation method reproduces the free-energy
difference between the cis and trans states computed from
umbrella sampling (Figure S23) for disarcosine (Figure 1b).
The 12 kcal/mol isomerization barrier also agrees with the
value reported by Zhao et al, who used parallel-bias
metadynamics to sample across the isomerization barrier.’®
The uncertainty in the free-energy landscape computed using
the expanded ensemble is larger at the barriers because the
expanded ensemble only circumvents the high free-energy
barrier for isomerization through modulation of the dihedral
potential, so that the sampling of the high free-energy regions
may still be poor. On the other hand, approaches such as
umbrella sampling and metadynamics directly bias the
dihedrals, encouraging flat sampling of the space of dihedral
angles. However, the equilibrium conformational landscape
will be dominated by configurations within the cis or trans
basins, not at the high free-energy barriers. The expanded
ensemble technique, then, allows crossing of high free-energy
barriers without spending unnecessary time thoroughly
sampling these regions.
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As previously reported for small molecules,” the expanded
ensemble significantly enhances the efliciency of the
simulation. Scaling the dihedral potential by a factor A
provides an order-of-magnitude increase in the isomerization
rate, comparing the rate of transitions between cis and trans
states when the @ dihedral potential is completely removed
(A = 0) to when it is unsoftened (4. = 1) (Figure S20);
extremely high temperatures are required to achieve the same
isomerization rates (Figure S21), rendering temperature
replica exchange impractical. The ability to access states at
or close to A.. = 0 then makes the correlation time for the @
dihedrals tractable (Figure S22), even accounting for the
additional computational cost of simulating the system in A
states that are far from the unbiased state (Figure S28). As a
result, equilibration and production runs on the order of
microseconds are sufficient to sample the end-to-end distance
distribution of these polypeptoids (Section S11). This means
that achieving an unbiased sampling of conformational space,
assuming that all other degrees of freedom are fully sampled
over, is now computationally tractable. The following results
from MD simulation all rely on this sampling approach.

3.2. End-to-End Distance Distributions from Experi-
ments and Simulation. The computational and experimen-
tal workflows presented here enable detailed characterization
of the conformational distribution of polypeptoids with
increasing chain lengths. We synthesize the polypeptoid with
alternating hydrophilic methoxyethyl (NME) and propanol
groups (Figure la), varying the number of hydrophilic
monomers: N = 9, 11, 15, and 19. We attach spin labels to
both ends of all polypeptoids for DEER measurements. We
carry out 4-pulse DEER experiments and obtain the end-to-
end distance distributions, P(R..), through SF-SVD, as
described in Section 2. Unless otherwise noted, we use “end-
to-end distance” to refer to the distance between the oxygen
atoms on the spin labels. We simulate the same polypeptoids
(including spin labels) as well as other lengths (N =1, 2, 3, S,
7, 13) using the expanded ensemble sampling approach and
the METOID forcefield (see Section 2.6 for justification).

Figure S5 shows the end-to-end distance distributions for
lengths N = 9, 11, 15, and 19. In the accessible region,
simulations and DEER show excellent agreement, which ofters
strong cross-validation of both workflows. The locations of the
peaks and the shapes of the long-distance tails of the
distributions are especially well reproduced. Both methods
consistently show not only the expected shift in the mean end-
to-end distance but also a broadening of the distribution with
length, characteristic of disordered polymers. Below the DEER-
accessible region (<20 A), the simulated distributions show a
smaller peak at around 10 A that decreases in height with
increasing polypeptoid length. This peak suggests that the spin
labels on both ends have a slight tendency to aggregate with
each other (Figure S39), as was previously observed in
simulations of end-labeled polyethylene oxide.”” Recalculating
the P(R,.) by removing the contribution from these short-
distance conformations, which are not captured by DEER,
further improves the agreement between DEER and simulation
(Figures S40 and S41).

In the DEER-accessible region (>20 A), Figure 5
demonstrates a few small inconsistencies between DEER and
simulation. To determine whether these inconsistencies are
reproduced in the time domain or stem from instabilities in the
fitted distance distribution due to the ill-posed nature of the
inversion, we back-calculate the DEER time-domain signal,

https://doi.org/10.1021/acs.macromol.1c00550
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Figure 5. End-to-end distance distributions measured with DEER and
computed from simulation are in excellent agreement. The gray lines
are the simulated distributions (using the MFTOID forcefield), and
the gray-shaded regions give a 68% confidence interval computed
from bootstrapping (Section S13). The orange lines and shaded
regions are the fitted DEER distributions and uncertainty computed,
respectively, as described in the main text and Section S2. All
distributions are normalized such that the integral above 20 A is 1.
The light blue-shaded box denotes the region below the accessible
region for DEER. The snapshots to the right of the figures are
representative conformations chosen to be close to the mean end-to-
end distances and are visualized in VMD.*®

F(t), from the MD-simulated and SE-SVD fitted distance
distributions, performing the forward convolution that the
fitting procedures attempt to invert (Section S9).

Figure 6 shows the time-domain signals computed through
convolution (Section S9) using the distributions in Figure S
(“back-calculated MD” and “back-calculated SF-SVD” signals),
along with the background-corrected experimental time-
domain data from DEER (“raw” signal). The shifts in the
back-calculated MD signal with increasing polypeptoid lengths
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Figure 6. Raw DEER signals are consistent with signals back-
calculated from simulated and fit end-to-end distance distributions.
Orange lines show the raw DEER signals, while the blue and green
lines show the signals back-calculated from the MD-simulated P(R..)
(simulated using the MFTOID forcefield) and the SF-SVD-fit P(R..),
respectively. For all signals, V(0) = 1, but the plots are shifted
vertically (Table S21) for each polypeptoid length for clarity. (Inset)
Low-frequency oscillations in the raw signal for the N 19

polypeptoid.
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are qualitatively consistent with that of the raw signal. In
particular, the slower decay and broadening of the minimum at
larger lengths are well reproduced. For all lengths, the back-
calculated MD signal shows a steeper decay near t = 0. This
feature reflects the presence of shorter end-to-end distances in
the MD-simulated P(R,,) that are not present in the DEER-
derived P(R,,). As discussed earlier, these short distances are
inaccessible to DEER. Recomputing the back-calculated MD
signal using only the portion of the MD-simulated P(R..)
above the lower accessible limit of DEER (20 A) leads to a
better agreement in the short-time decay (Figure S19). For N
= 15 and 19, the raw signal displays a low-frequency oscillation
(Figure 6, inset) that arises from longer distances in the DEER-
derived P(R,) and that is not reproduced in the back-
calculated MD signal shown in Figure 6. Thus, the differences
between the simulation and DEER end-to-end distance
distributions at longer lengths in Figure 5 are real and not
artifacts of the inversion. This discrepancy at longer lengths
could be due to inaccuracies in the forcefield that lead to
oversampling of shorter distances. For intrinsically disordered
polypeptides, it was previously reported that peptide forcefields
bias conformational distributions toward more compact
structures than is realistic.””*®

The full distance distributions in Figure S enhance our
understanding of shifts in the conformational landscape with
additional monomers. Figure S35 compares simulated distance
distributions to those for a theoretical excluded volume
polymer, suggesting that the polypeptoids follow excluded
volume scaling, characteristic of polymers in a good solvent.”’
To confirm, Figure 7 shows that the mean distances computed
from both the simulated and experimental distance distribu-
tions follow excluded volume scaling. The mean end-to-end
distances along the backbone, between terminal nitrogens
instead of the spin-label oxygen radicals (see Figure 7, inset),
computed from simulations and fit to (RZxx)"/> = bNY, give a
scaling exponent and prefactor of @ = 0.61 + 0.02 and b = 4.0
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Figure 7. Scaling of the mean end-to-end distance shows reasonable
agreement between experiments and simulations and suggests
excluded volume scaling. The mean end-to-end distance computed
from the DEER distributions (blue stars) and from simulation
(orange triangles give the mean distance between the oxygen radicals,
and green circles give the mean distance along the backbone) using
the METOID forcefield. The red hexagon shows the mean end-to-end
distance from cw-EPR. Dashed lines show fits to a power law, shifted
by an effective number of additional monomers y for the spin-label
end-to-end distances, as described in the text. The labels report the
fitted exponents. (Inset) Spin-label end-to-end distance, R..o0, is
measured by DEER and cw-EPR and is computed from simulations,
while the backbone end-to-end distance, R, ny, is only accessible in
simulations.
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+ 0.2, respectively. The value of the exponent is consistent
with excluded volume scaling (@ = 0.588) and reasonably
consistent with Zhao et al. who reported a scaling exponent of
0.66 + 0.01 for the radius of gyration of polysarcosine,”®
another relatively hydrophilic polypeptoid, computed from
molecular dynamics simulations. As far as we know, no
experimental works have previously reported scaling exponents
for polypeptoids.

However, the mean distance that is computed from the
simulated and DEER distributions in Figure S is not the
backbone distance but the spin-label end-to-end distance,
which incurs an additional contribution (relative to the
backbone) from the spin labels themselves. To account for
this effect, we fit mean spin-label distances to a shifted power
law, (R, 00)"/* = b(N + ) where b = 4.0 is the prefactor fit
from the backbone end-to-end distances and y accounts for the
effective increase in the number of monomers due to the
addition of the spin labels and the distance between the
backbone and the oxygen radical on the spin label. Previous
work has used a similar offset parameter to fit mean end-to-end
distances from FRET.”””' The fitted exponent for the
simulated mean spin-label distances is « 0.58 + 0.02,
corroborating excluded volume scaling. The fitted effective
increase in the number of monomers is y = 6.0, suggesting that
each spin label effectively behaves as three additional
monomers. We then fit the DEER-derived mean spin-label
distances using this shift factor, ie., to (R oo)"* = b(N +

€,

6.0)% The resulting exponent is @ = 0.53 + 0.08 and again
agrees with the excluded volume scaling within uncertainty.
Thus, the scaling exponents computed from simulations and
DEER are consistent. However, the mean end-to-end distances
from simulations are systematically smaller, consistent with the
previous work comparing mean distances from DEER and
simulation for poly(ethylene oxide).” This is partly due to the
challenges in resolving the region below 20 A for DEER.
Computing the mean of the portion above the lower accessible
limit for DEER (20 A) for both the DEER-resolved and
simulated distributions reduces the discrepancy (Figure S41).

We next use cw-EPR to probe the distance distribution of
the N = 3 polypeptoid, whose end-to-end distance distribution
largely lies below 20 A and thus below the accessible region of
DEER. Figure 8 shows that the Gaussian approximation of the
distance distribution from the cw-EPR experiment agrees with
the longer-distance peak in the simulated distribution. The
simulated distribution also contains a shorter-distance peak at
around 8 A that is also seen in Figure S for longer polypeptoids
and here similarly indicates spin-label aggregation. The mean
end-to-end distance from cw-EPR line-shape analysis is 16.5 +
0.1 A. Fitting to the power law, (R, o0)"/* = b(N + 6.0)*, using
both the DEER and cw-EPR mean distances yields a scaling
exponent of @ = 0.63 + 0.06 and hence remains consistent
with the excluded volume scaling seen in Figure 7. Cw-EPR
cannot resolve distances below ~8 A, so a fraction of the low-
distance population predicted from the simulations would not
contribute to the cw-EPR-resolved distribution. However, cw-
EPR clearly extends our insight into the experimental
conformational distributions at distances below the DEER-
accessible regime.

B 4. CONCLUSIONS

Using a powerful experimental technique, DEER, and a state-
of-the-art enhanced sampling approach to overcome long
isomerization time scales in polypeptoid simulations, we
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Figure 8. Continuous wave electron paramagnetic resonance allows
access to the low-distance region and agrees with simulations. For the
N = 3 polypeptoid, the Gaussian approximation of the end-to-end
distance distribution from cw-EPR (orange) agrees with the simulated
distribution (using the MFTOID forcefield) in the accessible region
for cw-EPR (black dashed line gives the full distribution; the blue line
is a Gaussian with the same mean and standard deviation as the
simulated distribution in the cw-EPR-accessible region). Shaded gray
regions show a 68% confidence interval computed using boot-
strapping (Section S13). The shaded orange region encompasses all
Gaussian distributions with mean and standard deviation within the
95% confidence intervals obtained from the covariance matrix of (R.)
and o (Section S4). All distributions are normalized such that the
integral above 8 A is 1. The shaded and hatched blue box denotes the
region below the accessible region for cw-EPR. (Inset) Raw cw-EPR
spectra for the doubly labeled 3mer (dashed red) and singly labeled
3mer (solid green) normalized by the maximum peak height.

develop a combined experimental—simulation approach to
quantify the conformational landscapes of disordered hydro-
philic polypeptoids through the measurement of end-to-end
distance distributions. The large widths of the distributions
indicate that these hydrophilic polypeptoids are indeed
disordered and would thus be difficult to structurally
characterize solely by examination of dominant conformations,
instead requiring the resolution of full distributions. Validation
of the expanded ensemble sampling technique and the
MEFTOID forcefield allows us to computationally probe the
conformational distribution of polypeptoids of appreciable
lengths (here, tested up to N = 19, while we estimate up to N
30 is reasonable for a single GPU). We demonstrate
excellent agreement between distance distributions resolved
through simulations and dipolar EPR spectroscopy for varying
lengths of a model hydrophilic polypeptoid. These capabilities
offer fundamental insight into the excluded volume polymer
scaling behavior of this particular polypeptoid system.

These results establish highly transferable experimental and
computational workflows to characterize disordered poly-
peptoid conformations with emerging structural characteristics
beyond excluded volume properties. Though polypeptoid
sequences have already been shown to modulate structure
and function, the workflows developed here will enable more
controlled investigations of sequence—structure—property
relationships in the highly tunable, sequence-programmable
polypeptoid platform. For instance, the determination of
changes in the conformational ensemble allows us to isolate
the effects of backbone conformation and side-chain
chemistries on functional properties. This is especially
important because more significant variations in sequence,
such as incorporating an irregular sequence of hydrophobic

~
~
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side chains, or movement of the polypeptoid from the solution
to a surface will lead to significant perturbations in structure
that can complicate the sequence—property relationship and
cannot be fully captured by existing polymer physics models.
Beyond intrachain distances, the ability to resolve intermo-
lecular distance distributions, if spin labels are placed on
separate molecules, can provide insight into self-assembled
polypeptoid structures or even the mechanism of self-assembly.
For these more complex systems, the ability to evaluate full
distance distributions both experimentally and computationally
is critical. The versatility of the experimental technique, as the
spin labels can be placed in other locations along the
polypeptoids, provides an exceptional degree of insight into
broad and multifeatured conformational landscapes. These
capabilities will further contribute to the design of novel
materials that utilize disordered polypeptoids.
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