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Chapter 1

Topological Defects in General Quantum
LDPC Codes

Pak Kau Lim, Kirill Shtengel and Leonid P. Pryadko

Department of Physics & Astronomy, University of California,

Riverside, CA, 92521 USA

We consider the structure of defects carrying quantum information in general
quantum low-density parity-check (LDPC) codes. These generalize the corre-
sponding constructions for topological quantum codes, without the need for
locality. Relation of such defects to (generalized) topological entanglement entropy
is also discussed.

1.1 Introduction

Quantum computation offers exponential algorithmic speed-up for some

classically hard problems. It relies on multi-particle quantum-correlated

states which are very fragile and are destroyed rapidly in the presence

of errors — noise, environment, or just random control errors. Quantum

error correction gives a unique way of dealing with such a fragility.

Selective measurements are performed to separate just one of exponentially

many possible outcomes. As a result, instead of the net error probability

which grows linearly or faster with the number of qubits n and saturates

rapidly, one only has to worry about the error probability per qubit,

p. This leads to the threshold theorem [1, 2], basically stating that an

arbitrarily long quantum computation is possible when p is below certain

threshold, pc > 0.

Most important class of quantum error-correcting codes are the stabilizer

codes [3,4]. Of these, most studied, and closest to a practical implementation,

are the surface codes [5, 6]. A surface code can be viewed as the degenerate

ground-state manifold of certain quantum spin model with the Hamiltonian

formed by a sum of commuting terms local on a two-dimensional lattice.

One of the many advantages of surface codes is the flexibility they offer

in the code parameters and the structure of logical operators. To add an
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extra qubit, one may simply create a hole in the surface. A larger hole,

well separated from other defects, offers better protection (larger minimal

code distance). Pairs of such holes can be moved around to perform encoded

Clifford gates, etc. [6–8].

On the other hand, a substantial disadvantage of surface codes, or any

stabilizer code with generators local on a D-dimensional Euclidean lattice,

is that such codes necessarily have small rates R = k/n whenever the code

distance d gets large [9, 10]. Here k is the number of encoded qubits and

n is the block length of the code. To get a finite asymptotic rate, one

needs more general quantum codes. In particular, any family of w-bounded

quantum LDPC codes with stabilizer generators of weight not exceeding

w > 0 and distances divergent as a logarithm or a power of n has a nonzero

asymptotic error correction threshold even in the presence of measurement

errors [11,12]. Several families of bounded-weight quantum LDPC codes with

finite rates have been constructed. Best-known constructions are quantum

hypergraph-product (qHP) and related codes [13–15], and various hyperbolic

codes [16–19].

The biggest obstacle to practical use of finite-rate quantum LDPC

codes is that their stabilizer generators must include far separated qubits,

regardless of the qubit layout in a D-dimensional space [9, 10]. Error

correction requires frequent measurement of all stabilizer generators, and

measuring such non-local generators is not practical if the hardware only

allows local measurements. Nevertheless, there is a question of whether other

advantages of surface codes, e.g., the ability to perform protected Clifford

gates by code deformations, can be extended to more general quantum LDPC

codes.

Such a construction generalizing the surface-code defects and gates by

code deformations to the family of qHP codes [13] has been recently proposed

by Krishna and Poulin [20]. However, their defect construction is very specific

to qHP codes. Second, Krishna and Poulin do not discuss the distance of the

defect codes they construct, even though it is important for the accuracy of

the resulting gates. Indeed, since gates by code deformation are relatively

slow, the distance has to be large enough to suppress logical errors.

The purpose of this work is to give a general defect construction

applicable to any stabilizer code. In the simplest form, one may just remove

a stabilizer generator which produces an additional logical qubit, k → k+1.

However, the distance d′ of such a code will not exceed the maximum

stabilizer generator weight, d′ ≤ w. Given a degenerate quantum LDPC

code with the stabilizer generator weights bounded by w and a distance

d > w, we would actually like to construct a related code encoding more
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qubits but retaining degeneracy, i.e., with a distance d′ > w. We propose a

three-step defect construction: remove qubits in an erasable region to obtain

a subsystem code, do gauge-fixing to obtain a stabilizer code with some

generators of weight exceeding w, and promote one or more such generators

of the resulting code to logical operators. The choice of the gauge-fixing

prescription is easier in the case of Calderbank, Shor, and Steane (CSS)

codes [21, 22], which makes the construction more explicit. For such codes,

with some additional assumptions, we give a lower bound on the distance of

the defect code. This shows that defect codes with unbounded distances can

be constructed, as is also the case with surface codes.

An interesting and a rather unexpected application of this analysis is the

relation of qubit-carrying capacity of a defect to its (generalized) topological

entanglement entropy [23–25] (TEE), denoted γ. Namely, a degenerate defect

code with distance d′ > w can only be created when γ > 0. Further,

when distance d′ is large, the TEE γ acquires stability: it remains nonzero

whenever the defect is deformed within certain bounds.

1.2 Defect construction

Generally, an n-qubit quantum code is a subspace of the n-qubit Hilbert

space H⊗n
2 . A quantum [[n, k, d]] stabilizer code is a 2k-dimensional subspace

Q ⊆ H
⊗n
2 specified as a common +1 eigenspace of all operators in an Abelian

stabilizer group S ∈ Pn, −1 �∈ S, where Pn denotes the n-qubit Pauli group

generated by tensor products of single-qubit Pauli operators. The stabilizer is

typically specified in terms of its generators, S = 〈S1, . . . , Sr〉. If the number

of independent generators is r ≡ rankS, the code encodes k = n− r qubits.

The weight of a Pauli operator is the number of qubits that it affects. The

distance d of a quantum code is the minimum weight of a Pauli operator

L ∈ Pn which commutes with all operators from the stabilizer S, but is not
a part of the stabilizer, L �∈ S. Such operators act nontrivially in the code

and are called logical operators.

An n-qubit CSS stabilizer code Q ≡ CSS(P,Q) is specified in terms of

two n-column binary stabilizer generator matrices HX ≡ P and HZ ≡ Q.

Rows of the matrices correspond to stabilizer generators of X- and Z-type,

respectively, and the orthogonality condition PQT = 0 is required to ensure

commutativity. The code encodes k = n− rankP − rankQ qubits, and has

the distance d = min(dX , dZ),

dX = min
b∈C⊥

Q\CP
wgt(b), dZ = min

c∈C⊥
P \CQ

wgt(c). (1.1)
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Here CQ ∈ F
⊗n
2 is the binary linear code (linear space) generated by the rows

of Q, and C⊥
Q is the corresponding dual code formed by all vectors in F

⊗n
2

orthogonal to the rows of Q. Matrix Q is the parity-check matrix of the code

C⊥
Q . A generating matrix of C⊥

Q , Q
∗, has rankQ∗ = n− rankQ and is called

dual to Q. Also, if V = {1, . . . , n} is the set of indices and B ⊂ V its subset,

for any vector b ∈ F
⊗n
2 , we denote b[B] the corresponding punctured vector

with positions outside B dropped. Similarly, Q[B] (with columns outside of

B dropped) generates the code CQ punctured to B. We will also use the

notion of a binary code C shortened to B, which is formed by puncturing

only vectors in C supported inside B,

Code C shortened to B = {c[B] : c ∈ C ∧ supp(c) ∈ B}.

We will denote QB a generating matrix of the code CQ shortened to B. If G

and H = G∗ is a pair of mutually dual binary matrices, i.e., GHT = 0 and

rankG + rankH = n, then HB is a parity-check matrix of the punctured

code CG[B], and [26]

rankG[B] + rankHB = |B|. (1.2)

The distance d of a linear code C is the minimal Hamming weight of a

nonzero vector in C. In general puncturing reduces the code distance. More

precisely, if d and d′ are the distances of the original and the punctured code,

respectively, they satisfy d−|A| ≤ d′ ≤ d, where A = V \B is the complement

of B. On the other hand, the minimum distance d′′ of a shortened code is

not smaller than that of the original code, d′′ ≥ d.

For a quantum code, if A is a set of qubits and B = V \A its complement,

the stabilizer group S can also be punctured to B, by dropping all positions

outside B. With the exception of certain special cases [27,28], the resulting

group G ≡ S[B] will not be Abelian, and can be viewed as a gauge group

of a subsystem code [29, 30] called the erasure code. A stabilizer code can

be obtained by removing some of the generators from G to make it Abelian;

such a procedure is called gauge-fixing. In the case of a CSS code with

stabilizer generator matrices HX = P and HZ = Q, the punctured group

has generators P [B] and Q[B], while a gauge-fixed stabilizer code can be

obtained, e.g., by replacing punctured matrix Q[B] with the corresponding

shortened matrix, QB. This latter construction can be viewed as a result of

measuring qubits outside B in the X-basis. Qubits in an erasable set A can

be removed without destroying quantum information. In this case, according

to the cleaning lemma [10], the logical operators of the original code can all
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be chosen with the support outside A. From here, with the help of Eqs. (1.1)

and (1.2), we obtain the following statement (see Appendix A for all proofs).

Statement 1. Consider a CSS code Q ≡ CSS(P,Q) on qubit set V of

cardinality |V | = n, encoding k qubits and with the CSS distances dX , dZ .

Let A ⊂ V be an erasable in Q set of qubits, and B ≡ V \A its complement.

Then, the length-|B| code Q′ ≡ CSS(P [B], QB) encodes the same number of

qubits, k′ = k, and has the CSS distances d′X , d
′
Z such that:

dX − |A| ≤ d′X ≤ dX , d′Z ≥ dZ . (1.3)

The statement about the number of encoded qubits is true in general: an

erasure code and any of the corresponding gauge-fixed codes encode the same

number of qubits as the original code as long as the set A of removed qubits

is erasable. (And, of course, we want to stick to erasable sets since we do

not want to lose quantum information). To construct a code that encodes

k′′ > k qubits, it is not sufficient to just remove some qubits, one has to

also remove some group generators. If we do not care about the weight of

stabilizer generators and start with a generic stabilizer code, a code with

a decent distance may be obtained simply by dropping one of the existing

stabilizer generators. Our general construction below is focused on quantum

LDPC codes with weight-limited stabilizer generators:

Construction 1. Given an original [[n, k, d]] degenerate code with stabilizer

generator weights bounded by some w < d, in order to create a degenerate

“defect” code with k′ > k and d′ > w, (i) remove some qubits in an erasable

set, (ii) gauge fix the resulting subsystem code, and then (iii) drop one or

more stabilizer generators with weights bigger than w.

The gauge group G = S[B] of the erasure code in step (i) has generators

of weights w or smaller; generators of weight greater than w are obtained

after gauge fixing in step (ii). This construction does not guarantee whether

we get a degenerate code or not. Below, with the help of some additional

assumptions, we prove several inequalities that guarantee the existence of

not only degenerate defect codes with d′ > w, but also highly-degenerate

defect codes with unbounded distances.

1.3 Distance bounds for a defect in a CSS code

First, let us get general expressions for the distances d′X , d′Z of a CSS code

with a removed Z-type generator. Given the original code CSS(P,Q), we

choose a linearly-independent row of Q, u0, as the additional type-Z logical
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operator, and denote Q′ the corresponding matrix with the row dropped

(and of the rank reduced by one). Denote

d
(0)
Z = min

α
wgt(u0 + αQ′), (1.4)

the minimum weight of a linear combination of u0 with the rows of Q′. Then,
Eq. (1.1) gives

d′Z = min(dZ , d
(0)
Z ). (1.5)

The additional type-X logical operator has to be taken from the set of

detectable errors of the original code. Specifically, it has to anticommute

with the element of the stabilizer being removed, but commute with the

remaining operators in the stabilizer and all logical operators of the original

code. In addition to the X-type logical operators of the original code, the

logical operators of the new code include all errors with the same syndrome as

the chosen canonical operator. Respectively, the expression for the distance

reads:

d′X = min(dX , d
(0)
X ), d

(0)
X = min

b :u0bT=1∧Q′bT=0
wgt(b). (1.6)

The lower bounds constructed in the following two subsections both

rely on geometry in a bipartite (Tanner) graph associated with the Z-type

generator matrix HZ = Q. Namely, given its row-set U (check-nodes) and

column-set V (value-nodes), the Tanner graph has the union U ∪ V as its

vertex set, and an undirected edge (u, v) ∈ U × V for each nonzero matrix

element Quv. On a graph there is a natural notion of the distance between a

pair of nodes, the number of edges in the shortest path between them; a ball

ΩR(u0) of radius R centered around u0 is the set of all vertices at distance

R or smaller from u0. Then, an erasable region A = ΩR(u0)∩V is chosen as

a set of value nodes within the radius R from a check node u0 ∈ U , subject

to the condition that a row of the shortened matrix QB contains u0 in its

expansion over the rows of Q.

The condition is not a trivial one, as it is actually equivalent to region A

being erasable in the code CSS(P,Q′) formed by the original matrix HX ≡ P

and the matrix Q′, the original matrix Q with the row u0 (considered linearly

independent) dropped, same code as in Eqs. (1.4)–(1.6). As an equivalent

but easier to check condition, one may request that row u0[A] be a linear

combination of the rows of the punctured matrix Q′[A] (remember that the

support of u0 is a subset of A, while u0 is linearly independent from the rows

of Q′). In addition, we use a corresponding sufficient condition as a part of

lower X-distance bound in Statement 2, and formulate a related necessary
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condition in terms of the topological entanglement entropy associated with

the defect A in Sec. 1.4.

1.3.1 Code with locally linearly-independent generators

We need a condition to guarantee a lower bound on the weight of the operator

conjugate to the row u0 removed from the matrix QB , see Eq. (1.6). Here,

we will assume that the set of Z-type stabilizer generators forming the rows

of the matrix HZ = Q be overcomplete. That is, there be one or more linear

relations between the rows of Q, and that we start with a row u0 which takes

part in such a relation.

In the case of the toric code (or any surface code on a locally planar

graph without boundaries), see Fig. 1.1(a), the linear relation is simply the

statement that the sum of all rows of HZ be zero (necessarily so since each

column has weight two). Such a relation exists for any matrix with even

column weights, e.g., qHPs from (�,m)-regular binary codes with both � and

m even. Further, many such linear relations exist for CSS codes forming chain

complexes of length 3 or more, e.g., the D-dimensional hyperbolic [18, 31]

and higher-dimensional qHP codes [15] with D > 2.

Statement 2. Given a CSS code CSS(P,Q) and a natural R1, consider

the bipartite Tanner graph associated with the matrix Q, and a ball W =

Ω2R1(u0) of radius 2R1 centered around the row u0 ∈ U . Assume (a) that

the row u0 is involved in at least one linear relation with other rows of Q,

and (b) there exists R2 > R1 such that all rows within radius 2R2 from

the center be linearly independent of each other. Let Q1 denote a full-row-

rank matrix obtained from Q by removing some (linearly-dependent) rows

outside W . Then weight of any b ∈ F
⊗n
2 such that the syndrome Q1b

T has

(a) (b) (c)

Fig. 1.1. (a) Homologically trivial hole on a torus. (b) Surface code with a smooth
boundary. Removing qubits (edges) inside of the circle we get a nontrivial defect. (c) This
circle contains a boundary edge with no neighboring plaquette; removing the corresponding
edges we again get a trivial defect.
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the only nonzero bit at the check node u0 satisfies wgt(b) ≥ R2, and for the

complement B = V \ A of any region A ⊆W, wgt(b[B]) ≥ R2 −R1.

The punctured vector b[B] is a representative of the new X-type codeword

in the defect code CSS(P [B], Q′
B), where Q

′ is obtained from Q1 by removing

u0; the constructed bound gives d
(0)
X ≥ R2−R1 for the distance in Eq. (1.6).

We also note that additional, linearly-dependent with u0, rows in Q need

not have bounded weight, as long as on the Tanner graph they are located

outside the ball W2. The corresponding requirement is of course equivalent

to any of the two conditions discussion above this subsection title, with

A = W2 ∩ V . In the case of a surface code with smooth boundary, see

Figs. 1.1(b) and 1.1(c), the extra row may be chosen as the product of all

plaquette generators, with the support along the actual boundary. In such a

case, the lower distance bound in Statement 2 is saturated.

1.3.2 Stabilizer group with an expansion

Here we construct a simple lower bound on the Z-distance of the defect,

in essence, relying on the monotonicity of the distance dZ with respect to

X-basis measurement of qubits in an erasable set, see Statement 1. To make

it nontrivial, we assume that Z-type stabilizer generators of the original code

satisfy an expansion condition, namely, there exists an increasing real-valued

function f such that a product Πm of any m distinct generators has weight

bounded by f(m),

wgt(Πm) ≥ f(m), f(m+ 1) > f(m). (1.7)

Such a global condition on code generators guarantees that the boundary

condition is good for the defect we are trying to construct. For example, in

case of the toric code on an L × L square lattice with periodic boundary

conditions, there are L2 plaquette generators but only L2 − 1 of them are

independent. Namely, the product of all plaquette generators is an identity,

so m → L2 −m is a symmetry of the weight distribution. Necessarily, the

function f in Eq. (1.7) has a trivial maximum, f(L2) ≤ 0. Respectively, a

single hole in Fig. 1.1(a) has a homologically trivial boundary — meaning

that it can be pushed out and eventually contracted to nothing by a sequence

of single-plaquette steps. On the other hand, for a planar smooth-boundary

surface code configuration as in Fig. 1.1(b), one gets f(m) scaling as a

perimeter of m plaquettes with a non-trivial maximum.

Generally, as one increases the set A of removed qubits, there will be

rows in the shortened matrix QB formed as linear combinations of increasing

numbers of rows of the original matrix Q. The expansion condition (1.7)
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with maxm f(m) > 0 guarantees that the corresponding rows cannot

be contracted to nothing. For example, when we remove a single qubit

corresponding to a weight-� column of Q, if the corresponding adjacent rows

all have weights w and do not overlap (in the case of a surface code � ≤ 2

and w is the number of sides in the corresponding plaquette), the shortened

matrix QB necessarily has κ = � − 1 rows of weight 2w − 2. Assuming

f(2) = 2w − 2, at any w > 2 this is already sufficient to guarantee the

existence of a degenerate defect code with d′Z > w.

With larger defects, combinations of larger numbers of rows may become

necessary. If so, the expansion condition (1.7) will also guarantee that

codes with Z-type distances (1.5) much greater than w can be constructed

(assuming big enough original code distance dZ).

Statement 3. Given a code CSS(P,Q) and a natural R1, consider the

bipartite Tanner graph associated with the matrix Q, and a ball W =

Ω2R1(u0) of radius 2R1 centered around the row u0 ∈ U . Denote Q′ the

matrix obtained by removing u0 from Q. Assume (a) that A ≡ W ∩ V is

erasable in the code CSS(P,Q′), and (b) that the set of Z-generators defined

by the rows of matrix Q satisfies the expansion condition (1.7) with f(2) ≥ 1.

Then, weight of any linear combination of u0 with rows of the matrix Q′

supported on the complement B ≡ V \ A satisfies d
(0)
Z ≥ f(R1).

Notice that the condition (a) here is the same as discussed above Sec. 1.3.1

title; the corresponding sufficient condition is a part of Statement 2, where

any R2 > R1 will do.

1.3.3 Defect codes with arbitrary large distances

Notice that Statement 2 requires a linear dependence between generators of

Q, while Statement 3 requires the expansion condition (1.7) with nontrivial

f which is stronger than just linear independence. Nevertheless, these

conditions are not necessarily incompatible. The condition in Statement 2

only needs to be satisfied for some parent code. For example, in the case of a

toric code, two distinct holes are needed in order to create a defect code with

distance d′ = min(d′Z , d
′
X) > 4. Here a linear dependence between plaquette

operators can be found in the parent toric code, one hole is needed to satisfy

the conditions of Statement 3, while the other one is the actual erasable set

in Construction 1.

Generally, suppose we have a parent CSS code CSS(HX ,HZ) with

bounded-weight generators, sufficiently large distance, and matrix HZ with

even-weight columns so that the sum of all rows be zero. Such a pair of
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matrices satisfies conditions of Statement 2 but not of Statement 3. Similar

to the toric code, where one needs two holes to create a single-qubit defect,

here we also may need to take an erasable set A formed by two or more

disjoint erasable defects, e.g., balls as in Statement 3; that the set A be

erasable can be guaranteed by the union lemma (Lemma 2 in Ref. [9]).

Then, one (or more if needed) balls can be used to ensure the existence

of the function f in Eq. (1.7) with sufficiently large maxm f(m), while the

qubits in the last remaining ball would be used as the erasable set.

Explicitly, as a parent code family, one can use, e.g., qHP codes [13]

created from random matrices with even-valued row and column weights.

For example, (4, 6)-regular random matrices would do well, leading to qHP

codes with asymptotically finite rates, whose CSS generator matrices have

column weights 4 and 6, regular row weights w = 10, and O(n1/2) linear

relations between the rows of generator matrices with number of nonzero

coefficients in each linear relation scaling linearly with block length n of the

resulting code. The distance of such parent codes grows as O(n1/2); this is

sufficient to ensure that for any d0 > 0 one can choose n large enough so

that sufficiently large erasable balls exist to guarantee the existence of defect

codes with d′ ≡ max(d′X , d
′
Z) ≥ d0.

1.4 Relation with topological entanglement entropy

There exists a suggestive parallel between the structure of a large-distance

qubit-carrying defect we discussed, and (generalized) topological entangle-

ment entropy (TEE) which can be associated with such a defect [23,24]. The

latter may be defined in terms of the usual entanglement entropy (EE), which

characterizes what happens when some of the qubits carrying a normalized

quantum state |ψ〉 ∈ H⊗n
2 are erased (traced over). Namely, if the set of

qubits is decomposed into A and its complement B = V \ A, one considers

the binary von Neumann entropy Υ(A;B) ≡ − trB ρB log2 ρB , where the

density matrix ρB = trA |ψ〉〈ψ| is obtained by tracing over the qubits in A.

The definition is actually symmetric with respect to interchanging A and B,

Υ(A;B) = Υ(B;A).

The entanglement entropy has a particularly simple form when |ψ〉
is a stabilizer state [32]. Such a state is just a stabilizer code encoding

no qubits, so that its dimension is 20 = 1. With n = |V | total qubits,

this requires a stabilizer group with n independent generators. According

to Fattal et al. [32], the EE of any stabilizer state |ψ〉 ∈ Q is uniquely

determined by the decomposition of the stabilizer group S = SA×SB×SAB,

where nontrivial elements of subgroups SA and SB are supported only
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on A and only on B, respectively, and those of SAB are necessarily split

between A and B. Namely, rankSAB = 2p is always even, and it is this

p (or, equivalently, the number of EPR pairs split between A and B) that

determines the entanglement entropy,

Υ(A;B) = p ≡ 1
2 rankSAB. (1.8)

Given a stabilizer code Q with parameters [[n, k, d]] and a stabilizer group

S of rank n − k, a stabilizer state |ψ〉 ∈ Q can be formed by adding any k

mutually commuting logical Pauli operators to the stabilizer group. Then, if

set A ⊂ V is erasable, according to the cleaning lemma [10], we can select all

logical operators with the support in B = V \A. With the logical operators

in SB, both SA and SAB are subgroups of the stabilizer group S of our

original code, and the entanglement entropy is given by Eq. (1.8). The same

quantity p can also be expressed in terms of the punctured stabilizer group

S[B] = SB × SAB [B] (gauge group of the subsystem erasure code), written

as a product of its center, the (shortened) stabilizer group SB, and p pairs

of canonically conjugated “gauge” qubits which generate the (punctured)

subgroup SAB [B].

In the case of a CSS code, such a decomposition exists for both X-type

and Z-type subgroups of the stabilizer, e.g., S(Z) = S(Z)
A ×S(Z)

B ×S(Z)
AB , with

rankS(Z)
AB = rankS(X)

AB = p. These p independent generators are obtained

from the rows of the original generator matrices that are split between A

and B. In a weight-limited LDPC code, the total number of such rows, e.g.,

in HZ , can be called the perimeter L(A;B) of the cut. However, the number

of generators of S(Z)
AB can actually be smaller than L(A;B) since some linear

combination(s) of the generators split between A and B combined with other

generators may form an element of SA or SB . Thus, we can write EE as

Υ(A;B) = L− γ, (1.9)

with L = L(A;B) the perimeter of the cut and some integer γ ≡ γ(A;B) ≥ 0.

While this expression strongly resembles the Kitaev–Preskill definition of

TEE [23, 24], for now γ is just a parameter associated with the particular

cut.

Let us now consider weights of generators of S(Z)
B . These correspond to

the rows of QB. Clearly, each row of the original matrix Q may be supported

in A, or in B, or be split between the two sets. Rows already supported in

B can be moved directly to QB and preserve their original weights. Thus

no more than γ ≥ 0 generators of S(Z)
B may need to have larger weights.

Necessarily, if we want to construct a defect forming a degenerate code with
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the distance d′ > w, the additional number of qubits is bounded by

κ ≡ k′ − k ≤ γ. (1.10)

Thus, with γ = 0, the defect cannot support a degenerate code with κ > 0.

However, whether or not a particular defect does, in fact, support κ > 0, also

depends on the global structure of the code, e.g., the boundary conditions.

Now, let us imagine that we have a defect code with a sufficiently large

distance d. Then, such a defect is also stable to small deformations, e.g.,

when B is changed to some B′ as a result of up to M < d steps, where at

each step a single position is added or removed from the set. That is, our

defect code retains the same number κ of additional qubits when we change

the set B to a set B′, |B�B′| ≤ M , where B�B′ = (B \ B′) ∪ (B′ \ B) is

the symmetric set difference. For deformations such that M + w < d, the

inequality γ ≥ κ must be satisfied in the course of deformations.

Now, TEE is normally considered a property of ground-state wavefunc-

tion of some many-body Hamiltonian, while our focus was on quantum

LDPC codes with bounded-weight but not necessarily local generators.

Different terms in a Hamiltonian can be viewed as generators of the code.

However, in the absence of locality, why would we care about weights of

terms in a quantum spin Hamiltonian?

In a physical system, multi-qubit Pauli operators may appear as terms

in an n-spin quantum Hamiltonian, e.g.,

H0 = −A
∑

a

Pa −B
∑

b

Qb, (1.11)

where and A > 0 and B > 0 are the coupling constants, and, to connect

with our discussion of CSS codes, Pa and Qb could be Pauli operators of X-

and Z-type, respectively, specified by rows of the binary matrices P and Q.

Then, if all terms in the Hamiltonian commute, i.e., PQT = 0, the ground-

state space of H0 is exactly the code with the stabilizer group generated by

these operators.

Any simple spin Hamiltonian (1.11) is usually just the leading-order

approximation to a real problem. Even at zero temperature, additional

interaction terms are virtually always present. Such terms may break the

degeneracy of the ground-state of the Hamiltonian H0. The effect is weak if

the code has a large distance, while perturbations be small and local. The

standard example is the effect of an external magnetic field h = (hx, hy, hz),

which can be introduced as an additional perturbation Hamiltonian

H1 = −1

2

∑

i

(hxXi + hyYi + hzZi). (1.12)
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For a code with distance d, only a Pauli operator of weight d or larger may act

within the code. Respectively, assuming the magnetic field small, degenerate

perturbation theory gives the ground state subspace energy splitting scaling

as O(hd), where h = |h| is the field magnitude.

However, the code distance d gives only a part of the story. Large-

weight operators appearing in H0 make the ground-state order particularly

susceptible to local perturbations such as the magnetic field. In this case, the

relevant scale for the magnetic field isWh ∼ max(A,B), that is, the effect of

the magnetic field may be magnified by the operator weightW . Indeed, if we

start with the spin-polarized ground state of H1, a weight-W Pauli operator

will generically flip W spins, producing a state with the energy increased

by O(Wh). The effect of such a perturbation will be small as long as the

corresponding coefficient, A or B in Eq. (1.11), remains small compared to

Wh. Thus, with W large, the ground state of the spin Hamiltonian H0 gets

destroyed already with very small h ∼ max(A,B)/W . The same estimate

can be also obtained with the help of an exact operator map similar to that

used by Trebst et al. [33].

1.5 Conclusions

To summarize, we discussed a general approach to adding logical qubits to

an existing quantum stabilizer code, with the focus on quantum LDPC codes

with weight-limited stabilizer generators. In short, a stabilizer generator

needs to be promoted to a logical operator, which puts a bound on the

distance of the obtained code in terms of the generator weight w. As in a

surface code, a degenerate code can be obtained by removing some qubits

in an erasable set, and gauge-fixing the resulting subsystem code in such

a way as to ensure that stabilizer generators of sufficiently large weight

be created. We also constructed some lower bounds on the distance of

thus obtained defect codes which show that construction can in principle

be used to obtain highly degenerate codes with distances much larger

than w.

An interesting observation is a relation between the ability of a particular

defect (erasable set of qubits) to support an additional logical qubit in a

degenerate code, and a quantity analogous to TEE, γ. A degenerate defect

code can be only created with γ > 0. Further, when a defect code has a

large distance d′, a lower bound on γ > 0 is maintained in the course of

deformations, not unlike for the conventionally defined TEE.

Many open problems remain. First, our lower distance bounds are

constructed by analogy with surface codes. In particular, the lower bound
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in Statement 2 applies only for a single qubit. In addition, we do not have

good lower distance bounds for defects in non-CSS codes.

Second, the notion of generalized TEE γ in Eq. (1.9) needs to be cleaned

up. Here we are working with lattice systems, not necessarily local, and

the usual expansions in term of 1/L do not necessarily help. Further, as

defined, γ certainly depends of the chosen set of generators. Redundant sets

of small-weight generators imply the existence of higher homologies, as in

higher-dimensional toric codes; it would be nice to be able to interpret values

of γ, as, e.g., was done by Grover et al. in a field theory setting [25].

Third, if we start with a finite-rate family of codes, are there defects of

size |A| with γ = O(|A|)? Coming back to defect codes, it appears that a

typical defect with large γ would generically lead to an entire spectrum of

operator weights in the generators of SB. Is there a situation when there is

a large gap in this weight distribution, as in the surface codes with γ = 1,

where only one high-weight operator may exist?

Appendix: All the proofs

Proof of Statement 1. The number of encoded qubits follows from the

identity (1.2). Namely, the exact dual Q∗ of the matrix Q can be obtained

from P by adding k rows corresponding to inequivalent codewords b ∈ C⊥
Q \

CP . According to the cleaning lemma [10], these can be chosen with the

support outside of an erasable set A. Dropping these k rows from Q∗[B]

recovers the punctured matrix P [B] with the correct rank to ensure k′ = k.

The distance inequalities are obtained from Eq. (1.1) by considering removal

of a single qubit at a time.

Proof of Statement 2. Indeed, since Q′ differs from Q only by some rows

outside the ball W2 ≡ Ω2R2(u0) which are linearly dependent with u0, the

corresponding full-matrix syndrome QbT must have nonzero bits outside

W2 ∩ U . With the exception of u0, any row in W2 ∩ U must be incident on

an even number of set bits in b, and there must be a continuous path on

the graph from u0 to outside W2 formed by pairs of set bits in b (otherwise

b could be separated into a pair of vectors with nonoverlapping supports,

b = b1 + b2, such that QbT1 = 0 outside W2 and QbT2 = 0 inside W2, which

would contradict the assumptions). This guarantees that at any odd distance

from u0 (up to 2R2 − 1), b has at least one set bit, which recovers the two

lower bounds.

Proof of Statement 3. The inequality follows from the locality of row

operations on the Tanner graph: a nonzero bit v in some vector c ∈ F
⊗n
2
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can only be removed by adding a row u ∈ U neighboring with v. The

lower bound on f equivalent to linear independence of rows of Q guarantees

that rows of Q′ be linearly independent from u0, thus weight must remain

nonzero at every step. The condition (a) guarantees the existence of a linear

combination in question.

Acknowledgment

This work was supported in part by the NSF Division of Physics via grant

No. 1820939.

References

[1] P. W. Shor, Fault-tolerant quantum computation, in Proc. 37th Ann. Symp. Funda-
mentals of Comp. Sci., Los Alamitos, IEEE (IEEE Computer Society Press, 1996),
pp. 56–65. URL http://arxiv.org/abs/quant-ph/9605011v2.

[2] J. Preskill, Fault-tolerant quantum computation, in Introduction to Quantum Com-
putation, eds. H.-K. Lo, S. Popescu and T. P. Spiller (World Scientific, 1998).

[3] D. Gottesman, Stabilizer codes and quantum error correction, Ph.D. thesis, Caltech
(1997); URL http://arxiv.org/abs/quant-ph/9705052.

[4] A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error
correction via codes over GF(4), IEEE Trans. Inform. Theory 44, 1369 (1998); URL
http://dx.doi.org/10.1109/18.681315.

[5] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2
(2003); URL http://arxiv.org/abs/quant-ph/9707021.

[6] E. Dennis, A. Kitaev, A. Landahl and J. Preskill, Topological quantum memory,
J. Math. Phys. 43, 4452 (2002); URL http://dx.doi.org/10.1063/1.1499754.

[7] H. Bombin and M. A. Martin-Delgado, Quantum measurements and gates by code
deformation, J. Phys. A 42(9), 095302 (2009); doi:10.1088/1751-8113/42/9/095302.

[8] H. Bombin, Topological subsystem codes, Phys. Rev. A 81, 032301 (2010); doi:10.
1103/PhysRevA.81.032301; URL http://link.aps.org/doi/10.1103/PhysRevA.81.032
301.

[9] S. Bravyi and B. Terhal, A No-Go theorem for a two-dimensional self-correcting
quantum memory based on stabilizer codes, New J. Phys. 11(4), 043029 (2009); URL
http://stacks.iop.org/1367-2630/11/i=4/a=043029.

[10] S. Bravyi, D. Poulin and B. Terhal, Tradeoffs for reliable quantum information storage
in 2D systems, Phys. Rev. Lett. 104, 050503 (2010); doi:10.1103/PhysRevLett.
104.050503; URL http://link.aps.org/doi/10.1103/PhysRevLett.104.050503.

[11] A. A. Kovalev and L. P. Pryadko, Fault tolerance of quantum low-density parity
check codes with sublinear distance scaling, Phys. Rev. A 87, 020304(R) (2013);
doi:10.1103/PhysRevA.87.020304; URL http://link.aps.org/doi/10.1103/PhysRevA.
87.020304.

[12] I. Dumer, A. A. Kovalev and L. P. Pryadko, Thresholds for correcting errors, erasures,
and faulty syndrome measurements in degenerate quantum codes, Phys. Rev. Lett.
115, 050502 (2015); doi:10.1103/PhysRevLett.115.050502; URL http://link.aps.org/
doi/10.1103/PhysRevLett.115.050502.

[13] J.-P. Tillich and G. Zemor, Quantum LDPC codes with positive rate and minimum
distance proportional to

√
n, in Proc. IEEE Int. Symp. Inf. Theory (ISIT) (June,

2009); pp. 799–803; doi:10.1109/ISIT.2009.5205648.

http://arxiv.org/abs/quant-ph/9605011v2
http://arxiv.org/abs/quant-ph/9705052
http://dx.doi.org/10.1109/18.681315
http://arxiv.org/abs/quant-ph/9707021
http://dx.doi.org/10.1063/1.1499754
http://link.aps.org/doi/10.1103/PhysRevA.81.032301
http://link.aps.org/doi/10.1103/PhysRevA.81.032301
http://stacks.iop.org/1367-2630/11/i=4/a=043029
http://link.aps.org/doi/10.1103/PhysRevLett.104.050503
http://link.aps.org/doi/10.1103/PhysRevA.87.020304
http://link.aps.org/doi/10.1103/PhysRevA.87.020304
http://link.aps.org/doi/10.1103/PhysRevLett.115.050502
http://link.aps.org/doi/10.1103/PhysRevLett.115.050502


April 2, 2021 17:31 Memorial Volume for Shoucheng Zhang - 9.61in x 6.69in 2nd Reading b4077-ch01 page 16

16 P.K. Lim, K. Shtengel & L.P. Pryadko

[14] A. A. Kovalev and L. P. Pryadko, Quantum Kronecker sum–product low-density
parity-check codes with finite rate, Phys. Rev. A 88 012311 (2013); doi:10.1103/Phys-
RevA.88.012311; URL http://link.aps.org/doi/10.1103/PhysRevA.88.012311.

[15] W. Zeng and L. P. Pryadko, Higher-dimensional quantum hypergraph-product codes
with finite rates, Phys. Rev. Lett. 122, 230501 (2019); doi:10.1103/PhysRevLett.
122.230501; URL https://link.aps.org/doi/10.1103/PhysRevLett.122.230501.

[16] G. Zémor, On Cayley graphs, surface codes, and the limits of homological coding
for quantum error correction, in Proc. Coding and Cryptology: Second Interna-
tional Workshop, IWCC 2009, eds. Y. M. Chee, C. Li, S. Ling, H. Wang and
C. Xing, pp. 259–273 (Springer, 2009); doi:10.1007/978-3-642-01877-0 21; URL
http://dx.doi.org/10.1007/978-3-642-01877-0 21.

[17] N. Delfosse, Tradeoffs for reliable quantum information storage in surface codes and
color codes, in 2013 IEEE Int. Symp. Information Theory Proceedings (ISIT), pp.
917–921; (IEEE, 2013) pp. 917–921; doi:10.1109/ISIT.2013.6620360.

[18] L. Guth and A. Lubotzky, Quantum error correcting codes and 4-dimensional arith-
metic hyperbolic manifolds, J. Math. Phy. 55(8), 082202, (2014); doi:http://dx.doi.
org/10.1063/1.4891487; URL http://scitation.aip.org/content/aip/journal/jmp/55/
8/10.1063/1.4891487.

[19] N. P. Breuckmann and B. M. Terhal, Constructions and noise threshold of
hyperbolic surface codes, IEEE Trans. Inform. Theory 62(6), 3731–3744 (2016);
doi:10.1109/TIT.2016.2555700.

[20] A. Krishna and D. Poulin, Fault-tolerant gates on hypergraph product codes, To be
published in Phys. Rev. X (2021).

[21] A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Phys.
Rev. A 54(2), 1098 (1996); doi:10.1103/PhysRevA.54.1098.

[22] A. M. Steane, Simple quantum error-correcting codes, Phys. Rev. A 54, 4741 (1996);
URL http://dx.doi.org/10.1103/PhysRevA.54.4741.

[23] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave
function, Phys. Rev. Lett. 96, 110405 (2006); doi:10.1103/PhysRevLett.96.110405;
URL https://link.aps.org/doi/10.1103/PhysRevLett.96.110405.

[24] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96,
110404 (2006); doi:10.1103/PhysRevLett.96.110404; URL https://link.aps.org/doi/1
0.1103/PhysRevLett.96.110404.

[25] T. Grover, A. M. Turner and A. Vishwanath, Entanglement entropy of gapped
phases and topological order in three dimensions, Phys. Rev. B 84, 195120
(2011); doi:10.1103/PhysRevB.84.195120; URL https://link.aps.org/doi/10.1103/Ph
ysRevB.84.195120.

[26] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.
(North-Holland, 1981).

[27] E. M. Rains, Nonbinary quantum codes, IEEE Trans. Inform. Theory 45(6), 1827
(1999); doi:10.1109/18.782103.

[28] P. K. Sarvepalli, Quantum stabilizer codes and beyond, PhD thesis, Texas A&M
University (2008); URL http://hdl.handle.net/1969.1/86011.

[29] D. Poulin, Stabilizer formalism for operator quantum error correction, Phys. Rev.
Lett. 95, 230504 (2005); doi:10.1103/PhysRevLett.95.230504.

[30] D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum
memories, Phys. Rev. A 73, 012340 (2006); doi:10.1103/PhysRevA.73.012340.

[31] N. P. Breuckmann, Homological quantum codes beyond the toric code, PhD thesis,
RWTH Aachen University (2017).

http://link.aps.org/doi/10.1103/PhysRevA.88.012311
https://link.aps.org/doi/10.1103/PhysRevLett.122.230501
http://dx.doi.org/10.1007/978-3-642-01877-0_21
http://scitation.aip.org/content/aip/journal/jmp/55/8/10.1063/1.4891487
http://scitation.aip.org/content/aip/journal/jmp/55/8/10.1063/1.4891487
http://dx.doi.org/10.1103/PhysRevA.54.4741
https://link.aps.org/doi/10.1103/PhysRevLett.96.110405
https://link.aps.org/doi/10.1103/PhysRevLett.96.110404
https://link.aps.org/doi/10.1103/PhysRevLett.96.110404
https://link.aps.org/doi/10.1103/PhysRevB.84.195120
https://link.aps.org/doi/10.1103/PhysRevB.84.195120
http://hdl.handle.net/1969.1/86011


April 2, 2021 17:31 Memorial Volume for Shoucheng Zhang - 9.61in x 6.69in 2nd Reading b4077-ch01 page 17

Topological Defects in General Quantum LDPC Codes 17

[32] D. Fattal, T. S. Cubitt, Y. Yamamoto, S. Bravyi and I. L. Chuang. Entanglement in
the stabilizer formalism, preprint (2004); URL http://arXiv.org/abs/quant-ph/0406
168; arXiv:quant-ph/0406168.

[33] S. Trebst, P. Werner, M. Troyer, K. Shtengel and C. Nayak, Breakdown of a
topological phase: Quantum phase transition in a loop gas model with tension, Phys.
Rev. Lett. 98, 070602 (2007); doi:10.1103/PhysRevLett.98.070602; URL http://link.
aps.org/doi/10.1103/PhysRevLett.98.070602.

http://arXiv.org/abs/quant-ph/0406168
http://arXiv.org/abs/quant-ph/0406168
http://link.aps.org/doi/10.1103/PhysRevLett.98.070602
http://link.aps.org/doi/10.1103/PhysRevLett.98.070602


April 2, 2021 17:31 Memorial Volume for Shoucheng Zhang - 9.61in x 6.69in 2nd Reading b4077-ch01 page 18


	1. Topological Defects in General Quantum LDPC Codes
	Pak Kau Lim, Kirill Shtengel and Leonid P. Pryadko
	Introduction
	Defect construction
	Distance bounds for a defect in a CSS code
	Relation with topological entanglement entropy
	Conclusions
	Acknowledgment
	References



