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Chapter 1

Topological Defects in General Quantum
LDPC Codes

Pak Kau Lim, Kirill Shtengel and Leonid P. Pryadko

Department of Physics & Astronomy, University of California,
Riverside, CA, 92521 USA

We consider the structure of defects carrying quantum information in general
quantum low-density parity-check (LDPC) codes. These generalize the corre-
sponding constructions for topological quantum codes, without the need for
locality. Relation of such defects to (generalized) topological entanglement entropy
is also discussed.

1.1 Introduction

Quantum computation offers exponential algorithmic speed-up for some
classically hard problems. It relies on multi-particle quantum-correlated
states which are very fragile and are destroyed rapidly in the presence
of errors — noise, environment, or just random control errors. Quantum
error correction gives a unique way of dealing with such a fragility.
Selective measurements are performed to separate just one of exponentially
many possible outcomes. As a result, instead of the net error probability
which grows linearly or faster with the number of qubits n and saturates
rapidly, one only has to worry about the error probability per qubit,
p. This leads to the threshold theorem [1, 2], basically stating that an
arbitrarily long quantum computation is possible when p is below certain
threshold, p. > 0.

Most important class of quantum error-correcting codes are the stabilizer
codes [3,4]. Of these, most studied, and closest to a practical implementation,
are the surface codes [5,6]. A surface code can be viewed as the degenerate
ground-state manifold of certain quantum spin model with the Hamiltonian
formed by a sum of commuting terms local on a two-dimensional lattice.
One of the many advantages of surface codes is the flexibility they offer
in the code parameters and the structure of logical operators. To add an
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extra qubit, one may simply create a hole in the surface. A larger hole,
well separated from other defects, offers better protection (larger minimal
code distance). Pairs of such holes can be moved around to perform encoded
Clifford gates, etc. [6-8].

On the other hand, a substantial disadvantage of surface codes, or any
stabilizer code with generators local on a D-dimensional Fuclidean lattice,
is that such codes necessarily have small rates R = k/n whenever the code
distance d gets large [9, 10]. Here k is the number of encoded qubits and
n is the block length of the code. To get a finite asymptotic rate, one
needs more general quantum codes. In particular, any family of w-bounded
quantum LDPC codes with stabilizer generators of weight not exceeding
w > 0 and distances divergent as a logarithm or a power of n has a nonzero
asymptotic error correction threshold even in the presence of measurement
errors [11,12]. Several families of bounded-weight quantum LDPC codes with
finite rates have been constructed. Best-known constructions are quantum
hypergraph-product (qHP) and related codes [13-15], and various hyperbolic
codes [16-19].

The biggest obstacle to practical use of finite-rate quantum LDPC
codes is that their stabilizer generators must include far separated qubits,
regardless of the qubit layout in a D-dimensional space [9, 10]. Error
correction requires frequent measurement of all stabilizer generators, and
measuring such non-local generators is not practical if the hardware only
allows local measurements. Nevertheless, there is a question of whether other
advantages of surface codes, e.g., the ability to perform protected Clifford
gates by code deformations, can be extended to more general quantum LDPC
codes.

Such a construction generalizing the surface-code defects and gates by
code deformations to the family of gHP codes [13] has been recently proposed
by Krishna and Poulin [20]. However, their defect construction is very specific
to qHP codes. Second, Krishna and Poulin do not discuss the distance of the
defect codes they construct, even though it is important for the accuracy of
the resulting gates. Indeed, since gates by code deformation are relatively
slow, the distance has to be large enough to suppress logical errors.

The purpose of this work is to give a general defect construction
applicable to any stabilizer code. In the simplest form, one may just remove
a stabilizer generator which produces an additional logical qubit, k — k + 1.
However, the distance d’ of such a code will not exceed the maximum
stabilizer generator weight, d’ < w. Given a degenerate quantum LDPC
code with the stabilizer generator weights bounded by w and a distance
d > w, we would actually like to construct a related code encoding more
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qubits but retaining degeneracy, i.e., with a distance d’ > w. We propose a
three-step defect construction: remove qubits in an erasable region to obtain
a subsystem code, do gauge-fixing to obtain a stabilizer code with some
generators of weight exceeding w, and promote one or more such generators
of the resulting code to logical operators. The choice of the gauge-fixing
prescription is easier in the case of Calderbank, Shor, and Steane (CSS)
codes [21,22], which makes the construction more explicit. For such codes,
with some additional assumptions, we give a lower bound on the distance of
the defect code. This shows that defect codes with unbounded distances can
be constructed, as is also the case with surface codes.

An interesting and a rather unexpected application of this analysis is the
relation of qubit-carrying capacity of a defect to its (generalized) topological
entanglement entropy [23-25] (TEE), denoted . Namely, a degenerate defect
code with distance d > w can only be created when v > 0. Further,
when distance d’ is large, the TEE ~ acquires stability: it remains nonzero
whenever the defect is deformed within certain bounds.

1.2 Defect construction

Generally, an n-qubit quantum code is a subspace of the n-qubit Hilbert
space HY™. A quantum [[n, k, d]] stabilizer code is a 2¥-dimensional subspace
QC H?" specified as a common +1 eigenspace of all operators in an Abelian
stabilizer group S € Py, —1 € S, where P, denotes the n-qubit Pauli group
generated by tensor products of single-qubit Pauli operators. The stabilizer is
typically specified in terms of its generators, S = (Sy, ..., S,). If the number
of independent generators is » = rank S, the code encodes k = n — r qubits.
The weight of a Pauli operator is the number of qubits that it affects. The
distance d of a quantum code is the minimum weight of a Pauli operator
L € P,, which commutes with all operators from the stabilizer S, but is not
a part of the stabilizer, L ¢ S. Such operators act nontrivially in the code
and are called logical operators.

An n-qubit CSS stabilizer code Q@ = CSS(P, Q) is specified in terms of
two n-column binary stabilizer generator matrices Hx = P and Hy = Q.
Rows of the matrices correspond to stabilizer generators of X- and Z-type,
respectively, and the orthogonality condition PQT = 0 is required to ensure
commutativity. The code encodes k = n — rank P — rank () qubits, and has
the distance d = min(dx, dz),

dx = min wgt(b), dz = min wgt(c). (1.1)
beCH\Cp ceCE\Co
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Here Cg € FS™ is the binary linear code (linear space) generated by the rows
of @, and Céj is the corresponding dual code formed by all vectors in F%@”
orthogonal to the rows of (). Matrix @) is the parity-check matrix of the code
Cé. A generating matrix of Cé, Q*, has rank Q* = n — rank Q and is called
dual to Q. Also, if V.= {1,...,n} is the set of indices and B C V its subset,
for any vector b € IF‘?", we denote b[B] the corresponding punctured vector
with positions outside B dropped. Similarly, Q[B] (with columns outside of
B dropped) generates the code Cg punctured to B. We will also use the
notion of a binary code C shortened to B, which is formed by puncturing
only vectors in C supported inside B,

Code C shortened to B = {¢[B] : ¢ € C Asupp(c) € B}.

We will denote () a generating matrix of the code Cg shortened to B. If G
and H = G* is a pair of mutually dual binary matrices, i.e., GH? = 0 and
rank G + rank H = n, then Hp is a parity-check matrix of the punctured
code Cgp), and [26]

rank G[B] + rank Hp = |B]. (1.2)

The distance d of a linear code C is the minimal Hamming weight of a
nonzero vector in C. In general puncturing reduces the code distance. More
precisely, if d and d’ are the distances of the original and the punctured code,
respectively, they satisfy d—|A| < d’ < d, where A = V'\ B is the complement
of B. On the other hand, the minimum distance d” of a shortened code is
not smaller than that of the original code, d” > d.

For a quantum code, if A is a set of qubits and B = V'\ A its complement,
the stabilizer group S can also be punctured to B, by dropping all positions
outside B. With the exception of certain special cases [27,28], the resulting
group G = S[B] will not be Abelian, and can be viewed as a gauge group
of a subsystem code [29,30] called the erasure code. A stabilizer code can
be obtained by removing some of the generators from G to make it Abelian;
such a procedure is called gauge-fixing. In the case of a CSS code with
stabilizer generator matrices Hy = P and Hz = @, the punctured group
has generators P[B] and Q[B], while a gauge-fixed stabilizer code can be
obtained, e.g., by replacing punctured matrix Q[B] with the corresponding
shortened matrix, @Qp. This latter construction can be viewed as a result of
measuring qubits outside B in the X-basis. Qubits in an erasable set A can
be removed without destroying quantum information. In this case, according
to the cleaning lemma [10], the logical operators of the original code can all
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be chosen with the support outside A. From here, with the help of Eqgs. (1.1)
and (1.2), we obtain the following statement (see Appendix A for all proofs).

Statement 1. Consider a CSS code Q = CSS(P,Q) on qubit set V of
cardinality |V'| = n, encoding k qubits and with the CSS distances dx, dz.
Let A C 'V be an erasable in Q set of qubits, and B =V \ A its complement.
Then, the length-|B| code Q" = CSS(P[B],Qp) encodes the same number of
qubits, k' =k, and has the CSS distances d'y, d', such that:

dx —|A| < dyx <dx, dy>dy. (1.3)

The statement about the number of encoded qubits is true in general: an
erasure code and any of the corresponding gauge-fixed codes encode the same
number of qubits as the original code as long as the set A of removed qubits
is erasable. (And, of course, we want to stick to erasable sets since we do
not want to lose quantum information). To construct a code that encodes
k" > k qubits, it is not sufficient to just remove some qubits, one has to
also remove some group generators. If we do not care about the weight of
stabilizer generators and start with a generic stabilizer code, a code with
a decent distance may be obtained simply by dropping one of the existing
stabilizer generators. Our general construction below is focused on quantum
LDPC codes with weight-limited stabilizer generators:

Construction 1. Given an original [[n, k,d]] degenerate code with stabilizer
generator weights bounded by some w < d, in order to create a degenerate
“defect” code with k' > k and d' > w, (i) remove some qubits in an erasable
set, (ii) gauge fix the resulting subsystem code, and then (iii) drop one or
more stabilizer generators with weights bigger than w.

The gauge group G = S[B] of the erasure code in step (i) has generators
of weights w or smaller; generators of weight greater than w are obtained
after gauge fixing in step (ii). This construction does not guarantee whether
we get a degenerate code or not. Below, with the help of some additional
assumptions, we prove several inequalities that guarantee the existence of
not only degenerate defect codes with d’ > w, but also highly-degenerate
defect codes with unbounded distances.

1.3 Distance bounds for a defect in a CSS code

First, let us get general expressions for the distances d’y, d’, of a CSS code
with a removed Z-type generator. Given the original code CSS(P,Q), we
choose a linearly-independent row of @, ug, as the additional type-Z logical
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operator, and denote @’ the corresponding matrix with the row dropped
(and of the rank reduced by one). Denote

d(ZO) = min wgt(ug + aQ’), (1.4)

the minimum weight of a linear combination of 1 with the rows of )’. Then,
Eq. (1.1) gives

d; = min(dz, dY)). (1.5)

The additional type-X logical operator has to be taken from the set of
detectable errors of the original code. Specifically, it has to anticommute
with the element of the stabilizer being removed, but commute with the
remaining operators in the stabilizer and all logical operators of the original
code. In addition to the X-type logical operators of the original code, the
logical operators of the new code include all errors with the same syndrome as
the chosen canonical operator. Respectively, the expression for the distance
reads:

;o 0) 0 _ i
dX = mlH(dX, dX )’ dX N b:uobTI:nll/I\lleTzo

wet(b). (1.6)

The lower bounds constructed in the following two subsections both
rely on geometry in a bipartite (Tanner) graph associated with the Z-type
generator matrix Hz = . Namely, given its row-set U (check-nodes) and
column-set V' (value-nodes), the Tanner graph has the union U UV as its
vertex set, and an undirected edge (u,v) € U x V for each nonzero matrix
element @,. On a graph there is a natural notion of the distance between a
pair of nodes, the number of edges in the shortest path between them; a ball
Qr(up) of radius R centered around ug is the set of all vertices at distance
R or smaller from wuy. Then, an erasable region A = Qgr(up) NV is chosen as
a set of value nodes within the radius R from a check node ug € U, subject
to the condition that a row of the shortened matrix (Qp contains wug in its
expansion over the rows of Q).

The condition is not a trivial one, as it is actually equivalent to region A
being erasable in the code CSS(P, Q") formed by the original matrix Hx = P
and the matrix @', the original matrix @ with the row ug (considered linearly
independent) dropped, same code as in Egs. (1.4)—(1.6). As an equivalent
but easier to check condition, one may request that row ug[A] be a linear
combination of the rows of the punctured matrix Q'[A] (remember that the
support of ug is a subset of A, while wug is linearly independent from the rows
of Q). In addition, we use a corresponding sufficient condition as a part of
lower X-distance bound in Statement 2, and formulate a related necessary
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condition in terms of the topological entanglement entropy associated with
the defect A in Sec. 1.4.

1.3.1 Code with locally linearly-independent generators

We need a condition to guarantee a lower bound on the weight of the operator
conjugate to the row ug removed from the matrix @Qp, see Eq. (1.6). Here,
we will assume that the set of Z-type stabilizer generators forming the rows
of the matrix Hy; = @ be overcomplete. That is, there be one or more linear
relations between the rows of (), and that we start with a row ug which takes
part in such a relation.

In the case of the toric code (or any surface code on a locally planar
graph without boundaries), see Fig. 1.1(a), the linear relation is simply the
statement that the sum of all rows of Hz be zero (necessarily so since each
column has weight two). Such a relation exists for any matrix with even
column weights, e.g., qHPs from (¢, m)-regular binary codes with both ¢ and
m even. Further, many such linear relations exist for CSS codes forming chain
complexes of length 3 or more, e.g., the D-dimensional hyperbolic [18, 31]
and higher-dimensional qHP codes [15] with D > 2.

Statement 2. Given a CSS code CSS(P,Q) and a natural Ry, consider
the bipartite Tanner graph associated with the matriz Q, and a ball W =
Qog, (uo) of radius 2Ry centered around the row uy € U. Assume (a) that
the row uq is involved in at least one linear relation with other rows of Q,
and (b) there exists Ry > Ry such that all rows within radius 2Ry from
the center be linearly independent of each other. Let Q1 denote a full-row-
rank matriz obtained from Q by removing some (linearly-dependent) rows
outside W. Then weight of any b € Fggm such that the syndrome Q1b* has

(a) (b) (c)

Fig. 1.1. (a) Homologically trivial hole on a torus. (b) Surface code with a smooth
boundary. Removing qubits (edges) inside of the circle we get a nontrivial defect. (c¢) This
circle contains a boundary edge with no neighboring plaquette; removing the corresponding
edges we again get a trivial defect.
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the only nonzero bit at the check node ug satisfies wgt(b) > Ra, and for the
complement B =V \ A of any region A C W, wgt(b[B]) > R — R;.

The punctured vector b[B] is a representative of the new X-type codeword
in the defect code CSS(P[B], Q'z), where @’ is obtained from @1 by removing
ug; the constructed bound gives dg?) > Ry — R; for the distance in Eq. (1.6).

We also note that additional, linearly-dependent with ug, rows in ) need
not have bounded weight, as long as on the Tanner graph they are located
outside the ball W5. The corresponding requirement is of course equivalent
to any of the two conditions discussion above this subsection title, with
A = Wy N V. In the case of a surface code with smooth boundary, see
Figs. 1.1(b) and 1.1(c), the extra row may be chosen as the product of all
plaquette generators, with the support along the actual boundary. In such a
case, the lower distance bound in Statement 2 is saturated.

1.3.2 Stabilizer group with an expansion

Here we construct a simple lower bound on the Z-distance of the defect,
in essence, relying on the monotonicity of the distance dz with respect to
X-basis measurement of qubits in an erasable set, see Statement 1. To make
it nontrivial, we assume that Z-type stabilizer generators of the original code
satisfy an expansion condition, namely, there exists an increasing real-valued
function f such that a product II,, of any m distinct generators has weight
bounded by f(m),

wgt(lly) = f(m),  f(m+1) > f(m). (1.7)

Such a global condition on code generators guarantees that the boundary
condition is good for the defect we are trying to construct. For example, in
case of the toric code on an L x L square lattice with periodic boundary
conditions, there are L? plaquette generators but only L? — 1 of them are
independent. Namely, the product of all plaquette generators is an identity,
so m — L? —m is a symmetry of the weight distribution. Necessarily, the
function f in Eq. (1.7) has a trivial maximum, f(L?) < 0. Respectively, a
single hole in Fig. 1.1(a) has a homologically trivial boundary — meaning
that it can be pushed out and eventually contracted to nothing by a sequence
of single-plaquette steps. On the other hand, for a planar smooth-boundary
surface code configuration as in Fig. 1.1(b), one gets f(m) scaling as a
perimeter of m plaquettes with a non-trivial maximum.

Generally, as one increases the set A of removed qubits, there will be
rows in the shortened matrix ()5 formed as linear combinations of increasing
numbers of rows of the original matrix ). The expansion condition (1.7)
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with max,, f(m) > 0 guarantees that the corresponding rows cannot
be contracted to nothing. For example, when we remove a single qubit
corresponding to a weight-¢ column of @, if the corresponding adjacent rows
all have weights w and do not overlap (in the case of a surface code ¢ < 2
and w is the number of sides in the corresponding plaquette), the shortened
matrix ()p necessarily has kK = ¢ — 1 rows of weight 2w — 2. Assuming
f(2) = 2w — 2, at any w > 2 this is already sufficient to guarantee the
existence of a degenerate defect code with d, > w.

With larger defects, combinations of larger numbers of rows may become
necessary. If so, the expansion condition (1.7) will also guarantee that
codes with Z-type distances (1.5) much greater than w can be constructed
(assuming big enough original code distance dy).

Statement 3. Given a code CSS(P,Q) and a natural Ry, consider the
bipartite Tanner graph associated with the matrix Q, and a ball W =
Qor, (up) of radius 2Ry centered around the row ug € U. Denote Q' the
matriz obtained by removing uy from Q. Assume (a) that A = W NV is
erasable in the code CSS(P,Q"), and (b) that the set of Z-generators defined
by the rows of matriz @ satisfies the expansion condition (1.7) with f(2) > 1.
Then, weight of any linear combination of ug with Tows of the matriz Q'
supported on the complement B =V \ A satisfies d(ZO) > f(R1).

Notice that the condition (a) here is the same as discussed above Sec. 1.3.1
title; the corresponding sufficient condition is a part of Statement 2, where
any Ry > R; will do.

1.3.3 Defect codes with arbitrary large distances

Notice that Statement 2 requires a linear dependence between generators of
@, while Statement 3 requires the expansion condition (1.7) with nontrivial
f which is stronger than just linear independence. Nevertheless, these
conditions are not necessarily incompatible. The condition in Statement 2
only needs to be satisfied for some parent code. For example, in the case of a
toric code, two distinct holes are needed in order to create a defect code with
distance d’ = min(d/,, dy) > 4. Here a linear dependence between plaquette
operators can be found in the parent toric code, one hole is needed to satisfy
the conditions of Statement 3, while the other one is the actual erasable set
in Construction 1.

Generally, suppose we have a parent CSS code CSS(Hx,Hyz) with
bounded-weight generators, sufficiently large distance, and matrix Hy with
even-weight columns so that the sum of all rows be zero. Such a pair of
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matrices satisfies conditions of Statement 2 but not of Statement 3. Similar
to the toric code, where one needs two holes to create a single-qubit defect,
here we also may need to take an erasable set A formed by two or more
disjoint erasable defects, e.g., balls as in Statement 3; that the set A be
erasable can be guaranteed by the union lemma (Lemma 2 in Ref. [9]).
Then, one (or more if needed) balls can be used to ensure the existence
of the function f in Eq. (1.7) with sufficiently large max,, f(m), while the
qubits in the last remaining ball would be used as the erasable set.

Explicitly, as a parent code family, one can use, e.g., qHP codes [13]
created from random matrices with even-valued row and column weights.
For example, (4,6)-regular random matrices would do well, leading to qHP
codes with asymptotically finite rates, whose CSS generator matrices have
column weights 4 and 6, regular row weights w = 10, and (’)(nl/ 2) linear
relations between the rows of generator matrices with number of nonzero
coefficients in each linear relation scaling linearly with block length n of the
resulting code. The distance of such parent codes grows as O(nl/ 2): this is
sufficient to ensure that for any dy > 0 one can choose n large enough so
that sufficiently large erasable balls exist to guarantee the existence of defect
codes with d' = max(d'y,d’) > dy.

1.4 Relation with topological entanglement entropy

There exists a suggestive parallel between the structure of a large-distance
qubit-carrying defect we discussed, and (generalized) topological entangle-
ment entropy (TEE) which can be associated with such a defect [23,24]. The
latter may be defined in terms of the usual entanglement entropy (EE), which
characterizes what happens when some of the qubits carrying a normalized
quantum state |¢) € HS™ are erased (traced over). Namely, if the set of
qubits is decomposed into A and its complement B = V' \ A, one considers
the binary von Neumann entropy Y(A; B) = —trp pplog, pp, where the
density matrix pp = tra [¢) (1| is obtained by tracing over the qubits in A.
The definition is actually symmetric with respect to interchanging A and B,
YT(A;B) =7T(B;A).

The entanglement entropy has a particularly simple form when |[¢)
is a stabilizer state [32]. Such a state is just a stabilizer code encoding
no qubits, so that its dimension is 2° = 1. With n = |V| total qubits,
this requires a stabilizer group with n independent generators. According
to Fattal et al. [32], the EE of any stabilizer state |¢)) € Q is uniquely
determined by the decomposition of the stabilizer group & = S xS X Sap,
where nontrivial elements of subgroups S4 and Sp are supported only
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on A and only on B, respectively, and those of Sqp are necessarily split
between A and B. Namely, rankSap = 2p is always even, and it is this
p (or, equivalently, the number of EPR pairs split between A and B) that
determines the entanglement entropy,

T(A; B) = p = srank Sap. (1.8)

Given a stabilizer code Q with parameters [[n,k,d]|] and a stabilizer group
S of rank n — k, a stabilizer state 1)) € Q can be formed by adding any &
mutually commuting logical Pauli operators to the stabilizer group. Then, if
set A C V is erasable, according to the cleaning lemma [10], we can select all
logical operators with the support in B = V' \ A. With the logical operators
in Sp, both §4 and Ssp are subgroups of the stabilizer group & of our
original code, and the entanglement entropy is given by Eq. (1.8). The same
quantity p can also be expressed in terms of the punctured stabilizer group
S[B] = Sp x Sap[B] (gauge group of the subsystem erasure code), written
as a product of its center, the (shortened) stabilizer group Sg, and p pairs
of canonically conjugated “gauge” qubits which generate the (punctured)
subgroup Sap|[B].

In the case of a CSS code, such a decomposition exists for both X-type
and Z-type subgroups of the stabilizer, e.g., S%) = SI(L‘Z) X SJ(BZ) X S,EXZJB)> with
rankS&ZEE = rankSg)]g) = p. These p independent generators are obtained
from the rows of the original generator matrices that are split between A
and B. In a weight-limited LDPC code, the total number of such rows, e.g.,
in Hyz, can be called the perimeter L(A; B) of the cut. However, the number
of generators of SI(L‘ZB) can actually be smaller than L(A; B) since some linear
combination(s) of the generators split between A and B combined with other

generators may form an element of Sy or Sp. Thus, we can write EE as
T(A;B)=L -7, (1.9)

with L = L(A; B) the perimeter of the cut and some integer v = v(A; B) > 0.
While this expression strongly resembles the Kitaev—Preskill definition of
TEE [23,24], for now 7 is just a parameter associated with the particular
cut.

Let us now consider weights of generators of S](BZ). These correspond to
the rows of @ p. Clearly, each row of the original matrix () may be supported
in A, or in B, or be split between the two sets. Rows already supported in
B can be moved directly to @p and preserve their original weights. Thus
no more than v > 0 generators of SJ(BZ) may need to have larger weights.
Necessarily, if we want to construct a defect forming a degenerate code with
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the distance d’ > w, the additional number of qubits is bounded by
k=k —k<n. (1.10)

Thus, with v = 0, the defect cannot support a degenerate code with x > 0.
However, whether or not a particular defect does, in fact, support x > 0, also
depends on the global structure of the code, e.g., the boundary conditions.

Now, let us imagine that we have a defect code with a sufficiently large
distance d. Then, such a defect is also stable to small deformations, e.g.,
when B is changed to some B’ as a result of up to M < d steps, where at
each step a single position is added or removed from the set. That is, our
defect code retains the same number s of additional qubits when we change
the set B to a set B', |[BAB'| < M, where BAB' = (B\ B')U (B’'\ B) is
the symmetric set difference. For deformations such that M + w < d, the
inequality 7 > x must be satisfied in the course of deformations.

Now, TEE is normally considered a property of ground-state wavefunc-
tion of some many-body Hamiltonian, while our focus was on quantum
LDPC codes with bounded-weight but not necessarily local generators.
Different terms in a Hamiltonian can be viewed as generators of the code.
However, in the absence of locality, why would we care about weights of
terms in a quantum spin Hamiltonian?

In a physical system, multi-qubit Pauli operators may appear as terms
in an n-spin quantum Hamiltonian, e.g.,

Hy=-AY P.— B> Q, (1.11)
a b

where and A > 0 and B > 0 are the coupling constants, and, to connect
with our discussion of CSS codes, P, and @), could be Pauli operators of X-
and Z-type, respectively, specified by rows of the binary matrices P and Q.
Then, if all terms in the Hamiltonian commute, i.e., PQT = 0, the ground-
state space of Hj is exactly the code with the stabilizer group generated by
these operators.

Any simple spin Hamiltonian (1.11) is usually just the leading-order
approximation to a real problem. Even at zero temperature, additional
interaction terms are virtually always present. Such terms may break the
degeneracy of the ground-state of the Hamiltonian Hy. The effect is weak if
the code has a large distance, while perturbations be small and local. The
standard example is the effect of an external magnetic field h = (hy, hy, h.),
which can be introduced as an additional perturbation Hamiltonian

1
Hy=—3 Z(hxXi + hy,Yi + h. 7). (1.12)

2
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For a code with distance d, only a Pauli operator of weight d or larger may act
within the code. Respectively, assuming the magnetic field small, degenerate
perturbation theory gives the ground state subspace energy splitting scaling
as O(h?), where h = |h| is the field magnitude.

However, the code distance d gives only a part of the story. Large-
weight operators appearing in Hy make the ground-state order particularly
susceptible to local perturbations such as the magnetic field. In this case, the
relevant scale for the magnetic field is Wh ~ max(A, B), that is, the effect of
the magnetic field may be magnified by the operator weight W. Indeed, if we
start with the spin-polarized ground state of Hy, a weight-WW Pauli operator
will generically flip W spins, producing a state with the energy increased
by O(Wh). The effect of such a perturbation will be small as long as the
corresponding coefficient, A or B in Eq. (1.11), remains small compared to
W h. Thus, with W large, the ground state of the spin Hamiltonian Hy gets
destroyed already with very small A ~ max(A, B)/W. The same estimate
can be also obtained with the help of an exact operator map similar to that
used by Trebst et al. [33].

1.5 Conclusions

To summarize, we discussed a general approach to adding logical qubits to
an existing quantum stabilizer code, with the focus on quantum LDPC codes
with weight-limited stabilizer generators. In short, a stabilizer generator
needs to be promoted to a logical operator, which puts a bound on the
distance of the obtained code in terms of the generator weight w. As in a
surface code, a degenerate code can be obtained by removing some qubits
in an erasable set, and gauge-fixing the resulting subsystem code in such
a way as to ensure that stabilizer generators of sufficiently large weight
be created. We also constructed some lower bounds on the distance of
thus obtained defect codes which show that construction can in principle
be used to obtain highly degenerate codes with distances much larger
than w.

An interesting observation is a relation between the ability of a particular
defect (erasable set of qubits) to support an additional logical qubit in a
degenerate code, and a quantity analogous to TEE, 7. A degenerate defect
code can be only created with v > 0. Further, when a defect code has a
large distance d’, a lower bound on v > 0 is maintained in the course of
deformations, not unlike for the conventionally defined TEE.

Many open problems remain. First, our lower distance bounds are
constructed by analogy with surface codes. In particular, the lower bound
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in Statement 2 applies only for a single qubit. In addition, we do not have
good lower distance bounds for defects in non-CSS codes.

Second, the notion of generalized TEE ~ in Eq. (1.9) needs to be cleaned
up. Here we are working with lattice systems, not necessarily local, and
the usual expansions in term of 1/L do not necessarily help. Further, as
defined, v certainly depends of the chosen set of generators. Redundant sets
of small-weight generators imply the existence of higher homologies, as in
higher-dimensional toric codes; it would be nice to be able to interpret values
of 7, as, e.g., was done by Grover et al. in a field theory setting [25].

Third, if we start with a finite-rate family of codes, are there defects of
size |A| with v = O(]A])? Coming back to defect codes, it appears that a
typical defect with large v would generically lead to an entire spectrum of
operator weights in the generators of Sp. Is there a situation when there is
a large gap in this weight distribution, as in the surface codes with v = 1,
where only one high-weight operator may exist?

Appendix: All the proofs

Proof of Statement 1. The number of encoded qubits follows from the
identity (1.2). Namely, the exact dual Q* of the matrix () can be obtained
from P by adding k rows corresponding to inequivalent codewords b € Cé \
Cp. According to the cleaning lemma [10], these can be chosen with the
support outside of an erasable set A. Dropping these k rows from Q*[B]
recovers the punctured matrix P[B] with the correct rank to ensure k' = k.
The distance inequalities are obtained from Eq. (1.1) by considering removal
of a single qubit at a time.

Proof of Statement 2. Indeed, since @’ differs from @ only by some rows
outside the ball Wy = Qapr,(up) which are linearly dependent with ug, the
corresponding full-matrix syndrome Qb’ must have nonzero bits outside
Wy N U. With the exception of ug, any row in W5 N U must be incident on
an even number of set bits in b, and there must be a continuous path on
the graph from wug to outside Wy formed by pairs of set bits in b (otherwise
b could be separated into a pair of vectors with nonoverlapping supports,
b = by + by, such that QbI = 0 outside Wy and Qb = 0 inside W5, which
would contradict the assumptions). This guarantees that at any odd distance
from ug (up to 2Rs — 1), b has at least one set bit, which recovers the two
lower bounds.

Proof of Statement 3. The inequality follows from the locality of row
operations on the Tanner graph: a nonzero bit v in some vector ¢ € F?"
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can only be removed by adding a row u € U neighboring with v. The
lower bound on f equivalent to linear independence of rows of ) guarantees
that rows of @’ be linearly independent from ug, thus weight must remain
nonzero at every step. The condition (a) guarantees the existence of a linear
combination in question.
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