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Multiple Access
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Abstract—This paper presents a network layer model for
a wireless multiple access system with both persistent and
nonpersistent users. There is a single access point with multiple
identical channels. Each user who wants to send a file first scans
a subset of the channels to find one that is idle. If at least one
idle channel is found, the user transmits a file over that channel.
If no idle channel is found, a persistent user will repeat the
access attempt at a later time, while a nonpersistent user will
leave. This is a useful mathematical model for situations where a
group of persistent users stay near an access point for an extended
period of time while nonpersistent users come and go. Users have
heterogeneous activity behavior, file upload rates, and service
durations. The system is a complex multi-dimensional Markov
chain. The steady state probabilities are found by exploiting a
latent reversibility property and leveraging a discrete Fourier
transform. This enables simple expressions for throughput and
blocking probability.

I. INTRODUCTION

Modern wireless multiple access networks provide a broad

frequency spectrum that can be divided into a large number

of channels. These channels can be used to simultaneously

support traffic from multiple users. However, it is not trivial to

keep track of the idle/busy state of each channel. This problem

is even more difficult when users have dynamic behavior. For

example, in internet-of-things applications, users may arrive

randomly, send a small burst of data, and then leave. There

is no time to coordinate a channel-sharing schedule. Further,

scanning the state of all channels before transmission can incur

a large time and energy overhead [1]. Wideband techniques for

sensing many channels simultaneously are treated in [2] [3]

[4]. Narrowband techniques for sensing one channel at a time

are in [5] [6] [7] [8] [9] [10] [11] [12]. Multi-channel scanning

for fast contention resolution is explored in [13] [14] [15].

This paper considers a simple network model of multi-

channel multiple access and studies the resulting network

dynamics. We assume there are m identical channels. To

reduce the time and energy cost of spectrum sensing, we

assume each user randomly scans only a subset of s channels,

where 1 ≤ s ≤ m. The probability of finding an available

channel depends on s and on the number of channels that

are currently busy. The value of s can be set according to

the particular narrowband (small s) or wideband (large s)

sensing techniques used, leveraging work such as in [1]- [12].

Even under this simple model, the network state dynamics

are complex. Users are heterogeneous, can be in different

activity states, and can have different file size parameters.

The network state includes which users are active and what

This work was supported by grant NSF SpecEES 1824418.

activity states they are in. The state space is ginormous: It

grows exponentially with the number of users and can easily be

larger than the number of atoms in the galaxy. It is important

to develop simple mathematical models for these complex

networks.

This paper considers a continuous time Markov chain model

for these networks. While the number of states is very large,

the model has a hidden reversibility property that enables exact

computation of the steady state probabilities. To develop the

method, Section II first treats a simple situation where all

users are nonpersistent, meaning that each user arrives and

has only one file to send before departing. This situation

allows a simple expression for network throughput that holds

for multiple classes of nonpersistent users, each class having

different file size and arrival rate parameters.

A more complex scenario with both persistent users and

nonpersistent users is treated in Section III. A persistent user

is a user that remains close to the wireless access point for

a long duration of time, repeatedly sends many files, but

has random activity patterns described by a simple 3-state

diagram (see Fig. 1). The activity states for each user can

have different transition rate parameters. Fortunately, the same

reversibility technique can be used to compute the exact steady

state probabilities. Unfortunately, in this scenario it is not

clear how to sum over the (overwhelmingly large) number

of states to compute throughput and blocking probabilities.

This is a known challenge of reversible systems in other

contexts. Indeed, in reversible networks of truncated M/M/∞
queues, it can be shown that steady state probabilities can be

computed up to a scaling constant B, but calculating B to

within a reasonable approximation can be NP-hard in general

[16] (see also [17] for factor graph approximation methods).

It is not obvious if the model of the current paper admits

efficient computation. This was a significant challenge in the

development of this work. Fortunately, this paper overcomes

this challenge by showing the network model has structure that

admits computation of the desired throughput and blocking

probabilities in polynomial time. Our solution carefully sums

over all (exponentially many) probabilities by invoking a

transform domain argument via a discrete Fourier transform.

A. Network model

Consider a wireless system with a single access point that

has m identical channels, where m is a positive integer. Each

channel can support one file transmission, so that up to m files

can be transmitted simultaneously. Different types of users

want to upload files to the access point. To do this, they first
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remains an important open question and mean field analysis

is a central technique for those situations.

Recent work that uses a distributed multi-armed bandit

approach to drive users towards a utility optimal configuration

is in [21] and a related regret analysis for a distributed 2-

user protocol is in [22]. A general theory of reversibility

in Markov chains is described in [23] and reversibility for

truncated M/M/∞ systems is in [24] (see also [16] [17]).

The Markov chain we consider in Section II has a structure

similar to (but not the same as) the open migration processes

described in [23].

Our model of persistent users accounts for heterogeneous

human user activity, where users can be in various states

depending on their activity patterns. The topic of mathematical

models for human-based activity patterns for wireless commu-

nication is of recent interest. For example, related Markov-

based models of human user activity and human response

times are treated in [25] for wireless scheduling; related 2-state

user activity models are used in [26] to treat file downloading

as a constrained restless bandit problem.

C. Our contributions

The first main contribution is the presentation of a math-

ematical model for the dynamics of multi-channel wireless

networks. The model allows users to have heterogenous file

size and arrival parameters, which is useful for treating human-

based activity patterns. The model captures the ginormous

state space of the network. However, our analysis leverages

a hidden reversibility property that, we show, allows exact

analysis of the steady state probabilities. The second main

contribution is our polynomial-time computation formula that

leverages Fourier theory to sum over an exponentially-large

number of probabilities to obtain individual blocking proba-

bility and throughput for each user.

II. NON-PERSISTENT USERS

This section considers the simple case where all users are

nonpersistent. Each user arrives once and makes one attempt

to access a channel. If the access is successful then the user

transmits its file, else it leaves and does not return. Assume

there are k classes of such users, where k is a positive integer.

Users from each class i ∈ {1, ..., k} arrive according to

independent Poisson processes with rates λ1, . . . , λk. Each

user has one file to send. File service times are independent.

Files of class i have service times that are exponentially

distributed with parameter µi. Assume that λi > 0 and µi > 0
for all i ∈ {1, . . . , k}. The different classes can be used

to represent different communities of users who may have

different arrival rate and file size parameters.

A. Markov chain model

The system can be modeled as a continuous time Markov

chain (CTMC) with vector state X(t) = (X1(t), ..., Xk(t)),
where Xi(t) is the number of type i files currently transmitting

at time t. The state space S is given by the set of all vectors

(x1, ..., xk) that have nonnegative integer components such

that
∑k

i=1 xi ≤ m, where m is the number of channels

(assume m is a positive integer). Let B(t) =
∑n

i=1 Xi(t) be

the number of busy channels. A user that arrives to the system

scans a subset of the channels to find one that is idle. For each

b ∈ {0, 1, ...,m} define θ(b) as the conditional probability that

a newly arriving user finds an available channel, given that

B(t) = b. The θ(b) values are assumed to satisfy (1)-(3).

To completely describe the Markov chain structure of this

system, it remains to specify the transition rates. The tran-

sition rates qw,z between two states w = (x1, ..., xk) and

z = (y1, ..., yk) are as follows: Fix an integer j ∈ {1, ..., k}
and define ej = (0, 0, ..., 0, 1, 0, ..., 0) as the vector that is 1
in entry j and zero in all other entries. Let x = (x1, ..., xk)
and x+ ej = (x1, ..., xj + 1, .., xk) be two states in the state

space S . Then

• Transition rate x → x+ ej is given by

qx,x+ej = λjθ
(
∑k

i=1 xi

)

This is the product of the arrival rate λj with the success

probability given that the new user scans when the system

state is x = (x1, ..., xk).
• Transition rate x+ ej → x is given by

qx+ej ,x = (xj + 1)µj

This is because there are currently (xj + 1) jobs of

type j that are actively using channels, and each has an

exponential service rate equal to µj .

Since the system state can change by at most one at any

instant of time, there are no other types of transitions and so

qw,z = 0 for states w, z ∈ S that do not have the above form.

It is not difficult to see that the Markov chain is irreducible,

so that it is possible to get from any state of the state space S
to any other state in S (the requirement (2) and the fact that

λi > 0 for all i ∈ {1, . . . , k} ensure this).

B. Basic Markov chain theory

This subsection recalls basic Markov chain theory (see, for

example, [23] [27] [24]). Consider a continuous time Markov

chain (CTMC) with a finite or countably infinite state space

S and transition rates qw,z ≥ 0 for all w, z ∈ S . Assume

that qw,w = 0 for all w ∈ S . The states of S can be viewed

as nodes of a graph; the links of the graph are defined by

state-pairs (w, z) such that qw,z > 0; the CTMC is said to be

irreducible if this graph has a path from every node to every

other node. A probability mass function over the state space

S is a vector (p(w))w∈S that satisfies p(w) ≥ 0 for all w ∈ S
and

∑

w∈S p(w) = 1. The goal is to find a mass function that

satisfies the following global balance equations:

p(w)
∑

z∈S

qw,z =
∑

z∈S

p(z)qz,w ∀w ∈ S (5)

It is well known that if the CTMC is irreducible and has a

finite state space, then there is exactly one probability mass

function (p(w))w∈S that solves (5), and this is the steady state

mass function.
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With this definition of the success probability φ, the long term

rate of accepted jobs of type i is λiφ jobs/time, and the long

term rate of dropped jobs of type i is λi(1 − φ) jobs/time.

Remarkably, the value of φ depends only on ρ, not on the

individual ρi values, as shown in the following corollary.

Corollary 1: For any function θ(b) that satisfies (1)-(3), the

long term success probability φ is given by

φ = A ·∑m
b=0

(
∏b

r=0 θ(r)
)

ρb

b! (9)

where A is the constant defined in (8).

Proof: The long term success probability is given by

φ = P [success]

=

m∑

b=0

P
[

success|∑k
i=1 Xi = b

]

︸ ︷︷ ︸

θ(b)

P

[
k∑

i=1

Xi = b

]

and the result follows by substituting P
[
∑k

i=1 Xi = b
]

from

part (b) of Theorem 1.

Corollary 1 shows that the success probability φ depends

only on the conditional success probabilities θ(b) and on the

loading parameter ρ =
∑k

i=1 λi/µi. This means that we can

understand the success probability through the single param-

eter ρ, regardless of the number of classes k of nonpersistent

users and regardless of the specific λi and µi parameters for

each class i ∈ {1, . . . , k}. Notice that, by Little’s theorem,

ρ =
∑k

i=1 λi/µi is equal to the steady state average number

of actively transmitting users there would be in a virtual system

with infinite resources: The virtual system has an infinite

number of servers, each new file of the virtual system receives

its own server with probability 1, and no files are dropped.

D. Plots for example cases
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Fig. 3. Success probability for nonpersistent traffic with m = 10 channels.

Fig. 3 plots the success probability φ versus s (the number

of channels that each user scans) for the case of m = 10
channels and using the θ(b) probabilities given in (4). The

values ρ ∈ {2, 3, 5, 10, 15} are shown. The case ρ = 10 is

when the average number of active users in a virtual system

with infinite resources is equal to 10, the number of channels

in the actual system. This can be viewed as a threshold case:

When ρ exceeds m (as plotted for the case ρ = 15 in Fig. 3)
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Fig. 4. Success probability for nonpersistent traffic with m = 100 channels.

then success probability is necessarily strictly less than 1 even

when the number of channels sensed is equal to m. On the

other hand, by choosing s = 2 we obtain a success probability

above 0.8 when ρ ∈ {2, 3, 5}.

Better performance is obtained when the number of chan-

nels is increased while the ρ values are increased by the

same factor: Fig. 4 shows performance for the case m = 100
channels, with corresponding ρ values that maintain the same

ratio of ρ/m as in the first figure. It can be seen that success

probability increases to near 1 when the loading is small

(ρ/m ≤ 1/2). In all of the plots of Figs. 3-4 it can be seen that

success probability is relatively flat for large values of s: A

considerable amount of energy can be saved by just scanning

a small subset of the total number of channels.

III. PERSISTENT AND NONPERSISTENT USERS

Fix n as a positive integer and suppose that, in addition

to the k classes of nonpersistent users, there are n individual

persistent users with activity states Aj(t) ∈ {I,W, T} and

behavior parameters αj , βj , uj , vj , as shown in Fig. 1. The

k classes of nonpersistent users have parameters λi and µi

for all i ∈ {1, . . . , k}. The values of all parameters λi, µi,

αj , βj , uj , vj for i ∈ {1, . . . , k} and j ∈ {1, . . . , n} are

assumed to be positive.

Recall that Xi(t) is the current number of nonpersistent

users of type i transmitting, for i ∈ {1, . . . , k}. The system

state is W (t) = (X1(t), . . . , Xk(t);A1(t), . . . , An(t)). The

total number of busy channels is

B(t) =

k∑

i=1

Xi(t) +

n∑

j=1

1{Aj(t)=T}

where 1{Aj(t)=T} is an indicator function that is 1 if persistent

user j is transmitting at time t, and 0 else. Let θ(b) be a

success probability function defined for b ∈ {0, 1, . . . ,m} that

satisfies (1)-(3) (an example θ(b) function is in (4)). As before,

if any user attempts access at a time t such that B(t) = b,
its conditional success probability is θ(b). Notice from Fig. 1

that the transition rates for the W → T transitions of each

persistent user depend on the current value of B(t).
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A. Markov chain model

Let S be the state space of the system: This is the set

of all vectors w = (x; a), where x = (x1, . . . , xk) and

a = (a1, . . . , an), such that xi ∈ {0, 1, 2, . . .} for all

i ∈ {1, . . . , k}, aj ∈ {I,W, T} for all j ∈ {1, . . . , n}, and

k∑

i=1

xi +

n∑

j=1

1{aj=T} ≤ m

For simplicity of notation, for each w ∈ S define busy(w) as

the number of busy channels associated with state w:

busy(w) =

k∑

i=1

xi +

n∑

j=1

1{aj=T}

To completely describe the transition rates of this CTMC, let

w = (x; a) and z = (y; b) be two distinct states in S . There

are three types of transitions that can occur between states w
and z:

• Non-persistent user i ∈ {1, . . . , k} (xi ↔ xi +1): Recall

that ei = (0, ..., 0, 1, 0, ..., 0) is a vector of size k with a

1 in component i and zeros in all other components.

– Transitions (x; a) → (x+ ei; a) have rate

qw,z = λiθ(busy(w))

– Transitions (x+ ei; a) → (x; a) have rate

qz,w = (xi + 1)µi

• Persistent user j ∈ {1, . . . , n} (I ↔ W , see Fig. 1):

– Transitions

(x, a1, . . . , aj−1, I, aj+1, . . . , an)

→ (x, a1, . . . , aj−1,W, aj+1, . . . , an)

have rate qw,z = αj .

– Transitions

(x, a1, . . . , aj−1,W, aj+1, . . . , an)

→ (x, a1, . . . , aj−1, I, aj+1, . . . , an)

have rate qz,w = βj .

• Persistent user j ∈ {1, . . . , n} (W ↔ T , see Fig. 1):

– Transitions

(x, a1, . . . , aj−1,W, aj+1, . . . , an)

→ (x, a1, . . . , aj−1, T, aj+1, . . . , an)

have rate qw,z = ujθ(busy(w)).
– Transitions

(x0, a1, . . . , aj−1, T, aj+1, . . . , an)

→ (x0, a1, . . . , aj−1,W, aj+1, . . . , an)

have rate qz,w = vj .

It is not difficult to show that the CTMC is irreducible.

Indeed, every state can reach the state (0, I, I, I, ..., I) from a

sequence of transitions that includes no new arrivals, has each

transmitting user finish, and has all persistent users eventually

move to the Idle state. Likewise, the state (0, I, I, I, ..., I) can

reach every state in S .

B. Steady state probabilities

Motivated by the “birth-death-like” structure of the per-

sistent user dynamics shown in Fig. 1 and by the structure

of the steady state probabilities for the nonpersistent user

case, we make the following guess about steady state: With

w = (x1, . . . , xk; a1, . . . , an) we guess that for all w ∈ S:

p(w) = B ·





busy(w)−1
∏

r=0

θ(r)





(
k∏

i=1

ρxi

i

xi!

)

×
n∏

j=1

(
αj

βj

)1{aj=W}
(
αjuj

βjvj

)1{aj=T}

(10)

where ρi = λi/µi for all i ∈ {1, . . . , k} and B is a constant

that makes all probabilities sum to 1.

Theorem 2: The CTMC for this system with persistent

and nonpersistent users is reversible and the steady state

distribution is given by (10).

Proof: It suffices to show that p(w) defined by (10)

satisfies the detailed balance equations. The proof is omitted

for brevity (see [28]).

The steady state probabilities in the above theorem can be

simplified by aggregating all nonpersistent users. Consider a

state w = (x1, . . . , xk; a1, . . . , an) ∈ S . Define x =
∑k

i=1 xi

as the number of nonpersistent users associated with this state.

Define q(x; a1, . . . , an) as the steady state probability that the

total number of nonpersistent users is x and the state of the

persistent users is (a1, . . . , an). Define a = (a1, . . . , an) and

define

busyp(a) =
∑n

j=1 1{aj=T}

where the p subscript emphasizes that busyp(a) counts the

number of busy persistent users from the vector a =
(a1, . . . , an). In particular, the total number of busy channels

for a vector (x, a) is x+ busyp(a). A vector (x, a) is said to

be a legitimate vector if x + busyp(a) ≤ m. The next result

allows the aggregatated steady state to be written purely in

terms of ρ.

Corollary 2: For this system with persistent and nonpersis-

tent users we have for all legitimate vectors (x, a1, . . . , an):

q(x; a1, . . . , an)

= B ·






x+busy
p
(a)−1

∏

r=0

θ(r)






×
n∏

j=1

(
αj

βj

)1{aj=W}
(
αjuj

βjvj

)1{aj=T} ρx

x!
(11)

where B is the same constant used in Theorem 2, ρ =
∑k

i=1 ρi, and ρi = λi/µi for i ∈ {1, . . . , k}.

Proof: Omitted for brevity (see [28]).

C. Solution complexity

The formulas (10) and (11) establish steady state probabil-

ities for a very large number of system states. The number of

states grows exponentially in the problem size. For example,

just considering the 3 possibilities I,W, T for each persistent



PROC. IEEE INFOCOM 2021 7

user, we find the number of states is at least 3min[n,m]. If

min[n,m] ≥ 180 then 3min[n,m] ≥ 1085, meaning that the

number of states is larger than the current estimate for the

number of atoms in the universe. Thus, it is not immediately

clear how to compute the constant B, and how to use the

formulas (10) and (11) to calculate things such as the marginal

fraction of time that persistent user 1 is busy, the throughput

and success probability of persistent user 1, and the throughput

and success probabilities of the different classes of nonpersis-

tent users. For some problems that involve reversible networks,

such as the admission control problems in [24], it can be

shown that even calculating the proportionality constant B to

within a reasonable approximation is NP-hard [16] (see also

[17] for factor graph approximation methods). Fortunately, our

problem has enough structure to allow efficient (polynomial

time) computation of all of these things via a discrete Fourier

transform. That is developed next.

D. Calculating B

Define

g = min[m,n]

We can sum the probabilities in (11) by grouping states

into those that have b persistent users that are busy, for

b ∈ {0, 1, . . . , g}, and x nonpersistent users:

1 =

g
∑

b=0

m−b∑

x=0

∑

a:busy
p
(a)=b

q(x, a1, . . . , an)

= B

g
∑

b=0

m−b∑

x=0

ρx

x!

(
x+b−1∏

r=0

θ(r)

)

×
∑

a:busy
p
(a)=b

n∏

j=1

(
αj

βj

)1{aj=W}
(
αjuj

βjvj

)1{aj=T}

= B

g
∑

b=0

m−b∑

x=0

ρx

x!

(
x+b−1∏

r=0

θ(r)

)

cb (12)

where we define cb for all b ∈ {0, 1, . . . , n}

cb =
∑

a:busy
p
(a)=b

n∏

j=1

(
αj

βj

)1{aj=W}
(
αjuj

βjvj

)1{aj=T}

(13)

Notice that these cb values are defined for all b ∈ {0, 1, . . . , n},

even if the number of persistent users n is larger than the

number of channels m (so that only c0, . . . , cm are used in

(12)).

It is difficult to obtain the value of cb by a direct summation

in (13) because there are so many terms. However, we can

construct a related polynomial function f(z) defined for all

complex numbers z ∈ C:

f(z) =

n∏

j=1

[

1 +

(
αj

βj

)

+ z

(
αjuj

βjvj

)]

For any given z ∈ C, the value f(z) can be easily computed as

a product of n (complex-valued) terms. We make the crucial

observation:

f(z) =
n∑

b=0

cbz
b

This motivates a discrete Fourier transform approach: Define

i =
√
−1 and define

Ct = f(e
−2πit
n+1 ) =

n∑

b=0

cbe
−2πibt
n+1 ∀t ∈ {0, 1, . . . , n}

The sequence {Ct}nt=0 is the discrete Fourier transform of

{cb}nb=0. The inverse transform gives

cb =
1

n+ 1

n∑

t=0

Cte
2πitb
n+1 ∀b ∈ {0, 1, . . . , n}

Of course, these values of cb only need to be computed for b ∈
{0, 1, . . . , g} for use in (12). These findings are summarized

in the following lemma.

Lemma 1: (Calculating B) The value B in Theorem 2 and

Corollary 2 is

B =
1

∑g
b=0

∑m−b
x=0

ρx

x!

(
∏x+b−1

r=0 θ(r)
)

cb
(14)

where g = min[n,m] and cb is defined

cb =
1

n+ 1

n∑

t=0

Cte
2πitb
n+1 ∀b ∈ {0, 1, . . . , g} (15)

with i =
√
−1 and with Ct given by

Ct =

n∏

j=1

[

1 +

(
αj

βj

)

+ e
−2πit
n+1

(
αjuj

βjvj

)]

∀t ∈ {0, 1, . . . , n}

Proof: The proof is contained in the development imme-

diately preceding the lemma.

E. Performance for the individual persistent users

Fix j ∈ {1, . . . , n}. Define P [Ij ], P [Wj ] and P [Tj ] as the

steady state probability that persistent user j is idle, waiting,

or transmitting, respectively (see Fig. 1). Define performance

variables γj and φj as follows:

• γj is the throughput of persistent user j. This is the rate

at which this user successfully accesses a channel of the

multi-access system. Because all files that successfully

access a channel are eventually served, γj is also the rate

of file service for persistent user j and so

γj = P [Tj ]vj (16)

• φj is the success ratio of persistent user j. This is the rate

of access successes divided by the rate of access attempts:

φj =
γj

P [Wj ]uj

(17)

The next two lemmas show that: (i) These values can be

obtained in terms of P [Ij ]; (ii) The probability P [Ij ] can be

computed via the discrete Fourier transform.

Lemma 2: For persistent user j ∈ {1, . . . , n} we have

P [Wj ] = P [Ij ](αj/βj)

P [Tj ] = 1− P [Ij ](1 + (αj/βj))

γj = vj − vjP [Ij ](1 + (αj/βj))

φj =
vjβj − vjP [Ij ](βj + αj)

ujαjP [Ij ]
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Proof: We use an argument similar to cut set equations

for CTMCs (in this case we use cuts on the incompletely

described CTMC of Fig. 1): Consider the 3-state picture of

Fig. 1 associated with persistent user j. The total number

of transitions I → W is always within 1 of the number of

transitions W → I . Hence, the long term time average rate of

transitions I → W (in units of transitions/time) is the same

as the long term rate for transitions W → I:

P [Ij ]αj = P [Wj ]βj =⇒ P [Wj ] = P [Ij ](αj/βj)

On the other hand we know P [Ij ] + P [Wj ] + P [Tj ] = 1 and

so

P [Tj ] = 1− P [Ij ](1 + (αj/βj))

The resulting values of γj and φj are obtained by (16) and

(17).

Lemma 3: For each persistent user j ∈ {1, . . . , n}, the value

of P [Ij ] is

P [Ij ] = B
∑min[n−1,m]

b=0

∑m−b
x=0

(
∏x+b−1

r=0 θ(r)
)

ρx

x! cj,b (18)

where B is given in (14), ρ =
∑k

i=1(λi/µi), and cj,b is defined

by

cj,b =
1

n

n−1∑

t=0

∏

l∈{1,...,n}\j

[

1 +

(
αl

βl

)

+ e
−2πit

n

(
αlul

βlvl

)]

e
2πitb

n

∀b ∈ {0, 1, . . . ,min[n− 1,m]} (19)

Proof: Omitted for brevity (see [28]).

F. Performance for nonpersistent users

Recall that nonpersistent users arrive according to inde-

pendent Poisson arrival processes. Since Poisson arrivals see

time averages (PASTA), it holds that the fraction of time that

nonpersistent users of class i ∈ {1, . . . , k} see a system with

y busy channels is the same for all classes i and is equal to

the long term fraction of time that there are y busy channels.

Hence, all nonpersistent users see the same access success

probability, call it φ0, and we can show (details omitted for

brevity, see [28]):

φ0 = B
∑m

y=0

∑min[y,n]
b=0

ρy−b

(y−b)! (
∏y

r=0 θ(r)) cb

IV. VALIDATION ON TEST CASES

This section validates the results of the previous section (ob-

tained by the discrete Fourier transform) by considering simple

example cases and comparing to simulated performance.

A. Three identical persistent users

Consider the following test case with m = 5 channels and

where each user scans a subset s = 2 of these channels. There

is one class of nonpersistent traffic with λ1 = 1 and µ1 = 2, so

that ρ = 1/2. There are three persistent users with identical

parameters αj = α, βj = β, uj = u, vj = v for all j ∈
{1, 2, 3} with

α = 1;β = 1;u = 5; v = 10

We compare the exact success probabilities φ0, φ1, φ2, φ3 and

the persistent user state probabilities P [Ij ], P [Wj ], P [Tj ]
obtained by the formulas in the previous section with simula-

tion values. The exact values were calculated using complex

number multiplication in MATLAB (the imaginary parts of

all real-valued quantities were indeed found to be zero in

the MATLAB computation). The simulation was conducted

in MATLAB over a period of 107 transitions of the CTMC.

Access attempts that fail were also counted as transitions, even

though these transitions did not change the state of the CTMC.

Tables I-II report the results. The data from these tables

shows a good agreement between theory and simulation.

Type Success prob Simulated Exact

Non-persistent φ0 0.9530 0.9527
Persistent φ1 0.9676 0.9674
Persistent φ2 0.9675 0.9674
Persistent φ3 0.9670 0.9674

TABLE I
A COMPARISON OF SIMULATED AND EXACT VALUES FOR SUCCESS

PROBABILITY.

Persistent Users P [Ij ] P [Wj ] P [Tj ]
User 1 Simulation 0.4028 0.4024 0.1948

User 2 Simulation 0.4021 0.4030 0.1949

User 3 Simulation 0.4035 0.4019 0.1946

Exact 0.4026 0.4026 0.1947
TABLE II

A COMPARISON OF SIMULATED AND EXACT VALUES FOR STATE

PROBABILITIES.

B. Two classes of persistent users (three in each class)

This test case considers m = 10 channels and s = 2. This

test case considers two classes of persistent users (as defined

by the αj , βj , uj , vj parameters) with three users in each class:

• Persistent class A: α = 1;β = 1;u = 5; v = 10
• Persistent class B: α = 1;β = 1;u = 5; v = 1

In particular, class A persistent users have the same parameters

as the previous subsection, while class B persistent users have

file that take 10 times longer to serve. There is a single

nonpersistent class with parameters λ1 = 1, µ1 = 1 (so that

ρ = 1).

As before, we compare the exact theoretical values from

the previous section with simulated values obtained over a

simulation with 107 transitions. The results are shown in

Tables III-V. Again there is good agreement between theory

and simulation. Notice that class B persistent users spend

much more time in the transmitting state. These users also

have a slightly higher access success probability. Intuitively,

this is because the average time that a class B user spends

transmitting a file over a channel is 10 times longer than

class A users and nonpersistent users. Thus, when a class B

user wants to access a channel, this particular class B user is

certainly not currently occupying a channel, which is one less

channel-hogger to worry about.

C. Scaling the number of channels

We now consider scaling the network size by a scale param-

eter k ∈ {1, 2, . . . , 10}. The number of channels scanned is
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Type Success prob Simulated Exact

Non-persistent φ0 0.8819 0.8822

Persistent A φ1 0.8940 0.8937
Persistent A φ2 0.8938 0.8937
Persistent A φ3 0.8939 0.8937

Persistent B φ4 0.9213 0.9209
Persistent B φ5 0.9206 0.9209
Persistent B φ6 0.9207 0.9209

TABLE III
TWO CLASSES OF PERSISTENT USERS: A COMPARISON OF SIMULATED

AND EXACT VALUES FOR SUCCESS PROBABILITY.

Persistent Class A P [Ij ] P [Wj ] P [Tj ]
User 1 Simulation 0.4086 0.4090 0.1823

User 2 Simulation 0.4094 0.4084 0.1822

User 3 Simulation 0.4093 0.4082 0.1825

Exact 0.4087 0.4087 0.1826
TABLE IV

TWO CLASSES OF PERSISTENT USERS: A COMPARISON OF STATE

PROBABILITIES FOR CLASS A PERSISTENT USERS.

fixed at s = 2. For each k ∈ {1, 2, . . . , 10} there are m = 20k
channels (so the number of channels increases from 20 to 200).

There are three classes of users and the number of users in

each class increases linearly with k:

• Non-persistent users: There is a single class of nonper-

sistent users with µ1 = 1 and λ1 = 3k (so ρ = 3k).

• Type A persistent users: There are 5k persistent users of

Class A, defined by parameters:

[αA, βA, uA, vA] = [0.5, 0.5, 5, 10]

• Type B persistent users: There are 5k persistent users of

Class B, defined by parameters:

[αB , βB , uB , vB ] = [0.5, 0.5, 5, 1]

Notice that Type B persistent users and Non-persistent users

have the same average file size of 1/µ1 = 1/vB = 1,

while Type A persistent users have average file size that is

10 times smaller (1/vA = 1/10). The data is plotted in

Fig. 5. The solid curves of Fig. 5 represent exact values

calculated by the formulas of the previous section, while the

diamonds correspond to simulated values over a simulation of

107 transitions.

V. CONCLUSION

This paper considers a Markov chain model for wireless

multi-channel multiple access with heterogenous users. When

all users are nonpersistent and send at most one file, a simple

expression for success probability was derived that depends

only on m, s, and the system loading ρ =
∑k

i=1 λi/µi, where

k is the (arbitrarily large) number of user classes and λi, µi

Persistent Class B P [Ij ] P [Wj ] P [Tj ]
User 4 Simulation 0.1507 0.1509 0.6984

User 5 Simulation 0.1533 0.1512 0.6955

User 6 Simulation 0.1515 0.1510 0.6976

Exact 0.1514 0.1514 0.6972
TABLE V

TWO CLASSES OF PERSISTENT USERS: A COMPARISON OF STATE

PROBABILITIES FOR CLASS B PERSISTENT USERS.
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Success probability versus number of channels

Non-persistent

Persistent class A

Persistent class B

Fig. 5. Success probability versus network size. The solid curves are com-
puted from the exact formula; the diamonds show corresponding simulated
values for simulations over 107 transitions of the CTMC. The number of
channels scanned is fixed at s = 2.

are the arrival rate and file size parameters of each class. The

case with both persistent and nonpersistent users was also

analyzed. Each persistent user has its own activity parameters

and behaves according to a 3-state process with idle, waiting,

and transmitting states. The exact steady state values were

also derived in this setting. An efficient method for summing

over the overwhelmingly large number of state probabilities to

obtain the individual performance of each user was developed

using a discrete Fourier transform.
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