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ABSTRACT

Automatic knitting machines are robust, digital fabrication
devices that enable rapid and reliable production of attractive,
functional objects by combining stitches to produce unique
physical properties. However, no existing design tools sup-
port optimization for desirable physical and aesthetic knitted
properties. We present KnitGIST (Generative Instantiation
Synthesis Toolkit for knitting), a program synthesis pipeline
and library for generating hand- and machine-knitting pat-
terns by intuitively mapping objectives to tactics for texture
design. KnitGIST generates a machine-knittable program in
a domain-specific programming language.
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INTRODUCTION

Machine knitting is a powerful fabrication medium for craft-
ing complex interactive objects, but knitting design systems
are a relatively new research topic. The complex physical and
visual properties of knit texture come from the combinations
of numerous stitches. There are numerous properties of knit
textures that must be maintained to create a knit object that
will not unravel. Maintaining these properties while adding
requirements to generate specific textures constrains the prob-
lem further. Such design work currently requires extensive
domain expertise. If we can encapsulate that expertise in a
generative design tool, a wider variety of people could pro-
duce knit textures more easily. Rather than tediously spec-
ifying textures stitch by stitch, a design tool should enable
designers to specify high-level objectives. However, gener-
ative design of knit textures poses two key challenges: (1)
maintenance of the hard constraints that ensure a knit object
will not unravel [13, 28]; and (2) generation of user-defined
physical and aesthetic objectives.
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(a) Stockinette:
unrolled (top) and rolled (bottom)

(b) Cables:
unrolled (top) and rolled (bottom)

(c) Garter:
un-stretched (top) and (d) Seed-Stitch:

ttom) horizontally and vertically shrunken

(e) Knit 2 Purl 2 Rib: un-stretched (left) and stretched (right)

Figure 1: Exemplar textures produced during the described
scenario that are curly (a), cabled (b), vertically-elastic (c),
shrunken (d), and horizontally-elastic (e).
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Generative Instance Synthesis Toolkit for knitting
(KnitGIST) is a programming framework for generative
design through program synthesis. The framework synthe-
sizes knit textures by iteratively modifying a domain specific
language for programming knitted textures, KnitSpeak [13],
based on pairings of programmer- defined objectives and
tactics. Objectives measure how well the generated texture
meets the programmer’s requirements. Tactics change a
KnitSpeak program so that the resulting texture is more
likely to meet those objectives. In each iteration a texture
and tactic are selected, and the tactic is applied to produce a
new texture that is likely closer to the goal. The new texture
is added to the population of best textures if it compiles
and demonstrates an improvement over other textures. This
method rapidly explores the space of possible knit textures
represented by KnitSpeak programs. The textures that get
generated can be repeated to create scalable sheets of knit
fabric with the desired properties.

Using the KnitGIST framework, we can easily construct mul-
tiple knit texture optimizers by changing the objectives and
tactics used to modify/synthesize knit textures represented
using KnitSpeak. Objectives evaluate aesthetic and physi-
cal properties of a texture, and tactics modify KnitSpeak to
produce new textures. By combining these, we can produce
textures with a variety of physical and aesthetic properties.
To support this, the framework provides an library for opti-
mizer creation. Using KnitGIST and this library we demon-
strate how to build optimizers that support: (1) instantiation
of functional textures, (2) swapping of textures for aesthetic
purposes, and (3) generation of a functional and attractive
lacy lampshade.

This framework lays the groundwork for creating generative
design tools that reliably produce functional knit textures.
KnitGIST separates programmer concerns in two ways. First
it separates hard-constraints (what must be true to make a tex-
ture knittable) from soft-constraints (the properties of a spe-
cific texture the programmer wants) into a verifiable program-
ming language and compiler, and into objectives. Second,
by factoring out objectives and tactics, programmers can ex-
plicitly specify heuristics to indicate simple steps through the
search space that the programmer believes will lead to an im-
proved outcome. This separation of concerns lays the ground-
work for pluggable user-interfaces where objectives and tac-
tics can be mixed and matched to reliably produce a wide
variety of compiled, functional, knittable results. Plugging in
different combinations of objectives and tactics enables ver-
satility to blend simple criteria to achieve complex effects.

Scenario: Property Driven Stockinette

A programmer can create a curly, symmetrical texture using
KnitGIST without detailed knitting knowledge. Seeded with
a mapping between objectives and tactics, but no domain spe-
cific knowledge, the programmer can construct a generative
design program to create this curly texture. First, they map an
objective that the texture curls up on itself to a tactic that mod-
ifies random stitches to curl forward. Then, they map two ob-
jectives that the texture is vertically and horizontally symmet-
rical to two tactics, respectively, that mirror stitches across
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the axes of symmetry. An experienced knitter would iden-
tify stockinette (a texture of all forward-curling knit stitches)
as a simple and common texture that meets these criteria.
This KnitGIST optimizer consistently produces stockinette
texture. When the programmer changes the objectives to tar-
get a variety of physical and aesthetic properties, the new op-
timizers reliably produce other canonical textures (Fig 1).

RELATED WORK

Algorithmic Knit-Design

The majority of computer-aided knitting tools fit into two lim-
ited categories. Machine knitting is largely done with (1)
stitch-level machine knit charting tools and (2) higher level
‘wizard’ tools that limit designs [33, 37, 35] to a narrow set
of templates (i.e.hat, scarf, socks) which can be modified in
limited regions (i.e.cuffs) with a small set of pre-defined tex-
tures. Hand-knitters rely on sourcing designs from books and
repositories [20, 31, 7], or designing textures with adopted
tools like spreadsheets [26]. These improvised methods do
not support any verification of the final knit object.

To address this, recent work has focused on algorithmic, ver-
ifiable, computational solutions for generating knitting pat-
terns. McCann et al.created a machine-knitting compiler
which included a simple, machine-level language for con-
trolling knitting machines [25]. The simplified machine lan-
guage, Knitout [14], is an instruction set for assigning loops
of yarn to be held on beds of hook-shaped needles!. Using
this instruction set, Transfer planning is the process of assign-
ing needle locations to loops in a graph structure such that the
represented knit object can be knitted on a knitting machine
[23].

Building on this architecture, knit surfaces can be created
from 3D models [30, 28, 29]. Narayanan et al.added sup-
port for applying textures which deform the 3D surface and
add new physical properties [29]. Karmon et al.developed
a tool to simulate such deformations [16], but designing for
those deformations remains a challenge. Alternatively, tex-
tures and knit objects can be composed in higher level do-
main specific languages and compiled to knitting machine in-
structions. Two approaches to machine knitting have focused
on developing domain specific languages for texture and pat-
tern design. Kaspar et al.developed a language that isolates
regions of stitches in a garment and applies patterning oper-
ations in layers [17]. KnitSpeak uses existing hand-knitting
nomenclature which is straightforward to write and interpret
as hand-knitting instructions or compile down to machine-
knitting instructions [13].

Overall, algorithmic machine knitting has formed a cohe-
sive architecture and work flow: (1) model knit object by 3d
modeling or texture programming; (2) convert (e.g., compile)
those models to KnitGraphs to be verified, manipulated, and
evaluated, and (3) convert the KnitGraph to knitting machine
instructions by transfer planning. While there has been more
substantial work on generating KnitGraphs from 3D modeled

! Additional knitting machine details, see [25, 1]
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shapes [28, 29], little work has focused on generating func-
tional texture programs based on user specifications and as-
surance of knittability.

Generative Design in Fabrication

Instead of relying on designers’ skills, generative design
treats design as an optimized-search problem. The designer
defines a search space and evaluation criteria and an optimizer
can search for a design that maximizes desired properties. In
most commercial tools the designer has a limited ability to
manipulate the evaluation function [4, 3, 12].

Research into generative design and fabrication is extensive.
The primary focus of this work has been to develop optimiza-
tions over physical properties (e.g., structural integrity [39],
strength [9, 41], material usage [9], shape [41, 24], aesthet-
ics [24], and actuation [22, 6, 34]). Generally, these design
tools enable designers to intuitively bound the search to: a
3D model’s shape [24], sketches [9, 18], or video inputs [22].

Some work has been done to translate these approaches into
domain-specific tools. For example: Li et al.use generative
design to generate actuation mechanisms for controlling non-
digital objects [22]. Anderson et al.use generative design
to construct circuits based on easy to program trigger-action
structures [2]. In the domain of soft fabrication, Bern et al.use
this class of algorithms to generate “animated plushies” [6]
which can be fabricated to move like a provided animation.
Narayanan et al.use these methods to translate 3D models into
machine knitting instructions [28, 29].

Despite such innovations, there is no uniform architecture for
generative design [8]. Krish notes this lack of a unifying
method and breaks down broad classes of generative design
(e.g., genetic design [5], shape-grammars [19], hill-climbing
methods) into three components: (1) the design schema or
representation, (2) a means of creating variations, and (3) a
means of selecting desirable outcomes [21]. Each of these
components can be challenging to implement and requires a
significant amount of domain expertise. However, a formal
combination of these components could lead to easier imple-
mentation. A simplified optimization framework can be ef-
fective for generating user-interface layouts [11] if it trades
off algorithmic specificity for ease of implementation.

Program Synthesis in Fabrication

Program synthesis algorithms generate a program that meets
specified requirements. It is generally broken into three
methods: oracle guided synthesis [15], stochastic super-
optimization [32], and enumerative search [38]. Schufza et
al’s[32] stochastic super-optimization approach starts with a
complete program and randomly mutates the design. Each
mutation is selected based on a cost-evaluation of the cur-
rent program. The search will generally lead to mutations
that make the current program more efficient, enabling rapid
random exploration of a large design space. In this method,
there is a critical verification step that checks that the new
candidate program produces the same output as the original
program. Implicit in this step, is verification that the program
is also a valid program. In the space of fabrication, shape
grammars arguably fit into the field of program synthesis. In
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this case, the grammar defines a set of shapes and ways of
modifying these shapes [19]. Generative design systems that
use these representation are essentially searching the space of
candidate programs which generate the desired shape.

There has been a recent focus on using these methods for
fabrication. Nandi et al.use program synthesis to parameter-
ize 3D meshes, effectively bridging the gap from difficult to
edit but easy to share model formats to an easy to edit for-
mat [27]. Wu et al.use similar compilation methods to gen-
erate low-level carpentry instructions from manufacturing re-
quirements [40]. Dumas et al.use synthesis methods to gen-
erate 3D printed textures from user provided examples [10].
However, these techniques have not be applied to machine-
knitting.

GIST: GENERATIVE INSTANCE SYNTHESIS TOOLKIT
KnitGIST is a framework that enables programmers to create
knit texture optimizers that consist of five components: (1) a
KnitSpeak compiler, (2) a population of promising textures,
(3) a KnitSpeak synthesizer; (4) objectives which measure
how well a texture meets a set of programmer-specified re-
quirements, and (5) tactics that produce a modified instance
of the KnitSpeak texture. When constructing an optimizer,
the programmer associates the objectives and tactics by the
expectation that a tactic will modify a KnitSpeak program to
improve a given objective. To do this, the programmer only
needs to understand what an objective evaluates and what a
tactic does, not how either were implemented.The program-
mer assigns weights to objectives to express their importance,
and to tactics to express the likelihood that it will improve an
associated objective. These weights are used to compute ex-
pectation improvement scores that guide the selection of tac-
tics to, likely, improve high-value objective scores.

With KnitGIST we can easily construct optimizers for knit
textures. By breaking up and organizing these components,
programmers are able to explicitly encode the relationships
between soft-constraints (represented by objectives), and
steps through the search space (tactics). The hard-constraints
of knittability are managed bu the KnitSpeak-compiler. Us-
ing program synthesis separates the concerns of user goals
(what is being optimized for) from hard constraints of knit-
ting. This framework is similar to Schufza et al’sapproach to
super-optimization [32].

Given these components, KnitGIST executes as follows (Fig
2). (1) The synthesizer produces the initial population of tex-
tures. (2) Each texture is compiled; if a member does not
compile it is thrown out since it will not knit. (3) Each tex-
ture is scored with an aggregate objective function which is
the weighted sum of the individual objective scores. (4) A
member of the population is randomly selected to be modi-
fied; high-scoring textures are more likely to be selected. (5)
A tactic is selected to modify the selected texture. Tactics
with a higher expectation of changing the texture to meet a
highly weighted objective are more likely to be selected. (5)
The tactic produces a new, modified texture which is (6) either
added to the population or filtered out if it does not compile or
is not better than at least one member of the population. Only
the N top scoring textures are kept to cap the population size.
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Figure 2: A programmer provides parameters and selects a synthesizer (blue). They construct a weighted heuristic map between
objectives (purple) and tactics (yellow). This gets plugged into an optimizer which generates optimized KnitSpeak (green).

Steps 3 through 6 are repeated until a program scores high
enough over the objective-function, or a maximum number
of iterations have been exceeded. Using this process we can
structure a wide range of discrete-search optimizers that rep-
resent hill-climbing algorithms and genetic algorithms.

Heuristic-Map: Deciding How to change a Program

The space of knit textures may not be convex, so strict hill-
climbing is unlikely to find a globally optimal solution. In-
stead, we consider a collection of promising points across
the search space. Selection on these starting points is based
on an expectation of improvement over the current popula-
tion. When a tactic is applied to a texture, it modifies the
texture. Since our goal is to move from poor performing tex-
tures to high performing textures, we generally want to select
tactics that we expect will improve the score of the objective-
function. However, if we strictly follow the best tactic, we are
likely to find local minima and not explore the whole search
space. Instead, we randomly select tactics, with tactics we
expect to improve the score being more likely to be selected.
This expectation improvement score (EIS) (Eq. 1c) is calcu-
lated based on a mapping of objectives to tactics—called the
heuristic map. To create a heuristic map, the programmer as-
signs: priority weights to each objective, tactics to objectives,
and weights to tactics based on how likely the programmer
thinks the tactic will improve the respective objective’s score.

To calculate the EIS for a tactic, we will we first need to cal-
culate the value of that tactic for each possible objective. The
value, V(t,0), of a tactic is estimated as the weight on the
mapping between the tactic, ¢, and the weighted objective, o:
0Oy, normalized by the sum of all weighted mappings be-
tween o and all other tactics (Eq. 1a). The importance of an
objective, I(0, 0), depends on current score of the objective,
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s5(0). I(0,0) is calculated as the weight of the objective mul-
tiplied by the distance from the maximum score to the current
score, normalized by the weighted sum of all score distances
(Eq. 1b). Given the value of a tactic and the importance of
each objective, we calculate EIS(o, O) as product of the tactic
value and the objective importance for all objectives (Eq.1c).

V(t,o)ziza‘:f : (1a)
t'ely o
__ Bo(1—s(0))
100 =5 8,5 (o
o'e0
EIS(t,0)= Y V(1,0)I(0,0) (1c)

00

MACHINE KNITTING BACKGROUND

To create effective objectives and tactics, we first introduce
common knitting concepts. A knitted fabric starts with a row
of loops and then additional rows of loops are created by
pulling loops through the top-most row to create a sheet of
fabric. A single loop is not stable; pull on its ends and the
loop falls apart. Knitted fabric gains its stability from the re-
lationship between loops: when pulling a child loop through
a parent loop; the parent loop becomes stable. A loop pulled
through another loop is called a stitch; adjacent stitches are
called rows; and columns of stacked stitches are called a wale.

As shown in Fig 3, a loop can be pulled through another loop
from the back-to-the-front (knit) or from the front-to-the-back
(purl). A loop can be pulled through more than one loop ,to
decrease the number loops on the row, or added without be-
ing pulled through another loop (yarn-over), to increase the
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decrease cable

inerease (yarnover)

Figure 3: Diagrams of the most common stitches.

Table 1: Summary of common knitting nomenclature.

Term Definition

A loop with zero or more loops pulled through it.
May colloquially also include cables.

Stitch

Row A row of stitched loops making up a horizontal section of fabric

A series of loops in a column that are

Wale pulled through each other in a vertical chain.

number loops on the row. As loops are pulled through other
loops they can cross over each (cable). These combinations
of different stitches determine the texture and shape of a knit-
ted fabric. A summary of these terms is presented in Table
1.

A Computational Model of Knitting

Given the structure of knitting, we represent a knitted object
as a graph where nodes represent loops, and edges represent
loops pulled through other loops. (e.g., [28, 29, 25, 13]).
There are a couple of variations on graph structures that have
been used in the literature; in this paper our graphs match the
KnitGraph structure described in [13] (Fig 4). As such we use
the same notation whenever possible, reviewed in Table 2.

A KnitGraph consists a set of loops with directed stitch edges
representing where a loop is pulled through a parent loop.
A loop may have multiple or no parent loops but can only
have one child loop. Each stitch edge has an orientation, de-
noting if the loop was pulled back-to-front (knit) or front-
to-back (purl). Stitch edges may cross over one another in
a cable stitch. Each KnitGraph is segmented into rows of
loops where each row builds on the row below it by pulling
its loops through the loops on the row below. We derive Knit-
Graphs of knit textures by compiling KnitSpeak, a program-
ming language closely patterned after a widely used notation
for hand knitting instructions [36, 7]. KnitGIST uses a Knit-
Speak compiler [13] which ensures that all textures compiled
in KnitSpeak will be machine knittable and will not unravel.

For machine knitted samples, the KnitSpeak compiler then
converts the resulting KnitGraphs into automatic knitting
machine instructions (i.e.Knitout [14]). All of the pre-
sented machine knit samples were knitted on an Shima Seiki
SWGI1N2 15-gauge v-bed knitting machine using Tamm Pe-
tit, a 2/30NM (8,147 yards per pound) acrylic yarn with mod-
erate twist. We used our machine’s digital stitch control sys-
tem to regulate yarn tension and our stitch size was 40 with
leading set 25. This is the same machine, yarn, and settings
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Figure 4: A KnitGraph is a link graph representation of a
knitted fabric. Loops (yellow-circles) are connected by yarn
edges (green) and stitch-edges (purple).

Table 2: Summary of KnitGraph notation.

Notation Interpretation

I1tm The stitch edge where loop m is pulled through loop [
o(ltm)  The orientation of the stitch edge [ T m

P(I) Set of parent loops [ is pulled through

R; The row at index i

Nr Top row-index in a texture

i(1) The index of [ in its row

used to create the KnitPick Database [13]. Swatches took be-
tween 2 and 30 minutes to knit, depending on the types of
stitches and the size of the swatch. Cable and lace patterns
took significantly longer because of complex transfers on all
rows, while knit purl patterns knit quickly. Hofmann hand
knitted samples using 4 worsted weight 100% acrylic yarn, a
common hand-knitting yarn, on stainless steel Smm diameter
needles.

KNITGIST LIBRARY

We provide a library of pluggable functions to support tex-
ture generation. we provide a KnitSpeak synthesizer which
generates knit textures of a specified size. Next, we provide
a library of seven parameterizable objectives and five tactics
that support the generation of optimized KnitSpeak-textures
(Table 3). While this library is far from complete, it still pro-
vides a wide range of possibilities, and illustrates the versatil-
ity of the extensible KnitGIST framework. We note also, that
while this paper considers only a programming interface, the
“mix and match” nature of our pluggable framework points
to strategies for an end-user interface based on picking con-
structs and parameters that are understandable in the applica-
tion domain.

KnitGIST Synthesizer

A synthesizer produces a KnitSpeak texture. In the KnitGIST
framework, we use a synthesizer to produce a starting popula-
tion of textures of a specified width (stitch-count) and height
(row count). The synthesizer constructs a Markov-model of
stitch relationships from a dataset of KnitSpeak programs
[13]. Each stitch type (e.g., knit, purl, increase, decreases,
cable) is a state and the probability of being followed by a
stitch of another type (moving to the next state) is based on
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(a) All-Knits

(b) Rows of Knits then Purls
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(c) Wales of Knits then Purl

Figure 5: Knits (yellow) tend to pull the fabric forward, while purls (blue) tend to pull the fabric back. A fabric with many
connected knits will tend to curl (a). Switching between knits and purls will contract that curl causing shrinkage (b and c).

the count of those neighboring stitches in the dataset. A ran-
dom first stitch is selected and then stitches are added based
on the current stitch. Stitches are added to fill rows and rows
are added until the target height is met. The advantage of
using KnitSpeak is the ease of verifying knittability by com-
piling the texture.

Library of Objectives for Textures

Objectives define the properties of the knit texture being op-
timized for. The KnitGIST library includes four physical
and three aesthetic objectives (Table 3). The objectives were
driven by prominent categories laid out by knitters [36]. An
objective scores a texture by comparing a value of inter-
est, v, to a programmer-defined target, ¢, over some bounds,
[min,max]. The score is one if the calculated value is equal
to the target, and drops off to zero linearly as the value ap-
proaches the bounds (Eq. 2). Each objective calculates v dif-
ferently.

0 v ¢ [min, max]
S(t,min,max,v) = ¢ 1 -5 v<t (2)
11— XL t<v
max—i

The physical objectives presented describe how the resulting
texture will modify a physical characteristic of textures: curl,
shrinkage, elasticity, and opacity. How much a knit object
curls, shrinks, stretches, or blocks light is ultimately depen-
dent on a wide range of manufacturing variables (e.g., ma-
chine, machine settings, fiber, gauge). However, texture plays
a critical role in modifying the basic properties. For instance,
an inelastic fiber can still result in a stretchy fabric if it is
knitted into a horizontally elastic rib texture. Alternatively,
a thin, lace-weight, yarn can result in airy texture if texture-
opacity is reduced. The following physical objectives pro-
duce a value, v, between -1 and 1, where zero implies that a
texture contributes nothing the the specific property of a knit
object. One or negative one implies that the texture maxi-
mizes this property of a given knit object. The negative scale
implies direction in the cases of curl (curl forward or back-
wards) and elasticity where a texture may resist stretch. How
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these modifiers effect specific knitted fiber materials will vary
significantly depending on fiber properties.

Estimating Curl for the Curl Objective

Depending on its construction, a knit texture may curl quite
significantly, as shown in Figure la. Given an estimator for
curl, which is mapped to the value, v, for the objective, this
objective can help to ensure that a knit texture lies flat or curls
up, a property which can be used to enable interesting struc-
tural or aesthetic goals.

To estimate the curl of a texture, v, it is important to under-
stand why knit textures can curl. Curl is an effect that occurs
only in the vertical direction, due to the orientation of stitch
edges between child and parent loops. This effect is cumu-
lative. If the curl of stitches in a wale are all in the same
direction, the last stitch in the wale is pulled forward causing
the texture to curl. When stitches do not curl in the same di-
rection they cancel each other out locally. The effect of the
curl of each successive stitch decreases with distance.

We model this recursively (Eq. 3a). If a loop, /, has no child,
its curl, ¢(1), is the average orientation across its parent loops.
Otherwise, its curl is that average plus the cumulative curl of
its child loop, m, divided by a decay-factor, o. Empirically,
we find 2 to be a good value for . To estimate v, we model
how ¢(!) adds up over the whole fabric. We estimate the cu-
mulative curl of a knit texture v, as the average curl of loops
in the bottom row, Ry, which accumulates the curl of all sub-
sequent rows (Eq. 3b).

1 0 Am|ltm
O=Try] 2y, D Lbem omiim O
1
cC™ T/ T l b
v, IRo] IEZR;DC( ) (3b)

If a fabric is made up of only knits or only purls it will curl
(Fig 5a). However, alternating patterns of knits and purls will
prevent the fabric from curling. Curl may cancel out; for ex-
ample, the forward curl of a row of knits is canceled out by
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the backwards curl of a row of purls (Fig 5b). Also, the for-
ward curl of a wale of knits is canceled out by the backwards
curl of a wale of purls (Fig 5c). Examples of these effects are
demonstrated in the scenario (see Fig 1).

Estimating Shrinkage

When a texture is constructed with alternating orientations of
stitch edges, it can shrink significantly as illustrated in Fig-
ure l.e. Given an estimator for shrinkage, this objective can
ensure that a texture is compact. Shrunken textures are fre-
quently used at the boundaries of other textures or edges of
garments to prevent curl. We estimate texture shrinkage based
on the counteracting orientations of knits and purls, which
causes stitches to overlap. A second cause of shrinkage oc-
curs when loops are tightened by being pulled through a far
away loop; as in cables where loops are crossed over other
loops, or in decreases where loops are gathered through a
child loop.

Shrinkage is caused by the relationship between neighboring
loops in either a vertical (wale-wise) or horizontal (row-wise)
direction. We denote the wale wise neighbor of a loop, /, in
a given direction, d, which is either vertical, J, or horizon-
tal, <+, as neighbor(l,d) (Eq. 4). The loop n is a wale-wise
neighbor to [ if and only if n is pulled through /; that is, there
is a stitch edge from [ to n. Loops [ and n are row-wise neigh-
bors if and only if the row-wise index of n is one more than
the row-wise index of / and n and [ are in the same row.

3t

a=1
i(n)=i()+1:neR(l) d=c @

neighbor(l,d) — { N

With respect to orientation, if two neighboring stitch edges
have opposite orientations, they will tend to overlap each
other. In other words, when a purl has knits on either side,
only the knits are visible, because the knits on each side of the
purl overlap it completely. This effect is visible in Figure Sc.
This is true whether the stitches are aligned vertically (along
a wale, in a parent-child relationship) or horizontally (along
a row). Since overlap depends on orientation (knit or purl),
we must observe two stitch edges (between two loops each)

Table 3: KnitGIST Library broken into Objectives and Tac-
tics.

Component Function Parameters
Curl NA
Shrinkage Direction: Horizontal or Vertical
Elasticity Direction: Horizontal or Vertical
Objectives  Opacity NA
Symmetry Axis Location
Style Style-Type: Knit-Purl, Cable, Lace
Imagery Region-Map, objectives, objective-Weights
Flip Stitch NA
Tactics Lean Stitch NA
Replace Stitch New Stitch Type
Mirror Stitch  Axis Location
Swap Stitch Alternate KnitSpeak-Texture
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where the child loops are either wale-wise or row-wise neigh-
bors. Given loop, /, and its wale-wise or row-wise neighbor,
n, we calculate the overlap, s,, between two loops (I, n) as
the difference between the average orientation of the stitch
edges between the parents of / (p € P(1)) and the parents of
n (m € P(n)) where o(p 1 1) denotes the orientation that [ is
pulled through p. We use the term d to denote the direction
(either horizontal or vertical) that determines which neighbor-
ing loop, n, is selected. So given, loop [ with the set of parent
loops P(I) and a neighboring loop n with the set of parent
loops P(n), the loops overlap by:

1
Pl 2, T ) &, T O

so(l,d) =

Loops overlap by the average of their width. The width of a
loop depends on the location of its parent loop. When loops
are pulled through a parent loop directly below them they
have a standard width. As the distance between the parent
and child loops is increased (e.g., cable, decrease), the child
loop is stretched vertically making it thinner. As the distance
between the loop, /, and its parent p increases, [ is stretched
thin. This distance is the difference between the in-row index
of a loop, i(I) and of its parent loop, i(p). The width of the
child loop, w(I), is calculated as a factor of this sum of the
distances between the loop I and all of its parents, p € P(l),
plus the distance between the rows (i.e.1) (Eq. 6). The width
of a loop, 1, pulled through parents, P(1), is:

1
T+ r li0—i(p)]

peP(l)

w(l) (6)

We can calculate the shrinkage between two loops as the av-
erage of their widths (Eq. 6) multiplied by the amount they
overlap (Eq. 5). So for a loop [ with neighboring loop n:

str,) = OO g g) ™

Shrinkage of a texture is the average shrinkage across all
loops. A programmer-set parameter d, dictates whether to
calculate shrinkage either vertically or horizontally by using
the appropriate definitions of a neighbor (Eq. 4). So over
the whole set of rows of size Ng, we calculate the average
shrinkage over all loops, , in all rows, R;.

d—]NR : l.d
vs( )_anz):o WES(’ ) (8)

IeR;

Consider a garter texture, made up of alternating rows of knits
and purls (see Fig 5b). The rows will have opposing curl, so
the stitches will overlap and the texture will shrink vertically.
Alternatively, consider ribbing, made up of alternating wales
of knits and purls (see Fig 5¢) which shrinks horizontally.
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Estimating Elasticity

Textures tend to be either vertically or horizontally elastic, as
stretching in one direction shrinks the fabric in the other di-
rection. Texture that do not shrink resist stretching. Similarly,
textures that shrink in both directions, resist stretching be-
cause stretching the texture one way will cause stitches in the
other direction to overlap. Consider again alternating rows of
knits and purls (see Fig 5b) and alternating wales (see Fig 5c).
The alternating rows shrink vertically but not horizontally so
the texture stretches vertically. Alternating wales do the op-
posite, so the texture stretches horizontally. Elasticity in one
direction is the difference between the shrinkage in the target
direction and the shrinkage in the opposite direction (Eq. 9) .

max(vs(+) vS(I , =

max(v,(}) - ,0 =¢ ©

weld) = { e
Opacity
Opacity is largely defined by pairs of increases and decreases,
leaving a gap between them. Yarn-overs are an increase
where an extra loop, with no parent loops, adds one loop to
a row. When this is combined with a decrease in the same
row, it leaves an obvious hole or eyelet in the fabric. We can
estimate the opacity of the texture as the density of opaque
loops (loops with a parent loop), and non-opaque loops (loops
without a parent loop) (Eq. 10). Intuitively, textures with
many increase-decrease pairs (i.e.lace) will be less opaque
than other textures.

N 0 |P()]>0
);(MEER{I |P(:)|=o) (1o
Symmetry

Symmetry creates aesthetically-balanced texture. We eval-
uate symmetry across the stitch edges equidistant across an
axis in a texture. The programmer chooses the axis loca-
tion, defaulting to the center. Symmetry is a concept that can
be specified by the programmer. Generally, symmetry is bi-
nary, but there are many properties that may be symmetrical.
By default, we compare three properties of the stitch edge:
orientation, depth, and lean. Given a set of symmetry func-
tions, S, which return a value between 0 and 1, comparing
two stitch edges, our framework calculates overall symmetry
for a pair of edges by averaging the values returned by those
functions. Over an entire texture, the symmetry value is the
average symmetry value between paired equidistant-stitches
across a symmetry axis. Given a horizontal or vertical axis,
the set A contains all pairs of edges equidistant from that axis.
So a pair of edges p 11 and p’ 11’ are in A if [ and I’ are
equidistant from the axis and p is a parent of / and p’ is a
parent of I'.

Veym(A) =

Y (| 5] L e ’rlpT!’)) an

Al (pd.p'l')eA symeS

1241

UIST "20, October 20-23, 2020, Virtual Event, USA

No Yes

\ 4 \ 4
Knit Purl Cable
Style Style

Yes
-

Yes
Cable Lace
Style Style

Figure 6: Style classification decision-tree model.

Cable
Style

Styles

Styles are the broad categories of knit textures used by most
hand-knitters (i.e.knit-purl, cables, lace). Each of these styles
have unique physical and aesthetic properties. Knit-purl pat-
terns are the simplest, consisting of only knits and purls. Ca-
ble patterns use cable stitches to cross stitches over one an-
other giving the appearance of “traveling-stitches”. Lace pat-
terns balance increases and decreases to create eyelets.

We estimate style with a decision tree based on the types
of stitches in a texture. We manually labeled 1548 KnitS-
peak samples from the Stitch-Maps repository [7] as: Knit-
Purl, Cable or Lace by examining swatch-photos. We calcu-
lated a variety of features from the KnitSpeak text including:
stitch-counts, patterns of repeated combinations of stitches,
and presence or absence of certain stitches in the texture.
We trained a decision tree to classify textures using 25% of
the samples in a development set, 50% in a cross-validation
set, and the remaining 25% hold-out for final testing. The
model produced by the C4.5 decision tree algorithm (confi-
dence interval .15, Minimum of five instances per leaf) had
an accuracy of 95.6% (k = 0.86) over the withheld set. The
best model used features specifying which stitch types were
present (Fig 6).

Imagery

Imagery is a way of creating visual effects such as a hexagon
using texture. Imagery-objectives allow programmers to ap-
ply other objectives over specific 2D regions of the textures.
Programmers specify a region-map where a set of loops are
mapped to another objective (i.e.curl, shrinkage, elasticity,
opacity, symmetry, style). Like all the previous objectives,
the programmer provides a target for the region’s objective
and acceptable bounds. The value of the objective is calcu-
lated over the regional subset of loops, rather than the whole
texture.

Since it would be tedious to assign loops to a region-map by
hand, we provide a painting tool to assign objectives to re-
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Figure 7: Example of imagery region mapping painting tool.

gions on a grid. Multiple imagery objectives can be defined
over differently colored regions with the same sub-objective
and different target values. Target values between 0 and 1
are represented as the range of colors between blue and red.
For example, as in Figure 7, the blue region will have a target
value of 0 and the red region will have a target value of 1.
The painting tool can be used multiple times when creating a
heuristic map to create regions with different objectives. Pre-
viously painted regions can be loaded in, so the programmer
does not have to paint the same region repeatedly.

Texture Tactics

Tactics modify one random stitch in a texture per iteration. In
our library we modify stitches in five ways: (1) flip its orien-
tation (i.e.back-to-front and front-to-back), (2) lean it in the
opposite direction (i.e.left to right, right to left, centered re-
mains centered); (3) replace a stitch with a programmer spec-
ified stitch type or set of stitches (e.g., increase-decrease pair,
cables); (4) copy a mirrored stitch across a symmetry-axis;
and (5) copy a stitch from another texture in the population
by searching for the texture that scores highest on the ob-
jective mapped to this tactic. We tend to use the flip, lean,
replace, and mirror tactics in hill-climbing optimizers where
these modifications are likely to affect some objective value.
We use copy in genetic optimizers where two textures in the
population are merged by trading off discovered high-value
stitches for separate objectives. Note this is not an exhaustive
set of possible stitch-level tactics, however it is effective at
producing a wide variety of functional textures.

KnitGIST Design Space
These objectives reveal inherent trade offs between various
texture properties. There are four key trade offs across these

1242

UIST "20, October 20-23, 2020, Virtual Event, USA

objectives. First, curl is opposed to shrinkage and, by ex-
tension, elasticity. Curl is produced by aligning stitch ori-
entations, while shrinkage is produced by alternating those
orientations. The same tactics (flip) are generally effective at
producing both, but prioritizing both objectives will create a
conflict. Second, there is a trade off between horizontal and
vertical elasticity; as a texture stretches one direction, it re-
sists stretch in the other. Third, there are aesthetic trade offs
between different styles of textures. Specific types of stitches
dominate particular texture styles. Tactics that increase the
presence of these stitch types will push a texture into one style
category or the other. Further, the fourth trade off is between
specific physical properties that are related to stitch types and
style. Specifically, opacity is driven by the presence of yarn
overs which also is the strongest indicator of texture style.

KnitGIST’s set of tactics are largely independent of these
trade offs allowing broad exploration of the space. This re-
duces algorithmic efficiency by not exploiting the properties
associated with specific objectives, but ensures exploration
of the search space given a range of objectives. By specify-
ing weights on objectives, the programmer makes their prior-
ities explicit which will determine which objectives are pri-
oritized when trade offs arise. Should a programmer define
a heuristic map with equal priorities across conflicting objec-
tives, it is unlikely that a solution will be discovered. Instead,
the final highest scoring candidate will likely be a compro-
mise between the two conflicting objectives. In such cases,
intermediary KnitSpeak candidates are available to the pro-
grammer which can be used by the programmer to reconstruct
the heuristic map to improve results. Overall, the KnitGIST
framework and library are tailored to exploration of a large
search space given intuitive objectives and simple tactics, at
the cost of algorithmic efficiency and specificity.

DEMONSTRATIONS

In this section we will construct a series of optimizers for gen-
erating functional and attractive textures and finally a whole
knit object. Each of these demonstrations make use of the ob-
jectives and tactics provided in our library. We combine these
objective and tactics in different heuristic maps to demon-
strate how KnitGIST can produce a wide range of textures.

Functionality: Generating Functional Textures
Table 4: Welt Heuristic Map

Objective . . Tactic
Welt Type Weight Objective Tactic Weight
Forward-Curl 2o
All 3 Stripe Region Flip Stitch 1
Backward-Curl 2o
All 3 Stripe Region Flip Stitch 1
Maximize 2o
All 2 1 Elasticity Flip Stitch 2
Mirror Stitch 1
Lace 1 Lace Style Replace with increase-decrease pair 1
Cable 1 Cable Style Replace with cable stitch 1

In our initial scenario, we demonstrated how a simple map-
ping between objectives and tactics produced a set of canon-
ical knit textures that curl, shrink, and stretch (see Fig 1).
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(a) Basic Welt
(b) Welt with Lace
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(c) Welt with Cables

Figure 8: We generate welt textures using functional objectives that alternate the direction of curls in horizontal bands.
Aesthetic properties are applied to the Lace (b) and Cable (c) welt. The alternating curls maximize vertical elasticity.

In this demonstration we build on this scenario to produce a
variety of welting-textures with desired aesthetic and physi-
cal properties. Welts are textures with alternating horizontal
stripes of stitches with opposite orientations. The constant
orientation of each stripe causes the stripe to curl; switching
to the opposite orientation causes the texture to curl back-
wards and shrinks vertically. This produces a vertically elas-
tic texture.

We use three objectives to generate a plain knit-purl welt (Ta-
ble 4) (Fig. 8a). The first is a region map that marks the
stripes that should curl forward. The second maps stripes that
curl backwards. The third objective sets a high target vertical-
elasticity. The curl objectives map to a flip tactic which may
increase curl by aligning stitch orientations. The same tac-
tic is mapped to the elasticity-objective. In addition to the
flip tactic, we map a secondary mirror tactic which replaces
a stitch with a stitch equidistant across a center-vertical axis.
This will increase the vertical symmetry of the texture. While
the symmetry objective is not being used, we know that verti-
cally elastic textures tend to be symmetrical, so this approach
is a useful heuristic.

Given this structure for generating a basic welt, we can add
aesthetic objectives to extend the heuristic map to create
cable-welts and lace-welts. To do this we add an objective
for either ensuring the texture has a cable style, or a lace style.
The cable objective maps to a replace tactic which replaces a
stitch with a cable. Respectively, the lace objective maps to
a replace tactic with increase-decrease pairs. The resulting
cable-welt is shown in Figure 8c, and the lace-welt is shown
in Figure 8b. The heuristic map for each of these welts is de-
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scribed in Table 4. Note that the cables and increase-decrease
pairs are only present in alternating stripes, even though we
did not specify a region for cables or lace. Since the added
cables, increases, and decreases all have the same alignment
they tended to collect in regions of positive curl. The eyelets
and cables appear evenly spaced because they made up nearly
every stitch in the positive curl stripes, creating a dense uni-
form texture.

Aesthetics: Merging Textures and Shape

Table 5: Lace-Hexagon heuristic map

Objective N . Tactic
Weight ~ Oblective Tactic Weight
Copy Stitch
3 Lace from texture 2
Hexagon
Region Replace with increase-decrease pair 1
. Copy Stitch
3 Knit B_or der from texture 2
Region
Replace with knit 1
. Copy Stitch
2 Compresm'\-'e fmogtexmre 2
Frame Region
Flip Stitch 1
1 ++ Symmetry Mirror Stitch 1
1 1 Symmetry Mirror Stitch 1

Next we demonstrate how to define textures over arbitrary
shapes, allowing for more complex texture design. Consider
the challenge of creating a lace texture over an arbitrary 2D
shape, such as a hexagon. Lace textures are complex because
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Figure 9: Resulting hand-knit lace-hexagon texture. Color
work added to denote regions and not specified by KnitGIST.

of the pairing of increases and decreases. While we may nor-
mally assume that stitches fall on a grid, increases and de-
creases change the number of loops on each row. If two adja-
cent rows have different loop counts, at least one loop will be
left with no child loop. This will cause the fabric to unravel.
To pair increases and decrease, a designer would normally
have to selectively position every pair to avoid unraveling.

In this example we construct the heuristic map to merge tex-
tures that score highly on different objectives to generate a
final texture which has a lace hexagon bordered by curly all-
knits, and a frame of shrunken seed-stitch (alternating knits
and purls). The heuristic map consists of three region-map
objectives, and vertical and horizontal symmetry objectives.
Three regions (i.e.the frame, the hexagon, and the hexagon-
border) are drawn out in Figure 7 on our painting tool. The
frame region has a regional objective that it be both highly
vertically and horizontally shrunk. The hexagon region maps
to a regional objective that it be a lace-style texture. Finally,
the hexagon border region maps to a regional objective that it
curls forward which, as we demonstrated in the scenario, will
result in an all knit texture.

All three regions map to a copy tactic. Over time, textures in
the population will tend to score highly on some of the objec-
tives, but not all. The copy tactic enables textures that score
highly on separate objectives to transfer high-value stitches
across the population. The hexagon-region has a secondary
tactic of replacing a stitch with an increase-decrease pair to
make lace. The hexagon-border region has a secondary tac-
tic to replace a stitch with a knit-stitch, increasing local curl.
The frame region has a secondary tactic to flip the orientation
of a stitch, which as we have seen in both the last demon-
stration and the leading scenario, can increase shrinkage. Fi-
nally, both symmetry objectives map to mirror tactics which
replace a stitch with the stitch that mirrors it across the re-
spective axis. This heuristic map produces the lace hexagon
(Figure 9).
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Figure 10: Hand-knit Lamp-shade texture stretched around
frame. The texture has alternating vertical stripes of blue
lace and green cables. The bottom and top edge are grey

regions of backwards curl which grip the top and bottom of

the frame.

Full-Objects: Lacey Lampshade

Now that we have demonstrated how we can use physical
and aesthetic objectives to guide the KnitGIST optimizers, we
will demonstrate how this can be used to reason about func-
tional knit objects. Consider the properties of a lamp shade. It
should allow some light to shine through, but diffuse enough
to dampen the bulb. Additionally, lampshades are often con-
ical with a top that is narrower than the base. This can be
done by shaping the knit texture but it can also be shaped
by a rectangular swatch of fabric that is highly-horizontally
elastic which allows the top to remain compressed while the
base is stretched wide. Finally, the top and bottom of the tex-
ture should bend or curl to cover the top and bottom of the
lamp-shade frame. By bending around the frame, the only
post-processing required will be to seam the texture into a
tube and stretch it over the frame.

In this demonstration, the heuristic map uses four objectives
(three functional and one aesthetic choice): (1) the curled-
edges region that requires the top and bottom edges of the
texture to curl backwards, (2) the low-opacity objective that
reduces the opacity of the texture, (3) an objective that max-
imizes horizontal elasticity, and (4) an additional aesthetic

Table 6: Lampshade Heuristic-Map

Objective N . Tactic
Weight Objective Tactic Weight
4 Curled-Edges Region Flip Stitch 1
I . Replace with Increase
3 -Opacity I-jD«acrease Pair !
2 Maximize Flip Stitch 2
 Elasticity Replace with Cable Stitch 1
1 Cable Style Replace with Cable Stitch 2
Replace with Inc Slip-Dec Pair 1
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objective that the texture is categorized as a cable pattern
which increases the textures complexity by adding complex
and attractive stitches. The curl objective maps to the ver-
satile flip tactic. The opacity objective maps to the replace
with increase-decrease pair tactic, which will add eyelets that
allow light through. We include two tactics to increase elas-
ticity, the standard flip tactic and a low priority objective that
adds cable stitches which increase horizontal shrinkage. Fi-
nally, the cable-texture objective is mapped to the add cable-
stitch tactic, and a tactic that adds slipped-decrease pairs.
Slipped-decreases change the order that parent loops overlap
each other which causes them to be visually similar to cable-
stitches (see Fig 6). They are often used in cable textures to
hide yarn-overs.

The resulting texture (Fig 10) consists of three noticeable re-
gions which we highlight with different color yarns. The grey
region at the top and bottom of the fabric consists of all purl
stitches. This causes both ends to curl backwards, making it
easier to seam fabric to the lamp shade frame. The green re-
gion consists of vertical stripes of cable stitches. The stripes
mostly alternate in lean direction, giving the appearance of
ropes, though they are not as consistent as a designer might
have selected. The light blue regions consists of centered,
slipped, triple decreases and two yarn overs. This particular
decrease looks similar to cable-stitches, but the added yarn-
overs allow more light to shine through.

LIMITATIONS AND FUTURE WORK

KnitGIST lays the groundwork for creating flexible genera-
tive design optimizers for constructing a wide variety of knit
textures. However, a graphical representation of these tex-
tures and an intuitive tool for editing textures while main-
taining their knitabilty, remains the logical next step. As
KnitGIST stands, this is a programming tool for creating knit-
ting generative design tools. Our library of objectives and
tactics provide a basis for generative design optimizers where
the programmer does not need to understand how each objec-
tive and tactic works. Programmers who develop objectives
and tactics require expertise in knitting and a functional un-
derstanding of the KnitGraph structure. Other, non-knitting
experts can amplify this knowledge by reusing objectives and
tactics to create generators. This library is limited to a small
set of useful physical and aesthetic objectives, but should be
extended to include other objectives and tactics. For example,
an extended library could included evaluation of how these
modifiers of physical characteristics (e.g., curl, shrinkage,
stretch, opacity) effect physical characteristics that are depen-
dent on fiber properties (e.g., stress/strain and tensile break-
ing strength). Finally, the KnitGIST framework trades off
efficiency for extensibility and generality of the optimizers.
More efficient optimizers could be constructed, particularly
if continuous-optimization methods were applied. However,
such efficiency would require extensive domain-knowledge.

CONCLUSION

In this paper, we contribute the Generative Instantiation Syn-
thesis Toolkit for Knitting (KnitGIST) which enables pro-
grammers to easily map objectives to tactics which would

1245

UIST "20, October 20-23, 2020, Virtual Event, USA

generate knit textures. We include objectives that assess phys-
ical properties (e.g., curl, shrinkage, elasticity, and opacity)
and aesthetic properties (e.g., symmetry, style, and imagery)
of knit textures and a set of simple tactics which modify ran-
dom stitches to step towards a texture that scores highly over
these objectives.

We present three demonstrations the utility of KnitGIST.
First, we use the physical-objectives to generate springy lace
and cable textures with varying aesthetic properties. Next,
we use KnitGIST to apply a lace texture over an arbitrar-
ily shaped region while maintaining the loop-to-loop connec-
tions that ensure the final texture will not unravel. Finally, we
combine physical and aesthetic objectives to craft a lace lamp
shade which stretches to fit around a lamp shade frame.

The core contribution of KnitGIST is that by optimizing over
knit-texture programs, we consistently produce textures that
are machine knittable and will not unravel, yet meet user
specified goals, all without requiring a detailed knowledge
of knitting structures. The KnitSpeak language and compiler
manage hard-constraints on knit textures, leaving program-
mers more freedom to pair objectives and tactics to achieve
functional and aesthetic results. This freedom enables mod-
ularity which will be valuable when constructing generative
knit design interfaces.
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