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Abstract Saddle-node bifurcation can cause dynam-
ical systems undergo large and sudden transitions in
their response, which is very sensitive to stochastic and
non-stationary influences that are unavoidable in prac-
tical applications. Therefore, it is essential to simul-
taneously consider these two factors for estimating
critical system parameters that may trigger the sud-
den transition. Although many systems exhibit non-
smooth dynamical behavior, estimating the onset of
saddle-node bifurcation in them under the dual influ-
ence remains a challenge. In this work, a new theo-
retical framework is developed to provide an effec-
tive means for accurately predicting the probable time
at which a non-smooth system undergoes saddle-node
bifurcation while the governing parameters are swept
in the presence of noise. The stochastic normal form
of non-smooth saddle-node bifurcation is scaled to
assess the influence of noise and non-stationary fac-
tors by employing a single parameter. The Fokker—
Planck equation associated with the scaled normal
form is then utilized to predict the distribution of the
onset of bifurcations. Experimental efforts conducted
using a double-well Duffing analog circuit successfully
demonstrate that the theoretical framework developed
in this study provides accurate prediction of the criti-
cal parameters that induce non-stationary and stochas-
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tic activation of saddle-node bifurcation in non-smooth
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1 Introduction

Bifurcation is an important consideration in dynami-
cal systems since it may lead to qualitative change in
the response topology by even minute variation of sys-
tem parameters across the critical point [1]. In partic-
ular, saddle-node bifurcation generally induces large
and sudden changes in the response amplitude since
the system loses local stability as two coexisting equi-
libria collide and annihilate each other [1,2]. In order
to exploit or avoid the dramatic changes induced by
saddle-node bifurcation, it is critical to accurately esti-
mate the onset of saddle-node bifurcation, or the con-
ditions that induce the associated stability loss.

The classical saddle-node bifurcation in smooth
dynamical systems has been extensively studied, moti-
vated by various engineering and scientific applications
including Josephson-junction circuits [3,4], micro-
/manomechanical oscillators [5,6], vibration control,
energy harvesting, and sensing [7—10], chemical reac-
tions [11], and ecological [12—14] and climate systems
[15,16]. It is well known that saddle-node bifurcation
is strongly affected by stochastic and non-stationary
factors. For example, noise may result in premature
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saddle-node bifurcations [17-19], which occur even
before the governing parameter reaches the critical
value that activates deterministic bifurcations. In con-
trast, non-stationarity of the key parameters may delay
the activation of bifurcation [20,21]. It has been exten-
sively studied to understand how the dual influence of
stochastic and non-stationary factors affects the activa-
tion of smooth saddle-node bifurcations by introduc-
ing scaling laws [22-24], deriving exact and approx-
imate responses of the stochastic normal form [25],
and approximating the distribution of the escape events
induced by the bifurcation [26,27].

On the other hand, non-smooth dynamics are
observed in many practical systems. Examples of
these systems range from mechanical devices with
physical phenomena such as dry friction [28] and
impact [29], robotic applications with walking and hop-
ping mechanics [30,31], and electrical circuits with
diode elements [32-35] to biological system model of
neural networks [36] and economic models [37,38].
An extensive set of examples can be found in [39—
41]. Although non-smooth dynamical systems have
received increased attention in recent years, little is
known about the bifurcations in non-smooth systems
compared to those of the classical smooth systems.
Since the saddle-node bifurcation induces local stabil-
ity loss of the system, investigation on the bifurcation
point is directly associated with stability analysis. A
number of researchers have studied the stability of non-
smooth dynamical systems, for example, by examin-
ing how small perturbations from the initial conditions
propagate in periodic response [42,43] and evaluating
the eigenvalues of the Jacobian matrix of a Poincaré
map [40,44,45]. On the other hand, these advance-
ments are focused on the steady-state response of deter-
ministic system not considering the critical influences
of noise and non-stationarity on the stability. Therefore,
in this research, we investigate the coupled influence
of stochastic and non-stationary factors to accurately
predict the onset of non-smooth saddle-node bifurca-
tion. While a qualitative scaling law of the time delay
near non-smooth saddle-node bifurcation is introduced
in [46], this study presents quantitative results about
the distribution of bifurcation points, which will pro-
vide a direct means for enhancing practical applications
involving non-smooth saddle-node bifurcation.

In the following sections, we first introduce a
stochastic normal form of non-smooth saddle-node
bifurcation that is scaled to examine the dual influence
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of noise and non-stationarity on the bifurcation activa-
tion by using a single parameter. Numerical and experi-
mental investigations employing a double-well Duffing
analog circuit are carried out to verify the distribution
of the onset of bifurcations predicted by the theoretical
framework. Following the investigations, concluding
remarks summarize and reflect upon the potential of
the new approach.

2 Stochastic normal form of dynamic saddle-node
bifurcation

The normal form of classical saddle-node bifurcation
of a smooth system

X =u+ x> (D

exhibits two equilibria for bifurcation parameter u <
0, where fixed point x* = —./i is stable while
x* = /i is unstable. When the parameter u < 0
quasi-statically increases, the system becomes unsta-
ble as saddle-node bifurcation occurs at 4 = 0 anni-
hilating the two equilibria (Fig. 1a), and the response
of the system escapes from the dynamics local to the
bifurcation point and generally jumps to other stable
equilibrium of the system.

Non-smooth continuous systems can generally be
put in the formulation of Filippov systems [39], and Eq.
(2) is one of the simple formulations that represent the
dynamical characteristics of saddle-node bifurcations
in non-smooth continuous systems.

X =pu+ x|, 2

This system has two equilibria x = +pu for p < 0
as shown in the bifurcation diagram of Fig. 1b. Since
Eq. (2) not only exhibits topologically similar bifur-
cation diagram to the one for saddle-node bifurcation
in continuous systems but also can be approximated
as limits of smooth bifurcations [40], it is considered
as the non-smooth counterpart of saddle-node bifurca-
tion in this study. Various saddle-node bifurcations in
non-smooth continuous systems (for example, stick—
slip oscillations [47] and electrical circuits with diodes
[33]) can be represented by Eq. (2) via proper scaling
and coordinate changes.

To investigate the stochastic and non-stationary
influences on the activation of saddle-node bifurca-
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Fig. 1 Bifurcation (a) 2 (b)2F
diagrams of a smooth and b
non-smooth saddle-node
bifurcation. Solid (dotted) 11 11
lines indicate (un)stable
fixed points
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tions, we utilize the stochastic normal form of the
saddle-node bifurcation

X =pu@) +|x| + DE, 3)

where D is effective noise strength and & is Gaus-
sian white noise with autocorrelation (£ (1) £ (7)) =
26 (t — 7). The non-stationary influence on the saddle-
node bifurcation is assessed by examining the system
stability with respect to a time-dependent bifurcation
parameter i (). For a common case of broad practical
applications, a first-order Taylor expansion of p (f) in
time is employed in this analysis, such that

w(t) = po +rt. 4

In this research, we assume that the bifurcation param-
eter is swept from g < 0 at a sweep rate of r > 0.
Since the bifurcation parameter p (¢) varies linearly in
time, new time and spatial coordinates can be defined
by incorporating the parameter sweep rate as follows,

T = ;,Lr_l, (%)
z=xr"L (6)

Note that the bifurcation occurs at t = 0 for ideal
condition without noise and non-stationarity where the
bifurcation point is 4 = 0. By substituting Egs. (5, 6)
into (3), we can obtain a new normal form

/

7 =14 z| +aé, (7
a=D/r, (3)
where ()’ indicates differentiation with respect to new

time variable t. As a result, one can utilize a single
parameter, scaled noise level «, to investigate the dual

influence of noise and non-stationarity on the activation
of non-smooth saddle-node bifurcation.

Since the normal form describes the local dynamics
near bifurcation point, when bifurcation is activated
the system trajectories become very steep diverging to
infinity. Therefore, in order to investigate the distribu-
tion of bifurcation events, our goal is to determine the
distribution of escape time 7 at which the response
of Eq. (7) becomes unbounded, i.e., z(T) — oo.
The Fokker—Planck equation (FPE) [48] can be derived
from the scaled stochastic normal form (Eq. 7) as

2 32,0 (z,7)
072

dp (z,7) _

Py —%[(T+|Z|)P(Z,T)]+Ol

€))

where p (z, T) is the probability density function (PDF)
for finding the system at z at time 7. By solving the FPE,
the diffusive characteristics of the newly derived Langevin
equation (Eq. 7) can be obtained, which follows the scaling
law of Brownian motion where the standard deviation of
probability distribution increases proportionally to square
root of time 7.

In this work, we assume that the escape time 7" at which
the system reaches a large value (zo, > 1) is equivalent
to the time taken to infinity. The probability Ps, (T') that
the system has escaped to infinity by time r = T can be
determined by subtracting the probability that the system
exists in a finite domain at time 7 from unity as

200

P (T)=1-— / o (z, T)dz, (10)

—0o0

which is a cumulative distribution function of escape
events. The PDF P (T) for bifurcations activated at time
T can be obtained as
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d
P(T) = 77 Poo (T). Y

Solving the Fokker—Planck equation becomes extremely
computationally heavy for large noise levels since larger
spatial domain is required for integration as the probabil-
ity distribution of the bifurcation points spatially spreads
out. For conditions with o >> 1 where bifurcation param-
eter u increases relatively slowly with respect to the noise
level D, or the noise level is much greater than the sweep
rate, one can assume that the bifurcation parameter is adi-
abatically swept through the critical value and the system
exhibits noise-induced escapes. As a result, the rate of
escape events can be approximated by the well-known
Kramers’ rate W (t) (Eq. 12) and the approximate PDF
Pk (T) of escape at time T can be determined by Eq. (13)
(17]

1 (—-1)?
W (r) = 5 P (— ol B (12)
T
Pk (T) = W (T) exp (—/ W (1) dr) , (13)
L)
where the initial condition is assumed to be 79 = — o0.

In summary, the key result is that the stochastic
and non-stationary activation of non-smooth saddle-node
bifurcation can be estimated by using a single parameter,
scaled noise « in Eq. (8). The PDF of bifurcation points is
estimated as Eq. (11) by solving the Fokker—Planck equa-
tion, which can be approximated as Eq. (13) in the slow
sweeping (or large noise) limit (o >> 1). The distribution
of escape time 7' can be used to assess the bifurcation
point, or the actual critical parameter value, that triggers
the bifurcation by straightforward back-calculation from
Eq. (5).

3 Numerical and experimental investigation

In this section, the theoretical prediction of the escape
statistics utilizing the scaled normal form of non-smooth
saddle-node bifurcation is validated through numeri-
cal and experimental investigations. Figure 2a shows a
schematic diagram of a double-well Duffing analog cir-
cuit employed in this research. This circuit exhibits bista-
bility with piecewise-linear characteristics introduced by
nonlinear feedback loop among an op-amp and a pair
of antiparallel diodes, i.e., diodes with two terminals
shortened in opposite directions. As a result, non-smooth
saddle-node bifurcation occurs when the excitation ampli-
tude of the circuit increases while the excitation frequency
is fixed below the linear resonance frequency. By virtue
of the saddle-node bifurcation that activates drastic tran-
sitions between the intra- and interwell oscillations in
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Fig. 2 a Schematic diagram of the double-well Duffing analog
circuit utilized in experimental analysis. b Experimentally mea-
sured nonlinear voltage function of the circuit with respect to
output voltage amplitude

the output voltage level, the bistable circuit has been
successfully utilized for several applications including
bifurcation-based sensing for detecting parameter changes
and damages in structures [34,35].

The governing equation of the bistable circuit can be
derived by assuming ideal op-amp and diode characteris-
tics as follows [34,49].

LCV, +RCV, + F (V) = Vi, (14)
Vo—8gVp, Vo> VD
F(Vo)=1 U=V, Vol =VWp, (15)

Vo+gVp, Vo<—-Wp

where L, C, R, and F (V,) represent the inductance,
capacitance, resistance, and a nonlinear voltage function,
respectively; Vi, Vi, and Vp, respectively, indicate the
input and output voltage amplitudes of the bistable cir-
cuit, and voltage drop over an open diode; and the over-
dot indicates a time derivative. Following ideal op-amp
assumption, the feedback gainis g = 1 + R»/R;. The
op-amp employed in this research is LM741CN, and the
diodes are 1N4148. The other relevant circuit parameters
are provided in Table 1.

Considering the overdamped limit of large damping,
the term LCV, can be neglected. Although the circuit
exhibits two saddle-node bifurcations as the amplitude
of harmonic excitation is increased and decreased, for
consistency we focus on the saddle-node bifurcation that
occurs for increasing amplitude of the excitation. When
small perturbations n = V; — V" and x = V, — V" near
a critical fixed point (V', V&) = ((g — 1) Vp, —Vp) at
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Table 1 Experimental system parameters of the double-well Duffing analog circuit

L (mH) C (uF) R () Ry (k) Ry (k) R3 (kQ)
10.24 0.96 800 9.07 9.08 10
Table 2 Scaled noise level « for each sweep rate and additive noise level applied in the experimental investigation

Sweep rate (mV/s) 0.5 2 10 10 10 10
Noise level (mV rms) 10 50 10 50 100 100
o 9.2 7.4 184.1 36.8 18.4 7.4
Sweep rate (mV/s) 50 50 50 50 50 50
Noise level (mV rms) 10 50 100 250 500 1000
o 920.7 184.1 92.1 36.8 18.4 9.2

which the bifurcation is induced for deterministic system
are introduced and substituted into Egs. (14, 15), the local
dynamics around the bifurcation point can be expressed
by

o
X—E(U-HXD- (16)

By assuming the stochastic influence as an additive Gaus-
sian white noise term D& [50] and scaling the variables
ast = uw(ryRCO)™ and z = x ryRC)™! in a similar
manner to Egs. (5, 6), we finally derive a scaled normal
form of non-smooth saddle-node bifurcation:

=14z +ayE. 17)

ry is input voltage amplitude sweep rate and scaled noise
level ay = RCry -

Figure 2b displays the qualitative piecewise-linear
characteristics of the nonlinear voltage function F (V,)
of the bistable circuit, which corresponds to the smooth
restoring force of a conventional double-well Duffing
oscillator expressed by a cubic polynomial with negative
linear and positive cubic terms [51,52]. The voltage func-
tion is experimentally obtained by measuring the output
voltage V,, while quasi-statically varying the DC input
voltage within the range that encompasses the two stable
equilibria of the bistable circuit. Starting from large neg-
ative value, when the DC input voltage is quasi-statically
increased around 0.32 V, indicated as point A in Fig. 2b,
bifurcation is activated and the output voltage V,, under-
goes a sudden transition from approximately — 0.42 V to
1.30 V. For decreasing input voltage level, the bistable cir-
cuit exhibits a symmetric behavior of jump event due to
the bifurcation. The critical fixed point (Vicr, VO“) in this

analysis can be determined as (0.32, — 0.42). On the other
hand, due to the practical factors ignored in the ideal diode
model, such as temperature effect and nonlinearity in the
diode [53], the slope near the bifurcation point decreases
as shown in Fig. 2b. To account for these effects, the slope
was measured (¢ =~ 0.2) and considered in the normal
form derivation, yielding oy = %.

The double-well Duffing analog circuit is harmoni-
cally excited at 35 Hz, and the input voltage amplitude is
increased by sweeping across the bifurcation point start-
ing from 0.3 to 0.4 V. In addition to the ambient noise
level, different levels of Gaussian white noise are added
to the excitation input voltage to examine the stochas-
tic influences on the saddle-node bifurcation activation.
The root-mean-square (rms) amplitude of the ambient
noise in the experiment is 0.015 mV. The input volt-
age amplitude sweep rates and the additive noise levels
applied in the experiment are given in Table 2. Note that
the sweep conditions and noise levels are in the range
that does not induce other bifurcation in the bistable cir-
cuit, which satisfies the assumption of utilizing the normal
form for analysis in this work. The input voltage ampli-
tude Ve that triggers non-smooth saddle-node bifurcation
is recorded and utilized to derive the scaled escape time
T = (Vesc - Vicr) / (RCry). Note that the scaled escape
time is greater than zero when delayed bifurcation occurs,
while it gives negative value for premature bifurcations.
The mean and standard deviation of the escape time are
obtained from 100 runs for each condition with various
sweep rates and noise levels.

Figure 3 shows 20 sample paths (solid curves) obtained
by solving Eq. (17) using the Euler-Maruyama method
[54] for three different noise levels (¢ = 2, 10, 50). These
trajectories are compared with the mean and two standard
deviations obtained by solving the Fokker—Planck equa-

@ Springer



256 J. Kim, K. W. Wang
(a) 10)(102 T T T T T —— Fokker-Planck A Monte-Carlo simulation
3 ===« Kramer's rate W experimental
| x10
NI J) ]
|
)
0 |
: i
-120 -100 -80 -60 -40 -20 0
T 4
x10?
(b) 10 : : :
5 -
N PEV
| IS
& o2t SIS - 1
ot v LT
——— S | wl R
-120 -100 -80 -60 .
1001 1
10’ 102 10°
scaled noise level a
Fig. 4 The analytically predicted mean and standard deviation
of escape time T using Fokker—Planck equation (solid line)

420 -100 80 60  -40 20 0

Fig. 3 Comparison of 20 sample paths of Eq. (7) with the pre-
dicted mean (dashed line) and two standard deviations (shaded
area) of escape time for three scaled noise level: a @ = 2, b
a=10,ca =50

tion, which are plotted as vertical dashed lines and shaded
areas, respectively. The initial condition is selected to be
790 = — 120, while theoretically assumed as 79 = — o0,
and the spatial domain of z = [— 1000, 1000] is selected
for solving the FPE. It is assumed that the system has
escaped to infinity when z > 1000. Figure 3 shows that the
displacements indicated along the vertical axis increase
to infinity as bifurcations are activated, and the bifurca-
tions occur earlier for larger noise level. It can be clearly
observed that the statistical characteristics of bifurcation
points are accurately estimated for different noise levels «.
Since « is a scaled noise level that incorporates both noise
and non-stationarity influences (Eq. 8), one can reliably
predict the statistical characteristics of bifurcation points
influenced by the combination of these dual factors.

In Fig. 4, the mean and standard deviation of the
escape times estimated by the theoretical framework using
Fokker—Planck equation (solid curve) are plotted with the
experimentally obtained results (square) with respect to
a broad range of scaled noise level «. Since solving the
FPE becomes computationally expensive for large noise
levels, the theoretical bifurcation distributions are esti-
mated by the Kramers’ rate approximation (dashed line)
for large- scaled noise level. In addition, Monte—Carlo-
based results (triangle) obtained by numerically solving
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and Kramer’s rate (dashed line) are compared with the results
obtained by Monte—Carlo simulation (triangle), and experimen-
tal measurement (square) with respect to the scaled noise level
«. Inset figure shows zoomed view for small «

the scaled stochastic normal form in Eq. (17) for 1000
times via Euler-Maruyama method [54] are included in
Fig. 4 for comparison. It can be observed that the escape
statistics estimated by the scaled normal form are in good
agreement with the numerically and experimentally deter-
mined results for a wide range of scaled noise level.
Both of the delayed and premature escape events in the
bistable circuit are successfully predicted for small and
large values of scaled noise level, respectively. For weak
noise level or relatively fast sweep rate, the bifurcation is
delayed (T > 0) compared to quasi-statically activated
bifurcation point (7 = 0). On the other hand, for large-
scaled noise level, the mean of escape time 7' decreases
below zero, while the standard deviation increases. In
other words, bifurcations may occur even for conditions
where the bifurcation parameter is much smaller than the
bifurcation point for ideal condition without noise and
non-stationarity. Although the initial condition is theo-
retically assumed to be 79 = — 00, in real-world imple-
mentations if the initial condition is selected not suffi-
ciently far from the bifurcation point, escape events may
be immediately activated as can be observed in Fig. 3c
where 79 = — 120. Therefore, it is critical to accurately
estimate the bifurcation distribution so that one can exploit
or steer the activation of bifurcations. Overall, the exper-
imental and numerical investigation results obtained for
a wide range of bifurcation parameter sweep rates and
noise levels strongly support and validate the prediction
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obtained by the proposed scaled normal form Eq. (7). The
theoretical analysis derived based on the new scaled nor-
mal form herein will provide an effective means for pre-
dicting the onset of critical transitions related to saddle-
node bifurcation in a variety of non-smooth systems under
non-stationary and stochastic influences.

4 Conclusion

The non-stationary and stochastic influences on the acti-
vation of non-smooth saddle-node bifurcation are investi-
gated to develop an analytical strategy for predicting crit-
ical parameters that activate escape from a stable equilib-
rium. A new scaled normal form of non-smooth saddle-
node bifurcation is developed, which enables exploring
the dual influence on the escape event by using a sin-
gle parameter. The distribution of the onset of bifurcation
is then quantitatively predicted from the Fokker—Planck
equation corresponding to the scaled normal form. Numer-
ical and experimental investigations using a double-well
Duffing analog circuit successfully verify the accuracy
of the predictions obtained by the theoretical framework.
Since the predictive strategy developed here is based on
normal form analysis, it is expected that this new method
will provide a straightforward and accurate means for esti-
mating critical conditions that lead to sudden large jumps
in the response of various practical contexts associated
with non-smooth saddle-node bifurcation.
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