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ABSTRACT 
Recently, an electromechanical metamaterial with 

integrated resonant circuit elements was developed that enables 
on-demand tailoring of the operating frequency and interface 
routes for topological wave transmission. However, limitations 
to the operating frequency region still exist, and a full 
exploration of the adaptive characteristics of the topological 
electromechanical metamaterial has yet to be undertaken. To 
advance the state of the art, this study investigates the ability to 
enhance the range of operating frequencies for topological wave 
transmission in a piezoelectric metamaterial by the 
reconfiguration of lattice symmetries and connection of negative 
capacitance circuitry. In addition, the capability to modify the 
interface mode localization is analyzed. The plane wave 
expansion method is utilized to define a working frequency 
region for protected topological wave transmission by 
evaluating a local topological charge. Numerical simulations 
verify the existence of topologically protected interface modes 
and illuminate how the localization and shape of these modes 
can be altered via external circuit parameters. Results show that 
the reconfiguration of the lattice structure and connection to 
negative capacitance circuity enhances the operating frequency 
bandwidth and interface mode localization control, greatly 
expanding the adaptive metamaterial capabilities. 

Keywords: topological, metamaterial, piezoelectric, 
negative capacitance, quantum valley Hall, adaptive  

1 INTRODUCTION 
Topological metamaterials are being extensively 

investigated as a means to achieve a variety of protected elastic 
wave control phenomena [1,2]. Unlike wave propagation in 
conventional waveguides, topologically protected wave 
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transmission is immune to lattice imperfections and disorder 
such as sharp corners that are often present in practical 
engineering applications. The unique characteristics of 
topologically protected wave propagation in elastic waveguides 
could be leveraged for performance enhancement in applications 
such as vibration isolation, wave control, cloaking, energy 
harvesting, sensing, and wave filtering [3]. Initial investigations 
extended the theories of topological transport from quantum 
mechanics to elastic metamaterials and successfully 
demonstrated topologically protected wave transmission in 
elastic waveguides [4–10]. The initially designed elastic 
topological metamaterials were comprised of inflexible/fixed 
geometric structures (e.g., perforated plates) or contained 
complex moving parts (e.g., gyroscopes), which limited the 
practical implementation of these concepts. To build upon the 
initial demonstrations, further studies have incorporated 
adaptivity into elastic topological metamaterials, broadening 
their functionalities and making them more adaptive to ever-
changing external operating conditions. Many of these adaptive 
topological realizations have used an external bias, such as a 
mechanical force [11–13], thermal gradient [14], or magnetic 
field [15], to induce changes to topological properties of a lattice 
structure. In addition, piezoelectric topological metamaterials 
have been investigated due to their ease of integration into 
conventional load-bearing structures and real-time tunability 
through external circuitry [16–18]. With each of the described 
adaptive methods, it was demonstrated that local changes to 
lattice topological properties enabled control over the protected 
wave propagation route within a metamaterial. Yet, the majority 
of adaptive topological wave propagation studies to date have 
not analyzed far beyond switching of propagation routes. To 
enhance the adaptive capabilities of topological metamaterials, a 
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piezoelectric metamaterial that enables reconfiguration of both 
the operating frequency and interface path for topologically 
protected transmission was recently introduced [19]. However, 
an unexplored opportunity remains to identify and expand the 
effective operating frequency region for protected transmission 
and conduct a comprehensive exploration of the rich adaptive 
functionalities of the topological piezoelectric metamaterial. 
Thus, to advance the state of the art, this research proposes the 
connection of negative capacitance circuitry and reconfiguration 
of lattice symmetries to enhance the adaptive capabilities of a 
piezoelectric metamaterial. An analysis is conducted to 
demonstrate how negative capacitance circuitry and adjustable 
lattice symmetries can be leveraged to enhance topological wave 
bandwidth and enable adjustments to the shape of the interface 
mode. The piezoelectric metamaterial for this study is comprised 
of a thin composite plate with piezoelectric and aluminum 
mechanical constituents that is connected to external circuitry 
via conductive electrodes placed in a honeycomb lattice 
arrangement. The honeycomb lattice arrangement of electrodes 
contains the symmetries required to generate the elastic analog 
of the quantum valley Hall effect (QVHE) and achieve 
topologically protected interface states. Since the topological 
characteristics of the system arise from the lattice arrangement 
of electrodes, the tailoring of topological wave propagation is 
facilitated solely by the connected circuitry. On the other hand, 
the mechanical geometry is a simple load-bearing structure (thin 
plate) that can remain unaltered. In the proposed approach, the 
external circuitry contains an inductor to create a resonant circuit 
and a capacitor for the application of a negative capacitance.  The 
inductor in the resonant circuit is used to tune the frequency of 
the topological interface state over an operating range where 
topological protection is achievable. The negative capacitance 
circuitry is used to synthetically enhance the electromechanical 
coupling (as demonstrated in [20,21]), which in turn increases 
the topological wave bandwidth and enables improved interface 
mode localization. Lattice symmetries are reconfigured using the 
external circuitry to further enhance the topological operating 
bandwidth and facilitate additional interface modes.  

The following manuscript is organized as follows. Sec. 2 
includes a description of the metamaterial and mathematical 
model. In Sec. 3, the working principle and achievable operating 
region for topologically protected wave propagation is 
identified. Sec. 4 includes an analysis on how to enhance the 
achievable operating region and increase interface mode 
localization using negative capacitance circuitry. In Sec. 5, 
further adaptivity enhancements through lattice symmetry 
reconfiguration are investigated. Finally, overall discussion and 
conclusions are presented in Sec. 6.  

2 SYSTEM DESCRIPTION AND MATHEMATICAL 
MODEL 

2.1 System Description 
The schematic for the piezoelectric metamaterial is shown 

in Fig. 1. The metamaterial is made up of a thin plate with an 
aluminum substrate (gray) of thickness ℎ𝑠 that is sandwiched by

FIGURE 1: (a) Schematic of the metamaterial honeycomb lattice 
arrangement. Unit cell is enclosed in dashed box, green indicates 
electrode geometry connected to circuit 1, red indicates electrode 
geometry connected to circuit 2. (b) Cross-section and (c) top view of 
the unit cell.  

piezoelectric plates (yellow) of thickness ℎ𝑝. The aluminum
substrate has elastic modulus 𝐸𝑠, density 𝜌𝑠, and Poisson’s ratio
𝜈𝑠. The piezoelectric elements have density 𝜌𝑝, elastic constant
𝑐1̅1
𝐸 , and effective piezoelectric constant 𝑒̅31. The piezoelectric

constituents are connected to external circuitry by conductive 
electrodes that are placed in a honeycomb lattice arrangement, 
as shown in Fig. 1a. The basis vectors that define the triangular 
unit cell of the metamaterial (dashed box of Fig. 1a) are 𝑎⃑1 = 𝑎𝑖̂

and 𝑎⃑2 = 𝑎 (cos
𝜋

3
𝑖̂ + sin

𝜋

3
𝑗̂), where 𝑎 is the characteristic

length (Fig. 1c). The unit cell contains two electrode pairs that 
create two capacitors with capacitances of 𝐶𝑝,1 and 𝐶𝑝,2 (Fig. 1b).
Each capacitor is connected to an external inductor 𝐿𝑗 to form a

resonant circuit with resonant frequency 𝜔𝑡,𝑗 = √
1

𝐿𝑗𝐶𝑝,𝑗
 for the 

𝑗th circuit. In addition, an external negative capacitor is 
connected in parallel, with negative capacitance 𝐶𝑁,𝑗. It is
assumed that all circuit elements are ideal, and thus all ohmic 
losses are assumed negligible.  

2.2 Mathematical Model 
The system governing equations that govern flexural 

displacement 𝑤̅(𝑥̅, 𝑦̅, 𝑡) of the plate and voltage response 𝑣̅𝑗(𝑡) 
of the 𝑗th electrode pair are derived using the extended 
Hamilton’s principle [22] in conjunction with the linear theory 
of piezoelectricity [23] and the classical theory of thin plates 
[24]. A harmonic response at frequency 𝜔 is assumed, non-
dimensional variables are introduced, and the non-dimensional 
governing equations are given by Eq. 1: 
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(𝛻4 −
𝜔2𝑚𝑎4

𝐷𝑇
)𝑤(𝑟) −

∑
𝜃2𝑎2

(𝐶𝑝,𝑗−𝐶𝑁,𝑗)𝐷𝑇
𝛻2𝑣𝑗𝜒𝑗(𝑟) = 0

𝑁𝑒
𝑗=1

 (1a) 

(1 − 𝐿𝑗(𝐶𝑝,𝑗 − 𝐶𝑁,𝑗)𝜔
2)𝑣𝑗 −

𝜔2𝐿𝑗(𝐶𝑝,𝑗 − 𝐶𝑁,𝑗)∬ 𝛻2𝑤(𝑟)
𝐷𝑗

𝑑2𝑟 = 0,

  𝑗 = 1… .𝑁𝑒  electrode pairs

       (1b) 

where the non-dimensional flexural displacement, voltage, time, 
and length scales are defined as 𝑤 =

𝑤̅

𝑎
, 𝑣𝑗 =

1

𝑎

𝐶𝑝,𝑗−𝐶𝑁,𝑗

𝜃
 𝑣̅𝑗 , 𝜏 =

√
1

𝐿𝑗(𝐶𝑝,𝑗−𝐶𝑁,𝑗)
𝑡, 𝑥 =

𝑥̅

𝑎
, 𝑦 =

𝑦̅

𝑎
, and 𝑧 =

𝑧̅

𝑎
, respectively, 𝑟 =

(𝑥, 𝑦), 𝑚 = 𝜌𝑠ℎ𝑠 + 2𝜌𝑝ℎ𝑝 is the mass per unit area, 𝐷𝑇 = 𝐷𝑠 +

𝐷𝑝 =
𝐸𝑠ℎ𝑠

3

12(1−𝜈𝑠
2)

+ 𝑐1̅1
𝐸 (

2ℎ𝑝
3

3
+ ℎ𝑝

2ℎ𝑠 +
ℎ𝑝ℎ𝑠

2

2
) is the effective 

flexural rigidity of the plate at short circuit, 𝜃 = 𝑒̅31(ℎ𝑝 + ℎ𝑠) is
an electromechanical coupling coefficient, 𝐿𝑗, 𝐶𝑝,𝑗, and 𝐶𝑁,𝑗 are
the inductance, piezoelectric capacitance, and negative 
capacitance for the 𝑗th electrode pair, 𝛻2 and 𝛻4 are the
dimensionless Laplacian operator and dimensionless biharmonic 
operator, respectively, 𝑁𝑒 is the total number of electrode pairs,

and the step-function 𝜒𝑗(𝑟) = {
1, 𝑟 ∈ 𝐷𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
is defined in terms 

of the dimensionless domain 𝐷𝑗  of the 𝑗th electrode pair.

Next, the plane wave expansion (PWE) method [19,25] is 
used to determine the dispersion relation for the metamaterial 
from the periodic unit cell. As shown in Fig. 1b, the unit cell 
contains two circuits (corresponding to the two electrode pairs) 
𝑁𝑒 = 2. The circuits are defined as having inductance parameters
𝐿1 = 𝐿(1 + 𝛽) and 𝐿2 = 𝐿(1 − 𝛽), where 𝛽 is the circuit
inductance perturbation parameter. Per the PWE method, the 
non-dimensional dispersion relation is defined as a superposition 
of plane waves, per Eq. 2:   

𝑤(𝑟) = ∑ 𝑊(𝐺)𝑒−𝑖𝑎(𝑘+𝐺)∙𝑟
𝐺 , 𝐺 = 𝑚𝑏⃗ 1 + 𝑛𝑏⃗ 2 

𝑚, 𝑛 ∈ [−𝑀,𝑀], 𝑘 = (𝑘𝑥, 𝑘𝑦)
 (2) 

where 𝐺 is the reciprocal lattice vector, 𝑚 and 𝑛 are the plane 
wave indices, 𝑏⃗ 1 =

𝜋

𝑎
(2𝑖̂, −

2

√3
𝑗̂) and 𝑏⃗ 2 =

𝜋

𝑎
(0𝑖̂,

4

√3
𝑗̂) are the 

reciprocal lattice basis vectors (see Fig. 2a inset for reciprocal 
lattice diagram), 𝑘 is the Bloch wavevector, and  𝑁2 =
(2𝑀 + 1)2 is the number of plane waves specified for the
calculation. Substituting Eq. 2 into Eq. 1 leads to Eq. 3:  

(𝑎4|𝑘 + 𝐺|4 − Ω2)𝑊(𝐺) +

∑
ϑ

1−𝜉𝑗

𝑎2

𝐴𝑐

𝑎2

𝐴𝑒,𝑗
𝑎2|𝑘 + 𝐺|2 ∬ 𝑣𝑗𝑒

𝑖𝑎(𝑘+𝐺) ∙𝑟𝑑2𝑟 =
𝐷𝑗

𝑁𝑒
𝑗=1 0

   (3a) 

(
Ω𝑡,𝑗

2

(1−(−1)𝑗𝛽)(1−𝜉𝑗)
− Ω2) 𝑣𝑗 +

Ω2𝑎2 ∑ 𝑊(𝐺)|𝑘 + 𝐺|2 ∬ 𝑒−𝑖𝑎(𝑘+𝐺) ∙𝑟𝑑2𝑟 =
𝐷𝑗

𝐺 0,

 𝑗 = 1… .𝑁𝑒  electrode pairs

       (3b) 

where Ω = 𝜔𝑎2√
𝑚

𝐷𝑇
  is non-dimensional frequency, Ω𝑡,𝑗 =

√
1

𝐿𝐶𝑝,𝑗
𝑎2√

𝑚

𝐷𝑇
 is the non-dimensional circuit tuning frequency,

𝜉𝑗 =
𝐶𝑁,𝑗

𝐶𝑝,𝑗
 is the negative capacitance ratio for the 𝑗th circuit, ϑ =

𝜃2

𝐶̂𝑝𝐷𝑇
is the non-dimensional electromechanical coupling 

coefficient, 𝐴𝑐 is the area of the unit cell, and 𝐴𝑒,𝑗 is the area
within the unit cell containing the 𝑗𝑡ℎ electrode pair. While the 
derived model is general, in this study: 𝐶𝑁,𝑗 = 𝐶𝑁, 𝐶𝑝,𝑗 = 𝐶𝑝, and
𝐴𝑒,𝑗 = 𝐴𝑒, such that Ω𝑡,𝑗 = Ω𝑡  and 𝜉𝑗 = 𝜉.

3 DISPERSION ANALYSIS 
In this section, a dispersion analysis is conducted to evaluate the 
band structure of the metamaterial and demonstrate the working 
principle for the achievement of tunable topologically protected 
edge states. In a case study (Sec. 3.1), critical metrics are 

FIGURE 2: (a) Band structure of unit cell showing Dirac point (solid 
line, 𝛽 = 0) and broken SIS (dashed line, 𝛽 = ±0.015). Full bandgap 
Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝 for broken SIS is enclosed by dash-dot lines. Inset contains
diagram of reciprocal lattice and IBZ. (b) Non-dimensional Dirac 
frequency Ω𝐷𝑖𝑟𝑎𝑐 as a function of non-dimensional circuit tuning
frequency Ω𝑡 for different electromechanical couplings 𝜗 = 0.42 (blue)
and 𝜗 = 2 (orange). Blue box encloses achievable operating region for 
topological interface state with 𝜗 = 0.42 (Sec. 3.2), orange box indicates 
achievable operating region enhancement from negative capacitance 
circuitry 𝜗𝑁𝐶  = 2 (Sec. 4), and green box indicates operating region
enhancement from lattice reconfiguration (Sec. 5).  
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identified to predict the performance of a topological waveguide 
from unit cell design. An achievable operating region is then 
identified through a parametric analysis (Sec 3.2) of circuit 
tuning parameters to assess the adaptivity of the metamaterial. 

3.1 Dispersion Analysis – Case Study 
Equation 3 can be recast as the classical eigenvalue problem 

([𝐊] − Ω2[𝐌])[{𝑊𝑚,𝑛} 𝑣1 𝑣2 ]
𝑇
= 0. The dispersion relation

is evaluated by specifying the Bloch wavevector 𝑘 to follow the  
boundary of the irreducible Brillouin zone (see blue triangle in 
inset of Fig. 2a) while solving for non-dimensional frequency Ω. 

For this case study, 𝑎 = 0.04 m, 𝐴𝑒 = 𝜋 (0.92
√3

6
𝑎)

2

 m2, ℎ𝑝 and ℎ𝑠

are both 1 mm, and aluminum (𝜌𝑠 = 2700 kg/m3, 𝐸𝑠 = 70 GPa)
and PZT-5H (𝜌𝑝 = 7500 kg/m3 and 𝑐1̅1

𝐸 = 66.2 GPa , 𝑒̅31 = -23.4
C/m2) are selected as the materials, resulting in 𝜗 = 0.42. The 
circuit parameters are selected such that Ω𝑡 = 11 and there is no
negative capacitance (𝜉 = 0). Evaluation of the band structure 
indicates that for equal circuit inductance parameters (𝛽 = 0) 
there exists a degeneracy between the first and second bands at 
the K-point that is referred to as a Dirac Point (solid line, Fig. 
2a). This Dirac point is protected by 𝐶3 lattice symmetry, space
inversion symmetry (SIS), and time-reversal symmetry (TRS) 
[2]. The frequency of the Dirac point (Ω𝐷𝑖𝑟𝑎𝑐) is less than the
circuit tuning frequency Ω𝑡. Due to the resonant nature of the
circuits, the Dirac frequency can be tailored through a range 
covering Ω𝐷𝑖𝑟𝑎𝑐= 0 and Ω𝐷𝑖𝑟𝑎𝑐= 17.6 by changing the external
circuit frequency parameter Ω𝑡 (Fig. 2b).

The elastic analog of the QVHE [2,26] is utilized to achieve 
a topologically protected waveguide. SIS is broken by specifying 
different inductance parameters for each circuit in the unit cell 
(𝛽 ≠ 0), and a full bandgap is opened from the Dirac point at the 
Dirac frequency Ω𝐷𝑖𝑟𝑎𝑐  (Fig. 2a, dashed line is band structure
with 𝛽 = ±0.015, arrows indicate bandgap Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝). To provide
an equivalent metric that does not bias towards certain frequency 
ranges, the size of the bandgap is normalized (Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒)
as shown in Eq. 4: 

Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
Ω2−𝑚𝑖𝑛−Ω1−𝑚𝑎𝑥
Ω2−𝑚𝑖𝑛+Ω1−𝑚𝑎𝑥

2

=
2Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝

Ω2−𝑚𝑖𝑛+Ω1−𝑚𝑎𝑥
  (4) 

where Ω𝑝−𝑚𝑖𝑛 and Ω𝑝−𝑚𝑎𝑥 represent the minima and maxima of
the 𝑝th band. Lattices with 𝛽 > 0 (Type A) and 𝛽 < 0 (Type B) 
contain identical band structures (Fig. 2a, dashed line for 𝛽 = 
±0.015). However, a band inversion exists between Type A and 
Type B lattices, meaning eigenvectors 𝑢𝑝(𝑘) associated with the
𝑝th band are interchanged. This band inversion grants the lattices 
distinct topological characteristics. The topological 
characteristics of the lattice are quantified by the valley Chern 
number 𝐶𝑣−𝑝, a topological charge that is defined as the integral
of the Berry Curvature 𝐵𝑝(𝑘) = −𝛻𝑘 × 〈𝑢𝑝(𝑘)|𝑖𝛻𝑘[𝐌]|𝑢𝑝(𝑘)〉

near the K-point for the 𝑝th band as shown in Eq. 5 [4,27,28].  
 𝐶𝑣−𝑝 =

1

2𝜋
∬ 𝐵𝑝(𝑘)𝑑2𝑘

𝑣
(5) 

The theoretical valley Chern values are 𝐶𝑣−1
𝐴 = -0.5 and 𝐶𝑣−2

𝐴

= 0.5 for a Type A lattice and 𝐶𝑣−1
𝐵 = 0.5 and 𝐶𝑣−2

𝐵  = -0.5 for a
Type B lattice [4,28]. To construct a topological waveguide, Type 

A and Type B lattices are joined at an interface to create a 
topological transition. This topological transition enables 
topologically protected edge states [28,29] with localized 
flexural displacement at the interface (interface state), as shown 
in [19]. 

The interface state can be isolated from bulk modes and 
activated at a frequency within the bandgap that is opened from 
the Dirac point. Thus, the largest potential operating bandwidth 
of the interface state for a given set of specified metamaterial 
parameters is defined by the size of the bandgap (Eq. 4). The 
level of topological protection for the interface state, or its 
robustness to lattice imperfections and disorder, that results from 
the QVHE is dependent on the localization of the Berry curvature 
[30,31]. This localization is measured by the magnitude of the 
valley Chern number (Eq. 5), and thus a larger magnitude of 
valley Chern number |𝐶𝑣−𝑝| indicates increased robustness. For
this study, the performance of the interface state will be 
evaluated by its potential operating bandwidth and level of 
topological protection. Therefore, to predict the performance of 
the topological waveguide for a defined set of system 
parameters, Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 (Eq. 4) and 𝐶𝑣−𝑝 (Eq. 5) are
calculated for the unit cell. For the circuit parameters specified 
in this case study (|𝛽| = 0.015, Ω𝑡 = 11, 𝜉 = 0) the topological
charges are calculated as: 𝐶𝑣−1

𝐴 = -0.3 and 𝐶𝑣−2
𝐴  = 0.3 for a Type

A lattice (𝛽 = 0.015) and 𝐶𝑣−1
𝐵 = 0.3 and 𝐶𝑣−2

𝐵  = -0.3 for a Type B
lattice (𝛽 = -0.015). The magnitude of the calculated topological 
charge |𝐶𝑣−𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑|= 0.3 is less than the theoretical maximum
value |𝐶𝑣−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙|= 0.5. The calculated magnitude of the
topological charge is less than the idealized value because of the 
relatively large perturbation applied to the lattice [4,32], but its 
nontrivial value indicates nontrivial topological characteristics 
and the emergence of a topologically protected interface state. In 
fact, in previous studies, it has been shown that |𝐶𝑣−𝑝| ≥0.3 has
been sufficient to achieve robust wave propagation in a 
topological waveguide [4,32]. The maximum potential operating 
bandwidth for an interface state with the selected circuit 
parameters is indicated by the normalized bandgap 
Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 0.007.

3.2 Dispersion Analysis – Parametric Study 
In contrast to most previously studied adaptive elastic 

topological metamaterials, the piezoelectric metamaterial 
analyzed in this study enables real-time, continuously 
reconfigurable frequency, location, and shape of interface states 
[19]. Thus, due to the comprehensive tunability of the 
piezoelectric metamaterial, a case study only demonstrates the 
working principle and performance for a specific set of 
parameters. A parametric study is conducted to define an 
achievable operating region and fully explore the adaptive 
capabilities of the metamaterial. The computational efficiency of 
the mathematical model developed using the PWE method (Eq. 
3) facilitates the parametric study. For the analysis, the
previously discussed performance metrics Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

(Eq. 4) and 𝐶𝑣−𝑝 (Eq. 5) are evaluated for a wide range of tunable
circuit parameters (𝛽 and Ω𝑡), with the mechanical geometry
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FIGURE 3: (a) Magnitude of valley Chern number |𝐶𝑣| as a function
of |𝛽| and Ω𝐷𝑖𝑟𝑎𝑐 for unit cell of metamaterial with 𝜉 = 0 and 𝜗 = 0.42.
Increasing brightness indicates increasing |𝐶𝑣|. (b) Relative bandgap
Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 as a function of |𝛽| and Ω𝐷𝑖𝑟𝑎𝑐 for unit cell of
metamaterial with 𝜉= 0 and 𝜗 = 0.42. Increasing brightness indicates 
larger Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒. Achievable operating region for topological
interface state is enclosed by dashed black line. (c) Finite strip that 
contains an interface (enclosed by dashed black box) between Type A 
and Type B unit cells. Interface mode shapes that are generated from 
dispersion analysis of finite strip defined with unit cell parameters 
indicated by ■ and ★ markings in (b). 

remaining constant. Figure 3a shows the magnitude of the valley 
Chern number for band 1 of a Type A lattice |𝐶𝑣−1

𝐴 | as a function
of circuit inductance perturbation |𝛽| and Dirac frequency Ω𝐷𝑖𝑟𝑎𝑐

(note: Ω𝐷𝑖𝑟𝑎𝑐  is controlled by specifying Ω𝑡 per Fig. 2b). The |𝐶𝑣|
result shown in Fig. 3a is general and can be applied to band 1 or 
band 2 of Type A or Type B unit cells because calculations 
indicate that 𝐶𝑣−1

𝐴 = 𝐶𝑣−2
𝐵 ≈ −𝐶𝑣−2

𝐴 = −𝐶𝑣−1
𝐵 ∴ |𝐶𝑣−𝑝

𝐴 | ≈ |𝐶𝑣−𝑝
𝐵 |

for 𝑝 = 1,2. Figure 3a demonstrates that, for fixed Ω𝐷𝑖𝑟𝑎𝑐 , the
localization of the Berry curvature (indicated by |𝐶𝑣|) decreases
as the magnitude of the perturbation |𝛽| to the circuit inductance 

FIGURE 4: (a) Relative bandgap Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒  as a function of
|𝛽| and Ω𝐷𝑖𝑟𝑎𝑐 for unit cell of metamaterial with negative capacitance
circuitry (𝜉= 0.79 and 𝜗𝑁𝐶  = 2). Increasing brightness indicates larger
Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒. Achievable operating region for topological
interface state enclosed by black dashed lines. (b) Finite strip that 
contains an interface (enclosed in black dashed lines) between Type A 
and Type B unit cells. Interface mode shape that is generated from 
dispersion analysis of finite strip defined with unit cell parameters 
indicated by ★ marking in (a). 

parameter is made larger. Figure 3b shows the relative bandgap 
Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 as a function of |𝛽| and Ω𝐷𝑖𝑟𝑎𝑐 . In contrast to
|𝐶𝑣|, Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 increases with increasing |𝛽| for a given
Ω𝐷𝑖𝑟𝑎𝑐 . This tradeoff between topological robustness and
potential operating bandwidth under fixed system parameters is 
commonplace in elastic metamaterials exhibiting the QVHE 
[30,32]. However, the frequency tunability of the proposed 
piezoelectric metamaterial grants an alternative avenue to 
enhance the frequency range for the realization of topological 
interface states. Since the bandgap where the interface state is 
contained is opened from the Dirac point, the frequency of the 
interface state is near Ω𝐷𝑖𝑟𝑎𝑐, and thus can be controlled using
circuit parameters. Per Fig. 3a, nontrivial values of |𝐶𝑣|, which
indicate the emergence of topologically protected interface 
states, are exhibited over a large range of Dirac frequencies 
Ω𝐷𝑖𝑟𝑎𝑐 . However, to realize a topological interface state that is
readily isolated from bulk modes, there must be a full bandgap 
opened from the Dirac point. Thus, to realize an isolated 
topological interface state with a sufficient level of robustness, 
|𝐶𝑣|> 0.3 (per discussion in Sec. 3.1) and Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 > 0.
These constraints define the achievable operating region, which 
is shown as the region enclosed in black dashed lines in Fig. 3b. 
This operating region spans ΩDirac = 4.2 to ΩDirac = 11. Circuit
parameters can be tuned through this entire frequency range to 
change the frequency of the interface state. The frequency 
tunability of the interface state gives the metamaterial the 
capability to adapt to changing operating requirements or 

|β| = 0.005
ΩDirac = 9

|β| = 0.015
ΩDirac = 9

Type B Type A

|β| = 0.04
ΩDirac = 9

Type B Type A
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external conditions. In addition, the identification of the 
achievable operating region reveals that while the Dirac 
frequency can be varied over the region containing Ω𝐷𝑖𝑟𝑎𝑐  = 0
and Ω𝐷𝑖𝑟𝑎𝑐  = 17.6 using Ω𝑡 (Fig. 2b), the actual frequency region
where sufficiently protected interface states can emerge is only a 
subset of this (see the blue box in Fig. 2b).  

Apart from frequency, the continuous tunability of the 
resonant circuits can also be used to vary the localization and 
shape of the interface mode within the achievable operating 
region. Within this achievable region, the perturbation to the 
circuit inductance can be tuned between |𝛽| = 0 and |𝛽| = 0.03 
(Fig. 3b). To study the effect of varying |𝛽| on the interface state, 
the interface mode shapes are obtained by using COMSOL finite 
element software. COMSOL is used to evaluate the band 
structure of a finite width strip containing an interface between 
Type A and Type B lattices (Fig. 3c). The edges of the finite strip 
are fixed and a periodic condition is applied in the 𝑘// direction.
Figure 3c contains examples of two interface mode shapes from 
the band structure that are taken from the band containing the 
interface state. For a fixed Dirac frequency Ω𝐷𝑖𝑟𝑎𝑐= 9, |𝛽| is
increased from |𝛽| = 0.005 (■ in Fig. 3c) to |𝛽| = 0.015 (★ in 
Fig. 3c). These mode shapes show how displacement localization 
at the interface can be enhanced by selecting a larger |𝛽| for a 
given Ω𝐷𝑖𝑟𝑎𝑐 , due to an increase in the magnitude of band
inversion between Type A and Type B unit cells. Therefore, 
circuit parameters can be used to tailor the displacement 
localization of the interface mode shape within the achievable 
operating region.  

The definition and exploration of the achievable operating 
region in this section is an important consideration that has yet 
to be addressed in other adaptive topological elastic wave 
investigations. Constrained to this operating region, circuit 
parameters for the piezoelectric metamaterial can be utilized to 
tailor the interface state frequency and displacement localization 
while achieving a desired level of topological protection and 
potential operating bandwidth.  

4 NEGATIVE CAPACITANCE CIRCUITRY 
Negative capacitance circuitry has previously been used to 

broaden bandgaps in piezoelectric metamaterials by enhancing 
the electromechanical coupling [20,21]. In this study, negative 
capacitance circuitry is used to enhance the electromechanical 
coupling 𝜗, and the effect on the adaptive topological interface 
state is investigated.  

To introduce negative capacitance to each circuit, an ideal 
negative capacitor 𝐶𝑁 is connected in parallel (as shown in Fig.
1b), with the negative capacitance ratio defined as  𝜉 =

𝐶𝑁

𝐶𝑝
≠ 0 

in Eq. 3. As can be observed in Eq. 3, the result of adding 
negative capacitance is an enhanced electromechanical coupling 
coefficient of 𝜗𝑁𝐶 =

𝜗

1−𝜉
 and an adjusted circuit tuning frequency 

of Ω𝑡−𝑁𝐶 =
Ω𝑡

√1−𝜉
. All other Eq. 3 parameters are unchanged, and 

thus the working principle (Sec. 3) that defines performance and 
adaptivity for the piezoelectric metamaterial remains 
qualitatively the same. With the addition of negative capacitance 

circuitry, the electromechanical coupling 𝜗𝑁𝐶 can theoretically
approach an infinitely large value. However, since negative 
capacitance is realized with an active element, practical 
considerations such as power and stability requirements limit the 
realizable coupling. For stability in the infinite lattice, 𝜉 < 1 is 
required to ensure that the eigenvalues Ω for Eq. 3 are real and 
the response is bounded.  

In this study, 𝜉 = 0.79 is selected, to observe the impact of 
an enhanced electromechanical coupling ϑNC = 2. The same
parametric analysis that was conducted in Section 3.2 for the 
metamaterial with no negative capacitance (𝜉 = 0 and 𝜗 = 0.42) 
is conducted for the metamaterial with enhanced coupling (𝜉 = 
0.79 and 𝜗𝑁𝐶= 2), and the achievable operating region for the
topological interface state is shown enclosed by black dashed 
lines in Fig. 4a. As can be seen by the comparison of Fig. 4a and 
Fig. 3b, the achievable operating region is greatly enlarged by 
the addition of negative capacitance circuitry and enhanced 
electromechanical coupling. The frequency range of the 
operating region is extended to lower frequencies, now covering 
ΩDirac = 3.2 to Ω𝐷𝑖𝑟𝑎𝑐  = 11 (see extension represented by the
orange box in Fig. 2b). This corresponds to a 15% increase in 
achievable frequency range, greatly enhancing the adaptivity of 
the frequency for the topological interface state. In addition, 
there is a 67% increase in the range of allowable |𝛽|, as 
perturbations to the inductance parameter up to |𝛽| = 0.05 are 
now included in the achievable operating region. As 
demonstrated in Sec. 3.2, more localized interface states can be 
achieved with a larger circuit inductance perturbation |𝛽|. Figure 
4b contains an interface mode shape for Ω𝐷𝑖𝑟𝑎𝑐= 9 and |𝛽| = 0.04
(marked with ★), with a highly localized displacement achieved 
at the interface. Since |𝛽| can be selected to be larger after the 
addition of negative capacitance, this interface mode shape is 
noticeably more localized than the interface mode shapes 
obtained in Fig. 3b, where the maximum allowable |𝛽| is 0.015 
for Ω𝐷𝑖𝑟𝑎𝑐= 9 and 𝜉 = 0. This result holds regardless of the
specified Ω𝐷𝑖𝑟𝑎𝑐 , as the |𝛽| values defining the rightmost
boundary of the achievable operating region for 𝜉= 0.79 (dashed 
black line in Fig. 4a) are larger than the corresponding |𝛽| values 
for 𝜉 = 0 (Fig. 3b), for all Ω𝐷𝑖𝑟𝑎𝑐 . In addition to granting greater
mode localization, larger |𝛽| along the rightmost boundary of the 
achievable operating region also facilitates the achievement of a 
larger relative bandgap Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 for any Ω𝐷𝑖𝑟𝑎𝑐 . The
larger Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒  associated with 𝜉 = 0.79 indicates a
larger potential operating bandwidth for an isolated topological 
interface state regardless of the chosen Ω𝐷𝑖𝑟𝑎𝑐 . For example, if a
design criteria were to require maximization of operating 
bandwidth under fixed system parameters, 
Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒−𝑚𝑎𝑥  = 0.019 for 𝜉 = 0.79 (|𝛽| = 0.04 and
Ω𝐷𝑖𝑟𝑎𝑐  = 9, ★ in Fig. 4a), which is more than three times larger
than Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒−𝑚𝑎𝑥 = 0.006 for 𝜉 = 0 (|𝛽| = 0.015 and
Ω𝐷𝑖𝑟𝑎𝑐  = 9, ★ in Fig. 3b).
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FIGURE 5: (a) Schematics for lattice Configuration 1 (𝛽 = 0), 
Configuration 2 (𝛽 ≠ 0), and Configuration 3 (𝛽 = 1). Unit cell is 
enclosed in dashed black lines; green and red circles indicate electrode 
geometry connected to circuits.  Electrodes that are connected to shorted 
circuits in Configuration 3 are omitted for clarity. Below the schematics 
are band diagrams calculated from the PWE method for Ω𝑡 = 23 and 𝜗=
0.42, with Dirac points highlighted for Configuration 1 and 
Configuration 3. (b) Finite strip that contains an interface (enclosed by 
dashed black box) between Type A and Type B unit cells of 
Configuration 2. Interface mode shape that is generated from dispersion 
analysis of finite strip defined with the unit cells parameters ΩDirac =
17.6 and |𝛽| = 0.6.  

5 LATTICE RECONFIGURATION 
Apart from the enhancement of electromechanical coupling 

using negative capacitance, the adaptivity of the proposed 
piezoelectric metamaterial also enables lattice reconfiguration. 
In this section, the capability of the metamaterial to achieve a 
second Dirac point through lattice reconfiguration and its 
implications on adaptive topological wave propagation are 
investigated.  

Schematics for three achievable lattice configurations and 
corresponding band structures calculated from the PWE method 
(Eq. 3) are shown in Fig. 5a. For this analysis, Ω𝑡 = 23 and 𝜗=
0.42 (no negative capacitance is connected to independently 
show the effect of lattice reconfiguration). Configuration 1 is the 
honeycomb lattice structure with all circuits defined to be 
identical (𝛽 = 0, 𝐿1 = 𝐿2 = 𝐿 in unit cell). As shown in Sec. 3.1
using the PWE method, the band structure for this configuration 
contains a Dirac point formed from the first and second bands 
that is protected by TRS, SIS, and 𝐶3 lattice symmetry (see Dirac
1 in band structure, Fig. 5a). TRS, SIS, and 𝐶3 lattice symmetry
are also achievable with a triangular lattice structure, which can 
be realized in the proposed piezoelectric metamaterial by 
shorting one of the two circuits in the unit cell (e.g., 𝛽 = 1, 𝐿1 =
2𝐿, circuit 2 is shorted, see Configuration 3 in Fig. 5a). Analysis 
of the band structure for Configuration 3 reveals that a Dirac 

point formed from the second and third bands is identified at 
Ω𝐷𝑖𝑟𝑎𝑐  = 17.6 (Dirac 2 in Fig. 5a). Previous studies on photonic
metamaterials with triangular lattice structures also observe this 
Dirac point forming from the second and third bands, validating 
the result [33–35]. Thus, by switching between Configuration 1 
(𝛽 = 0) and Configuration 3 (𝛽 = 1), the proposed metamaterial 
can achieve two separate Dirac points, Dirac 1 and Dirac 2. In 
contrast to Dirac 1, Dirac 2 is not frequency tunable (i.e., Ω𝐷𝑖𝑟𝑎𝑐

= 17.6 ∀ Ω𝑡 for Dirac 2). However, as shown in Sec 3.2, the
achievable operating region for topological interface states 
derived from Dirac 1 is constrained between Ω𝐷𝑖𝑟𝑎𝑐  = 4.2 and
Ω𝐷𝑖𝑟𝑎𝑐  = 11. Thus, the frequency of Dirac 2 (Ω𝐷𝑖𝑟𝑎𝑐  = 17.6)
provides an avenue to enhance the achievable operating region 
through the realization of higher frequency topological interface 
states.  

Section 3.1 outlines how a bandgap is formed from Dirac 1 
by breaking SIS (specifying 𝛽 ≠ 0), and topologically distinct 
lattices are defined and joined at an interface to achieve a 
topological interface state. A similar method is applied to Dirac 
2. To open a bandgap from Dirac 2, SIS is broken by specifying
𝛽 ≠ 1, represented in Fig. 5a by Configuration 2. For 
Configuration 2, a full bandgap Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝 = 0.6 is formed
between the second and third bands by specifying |𝛽| = 0.6 (Fig. 
5a, Configuration 2). The valley Chern numbers are calculated 
to evaluate the topological characteristics of these bands. For 𝛽 
= 0.6, 𝐶𝑣−2

𝐴 = 0.3 and 𝐶𝑣−3
𝐴  = -0.3, indicating a nontrivial

topological charge in terms of the QVHE (see discussion in Sec 
3.1). In contrast, 𝐶𝑣−2

𝐵 = -0.3 and 𝐶𝑣−3
𝐵  = 0.3 for 𝛽 = -0.6,

indicating Type A and Type B lattices with |𝛽| = 0.6 are 
topologically distinct. Thus, if Type A and Type B lattices with 
|𝛽| = 0.6 are joined at an interface, a topological transition occurs, 
facilitating the emergence of a topological interface state within 
the bandgap. In addition, since |𝐶𝑣 | ≥ 0.3, the prescribed circuit
parameters (|𝛽| = 0.6, Ω𝑡 = 23, Ω𝐷𝑖𝑟𝑎𝑐  = 17.6) would be included
in the achievable operating region for topological interface states 
defined in Sec. 3. The associated Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 is equal to
0.035, which is far greater than the maximum relative bandgap 
found within the achievable operating region reported in Sec. 
3.2, Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒−𝑚𝑎𝑥  = 0.006. With Dirac 2 located at
Ω𝐷𝑖𝑟𝑎𝑐  = 17.6 and Ω𝑏𝑎𝑛𝑑𝑔𝑎𝑝 = 0.6, topological interface states
derived from Dirac 2 that are contained within the achievable 
operating region are realizable from Ω = 17 to Ω = 17.6 (note: 
the top edge of the bandgap is fixed at 17.6). Thus, topological 
interface states derived from Dirac 2 are achievable at higher 
frequencies than are achievable from Dirac 1, and the total range 
of frequencies contained by the achievable operating region is 
enhanced by 8% (when compared to the baseline achievable 
operating region Ω = 4.2 and Ω = 11, blue box in Fig. 2b). The 
enhancement of the frequency tunability of the proposed 
metamaterial gained from this lattice reconfiguration is 
represented by the green boxed region in Fig. 2b.  

To confirm the emergence of a topological interface state 
from Dirac 2 near Ω𝐷𝑖𝑟𝑎𝑐= 17.6, COMSOL is used to generate
the band structure for a finite strip with Type A and Type B 
lattices joined at an interface. As in Sec. 3.2, the edges are fixed 
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and a periodic boundary condition is applied in the 𝑘// direction
(Fig. 5b). Figure 5b contains an interface mode shape with a 
localized displacement that is obtained from the band structure 
for the finite strip with |𝛽| = 0.6, Ω𝑡 = 23, and Ω𝐷𝑖𝑟𝑎𝑐= 17.6.

6 CONCLUSIONS 
In this study, negative capacitance circuitry and lattice 

reconfiguration are investigated as a means to enhance the 
adaptive capabilities and performance of a piezoelectric 
topological metamaterial. The plane wave expansion method is 
used to identify distinct Dirac cones within the unit cell and show 
that topological interface states can be achieved via circuit 
parameter perturbations. Performance metrics (𝛀𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒃𝒂𝒏𝒅𝒈𝒂𝒑

and |𝑪𝒗|) are calculated to quantify the potential operating
bandwidth and topological protection for the interface states 
under specified circuit parameters. To evaluate the adaptivity of 
the metamaterial, a parametric analysis is undertaken to identify 
an achievable operating region where interface states with 
sufficient operating bandwidth and topological protection can be 
realized. Exploration of the achievable operating region shows 
that the frequency of the topological interface state and the 
displacement localization of the associated interface modes can 
be tailored over a wide range using circuit parameters.  

Results indicate that the addition of negative capacitance 
circuity enhances the range of frequencies and interface mode 
shapes contained in the achievable operating region, greatly 
expanding the adaptive metamaterial capabilities. This 
expansion of the achievable operating region facilitates the 
achievement of topological interface states with a greater level 
of displacement localization and augments the maximum 
potential operating bandwidth. An additional method to enhance 
the performance and adaptivity of the metamaterial is lattice 
reconfiguration. The ability to achieve two separate Dirac points 
in an adaptive elastic metamaterial exhibiting the QVHE is 
demonstrated and explored for the first time. By reconfiguring 
the lattice to a triangular lattice structure, the frequency range of 
the achievable operating region is further enhanced, and higher 
frequency interface states can be achieved (when compared to 
the baseline achievable operating region). Thus, both the 
connection of negative capacitance circuitry and lattice 
reconfiguration greatly enhance the adaptivity and performance 
of the topological piezoelectric metamaterial. The ability to tune 
topological interface states over a wider frequency range and 
achieve more localized mode shapes would allow the 
metamaterial to be much more adaptive to changing external 
conditions and enhance performance for a variety of operating 
requirements. These attributes would be advantageous in 
applications where adaptive wave control can improve 
performance, such as vibration isolation, energy harvesting, and 
wave filtering.  
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